Expression of mir-148/152 Family as Potential Biomarkers in Non-Small-Cell Lung Cancer

Similar documents
Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

Expression of mir-1294 is downregulated and predicts a poor prognosis in gastric cancer

Original Article Tissue expression level of lncrna UCA1 is a prognostic biomarker for colorectal cancer

High expression of fibroblast activation protein is an adverse prognosticator in gastric cancer.

Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer

Original Article High serum mir-203 predicts the poor prognosis in patients with pancreatic cancer

Association of mir-21 with esophageal cancer prognosis: a meta-analysis

mir-218 tissue expression level is associated with aggressive progression of gastric cancer

Expression of mir-146a-5p in patients with intracranial aneurysms and its association with prognosis

Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer

Diagnostic performance of microrna-29a for colorectal cancer: a meta-analysis

Association between downexpression of mir-1301 and poor prognosis in patients with glioma

Patnaik SK, et al. MicroRNAs to accurately histotype NSCLC biopsies

Characterization and significance of MUC1 and c-myc expression in elderly patients with papillary thyroid carcinoma

Review Article Long Noncoding RNA H19 in Digestive System Cancers: A Meta-Analysis of Its Association with Pathological Features

Comparison of three mathematical prediction models in patients with a solitary pulmonary nodule

Implications of microrna-197 downregulated expression in esophageal cancer with poor prognosis

Serum mir-200c expression level as a prognostic biomarker for gastric cancer

Original Article Up-regulation of mir-10a and down-regulation of mir-148b serve as potential prognostic biomarkers for osteosarcoma

microrna Presented for: Presented by: Date:

Original Article MicroRNA-101 is a novel biomarker for diagnosis and prognosis in breast cancer

Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4

Decreased expression of mir-490-3p in osteosarcoma and its clinical significance

Expression of lncrna TCONS_ in hepatocellular carcinoma and its influence on prognosis and survival

Expression of long non-coding RNA linc-itgb1 in breast cancer and its influence on prognosis and survival

Circulating PD-L1 in NSCLC patients and the correlation between the level of PD-L1 expression and the clinical characteristics

Establishment of a mathematic model for predicting malignancy in solitary pulmonary nodules

Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma

Clinical impact of serum mir-661 in diagnosis and prognosis of non-small cell lung cancer

Overexpression of long-noncoding RNA ZFAS1 decreases survival in human NSCLC patients

Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer

Original Article CREPT expression correlates with esophageal squamous cell carcinoma histological grade and clinical outcome

Clinical significance of serum mir-196a in cervical intraepithelial neoplasia and cervical cancer

Profiles of gene expression & diagnosis/prognosis of cancer. MCs in Advanced Genetics Ainoa Planas Riverola

Original Article Reduced serum mir-138 is associated with poor prognosis of head and neck squamous cell carcinoma

Overregulation of microrna-212 in the poor prognosis of esophageal cancer patients

Diagnostic and prognostic value of CEA, CA19 9, AFP and CA125 for early gastric cancer

Clinical significance of serum mir-21 in breast cancer compared with CA153 and CEA

The diagnostic value of determination of serum GOLPH3 associated with CA125, CA19.9 in patients with ovarian cancer

Original Article Reduced expression of mir-506 in glioma is associated with advanced tumor progression and unfavorable prognosis

Reduced mirna-218 expression in pancreatic cancer patients as a predictor of poor prognosis

Corporate Medical Policy

CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer

Clinicopathological and prognostic differences between mucinous gastric carcinoma and signet-ring cell carcinoma

Study on the expression of MMP-9 and NF-κB proteins in epithelial ovarian cancer tissue and their clinical value

The clinical relevance of circulating, cell-free and exosomal micrornas as biomarkers for gynecological tumors

Plasma Bmil mrna as a potential prognostic biomarker for distant metastasis in colorectal cancer patients

Original Article Associations of deregulation of mir-365 and its target mrna TTF-1 and survival in patients with NSCLC

95% CI: , P=0.037).

Diagnostic test pepsinogen I and combination with tumor marker CEA in gastric cancer

Int J Clin Exp Med 2018;11(8): /ISSN: /IJCEM Jingjing Chen, Wanqi Meng, Huijuan Bi, Jilu Shen

RALYL Hypermethylation: A Potential Diagnostic Marker of Esophageal Squamous Cell Carcinoma (ESCC) Junwei Liu, MD

MicroRNA expression profiling and functional analysis in prostate cancer. Marco Folini s.c. Ricerca Traslazionale DOSL

mirna Dr. S Hosseini-Asl

Evaluation of altered expression of mir-9 and mir-106a as an early diagnostic approach in gastric cancer

Clinical value of combined detection of mir 1202 and mir 195 in early diagnosis of cervical cancer

A nonresponding small cell lung cancer combined with adenocarcinoma

Xiang Hu*, Liang Cao*, Yi Yu. Introduction

High Expression of Forkhead Box Protein C2 is Related to Poor Prognosis in Human Gliomas

Expression and clinicopathological significance of mir 193a 3p and its potential target astrocyte elevated gene 1 in non small lung cancer tissues

Exosomal Del 1 as a potent diagnostic marker for breast cancer : A prospective cohort study

Nandi Li, 1 Xiao Bo Feng, 2,3 Qian Tan, 1 Ping Luo, 1 Wei Jing, 1 Man Zhu, 1 Chunzi Liang, 1 Jiancheng Tu, 1,3 and Yong Ning 3. 1.

Decreased mir-198 expression and its prognostic significance in human gastric cancer

Original Article MicroRNA-27a acts as a novel biomarker in the diagnosis of patients with laryngeal squamous cell carcinoma

Clinicopathologic and prognostic relevance of mir-1256 in colorectal cancer: a preliminary clinical study

Detection of Anaplastic Lymphoma Kinase (ALK) gene in Non-Small Cell lung Cancer (NSCLC) By CISH Technique

A circulating serum mirna panel as early detection biomarkers of cervical intraepithelial neoplasia

Human leukocyte antigen-b27 alleles in Xinjiang Uygur patients with ankylosing spondylitis

Astrocyte Elevated Gene 1 (AEG-1): A Promising Candidate for Molecular Targeted Therapy in Oral Squamous Cell Carcinomas

Plasma MicroRNA Panel to Diagnose Hepatitis B Virus Related Hepatocellular Carcinoma

Value of serum galectin-3 and midkine level determination for assessing tumor severity in patients with thyroid cancer

Deciphering the Role of micrornas in BRD4-NUT Fusion Gene Induced NUT Midline Carcinoma

Original Article microrna-217 was downregulated in ovarian cancer and was associated with poor prognosis

RNA preparation from extracted paraffin cores:

Correlation between estrogen receptor β expression and the curative effect of endocrine therapy in breast cancer patients

ROLE OF TGF-BETA SIGNALING IN PIK3CA-

Role of deregulated micrornas in non small cell lung cancer progression using fresh frozen and formalin fixed, paraffin embedded samples

Epstein-Barr virus driven promoter hypermethylated genes in gastric cancer

Long noncoding RNA linc-ubc1 promotes tumor invasion and metastasis by regulating EZH2 and repressing E-cadherin in esophageal squamous cell carcinoma

A preliminary study on the relationship between circulating tumor cells count and clinical features in patients with non-small cell lung cancer

Long non-coding RNA Loc is a potential prognostic biomarker in non-small cell lung cancer

Original Article The programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with non-small cell lung cancer risk in a Chinese Han population

Serum mirna expression profile as a prognostic biomarker of stage II/III

Downregulation of long non-coding RNA LINC01133 is predictive of poor prognosis in colorectal cancer patients

Original Article Increased LincRNA ROR is association with poor prognosis for esophageal squamous cell carcinoma patients

Expression levels and the prognostic value of long non-coding RNA PVT1 in serum of Han and Uygur gastric cancer patients in Xinjiang, China

Extent of visceral pleural invasion and the prognosis of surgically resected node-negative non-small cell lung cancer

Cancers of unknown primary : Knowing the unknown. Prof. Ahmed Hossain Professor of Medicine SSMC

The prognostic value of mir 126 expression in non small cell lung cancer: a meta analysis

Clinical significance of CD44 expression in children with hepatoblastoma

Investigation on ERCC5 genetic polymorphisms and the development of gastric cancer in a Chinese population

micrornas (mirna) and Biomarkers

Dr Catherine Woolnough, Hospital Scientist, Chemical Pathology, Royal Prince Alfred Hospital. NSW Health Pathology University of Sydney

LncRNA GHET1 predicts a poor prognosis of the patients with non-small cell lung cancer

Cancer Cell Research 17 (2018)

Clinical profiles and trend analysis of newly diagnosed lung cancer in a tertiary care hospital of East China during

Exon 19 L747P mutation presented as a primary resistance to EGFR-TKI: a case report

Long non-coding RNA CCHE1 overexpression predicts a poor prognosis for cervical cancer

Prognostic significance of overexpressed long non-coding RNA TUG1 in patients with clear cell renal cell carcinoma

Transcription:

e-issn 1643-375 Med Sci Monit, 215; 21: 1155-1161 DOI: 1.12659/MSM.89294 Received: 214.11.3 Accepted: 214.11.13 Published: 215.4.23 Expression of mir-148/152 Family as Potential Biomarkers in Non-Small-Cell Lung Cancer Authors Contribution: Study Design A Data Collection B Statistical Analysis C Data Interpretation D Manuscript Preparation E Literature Search F Funds Collection G ABCDE ABC AF BCD CD Li Li Ye-ye Chen Shan-qing Li Cheng Huang Ying-zhi Qin Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, P.R. China Corresponding Author: Source of support: Shan-qing Li, e-mail: shijiangang14@163.com Departmental sources Background: Material/Methods: Results: Conclusions: MeSH Keywords: Full-text PDF: Altered mir-148/152 family expression contributes to human carcinogenesis. This study was designed to detect the potential for using mir-148/152 family as biomarkers for NSCLC patients. The relative expression levels of mir-148/152 family (mir-148a, mir-148b, and mir-152) in serum of 36 nonsmall-cell lung carcinoma (NSCLC) patients, 2 patients with benign pulmonary diseases (BPD), and 1 healthy individuals were assessed by real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). The expression of all three mirnas were significantly lower in the serum of NSCLC than that of BPD and healthy controls (all p<.1), and their expression levels were strongly correlated with each other (r=.781,.72, and.645, respectively). Downregulation of mir-148/152 family was found to be corrected with more aggressive tumors. The area under the receiver operating characteristic curves (AUCs) for mir-148a, mir-148b, and mir-152 discriminating NSCLC from BPD were.775,.725, and.774, respectively, all higher than that of CEA (.56). Combining the three mirnas increased the discrimination performance, yielding an AUC of.789 (95% confidence interval,.643 to.895), with a sensitivity of 72.2% and a specificity of 9.%. The results of present study suggest that the expression levels of circulating mir-148/152 family may serve as biomarkers for NSCLC. Biological Markers Carcinoma, Non-Small-Cell Lung MicroRNAs Serum http://www.medscimonit.com/abstract/index/idart/89294 2295 1 4 29 1155

Li L. et al.: Med Sci Monit, 215; 21: 1155-1161 Background Non-small cell lung cancer (NSCLC) is the third most common cause of cancer-related deaths worldwide, accounting for about 8% of all lung cancer [1]. Surgical resection remains the main treatment for NSCLC. Despite advances in early detection and improvements in treatment, about 75% of patients are diagnosed at the advanced stage and less than 5% of patients among those who can undergo curative resection, with a very low 5-year overall survival rate (5%); however, the 5-year survival for early-stage NSCLC after curative resection can increase to 3~6% [2]. Thus, promising non-invasive biomarkers for identifying high-risk individuals, combined with the current main diagnostic technologies, including X-ray, computed tomography (CT) and positron emission tomography (PET), are still urgently needed. MicroRNAs (mirnas), a class of small, regulatory, non-coding RNAs, have emerged as important regulators involved in various biological and pathological events, such as cellular growth, differentiation, and apoptosis and metastasis in tumorigenesis and deterioration [3,4]. Due to the versatile roles played by mirnas, it is not surprising that the expression levels of mirnas may be indicators of the intrinsic characteristics of tumors. Because molecules function at the epigenetic level, aberrant expression of mirnas occurs prior to phenotypic changes in the staged progression to carcinoma. In addition, mirnas can be reliably detected and quantified in every-day diagnostic biological material such as formalin-fixed paraffin-embedded (FFPE) samples, even in minimally invasive material such as whole blood, serum, and sputum, and are amenable to assessment by standard biotechnology techniques [5]. Taken together, mirnas have been identified as a kind of new blood-based biomarker for prognosis, diagnosis, and treatment selection for cancer patients [6,7]. MiR-148a, mir-148b, and mir-152 are the three members of the mir-148/152 family [8]. All these three mirnas have been identified to downregulate in NSCLC specimens and cell lines [9 12]. In addition, they are all key modulators of cell biological behaviors of NSCLC: mir-148a regulates epithelial-to-mesenchymal transition (EMT) by targeting ROCK1 in NSCLC [9]; mir-148b suppresses the proliferation and migration of NSCLC cell lines by targeting CEA [1]; and mir-152 reportedly inhibits the proliferation and invasion of NSCLC by downregulating the expression of FGF2 and ADAM17 [11, 12]. However, the expression of mir-148/152 family in the serum of NSCLC patients has not yet been reported. In the present study, we detected the expression of mir- 148/152 family in serum of NSCLC patients, patients with benign pulmonary diseases (BPD), and healthy individuals. We investigated the association between their expression levels and clinicopathological characteristics and determined whether these three mirnas could be biomarkers for NSCLC. Material and Methods Subjects Serum samples were obtained from 36 patients with primary NSCLC and 2 BPD patients prior to surgery who visited our hospital between February 21 and April 213. Additionally, 1 healthy volunteers with no history of cancer were recruited. The detailed medical histories, including age, sex, clinical, and histopathological parameters of all participants are summarized in Table 1. The tumor stage at the time of diagnosis was determined according to guidelines of the American Joint Committee on Cancer (http://www.cancerstaging.org/). All samples were collected from the antecubital vein using 1-mL clotting tubes, centrifuged at 2, g for 2 min at 4 C, and aliquoted into separate Eppendorf tubes and stored at 8 C. Written informed consent was obtained from each participant, which was reviewed and approved by the Institutional Review Board of our Hospital. RNA extraction and real-time reverse transcription quantitative polymerase chain reaction Total RNA was extracted from serum using the BioTeKe mirna extraction kit (BioTeKe Corporation, China) according to the manufacturer s instructions. The expression levels of mirnas in samples were measured by RT-qPCR. Isolated RNA was reverse transcribed using a TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems, Foster City, CA, USA). Quantification of mirna was performed on the Eppendorf Mastercycler EP Realplex (Eppendorf, Germany) using real-time PCR System at 95 C for 1 min, followed by 4 cycles of 95 C for 15 s and 6 C for 6 s. U6 snrna served as the internal control. Relative mirna expression levels were calculated using the 2 DDCt method. All reactions were run in triplicate and Ct data were determined using default threshold settings. Serum CEA determination Serum CEA levels were measured using ELISA (no. ab4451; Abcam, Cambridge, UK), dilutions for excessive CEA concentration, setup, adjustments, and quality controls were performed according to the manufacturer s instructions. The assay employed anti-human CEA antibody coated onto a 96-well plate. Standard or serum samples were pipetted into the wells, and CEA present in samples were bound to the wells by the immobilized antibody. The wells were then washed and biotinylated anti-human CEA antibodies were added. Following wash of unbound biotinylated antibody and horseradish peroxidaseconjugated streptavidin was pipetted into the wells. The wells were washed again, TMB substrate solution was added, and color developed in proportion to the amount of bound CEA. Absorbance value was measured at 45 nm. CEA concentration in serum was determined according to standard curves. 1156

Li L. et al.: Med Sci Monit, 215; 21: 1155-1161 CLINICAL RESEARCH Table 1. Patients characteristics and correlation of relative levels of mirnas with clinicopathological parameters. mirna expression level (Mean±SD) Parameters Patients mir-148a mir-148b mir-152 NSCLC patients 36 Age (years) 56 years (range, 27 82 years).6±.9.4±.6.13±.16 6 11.9±.5.3±.9.9±.5 >6 23.5±.3.5±.12.15±.6 Gender Male 25.5±.3.4±.12.15±.4 Female 11.7±.4.5±.6.12±.2 Tumor size (cm) 3 2.7±.4.7±.17 b.8±.6 d >3 16.4±.9.2±.6 b.23±.5 d Histology SCC 16.5±.4.6±.9.2±.8 ADC 2.7±.9.4±.3.11±.6 Differentiation Moderate-well 23.7±.4.4±.6.11±.8 Poorly 13.5±.2.4±.13.14±.4 Lymph node metastasis Negative 6.9±.4 a.8±.13 c.21±.16 e Positive 3.3±.9 a.3±.9 c.8±.9 e TNM stage I 8.5±.4.5±.8.24±.46 f II~IV 28.7±.2.4±.12.3±.13 f BPD patients 2 Age 61 years (range 32 81 years).91±.51.51±.26.38±.21 Gender Male 12 1.4±.7.52±.17.41±.25 Female 8.92±.3.53±.36.33±.14 Healthy individuals 1 Age 52 years (range 26 73 years).43±.6.21±.25 1.26±.42 Gender Male 5.58±.8.19±.8 1.13±.6 Female 5.77±.6.25±.17 1.42±.91 a p=.27; b p=.9; c p=.31; d p=.12; e p=.45; f p=.47. BPD benign pulmonary disease SCC squamous cell carcinoma; ADC adenocarcinoma; TNM tumour-node-metastasis staging system. Statistical analysis Differences between groups were assessed using the Mann- Whitney U test. The correlations between the expression levels of mir-148/152 family were evaluated by Pearson s regression analysis. A receiver operating characteristic (ROC) curve based on the DCt (Ct [mirna] -Ct [U6] ) of mirna expression in samples was plotted and the area under the curve (AUC) was calculated to evaluate the diagnostic performance of mirnas. All statistical analyses were performed using SPSS 2. (SPSS Inc., Chicago, IL). The MedCalc 1.4.7. (MedCalc, Mariakerke, Belgium) software was used to perform the ROC analysis. All p-values were two-sided and p<.5 was considered statistically significant. 1157

Li L. et al.: Med Sci Monit, 215; 21: 1155-1161 A B C p=. p=.8 2.5 p=. p=.9 p=. p=.4 2. 1. Relative mir-148a level 1..5. NSCLC Relative mir-148b level.5.. BPD Healthy NSCLC BPD Healthy Relative mir-152 level 2.5 2. 1..5 p=. p=. p=. NSCLC BPD Healthy Figure 1. The mir-148/152 family level was significantly decreased in NSCLC serum. Comparison of mir-148a (A), mir-148b (B), and mir-152 (C) expression levels in NSCLC patients, BPD patients, and healthy volunteers. Statistical significance was determined by the Mann-Whitney U test. A B C 2. r=.781 p=. 4 3 r=.72 p=. Relative mir-148b level 1..5...5 1. 2. Relative mir-148a level Relative mir-152 level 2 1..5 1. 2. Relative mir-148a level r=.646 p=...5 1. 2. Relative mir-148b level Figure 2. Correlations of expression of mir-148/152 family in NSCLC patients. (A) Correlation of the expression of mir-148a and mir- 148b in NSCLC patients (Pearson r=.781, p=.). (B) Correlation of the expression of mir-148a and mir-152 in NSCLC patients (Pearson r=.72, p=.). (C) Correlation of the expression of mir-148b and mir-152 in NSCLC patients (Pearson r=.646, p=.). Relative mir-152 level 4 3 2 1 Results Participant characteristics A total of 66 serum samples (36 NSCLC, 2 BPD, and 1 healthy) were analyzed by RT-qPCR. Table 1 shows the clinicopathologic characteristics of all participants. Of the 36 NSCLC cases, the median age was 56.75±8.45 years (range, 27 to 82 years), 8 were stage I, 1 were stage II, 12 were stage III, and 6 were stage IV. Histologically, 16 of the 36 tumors were squamous cell carcinomas (SCC) and 2 were adenocarcinomas (ADC). Of the 2 BPD patients, the median age was 61.75±6.76 years (range, 32 to 81 years), 9 were tuberculosis, 4 were pseudotumors, 4 were pulmonary sclerosing hemangiomas, and 3 were pulmonary granulomas (PSH). The median age of the 1 healthy volunteers was 52.36±11.47 years (range, 26 73 years). No differences were observed in age and sex distribution among the three groups (P>.5). mirnas expression profile As shown in Figure 1, the expression levels of mir-148a, mir- 148b, and mir-152 in NSCLC samples were significantly lower than that of BPD and healthy individuals (all p<.1). The mean ±SD value of mir-148a, mir-148b, and mir-152 were.6±.9,.4±.6, and.13±.16, respectively, in NSCLC samples;.91±.51,.51±.26, and.38±.21, respectively, in BPD samples; and.43±.36,.21±.25, and 1.26±.42, respectively, in samples from healthy participants. Intriguingly, while mir-152 showed continuous downregulation in the serum from healthy individuals to BPD patients and NSCLC patients, compared with healthy individuals, mir-148a and mir-148b levels were higher in BPD patients and lower in NSCLC patients. Pearson s regression analysis showed strong correlations of the expression levels of mir-148a, mir-148b, and mir-152 with each other in NSCLC patients, and their correlation coefficients were.781,.72, and.645, respectively (Figure 2). The association between mir-148/152 family expression and clinicopathologic parameters in NSCLC The correlation between mir-148/152 family expression levels and clinicopathological parameters of patients is summarized in Table 1. Low mir-148a expression was significantly correlated with presence of lymphatic metastasis (P=.27); low mir- 148b expression was significantly correlated with larger tumor size (P=.9) and presence of lymphatic metastasis (P=.31); and low mir-152 expression was significantly correlated with 1158

Li L. et al.: Med Sci Monit, 215; 21: 1155-1161 CLINICAL RESEARCH A mir-148a B mir-148b C 1 1 1 mir-152 8 6 4 : 77.8 Specificity: 8. Criterion: >3.33 8 6 4 : 69.4 Specificity: 8. Criterion: >2.7 8 6 4 : 72.2 Specificity: 9. Criterion: >3.69 2 AUC=.775 95% CI:.628.885 2 4 6 8 1 1-Specificity 2 AUC=.725 95% CI:.574.846 2 4 6 8 1 1-Specificity 2 AUC=.774 95% CI:.626.884 2 4 6 8 1 1-Specificity Figure 3. Receiver operating characteristic (ROC) curve analysis according to independent mir-148/152 family level. The ROC plots for mir-148a (A), mir-148b (B), and mir-152 (C) were used to differentiate NSCLC from BPD. AUC, area under the receiver operating characteristic curve; CI, confidence interval. A 1 8 6 4 2 : 44.1 Specificity: 88.9 Criterion: 12.7 CEA AUC=.56 95% CI:.37.682 2 4 6 8 1 1-Specificity B 1 8 6 4 mir-148/152 family : 72.2 Specificity: 9. Criterion: >1.17 2 AUC=.789 95% CI:.643.895 2 4 6 8 1 1-Specificity Figure 4. Receiver operating characteristic (ROC) curve analysis according to CEA and combined mir-148/152 family level. The ROC plots for carcinoembryonic antigen (CEA) (A), a combination of mir-148/152 family (B) were used to differentiate NSCLC from BPD. AUC, area under the receiver operating characteristic curve; CI, confidence interval. larger tumor size (P=.12), presence of lymphatic metastasis (P=.45), and advanced clinical stage (P=.47). However, no correlation was observed between the expression levels of each mirnas and other clinicopathologic factors, including age, sex, tumor differentiation, and histology (all p>.5; Table 1). Diagnostic performance of mir-148/152 family and CEA for NSCLC The diagnostic performance of mir-148/152 family in differentiating NSCLC from BPD was evaluated by ROC curve analysis (Figure 3). Cut-off points were determined such that they maximized the sum of sensitivity and specificity. The cut-off points for mir-148a, mir-148b, and mir-152 were 3.33, 2.7, and 3.69, respectively (Figure 3A 3C). The diagnostic accuracy of mir-148a, mir-148b, and mir-152, as measured by the AUC, were.775,.725, and.774, respectively (Figure 3). The diagnostic accuracy of CEA was 12.7 ng/ml and AUC for CEA was.56, with a sensitivity of 44.1% and a specificity of 88.9% (Figure 4A). Based on a logit model from the combination of these three mirnas [logit=.745 + (.283 expression level of mir-148a) + (.298 expression level of mir-148b) + (.454 expression level of mir-152)], the predicted probability of patients being diagnosed with NSCLC was used to construct a ROC curve. The AUC for the model was.789 (95% confidence interval [CI],.643 to.895), with a sensitivity of 72.2% and a specificity of 9.% (Figure 4B). Discussion In the present study, we demonstrated that the expression level of mir-148/152 family (mir-148a, mir-148b, and mir- 152) was significantly different among NSCLC patients, BPD patients (pulmonary tuberculosis, pseudotumor, pulmonary sclerosing hemangioma, and PSH), and healthy volunteers, and their expression profiles can be used to differentiate NSCLC and BPD. In addition, the diagnostic performance of the combination panel of mir-148/152 family (AUC,.789) was significantly higher than that of CEA (AUC,.56). As a widely used diagnostic biomarker for NSCLC patients, CEA is found to confer good specificity but relatively poor sensitivity for the diagnosis of NSCLC [13]. In addition to having a higher diagnostic value, the sensitivity of the mir-148/152 family panel was 1159

Li L. et al.: Med Sci Monit, 215; 21: 1155-1161 also higher (72.2%) than that of CEA. Our current data indicate that serum mir-148/152 family should be further evaluated as novel non-invasive biomarkers for discriminating NSCLC from benign lung tumors. Studies have revealed that mirnas constitute a robust regulatory network in the post-transcription regulation of coding genes [14]. By using detection analyses such as RNA sequencing and microarray, altered expression of mirnas has been reported in varies of malignancies [3,15 18], and multiple deregulated mirnas have been implicated in physiological and pathological processes of lung cancer [19 22]. Based on the deregulated mirnas expression profiling and their association with the biological and clinical properties of lung cancer, specific mirnas could be utilized to distinguish benign and malignant lesions [23,24]. In addition to cancer tissues, expression profiles of mirnas are also altered in the serum or plasma from patients with lung cancers [25 27]. Given that mirnas secreted from tumor cells into the circulatory system can resist RNase activity through being packed into highly stable complexes, mirnas may be developed into reliable bloodbased fingerprints for lung cancer diagnosis [28]. In the present study, we focused on the functional mir-148/152 family, which were reported to deregulate in lung cancer tissues, and examined their expression in serum samples obtained from NSCLC patients, BPD patients, and healthy individuals by RTqPCR. We found that the expression levels of mir-148/152 family were lower in NSCLC than in BPD and healthy individuals. Therefore, the investigation of serum mir-148/152 family levels in NSCLC patients, as presented in this study, may be of great clinical interest. As shown on the mirbase Website, the three members of the mir-148/152 family having the same seed sequence of approximately 6 7 nucleotides, which is well-reflected in the present study results showing strong correlations between these three mirnas. Moreover, our results showed negative correlations between 148/152 family expression and malignant phenotypes of NSCLC, which may be good explanations for how all three mirnas can function as tumor suppressors in NSCLC. Functional assays demonstrated that mir-148a inhibits EMT in NSCLC cells by directly targeting ROCK1, a metastasis promoter [9]. mir-148b suppresses cell proliferation and migration in NSCLC cell lines by targeting CEA [1]. Similarly, mir-152 was reported to inhibit the proliferation and invasion of NSCLC by downregulating the expression of FGF2 and ADAM17 [11,12]. In addition, low expression of mir-152 in plasma is associated with poor survival in NSCLC patients [29]. All these findings together suggest that although the three members of the mir- 148/152 family have the same seed sequence, they may have different target sets and perform specific functions in different physiological and pathological processes, thereby exhibiting different expression profiles in specific disease types and stages. Therefore, it is understandable that although these three mirnas are all downregulated in NSCLC serum, compared with healthy individuals, mir-152 showed a continuously downregulation in the serum from healthy individuals to BPD patients and NSCLC patients; while both mir-148a and mir-148b levels were higher in BPD patients and lower in NSCLC patients. The current findings are preliminary and may have some limitations. First, this was a small study sample and the results require confirmation in further large-scale and multi-center studies before any recommendations can be generated. The second limitation of the study was that the expression of all three mirnas were down-regulated in NSCLC, and the cut-off points that had to be detected in clinical samples for down regulated mirnas were very low. In addition, since the function and mechanism of the mir-148/152 family in NSCLC pathogenesis have been shown thoroughly, combined with our investigation into their diagnostic value, the mir-148/152 family may be useful biomarkers for diagnosis, provide additional targets and strategies for treatment, and lead to increasingly personalized cancer therapy. Conclusions In summary, the present study showed downregulation of mir- 148/152 family levels in serum of NSCLC patients, and their expression profiles were correlated with malignant phenotypes. Furthermore, the mir-148/152 family panel showed a diagnostic performance comparable with that of CEA, with much better sensitivity than that of CEA. Thus, we propose that mir- 148/152 family could be utilized to develop invasive screening tools for NSCLC. More in-depth studies are required to confirm the diagnostic values of the mir-148/152 family in discriminating NSCLC from benign pulmonary diseases. Conflict of interest The authors declare no conflict of interest. References: 1. Murray N: Reality check for pemetrexed and maintenance therapy in advanced non-small-cell lung cancer. J Clin Oncol, 214; 32: 482 83 2. Ponn RB, Lo Cicero J III, Daly BD: Surgical treatment of non-small cell lung cancer. General Thoracic Surgery, 25; 6: 1548 87 3. Rutnam ZJ, Yang BB: The involvement of micrornas in malignant transformation. Histol Histopathol, 212; 27: 1263 7 4. Winter J, Jung S, Keller S et al: Many roads to maturity: microrna biogenesis pathways and their regulation. Nat Cell Biol, 29; 11: 228 34 116

Li L. et al.: Med Sci Monit, 215; 21: 1155-1161 CLINICAL RESEARCH 5. Skrzypski M, Dziadziuszko R, Jassem J: MicroRNA in lung cancer diagnostics and treatment. Mutat Res, 211; 717: 25 31 6. Mitchell PS, Parkin RK, Kroh EM et al: Circulating micrornas as stable bloodbased markers for cancer detection. Proc Natl Acad Sci USA, 28; 15: 1513 18 7. Fang Y, Yao Q, Chen Z et al: Genetic and molecular alterations in pancreatic cancer: implications for personalized medicine. Med Sci Monit, 213; 19: 916 26 8. Chen Y, Song YX, Wang ZN: The microrna-148/152 family: multi-faceted players. Mol Cancer, 213; 12: 43 9. Li J, Song Y, Wang Y et al: MicroRNA-148a suppresses epithelial-to-mesenchymal transition by targeting ROCK1 in non-small cell lung cancer cells. Mol Cell Biochem, 213; 38: 277 82 1. Liu GL, Liu X, Lv XB et al: mir-148b functions as a tumor suppressor in nonsmall cell lung cancer by targeting carcinoembryonic antigen (CEA). Int J Clin Exp Med, 214; 7: 199 99 11. Cheng Z, Ma R, Tan W, Zhang L: MiR-152 suppresses the proliferation and invasion of NSCLC cells by inhibiting FGF2. Exp Mol Med, 214; 46: e112 12. Su Y, Wang Y, Zhou H et al: MicroRNA-152 targets ADAM17 to suppress NSCLC progression. FEBS Lett, 214; 588: 1983 88 13. Bekci TT, Senol T, Maden E: The efficacy of serum carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), carbohydrate antigen 19-9 (CA19-9), carbohydrate antigen 15-3 (CA15-3), alpha-fetoprotein (AFP) and human chorionic gonadotropin (hcg) levels in determining the malignancy of solitary pulmonary nodules. J Int Med Res, 29; 37: 438 45 14. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 24; 116: 281 97 15. Di Leva G, Garofalo M, Croce CM: MicroRNAs in cancer. Annu Rev Pathol, 214; 9: 287 314 16. Zhang H, Qi F, Cao Y et al: Down-regulated microrna-11 in bladder transitional cell carcinoma is associated with poor prognosis. Med Sci Monit, 214; 2: 812 17 17. Wang Z, Cai Q, Jiang Z et al: Prognostic role of MicroRNA-21 in gastric cancer: a meta-analysis. Med Sci Monit, 214; 2: 1668 74 18. Liu Y, Zhao J, Zhang PY et al: MicroRNA-1b targets E-cadherin and modulates breast cancer metastasis. Med Sci Monit, 212; 18(9): BR299 38 19. Wang J, Tian X, Han R et al: Downregulation of mir-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene, 214; 33: 1181 89 2. Cai J, Wu J, Zhang H et al: mir-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res, 213; 73: 756 66 21. Cai J, Fang L, Huang Y et al: mir-25 targets PTEN and PHLPP2 to augment AKT signaling and drive malignant phenotypes in non-small cell lung cancer. Cancer Res, 213; 73: 542 15 22. Hatley ME, Patrick DM, Garcia MR et al: Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell, 21; 18: 282 93 23. Zandberga E, Kozirovskis V, Abols A et al: Cell-free micrornas as diagnostic, prognostic, and predictive biomarkers for lung cancer. Genes Chromosomes Cancer, 213; 52: 356 69 24. Fanini F, Vannini I, Amadori D, Fabbri M: Clinical implications of micrornas in lung cancer. Semin Oncol, 211; 38: 776 8 25. Rani S, Gately K, Crown J et al: Global analysis of serum micrornas as potential biomarkers for lung adenocarcinoma. Cancer Biol Ther, 213; 14: 114 12 26. Wang Y, Gu J, Roth JA et al: Pathway-based serum microrna profiling and survival in patients with advanced stage non-small cell lung cancer. Cancer Res, 213; 73: 481 9 27. Markou A, Sourvinou I, Vorkas PA et al: Clinical evaluation of microrna expression profiling in non small cell lung cancer. Lung Cancer, 213; 81: 388 96 28. Zen K, Zhang CY: Circulating micrornas: a novel class of biomarkers to diagnose and monitor human cancers. Med Res Rev, 212; 32: 326 48 29. Sanfiorenzo C, Ilie MI, Belaid A et al: Two panels of plasma micrornas as non-invasive biomarkers for prediction of recurrence in resectable NSCLC. PLoS One, 213; 8: e54596 1161