Comparison of Peri-Implant Bone Loss and Survival of Maxillary Intrasinus and Extrasinus Implants After 2 Years

Similar documents
BONE AUGMENTATION AND GRAFTING

More than bone regeneration. A total solution.

The Use of Freeze-Dried Bone Allograft as an Alternative to Autogenous Bone Graft in the Atrophic Maxilla: A 3-Year Clinical Follow-up

Dental Implant Treatment with Diffe Title for Sinus Floor Elevation-A Case Re. Sekine, H; Taguchi, T; Seta, S; Tak Author(s) T; Kakizawa, T

Alveolar Ridge Augmentation with Titanium Mesh and Particulate Allograft A Case Report

Assessment of the autogenous bone graft for sinus elevation

Vertical and Horizontal Augmentation Using Guided Bone Regeneration. Ph.D. Thesis. Dr. med. dent. et univ. Istvan Urban

Long-term results of new deproteinized bovine bone material in a maxillary sinus graft procedure

Purpose: To assess the long term survival of sites treated by GTR.

Management of a complex case

(Images are at the end of article)

The International Journal of Periodontics & Restorative Dentistry

Socket preservation in the daily practice: A clinical case report

Crestal Sinus Augmentation: A Simplified Approach to Implant Placement in the Posterior Maxilla

Puros Cancellous Particulate Allograft & Puros Block Allograft

Effects of Maxillary Sinus Graft on the Survival of Endosseous Implants: A 10-Year Retrospective Study

Dental Implants: A Predictable Solution for Tooth Loss. Reena Talwar, DDS PhD FRCD(C) Oral & Maxillofacial Surgeon Associate Clinical Professor

SOCKET WHETHER TO PRESERVE IT NOW OR TO CREATE LATER? - A CASE REPORT

The Essential Choice. With the Benefits of Biologic Predictability

We Want to Keep You Smiling. Bone Regeneration with Geistlich Bio-Oss and Geistlich Bio-Gide

PALATAL POSITIONING OF IMPLANTS IN SEVERELY RESORBED POSTERIOR MAXILLAE F. Atamni, M.Atamni, M.Atamna, Private Practice Tel-aviv Israel

Stefan Peev 1, Tihomir Georgiev 2, Elitsa Sabeva 1, Georgi Papanchev 2, Vladimir Panov 3.

A WIDE RANGE OF REGENERATIVE SOLUTIONS

Maxillary sinus augmentation without any graft material- A case Report

FIVE-YEAR FOLLOW-UP OF IMPLANTS PLACED SIMULTANEOUSLY WITH INFERIOR ALVEOLAR NERVE LATERALISATION OR TRANSPOSITION

Maxillary Sinus Augmentation:

Comparative Study of Algipore and Decalcified Freeze-Dried Bone Allograft In Open Maxillary Sinus Elevation Using Piezoelectric Surgery

The Essential Choice. With the Benefits of Biologic Predictability

Pre-operative evaluation of the volume of bone graft in sinus lifts by means of CompuDent

The anatomic limitations of the. Implant Installation With Simultaneous Ridge Augmentation. Report of Three Cases Jun-Beom Park, DDS, MSD, PhD*

Comparison of Lateral Window and Osteotome Techniques in Sinus Augmentation: Histological and Histomorphometric Evaluation

Consensus Report Tissue augmentation and esthetics (Working Group 3)

( ) 2009;28(2):89-94

TOPICS. T O P I C S Day 1. Implant Locations. Implant Placement in the Posterior Maxilla. Anatomy and risk factors Option 1: Short implants

Vertical Bone Augmentation for Implant Placement in the Mandible a Systematic. Review

Cerasorb M DENTAL. O:\Zulassung\Cerasorb Dental Kanada 2013\Texte\Cerasorb M Dental final IFU docx

Posterior mandible and vertical augmentation

Horizontal bone augmentation by means of guided bone regeneration

Evaluation of different grafting materials in three-wall intra-bony defects around dental implants in beagle dogs

Periimplant Regeneration Fenestration

Periimplant Regeneration Fenestration

Contemporary Implant Dentistry

MANAGEMENT OF ATROPHIC ANTERIOR MAXILLA USING RIDGE SPLIT TECHNIQUE, IMMEDIATE IMPLANTATION AND TEMPORIZATION

The Use of Alpha-Bio Tec's Narrow NeO Implants with Cone Connection for Restoration of Limited Width Ridges

Immediate Implant Placement in Deficient Bone Sites

Contemporary Periodontal Surgery

Multi-Modality Anterior Extraction Site Grafting Increased Predictability for Aesthetics Michael Tischler, DDS

A New Technique for Minimally Invasive Maxillary Lateral Sinus Augmentation: a Case Report

Puros Cancellous Particulate Allograft & Puros Block Allograft

REGENERATIONTIME. A Case Report by. Ridge Augmentation and Delayed Implant Placement on an Upper Lateral Incisor

The International Journal of Periodontics & Restorative Dentistry

EFFECTIVE DATE: 04/24/14 REVISED DATE: 04/23/15, 04/28/16, 06/22/17, 06/28/18 POLICY NUMBER: CATEGORY: Dental

Sinus Augmentation Studies Methods and Definition

Abstract. Introduction. Case Report

Oral Health and Dentistry

Vertical and horizontal alveolar ridge augmentation

Rehabilitation of atrophic partially edentulous mandible using ridge split technique and implant supported removable prosthesis

A Novel Technique for the Management of a Maxillary Anterior Alveolar Defect with an Implant-retained Fixed Prosthesis: A Clinical Report

I nsufficient bone volume is a common

Growth Factor-Mediated Sinus Augmentation Grafting With Recombinant Human Platelet-Derived Growth Factor-BB (rhpdgf-bb): Two Case Reports

Immediate Implant Placement Along With Guided Bone Regeneration In Mandibular Anterior Region A Case Report.

Symbios Xenograft Granules Porcine Bone Graft Material

Clinical presentation of a horse-derived biomaterial and its Biocompatibility: A Clinical Case Report

Ridge Augmentation. Selection of Applicable Abstracts and Posters. Using Titanium-Reinforced PTFE Membranes

Scientific & Clinical Evidence Jason membrane

The long-term fate of some biomaterials is. Eight-Year Results of Site Retention of Anorganic Bovine Bone and Anorganic Bovine Matrix CASE REPORT

I n the maxilla, dental implant treatment

Evaluation of a Combination Allograft Material Compared to DFDBA in Alveolar Ridge Preservation. Sanju P. Jose

Biomaterials Line. MIS Corporation. All Rights Reserved.

Endosseous cylindric implants are well accepted

REASONS TO USE R.T.R.

Factors affecting changes in sinus graft height between and above the placed implants

The Original remains unique.

Bringing you Geistlich biocompatibility with improved application and handling benefits. Your combination for success

The International Journal of Periodontics & Restorative Dentistry

Guided surgery as a way to simplify surgical implant treatment in complex cases

THE NEW STANDARD OF EXCELLENCE IN BIOMATERIALS. Collagenated heterologous cortico-cancellous bone mix + TSV Gel GTO I N S P I R E D B Y N A T U R E

Masking Buccal Plate Remodeling in the Esthetic Zone with Connective Tissue Grafts: Concepts and Techniques with Immediate Implants

Annals of Dental Research

Distribution of the maxillary artery related to sinus graft surgery for implantation

Case Study. Case # 1 Author: Dr. Suheil Boutros (USA) 2013 Zimmer Dental, Inc. All rights reserved. 6557, Rev. 03/13.

The International Journal of Periodontics & Restorative Dentistry

One in four sinus lift procedures can be

Bone Regeneration in a Bilateral Sinus Lift

regeneration 6 (GBR), and sinus augmentation

Nasal floor elevation combined with dental implant placement

Chemicals in Surgical Periodontal Therapy

Strong bone for beautiful teeth. Patient Information I Bone reconstruction with Geistlich Bio-Oss and Geistlich Bio-Gide

Treatment planning in a case of restoration of the maxilla and mandible using osseointegrated implants with four types of bone graft

School of Dentistry, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil

Interventions for replacing missing teeth: augmentation procedures of the maxillary sinus.

We want to keep you smiling. Bone regeneration with Geistlich Bio-Oss and Geistlich Bio-Gide

Space maintenance in autogenous fresh demineralized tooth blocks with platelet rich plasma for maxillary sinus bone formation: a prospective study

An aging world population and a progressive

Vertical and Horizontal Ridge Augmentation of a Severely Resorbed Ridge in the Anterior Maxilla

Immediate implant placement in the Title central incisor region: a case repo. Journal Journal of prosthodontic research,

Alveolar Ridge Preservation:

BioVin Collagen Membrane

Transcription:

Original Article Comparison of Peri-Implant Bone Loss and Survival of Maxillary Intrasinus and Extrasinus Implants After 2 Years AR. Rokn 1,2, AAR. Rasouli Ghahroudi 3,4, S. Hemati 5, A. Soolari 6 1 Associate Professor, Dental Implant Research Center, Tehran University of Medical Sciences, Tehran, Iran 2 Associate Professor, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran 3 Assistant Professor, Dental Research Center, Tehran University of Medical Sciences, Tehran, Iran 4 Assistant Professor, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran 5 General Dentist, Sanandaj, Kordestan, Iran 6 Diplomate of American Board of Periodontology, Private practice, Silver Spring, MD, USA Corresponding author: AAR.RasouliGhahroudi, Department of Periodontics, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran amirali_rasouli@yahoo.com Received: 22 April 2011 Accepted: 6 July 2011 Abstract: Objective: Low quality of the bone and insufficient bone due to the size of the sinus and resorption of the alveolar ridge decrease the long-term survival of implants in the posterior maxilla compared to other regions of the jaws. Surgical procedures to increase bone volume make it possible to place implants longer than 8 mm. In this situation sinus elevation makes it possible to place implants. We intend to evaluate peri-implant bone loss and survival of implants placed in elevated sinuses after 2 years and to compare with implants placed in the native posterior maxilla. Materials and Methods:Twenty-five implants placed in sinuses that had been reconstructed with Bio-Oss and healed after 9 months were compared with 30 implants placed in the posterior maxilla without any surgery. The groups were compared using probing pocket depth, bleeding on probing, Plaque Index and bone loss immediately after implant placement surgery and 2 years postoperatively. The criterion for implant survival was presence or absence of the implant in the oral cavity, which was recorded in relevant forms in both groups. Results: Three implants were lost; one in control and two in grafted sinuses. No significant differences were observed in the survival rates. In general, the mean bone loss around intrasinus and extrasinus implants was not significantly different. In the same context, no differences were observed between bleeding on probing, Plaque Index and probing pocket depths of two groups (P=0.397, P=0.637 and P=0.224, respectively). Conclusion: The survival and bone loss around intrasinus and extrasinus implants are similar. Key Words: Bio-Oss; Alveolar Bone Loss; Dental implants; maxillary sinus; survival rate Journal of Dentistry, Tehran University of Medical Sciences, Tehran, Iran (2011; Vol.8, No.3) INTRODUCTION In many patients, the posterior maxilla poses problems for the placement of dental implants as a result of the presence of maxillary sinuses. The maxillary sinus expands laterally and inferiorly and it may even extend to the canine eminence after tooth loss. As a result, bone height is decreased in this area. Subsequent to periodontal disease, tooth loss and maxillary sinus expansion, there is 2011; Vol. 8, No. 3 1 130

Journal of Dentistry, Tehran University of Medical Sciences Rokn et al. usually less than 10 mm of bone remaining between the alveolar ridge and the floor of the maxillary sinus. This small amount of bone is usually associated with insufficient bone density and great force in the region, endangering the long-term prognosis of many endosteal implant systems. A sinus elevation procedure may be undertaken to reconstruct bone at the sinus floor to increase the survival of dental implants. Several techniques have been proposed for reconstruction of the posterior maxilla. In the late 1960s, Linkow [1] reported that the maxillary sinus membrane may be displaced slightly to provide room for the placement of blade implants inside the sinus in the posterior maxilla. This technique requires at least 7 mm of vertical bone height under the sinus. Barone [2] used onlayautogenous bone taken from the illiac to provide sufficient bone height to support implants and increase bone height in the posterior maxilla. Tatum [3] introduced a modified Caldwell-Luc technique for maxillary sinus floor grafts. In this technique, the alveolar crest of the maxilla is incised and used to lift the maxillary sinus membrane. Then the bone graft is placed in the area that was previously occupied by the inferior third of the maxillary sinus. Endosteal implants are placed inside this grafted area after approximately 6 months of healing. This technique was developed for simultaneous placement of the implant. Various materials that have been used to graft the sinus cavity are listed in Table 1. Autogenous bone grafts have been the primary material of choice by dental practitioners all over the world since surgical techniques for sinus floor elevation were introduced. Although autogenous material is the most acceptable biomaterial for osseous grafts, its use has some disadvantages, including the need for a second surgical procedure. In addition, postoperative pain at the donor site may be severe, depending on its location and the amount of grafting material needed. Application of xenografts to increase bone height and volume in posterior maxillary defects has been proved highly effective. Anorganic bovine bone matrix, either alone or in combination with autogenous materials is the material of choice by the majority of physicians who perform sinus graft surgeries. Froum and Wallace [4] examined 5,267 implants after at least 1 year of loading. The study included 34 lateral window accesses and 11 xenografts, alone or in combination with autogenous bone or in combination with platelet-rich plasma. The study showed that the survival of implants placed in xenografts was the same as that placed in autogenous bone from a statistical viewpoint. In another systematic study by Del Fabbro et al [5], the survival rates of 6,913 implants in 2,046 patients assessed for 12 to 25 months in 39 eligible studies were evaluated. The mean survival rate was 87.7% for implants placed in 100% autogenousgrafts and Table 1. Materials used in sinus elevation procedures Autograft Allograft Alloplast Xenoplast Bone harvested from iliac crest, tibia, mandibular ramus and mandibular symphysis Freeze-dried demineralized bone Resorbable hydroxyapatite, nonresorbable hydroxyapatite and resorbable glass Bio-Oss, osteograft and inorganic bovine bone 2131 2011; Vol. 8, No. 3

Rokn et al. Comparison of Peri-Implant Bone Loss for implants placed in sinuses that had been reconstructed with a combination of xenograft and autogenous bone the survival rate was 94.9%. A survival rate of 85% was reported for sinuses reconstructed with pure xenografts. Based on the results of this study [5], it may be concluded that xenografts are as efficacious as autogenous bone. Xenografts are osteoconductive rather than osteoinductive; therefore, the osseous walls of the sinus need to provide blood vessels, cells and growth factors that encourage bone formation. To achieve the best results, the sinus membrane should be elevated from the floor and the medial segment so that the whole graft may receive blood vessels and the greatest number of particles are in contact with the osseous walls. In addition, autogenous bone provides growth factors, so that bone formation is induced during bone turnover. Because xenografts do not include growth factors, they need a longer healing period so that viable bone may be formed. The success of sinus grafting procedures is evaluated by following the therapeutic objectives and feedback from the patient. The aims of sinus lifting procedures include formation of viable bone in areas in which no bone is present and the survival of implants placed in the reconstructed bone. The latter should be evaluated through prospective clinical studies. Papa et al [6] evaluated 50 patients who had undergone sinus elevations between 1995 and 1998. Different grafting materials, including xenografts, autografts and allografts were used during the period. Postoperative evaluation consisted of radiographic examination and histologic evaluation at 6 and 12 months, respectively. In radiographic examinations, the amount of the bone formed was assessed and in the histologic evaluation, the quality of the bone formed was evaluated. The evaluations revealed that xenograft particles and HA of autogenous bonehad the greatest and lowest resorption and replacement by bone, respectively. Landi et al [7] used demineralized freeze-dried bone allograft (DFDBA) and hydroxyapatite instead of autogenous bone to graft sinuses. The healing period varied from 6 to 13 months before implant placement, during which an osseous sample was taken from each patient for histologic and histomorphometric evaluation. Woven and lamellar bone was observed in all samples, with a mean volume of 27.92% of lamellar bone. Newly formed bone was proportional to the duration of the healing period; the bone formed after 6 months was 5.36%, which increased to 43.67% after 12 months. DFDBA particles were visible in the specimens surrounded by inflammatory agents taken at 6 months. The particles decreased in size over time and no particles were visible after 12 and 13 months. Scarano et al [8] carried out a study on 94 patients who had undergone sinus lifting procedures to compare nine different graft materials in an attempt to solve the problem of implant placement in the posterior maxilla. A total of 362 implants were placed in reconstructed sinuses. Six months after the implants were loaded, all of them were in satisfactory condition and the patients had no complaints. Radiographic evaluation revealed compact bone around the implants. Four years later, only seven implants had failed and histologic evaluations showed that vital bone had replaced the graft particles. Olson et al [9] conducted a study on patients with a mean age of 56 years to evaluate the survival of implants placed in maxillary sinuses. The materials studied were allografts such as DFDBA, alloplasts such as HA, xenografts and a combination of these materials. One hundred twenty implants were placed in 45 grafted sinuses. Thirty-eight months after the implants were loaded, only three of the implants failed, These failures occurred in patients who had a history of smoking. The survival rate of the implants placed in elevated 132 2011; Vol. 8, No. 3 3

Journal of Dentistry, Tehran University of Medical Sciences Rokn et al. sinuses was higher than that of the implants placed in sinuses which had not undergone surgery. Simunek et al [10] performed a histomorphologic study on 24 patients with a mean age of 47 years to evaluate the effect of alloplastic graft materials, such as hydroxyapatite in sinus lifting procedures. Forty-five titanium implants were placed and the patients were reexamined at 6, 9, 12, and 15-month intervals after sinus grafting. In addition, samples were taken from the patients for histomorphologic evaluations. The results showed complete resorption of graft materials and replacement with viable bone. The histomorphologic evaluation carried out in the study represented an appropriate and noninvasive technique for correlation with implant survival rates. Andreana et al [11] carried out a study in six patients who had undergone sinus lifting procedures to evaluate the efficacy of the use of calcium sulfate alone or in combination with DFDBA in sinus grafting procedures. Clinical examinations showed long-term survival of implants placed in the grafted sinuses and histologic evaluations of bone biopsies obtained 6 to 24 months after surgery showed new bone formation. Maiorana et al [12] compared peri-implant bone loss and implant survival with the use of HA versus a xenograft in sinus lifting procedures and found no significant differences in peri-implant bone loss or successful osseointegration after 4 years. They reported a success rate of 97% in the treatment of 34 patients with 36 reconstructed sinuses and 37 implants with one failed implant. The average marginal bone loss for both HA and xenograft was 1 mm. Valentini and Abensur [13] studied 59 patients who received 178 cylindrical implants in 78 reconstructed sinuses to evaluate implant survival. They reported a success rate of 94.5% over a mean period of 6.5 years. Survival of implants in xenograft-reconstructed sinuses was 96.8%, which was comparable to the success rate of 90% in sinuses reconstructed with a combination of xenograft and allograft bone (DFDBA). Hallman et al [14] evaluated the effects of different graft materials on implant survival. They reported an overall survival rate of 91% for 111 implants placed in 36 elevated sinuses at least 1 year subsequent to loading. Survival rates for sinuses reconstructed with autogenous bone alone and autogenous bone with bovine bone at a 20:80 ratio were 82.4% and 94.4%, respectively. In addition, implant survival was reported to be 96% in sinuses reconstructed with 100% Bio-Oss. The aim of the present study was to evaluate the survival of implants placed in reconstructed maxillary sinuses and to determine the extent of bone loss around implants placed in such sinuses. These factors were then compared with implants placed in the intact posterior maxilla. MATERIALS AND METHODS This case control study was carried out in the Department of Implantology in the Faculty of Dentistry, Tehran University of Medical Sciences after approval by the Ethical Research Committee of the Tehran University School of Dentistry. Eligible subjects who needed dental implants in the posterior maxilla including the first and second premolar and first and second molar regions, had a less than 5 mm original distance between the alveolar crest and the sinus floor, had sinus surgery performed with the lateral window technique and Bio-Oss material, had a time interval of 9 months since sinus elevation, had at least 24 months passed after the implant placement were enrolled in the study. Patients who had Class II or III occlusal relationships, bruxism and/or clenching habits and those who had immunosuppressive systemic conditions such as diabetes mellitus, pregnancy and smoking habit were excluded from the study.dental implants placed in reconstructed maxillary sinus- 4133 2011; Vol. 8, No. 3

Rokn et al. es with the lateral window technique and Bio- Oss graft material were compared with dental implants placed in the posterior maxilla without any other surgeries. For each subject, probing pocket depth (PPD) at six spots around the implants, bleeding on probing (BOP), Plaque Index (PI, presence or absence of plaque around implants) and bone loss on panoramic radiographs immediately after implant surgery and after at least 2 years were recorded for both the test and control groups. The implant survival criterion consisted of presence or absence of the implant in the oral cavity determined by clinical examination. In order to calculate the type and amount of bone loss, the two radiographic views were compared as follows. Since the implant length was declared, it was possible to determine the radiographic magnification for each radiographic view.magnification was calculated by dividing the implant length on the radiograph by the actual implant length. Radiographic magnification = Then, the bone height around each implant was measured on the radiograph from the most inferior spot of the bone around it; subsequently, divided by the magnification calculated for the implant on the same radiograph. This calculation was carried out separately for each implant on both radiographs. Actual bone height = Implant length on the radiograph Actual implant length Bone height around the implant on the radiograph Magnification of the implant on the same radiograph The difference between the two bone heights calculated on the two radiographs representing the bone loss between the two time intervals was recorded for each implant. In case of bone loss, its type was determined and recorded. Data were analyzed by descriptive statistical tests (chi-square test) and analysis of variance using SPSS software. Comparison of Peri-Implant Bone Loss RESULTS A total of 25 dental implants placed in reconstructed maxillary sinuses with the lateral window technique and Bio-Oss graft material and 30 dental implants placed in the posterior maxilla without any other surgeries were compared. The means and standard deviations of PPD (probing pocket depth), BL (bone loss) and LT (loading time) in both groups are listed in Table 2.Distribution of implants under study between the two groups is; in intrasinus implants 4 implants placed in the second premolar region, 17 in the first molar and 4 in the second molar region. In extrasinus implants, there were 12 implants inserted in the first premolar region, eight placed in the second premolar region, eight in the first molar and 12 positioned in the second molar region.one of the 30 extra sinus implants placed in this study failed and was extruded. In the intrasinus group, two of the 25 inserted implants failed and were extruded. The chi-square test did not reveal any significant deference between the two groups (P=0.448). According to BOP index, 18 implants of the intrasinus group were marked as 0 and five of them were marked as 1. On the other hand, in the extrasinus group, 20 implants were marked as 0 and nine were marked as 1. The chi-square test did not show any significant deference between the two groups (P=0.397).According to PI, 19 implants of the intrasinus group were marked as 0 and four of them were marked as 1, but in the extrasinus group, 24 implants were marked as 0 and five as 1.The chi-square test did not reveal any significant deference between the two groups (P=0.637). DISCUSSION The use of dental implants in the posterior maxilla is often limited due to the maxillary sinuses. To overcome the problem, open and 134 2011; Vol. 8, No. 3 5

Journal of Dentistry, Tehran University of Medical Sciences Rokn et al. closed sinus elevation procedures have been recommended using various materials to ossify the sinus cavity. In the present study, 25 implants placed in sinuses reconstructed with Bio-Oss were compared with 30 implants placed in the posterior maxilla without sinus grafting. The results may be evaluated from various viewpoints. The survival rates of the implants were not significantly different between the two groups after 2 years. The survival rate of implants placed in the reconstructed sinuses was 92% after 2 years; whereas, the survival rate of the implants placed in intact maxillae was 96.7%. In a similar study by Hallman [14], a survival rate of 91% was reported for 111 implants placed in 36 elevated sinuses, which had been loaded for at least a year. In the present study, the mean bone loss around the implants placed in elevated sinuses was less than 1 mm after 2 years (P = 0.981). In a similar study performed by Maiorana et al [12] in 2005, 1 mm of bone loss was reported around 37 implants placed in 26 reconstructed sinuses in a 4-year follow-up. In a study carried out by Simunek et al [10], the success rate of intrasinus implants was evaluated by histology and histomorphometry and resorption of graft materials and replacement with viable bone was reported. In the present study, of the 25 implants placed in reconstructed sinuses, only two had failed after 2 years. In a similar study by Olson et al [9] on the survival rate of 120 implants placed in 45 reconstructed sinuses, only three implants had failed after 38 months. The similarities between the results of the present study and those of other studies indicate that sinus elevation with the lateral window technique may be used reliably for osseous reconstruction. In addition, the use of Bio-Oss graft material alone can be an appropriate alternative to autogenous grafts on the condition that there is at least an interval of 9 months after the graft procedure prior to implant placement. Mean values for bone loss around implants placed in reconstructed sinuses and outside the sinuses were 0.641 mm and 0.643 mm, respectively, demonstrating no statistically significant difference. In the present study, there were no significant differences in BOP, PI and PPD around implants placed inside and outside the sinuses (P =.397, P =.637, and P =.314, respectively). Table 2. Means and Standard Deviations of PPD, BL and LT in Both Groups Frequency (No.) Mean Standard Deviation P PPD Extra-sinus implants Intra-sinus implants 29 23 1.88 2.07 0.38 0.7001 0.314 BL Extra-sinus implants Intra-sinus implants 29 23 0.64 0.64 0.69 0.52 0.981 LT Extra-sinus implants Intra-sinus implants 30 25 40.06 28.16 20.88 16.33 0.024 PPD = Probing Pocket Depth; BL = Bone Loss; LT = Loading Time 6135 2011; Vol. 8, No. 3

Rokn et al. Problems and Limitations The most important problem in the present study was the difficult access to patients due to changes in addresses and phone numbers. CONCLUSION Based on the results of the present study, it may be concluded that sinus lifting by window technique provides good prognosis for preparing bone needed for implant insertion surgery procedure. In addition, the results of this study indicate that Bio-Oss grafting material itself induces bone regeneration. Therefore, there is no need to use the patient s outogenous bone and the second surgery procedure. This is really important for patient comfort and prohibition of invasive procedures. The point in using Bio-Oss grafting material is that it takes 9 months for osseogenesis in the sinus and patients should be aware of this fact. Moreover, this technique provides the opportunity of using dental implants for patients with inadequate bone in the post maxillary region. REFERENCES 1- Linkow LI. Maxillary implant: a dynamic approach to oral implantology. North Haven, CT: Glarus Publishing; 1977. 2- Barone A, Covani U. Maxillary alveolar ridge reconstruction with nonvascularizedautogenous block bone: clinical results J Oral Maxillofac Surg. 2007 Oct;65(10):2039-46. 3- Tatum H Jr. Maxillary and sinus implant reconstructions. Dent Clin North Am 1986 Apr;30(2):207-29. 4- Wallace SS, Froum SJ. Effect of maxillary sinus augmentation on the survival of endosseous dental implant. A systematic review. Ann Periodontol 2003 Dec;8(1):328-43. 5- Del Fabbro M, Testori T, Francetti L, Weinstein R. Systematic review of survival rates for implants placed in the grafted maxillary sinus. Int J Periodontics Restorative Dent 2004 Dec;24(6):265-77. Comparison of Peri-Implant Bone Loss 6- Papa F, Cortese A, Maltarelo CM, Sagliocco R, Felice P, Claudio PP. Outcome of 50 consecutive sinus lift operations. Br J Oral MaxillofacSurg 2005 Aug;43(4):309-13. 7- Landi L, Pretell RW Jr, Hakimi NM, Setayesh R. Maxillary sinus floor elevation using a combination of DFDBA and bovine-derived porous hydroxyl apatite: a preliminary histologic and histomorphometric report. Int J Periodontics Restorative Dent 2000 Dec;20(6):574-83. 8- Scarano A, Degidi M, Iezzi G, Pecora G, Piattelli M, Orsini G et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent 2006 Jan;15(2):197-207. 9- Olson JW, Dent CD, Morris HF, Ochi S. Long-term assessment (5 to 71 months) of endosseous dental implants placed in the augmented maxillary sinus. Ann Periodontol 2000 Dec;5(1):152-6. 10- Simunek A, Cierny M, Kopecka D, Kohout A, Bukac J, Vahalova D. The sinus lift with phycogenic bone substitute. A histomorphometric study. Clin Oral Implants Res 2005 Jun;16(3):342-8. 11- Andreana S, Cornelini R, Edsberg LE, Natiella JR. Maxillary sinus elevation for implant placement using calcium sulfate with and without DFDBA: Six cases. Implant Dent 2004 Sep;13(3):270-7. 12- Maiorana C, Sigurta D, Mirandola A, Garlini G, Santoro F. Bone resorption around dental implants placed in grafted sinuses: Clinical and radiologic follow-up after up to 4 years. Int J Oral Maxillofac Implants 2005 Mar- Apr;20(2):261-6. 13- Valentini P, Abensur DJ. Maxillary sinus grafting with anorganic bovine bone: A clinical report of long-term results. Int J Oral Maxillofac Implants 2003 Jul-Aug;18(4):556-60. 14- Hallman M, Sennerby L, Lundgren S. A clinical and histologic evaluation of implant integration in the posterior maxilla after sinus 136 2011; Vol. 8, No. 3 7

Journal of Dentistry, Tehran University of Medical Sciences Rokn et al. floor augmentation with autogenous bone, bovine hydroxyapatite, or a 20:80 mixture. Int J Oral Maxillofac Implants 2002 Sep- Oct;17(5):635-43. 8137 2011; Vol. 8, No. 3