The effect of insulin therapy algorithms on blood glucose levels in patients following cardiac surgery: A systematic review protocol

Similar documents
JBI Database of Systematic Reviews & Implementation Reports 2014;12(2)

A comparison of treatment options for management of End Stage Kidney Disease in elderly patients: A systematic review protocol

PROSPERO International prospective register of systematic reviews

The objective of this systematic review is to assess the impact of migration on the risk of developing gastric cancer.

Protocol Sistematic Review

Effect of peak inspiratory pressure on the development. of postoperative pulmonary complications.

JBI Library of Systematic Reviews JBL ; 10 (58)

Risk factors for incident delirium in acute medical in-patients. A systematic review

The effects of binaural beat technology on physiological and psychological outcomes in adults: a systematic review protocol

Older persons perceptions and experiences of community palliative care: a systematic review of qualitative evidence protocol

The effectiveness of trace element supplementation following severe burn injury: A systematic review protocol

MINDFULNESS-BASED INTERVENTIONS IN EPILEPSY

The Effects of Macronutrient Intake on the Risk of Developing Type 2 Diabetes: A Systematic Review

Faculty of Health Sciences, The University Of Adelaide, Adelaide, South Australia.

JBI Database of Systematic Reviews & Implementation Reports 2014;12(9)

Measure Information Form

123 Are You Providing Evidence-Based Diabetes Care? - Martin

SYSTEMATIC REVIEW PROTOCOL

Outcomes assessed in the review

Effectiveness and efficiency of pre-operative anaemia management with intravenous iron: A systematic review

Participant views and experiences of participating in HIV research in sub-saharan Africa: a qualitative systematic review protocol

Normal glucose values are associated with a lower risk of mortality in hospitalized patients

Structural barriers to highly active antiretroviral therapy (HAART) adherence: a systematic review protocol

Received: 23 September Accepted: 17 October 2009

In - Hospital Diabetes Care. A review and personal experience

Vijayaprasad Gopichandran, Shriraam Mahadevan, Latha Ravikumar, Gomathy Parasuraman, Anjali Sathya, Bhuma Srinivasan, Usha Sriram

The effectiveness of the Liverpool Care Pathway in end of life care: a systematic review protocol

The effectiveness of peer support interventions for community-dwelling adults with chronic non-cancer pain: a systematic review protocol

CENTRE CONDUCTING THE REVIEW. New South Wales Centre for Evidence Based Health Care

Prehabilitation for surgical patients: a systematic review protocol

Adult women s experiences of urinary incontinence: a systematic review of qualitative evidence protocol

Deepika Reddy MD Department of Endocrinology

GLYCEMIC CONTROL IN CARDIAC SURGERY: IMPLEMENTING AN EVIDENCE-BASED INSULIN INFUSION PROTOCOL. Critical Care Evaluation

VANDERBILT UNIVERSITY MEDICAL CENTER MULTIDISCIPLINARY SURGICAL CRITICAL CARE TRAUMA INTENSIVE CARE UNIT GLYCEMIC CONTROL PROTOCOL

Effectiveness of storytelling interventions on psychosocial outcomes in adult patients with a life-threatening illness: a systematic review protocol

The effects of cognitive behaviour therapy for major depression in older adults

Hyperglycemia is common among medical and surgical. Clinical Guideline

Is Intense Glycemic Control Really Better?

Management of Inpatient Hyperglycemia: 2011 Endocrine Society Meeting Hyperglycemia in Critically ill patients in ICU Settings.

The Art and Science of Infusion Nursing Gwen Klinkner, MS, RN, APRN, BC-ADM, CDE

Glycemic Control Insulin In The Hospital Setting

Postoperative Glucose Control and SCIP Measures. Gorav Ailawadi, MD Chief, Adult Cardiac Surgery University of Virginia April 25, 2015

Keywords: Internet, obesity, web, weight loss. obesity reviews (2010) 11,

9/23/09. What are the key components of preoperative, intraoperative, & postoperative care of diabetes management? Rebecca L. Sturges, M.D.

ACUTE ABDOMEN IN DIABETIC PATIENTS ANALYSIS OF COMPLICATIONS AND MORTALITY

The effectiveness of selective thoracic fusion for treating adolescent idiopathic scoliosis: a systematic review protocol

JBI Database of Systematic Reviews & Implementation Reports 2014;12(2)

Change in the perioperative blood glucose and blood lactate levels of non-diabetic patients undergoing coronary bypass surgery

Parenteral Nutrition The Sweet and Sour Truth. From: Division of Endocrinology, Diabetes and Bone Disease Icahn School of Medicine at Mount Sinai

Disclosures. Glycemic Control in the Intensive Care Unit. Objectives. Hyperglycemia. Hyperglycemia. History. No disclosures

The effectiveness of nurse-led cardiac rehabilitation programs following coronary artery bypass graft surgery: a systematic review protocol

GLYCEMIC CONTROL IN NEUROCRITICAL CARE PATIENTS

Inpatient Glycemic Management 2016

MANAGEMENT OF HYPERGLYCEMIA IN CRITICALLY ILL SURGICAL (NON-CARDIAC) PATIENTS

Robotic Bariatric Surgery. Richdeep S. Gill, MD Research Fellow Center for the Advancement of Minimally Invasive Surgery (CAMIS)

What Should Be the Therapeutic Glycemic Target in Intensive Care Units?


Factors determining diabetes care outcomes in patients with type 1 diabetes after transition from pediatric to adult health care: a systematic review

SYSTEMATIC REVIEW PROTOCOL

Initial Management of Septic Patients with Hyperglycemia in the Noncritical Care Inpatient Setting

JBI Database of Systematic Reviews & Implementation Reports 2013;11(9)

International Journal of Surgery

Intravenous insulin aspart in a hospital setting: results from an observational study examining patient outcomes and physician preferences

Effect of doll therapy in managing challenging behaviours in people with dementia: a systematic review protocol

Improving Management of Inpatient Blood Glucose

10.4.a. Optimal glucose control: Insulin therapy March 2013

Data extraction. Specific interventions included in the review Dressings and topical agents in relation to wound healing.

Performance of the Medtronic Sentrino continuous glucose management (CGM) system in the cardiac intensive care unit

HAP PA-HEN Achieving More Together

Effectiveness of Interventions using Motivational Interviewing for dietary and physical activity modification in Adults: A Systematic Review.

PAPER. Glycemic Control and Reduction of Deep Sternal Wound Infection Rates

NOT-SO-SWEET! THE STRAIGHT SCOOP ON DIABETES IN THE HOSPITAL SETTING

REVIEW Beyond diabetes: saving lives with insulin in the ICU

Hyperglycemia occurs frequently in critically ill patients.

Safety and Effectiveness of a Computerized Subcutaneous Insulin Program to Treat Inpatient Hyperglycemia

Impact of breastfeeding or bottle-feeding on surgical wound dehiscence after cleft lip repair in infants: a systematic review protocol

The effectiveness of topical skin products in the treatment and prevention of incontinence-associated dermatitis: a systematic review protocol

NIH Public Access Author Manuscript J Hosp Med. Author manuscript; available in PMC 2013 August 05.

FOCUSSED CLINICAL QUESTION:

Martin J Stevens MD, FRCP, Endocrinologist and Professor of Medicine

Glycemic control has become a growing trend

Systematic reviews and meta-analyses of observational studies (MOOSE): Checklist.

JBI Systematic Review Protocol

Outcomes and Perioperative Hyperglycemia in Patients With or Without Diabetes Mellitus Undergoing Coronary Artery Bypass Grafting

What are the effects of spending time outdoors in daylight on the physical health of older people and family carers: a systematic review protocol

JBI Database of Systematic Reviews & Implementation Reports 2014;12(11)

Cleveland Clinic Cardiovascular Intensive Care Unit Insulin Conversion Protocol

The health risks associated with prolonged sitting: a systematic review

Effects of topical medications on radial artery spasm in patients undergoing transradial coronary procedures: a systematic review protocol

Control of Blood Glucose in the ICU: Reconciling the Conflicting Data

University of Groningen. Acute kidney injury after cardiac surgery Loef, Berthus Gerard

Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library)

Alarge, randomized, controlled trial

Master of Clinical Science

GLYCEMIC CONTROL SURVEY

FINANCIAL IMPLICATIONS OF GLYCEMIC CONTROL: RESULTS OF AN INPATIENT DIABETES MANAGEMENT PROGRAM

Sladkorna bolezen in kirurški poseg

Intensive Insulin Therapy for Tight Glycemic Control

Citation for final published version: Publishers page: < >

Transcription:

The effect of insulin therapy algorithms on blood glucose levels in patients following cardiac surgery: A systematic review protocol Megan Higgs, BN, MN, PhD Candidate 1,3 Ritin Fernandez, BSc (Nursing), MN (Critical Care), PhD 1,2,,3 1. St George Hospital, Sydney, Australia 2. Professor of Nursing, University of Wollongong, New South Wales, Australia 3. Center for Evidence Based Initiatives in Health Care An Affiliate Center of the Joanna Briggs Institute Corresponding author: Megan Higgs, Megan.Higgs@sesiahs.health.nsw.gov.au Review question/objective The objective of this review is to determine the best available evidence related to the effect of insulin therapy algorithms on blood glucose levels in patients in critical care environments following cardiac surgery. More specifically, the review question to be answered is: Among adults within critical care environments who are in the acute postoperative phase (5 days) following cardiac surgery, what is the effect of insulin therapy algorithms for the control of blood glucose levels? Background Hyperglycemia, a condition characterized by elevated blood glucose levels (BGLs), is most commonly associated with diabetic illness. 1 However, hyperglycemia has also been found to have a high incidence after cardiac surgery. Current literature surrounding this topic suggests that hyperglycemia occurs almost universally after cardiac surgery; irrespective of whether a person has a pre-existing diagnosis of diabetes mellitus or not. 1-3 Conventionally, post-operative hyperglycemia following cardiac surgery was viewed purely as a natural adaptive physiological response of the body that was treated only when BGLs rose to what was considered excessively high levels; 2 generally greater than 12.2 mmol/l [220mg/dl]. 4 This view has since changed and hyperglycemia following cardiac surgery is now viewed as an adverse effect of surgery, occurring as a result of multiple factors that include: the intraoperative doi:10.11124/jbisrir-2014-1501 Page 15

hypothermic state, surgical stress, hypokalemia, adverse effects from pharmacological agents and the commonly occurring post-operative systemic inflammatory response. 5-7 While generally only transient, an incidence of hyperglycemia during the initial post-operative period can have serious detrimental side effects following cardiac surgery such as deep sternal wound infection and an increased risk of mortality. 8 Current evidence suggests that within critical care environments, the early recognition and treatment of post-operative hyperglycemia is imperative. This is achieved through the utilization of continuous intravenous insulin infusion algorithms, with the aim of maintaining BGLs within normal to near normal ranges, in order to prevent the adverse outcomes associated with hyperglycemia in post-operative patients. 9 The practice of maintaining BGLs within strict pre-defined levels, via the administration and titration of a continuous insulin infusion, has become common practice within critical care environments over the past decade. 10 Results from a study by Van Den Berghe et al., which included 970 cardiac surgery patients [63%] showed that the maintenance of BGLs below 110 mg/dl [6.1 mmol/l], using continuous insulin therapy lead to decreases in both mortality and morbidity rates among critically ill surgical patients. 3 Since this time, multiple studies investigating the effects of continuous insulin infusion algorithms have concluded that the use of such algorithms for the management of BGLs in cardiac surgery patients has favorable effects, decreasing the incidence of post-operative complications and reducing the length of time patients are required to remain in hospital. 11 The use of continuous intravenous infusion algorithms for controlling BGLs in critically ill patients is further supported by the American Diabetes Association [ADA] who recommend the use of tried and tested insulin infusion protocols that demonstrate a low incidence of hypoglycemia. 12 The ADA go on to state that BGLs of critically ill patients, including postoperative patients who have undergone a cardiac procedure, should be maintained between 7.8 and 10 mmol/l [140 and 180mg/dl] with insulin therapy commenced at a threshold no higher than 10 mmol/l [180mg/dl]. 12 While it is acknowledged that greater benefits may be achieved by the maintenance of BGLs at the lower ends of the range, the American Diabetes Association do not recommend targets less than 6.1mmol/l [110mg/l] due the high risk of causing significant hypoglycemia. 12 A review of the literature shows that a number of insulin infusion algorithms, with varying methods and effects, have been developed for utilization by clinicians in critical care environments to guide the management of hyperglycemia. Due to the conflicting evidence that currently exists, the critical care clinician responsible for the provision of care to post-operative cardiac surgery patients needs to determine the best evidence in relation to the management of hyperglycemia, to maintain patient safety and ensure good surgical outcomes, free from complications. However, a review of the outcomes of these protocols for cardiac patients has not been published to inform the development of best evidence based practice guidelines. This systematic review therefore aims to review the various protocols to ascertain the best available evidence related to the effect of intensive insulin therapy algorithms on BGLs in post-operative patients in critical care environments following cardiac surgery. Keywords Hyperglycemia/hyperglycaemia; Blood glucose; Cardiac surgery; Heart surgery; Insulin; Insulin infusion; Intensive insulin infusion; Intravenous insulin infusion; Continuous insulin infusion; Postoperative; Critical care environment doi:10.11124/jbisrir-2014-1501 Page 16

Inclusion criteria Types of participants This review will consider studies that include adult patients aged 18 years and over admitted to a critical care unit following cardiac surgery and who received insulin therapy for glycemic control during the acute postoperative phase (five days) of admission. In this review studies that include participants with a known diagnosis of Diabetic Ketoacidosis will be excluded. Types of intervention(s)/phenomena of interest This review will consider studies that evaluate the use of intravenous insulin therapy algorithms to control blood glucose levels in acute postoperative phase patients in critical care environments following cardiac surgery. In this review, studies will be included if they make one of the following comparisons: 1. Intravenous insulin therapy algorithm compared to another insulin therapy algorithm. 2. Intravenous insulin therapy algorithm compared to no treatment. 3. Intravenous insulin therapy algorithm compared to a placebo. In this review, studies that include a Glucose-Insulin-Potassium (GIK) infusion as an intervention or a comparator will be excluded. Types of outcomes This review will consider studies that include the following outcome measures: Primary outcome: Overall control of blood glucose levels as measured by time to target BGL range, time spent in BGL target range and time above or below target BGL range. Secondary outcome: Incidence of adverse events, including: - Hypo/hyper glycemia, measured by standard point of care glucometers, arterial blood analysis, or venous blood analysis, with hypoglycemia defined as a BGL reading <3.9mmol/L (70mg/dL) 13 and hyperglycemia defined as a BGL reading >7.8mmol/L(140mg/dL). 13 - Sternal wound infection, identified by a positive wound culture or a positive wound exudate culture. 14 - Mortality rate measured by in-hospital mortality (from day of operation to day of discharge) and/or 30 day mortality. 15 doi:10.11124/jbisrir-2014-1501 Page 17

Types of studies This review will consider any experimental study design including randomized controlled trials, non-randomized controlled trials, quasi-experimental and before and after studies for inclusion. Search strategy The search strategy aims to find both published and unpublished studies. A three-step search strategy will be utilized in this review. An initial limited search of MEDLINE and CINAHL will be undertaken, followed by analysis of the text words contained in the title and abstract and of the index terms used to describe the article. A second search using all identified keywords and index terms will then be undertaken across all included databases. Thirdly, the reference lists of all identified reports and articles will be hand searched for additional studies. Studies published in the English language will be considered for inclusion in this review. Databases will be searched with no limits placed on the date of publication, allowing authors to search as far back as possible. The databases to be searched include: MEDLINE, CINAHL, PubMed, Embase, SCOPUS, Cochrane Trials, Dare, Social Science Index. The search for unpublished studies will include: ProQuest Dissertations & Theses and MedNar Initial keywords to be used will be: Hyperglycemia/hyperglycaemia Blood glucose Cardiac surgery Heart surgery Insulin Insulin infusion Intensive insulin infusion Intravenous insulin infusion Continuous insulin infusion Postoperative Critical care environment Assessment of methodological quality Papers selected for retrieval will be assessed by two independent reviewers for methodological validity prior to inclusion in the review using standardized critical appraisal instruments from the Joanna Briggs Institute Meta-Analysis of Statistics Assessment and Review Instrument (JBI-MAStARI) (Appendix I). doi:10.11124/jbisrir-2014-1501 Page 18

Any disagreements that arise between the reviewers will be resolved through discussion, or with a third reviewer. Data collection Data will be extracted from papers included in the review using the standardized data extraction tool from JBI-MAStARI (Appendix II). The data extracted will include specific details about the interventions, populations, study methods and outcomes of significance to the review question and specific objectives. Data synthesis Quantitative data will, where possible, be pooled in statistical meta-analysis using JBI-MAStARI. All results will be subject to double data entry. Effect sizes expressed as odds ratios (for categorical data) and weighted mean differences (for continuous data) and their 95% confidence intervals will be calculated for analysis. Heterogeneity will be assessed statistically using the standard Chi-square and also explored using subgroup analyses based on the different study designs included in this review. Where statistical pooling is not possible, the findings will be presented in narrative form including tables and figures to aid in data presentation where appropriate. Conflicts of interest No conflicts of interest can be identified or foreseen in relation to this proposed systematic review. Acknowledgements Nil doi:10.11124/jbisrir-2014-1501 Page 19

References 1. Harris P, Nagy S, Vardaxis N. Mosby's Dictionary of Medicine, Nursing & Health Professions, edn, 1st Australian & New Zealand ed, Syndey: Mosby Elsevier, 2006. 2. Bellomo R. Recent Advances in Critcal Care Medicine Relevant to Cardiac Surgery. Heart Lung Circ 2010; 20: 170-172. 3. Van Den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. New Engl J Med 2001; 345: 1359-1367. 4. Langouche L, Van den Berghe G. Glucose metabolism and insulin therapy. Crit Care Clin 2006; 22: 119-129. 5. Patel KL. Impact of tight glucose control on postoperative infection rates and wound healing in cardiac surgery patients. J Wound Ostomy and Continence Nurs 2008; 35: 397-404. 6. Lorenz RA, Lorenz RM, Codd JE. Periperative blood glucose control during adult coronary artery bypass surgery. AORN J 2005; 81: 126-154. 7. Morrell N. Benefits of intensive insulin therapy in post-operative intensive care patients. Nurs Stand 2012; 27: 35-40. 8. Lazar HL, McDonnell M, Chipkin SR, Furnary AP, Engelman RM, Sadhu AR, et al. The society of thoracic surgeons practice guidelines series: blood glucose management during adult cardiac surgery. Ann Thorac Surg 2009; 87: 663-669. 9. Robinson LE, van Soeren MH. Insulin resistance and hyperglycemia in critical illness: role of insulin in glycemic control. AACN Adv Crit Care.2004; 15: 45-62. 10. Minakata K, Sakata, R. Perioperative control of blood glucose level in cardiac surgery. Gen Thorac Cardiovasc Surg 2013; 61: 61-66. 11. Magaji V, Nayak S, Donihi AC, Willard L, Jampana S, Nivedita P, et al. Comparison of insulin infusion protocols targeting 110-140 mg/dl in patients after cardiac surgery. Diabetes Technol Ther 2012; 14: 1013-7. 12. Moghissi E, Korytkowski M, DiNardo M, Einhorn D, Hellman R, Hirsch I, et al. American Association of Clinical Endocrinologists and American Diabetes Association Consensus Statement on Inpatient Glycemic Control. Diabetes Care 2009; 32: 1119-31. 13. American Diabetes Association. Standards of medical care in diabetes 2014. Diabetes Care. 2014; 37: S14-S80. 14. Li J-Y, Sun S, Wu S-J. Continuous insulin infusion improves postoperative glucose control in patients with diabetes mellitus undergoing coronary artery bypass surgery. Tex Heart I J. 2006; 33: 445-51. 15. Giakoumidakis K, Eltheni R, Patelarou E, Theologou S, Patris V, Michopanou N, et al. Effects of intensive glycemic control on outcomes of cardiac surgery. Heart Lung. 2013; 42: 146-51. doi:10.11124/jbisrir-2014-1501 Page 20

Appendix I: Appraisal instruments MAStARI appraisal instrument Insert page break doi:10.11124/jbisrir-2014-1501 Page 21

Appendix II: Data extraction instruments MAStARI data extraction instrument Insert page break doi:10.11124/jbisrir-2014-1501 Page 22

doi:10.11124/jbisrir-2014-1501 Page 23