ORIGINAL INVESTIGATION. C-Reactive Protein Concentration and Incident Hypertension in Young Adults

Similar documents
The Relationship Between Blood Pressure and C-Reactive Protein in the Multi-Ethnic Study of Atherosclerosis (MESA)

The Framingham Risk Score (FRS) is widely recommended

300 Biomed Environ Sci, 2018; 31(4):

Dietary Fatty Acids and the Risk of Hypertension in Middle-Aged and Older Women

Society for Behavioral Medicine 33 rd Annual Meeting New Orleans, LA

Long-term Blood Pressure Variability throughout Young Adulthood and Cognitive Function in Midlife; CARDIA study

APPENDIX AVAILABLE ON THE HEI WEB SITE

The Framingham Coronary Heart Disease Risk Score

Journal of the American College of Cardiology Vol. 48, No. 2, by the American College of Cardiology Foundation ISSN /06/$32.

LEPTIN AS A NOVEL PREDICTOR OF DEPRESSION IN PATIENTS WITH THE METABOLIC SYNDROME

Val-MARC: Valsartan-Managing Blood Pressure Aggressively and Evaluating Reductions in hs-crp

YOUNG ADULT MEN AND MIDDLEaged

A: Epidemiology update. Evidence that LDL-C and CRP identify different high-risk groups

Metabolic syndrome is a constellation of cardiovascular

Magnesium intake and serum C-reactive protein levels in children

Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-a) and essential hypertension

Bariatric Surgery versus Intensive Medical Therapy for Diabetes 3-Year Outcomes

Central pressures and prediction of cardiovascular events in erectile dysfunction patients

Kidney Stones and Subclinical Atherosclerosis in Young Adults: The CARDIA Study

Table S1. Characteristics associated with frequency of nut consumption (full entire sample; Nn=4,416).

ORIGINAL INVESTIGATION

ARIC Manuscript Proposal # PC Reviewed: 2/10/09 Status: A Priority: 2 SC Reviewed: Status: Priority:

Moderate alcohol consumption is associated with decreased

ORIGINAL INVESTIGATION. Relation of Triglyceride Levels, Fasting and Nonfasting, to Fatal and Nonfatal Coronary Heart Disease

Research Article Comparison of Different Anthropometric Measurements and Inflammatory Biomarkers

THE C-REACTIVE PROTEIN IS A

Autonomic nervous system, inflammation and preclinical carotid atherosclerosis in depressed subjects with coronary risk factors

POPULATION AGING, OBESITY, AND

UW MIRT 2005 ABSTRACTS

Supplemental Table S2: Subgroup analysis for IL-6 with BMI in 3 groups

Measures of Obesity and Cardiovascular Risk Among Men and Women

ORIGINAL ARTICLES. Associations between body mass index and serum levels of C-reactive protein. Materials and methods.

3/25/2010. Age-adjusted incidence rates for coronary heart disease according to body mass index and waist circumference tertiles

Know Your Number Aggregate Report Comparison Analysis Between Baseline & Follow-up

Although the prevalence and incidence of type 2 diabetes mellitus

ORIGINAL INVESTIGATION. High Attributable Risk of Elevated C-Reactive Protein Level to Conventional Coronary Heart Disease Risk Factors

Chronic kidney disease (CKD) has received

Weintraub, W et al NEJM March Khot, UN et al, JAMA 2003

Inflammation in Renal Disease

290 Biomed Environ Sci, 2016; 29(4):

Preventing heart disease by controlling hypertension: Impact of hypertensive subtype, stage, age, and sex

Know Your Number Aggregate Report Single Analysis Compared to National Averages

etable 3.1: DIABETES Name Objective/Purpose

RELATIONSHIP OF CLINICAL FACTORS WITH ADIPONECTIN AND LEPTIN IN CHILDREN WITH NEWLY DIAGNOSED TYPE 1 DIABETES. Yuan Gu

Supplementary Table 1. Baseline Characteristics by Quintiles of Systolic and Diastolic Blood Pressures

NIH Public Access Author Manuscript JAMA Intern Med. Author manuscript; available in PMC 2015 August 01.

Assessing Cardiovascular Disease Risk with HS-C-reactive. California Technology Assessment Forum

The Second Report of the Expert Panel on Detection,

Supplementary Online Content

(n=6279). Continuous variables are reported as mean with 95% confidence interval and T1 T2 T3. Number of subjects

Physical Activity, Sedentary Behaviors and the Incidence of Type 2 Diabetes Mellitus: The Multi-

ORIGINAL INVESTIGATION. (MetS) has been identified as a potential risk factor for poor outcomes. Cholesterol Education Program Expert

Diabetes Care 31: , 2008

Supplementary Online Content

pulmonary artery vasoreactivity in patients with idiopathic pulmonary arterial hypertension

Non alcoholic fatty liver disease and atherosclerosis Raul Santos, MD

Why Do We Treat Obesity? Epidemiology

Association between Raised Blood Pressure and Dysglycemia in Hong Kong Chinese

Global Coronary Heart Disease Risk Assessment of U.S. Persons With the Metabolic. Syndrome. and Nathan D. Wong, PhD, MPH

Serum levels of galectin-1, galectin-3, and galectin-9 are associated with large artery atherosclerotic

Supplementary Online Content

Epidemiology and Prevention

Since 1980, obesity has more than doubled worldwide, and in 2008 over 1.5 billion adults aged 20 years were overweight.

Underdiagnosis of Sleep Apnea Syndrome in U.S. Communities

Biostatistics and Epidemiology Step 1 Sample Questions Set 1

Of the 1.5 million heart attacks

Prof. Samir Morcos Rafla Alexandria Univ. Cardiology Dept.

A PROSPECTIVE STUDY OF CIGARETTE SMOKING AND RISK OF INCIDENT HYPERTENSION IN WOMEN

CONSIDERABLE STRIDES HAVE

LDL cholesterol (p = 0.40). However, higher levels of HDL cholesterol (> or =1.5 mmol/l [60 mg/dl]) were associated with less progression of CAC

Combined effects of systolic blood pressure and serum cholesterol on cardiovascular mortality in young (<55 years) men and women

ADHD and Adverse Health Outcomes in Adults

The Adult Treatment Panel (ATP) III of the National

Correlation of novel cardiac marker

Nutritional Risk Factors for Peripheral Vascular Disease: Does Diet Play a Role?

Andrejs Kalvelis 1, MD, PhD, Inga Stukena 2, MD, Guntis Bahs 3 MD, PhD & Aivars Lejnieks 4, MD, PhD ABSTRACT INTRODUCTION. Riga Stradins University

Elevated Incidence of Type 2 Diabetes in San Antonio, Texas, Compared With That of Mexico City, Mexico

ESM1 for Glucose, blood pressure and cholesterol levels and their relationships to clinical outcomes in type 2 diabetes: a retrospective cohort study

The New England Journal of Medicine C-REACTIVE PROTEIN AND OTHER MARKERS OF INFLAMMATION IN THE PREDICTION OF CARDIOVASCULAR DISEASE IN WOMEN

Associations between Metabolic Syndrome and Inadequate Sleep Duration and Skipping Breakfast

Short stature is an inflammatory disadvantage among middle-aged Japanese men

Lipoprotein-Associated Phospholipase A2 Is an Independent Predictor of Incident Coronary Heart Disease in an Apparently Healthy Older Population

Longitudinal Trajectories of Cholesterol from Midlife through Late Life according to Apolipoprotein E Allele Status

Cystatin-C and inflammatory markers in the ambulatory elderly

Gender-specific association between pulse pressure and C-reactive protein in a Chinese population

Using Pre-clinical Biomarkers and Epidemiological Methods to Assess the Effects of Cannabinoids on Disease

Chapter Two Renal function measures in the adolescent NHANES population

There is a high prevalence of chronic kidney disease

HIV Infection Itself May Not Be Associated With Subclinical Coronary Artery Disease Among African Americans Without Cardiovascular Symptoms

ORIGINAL INVESTIGATION. Glycemic Index and Serum High-Density Lipoprotein Cholesterol Concentration Among US Adults

Supplementary Online Content

Michael S. Blaiss, MD

C-REACTIVE PROTEIN AND LDL CHOLESTEROL FOR PREDICTING CARDIOVASCULAR EVENTS

C-Reactive Protein and Electrocardiographic ST-Segment Depression Additively Predict Mortality The Strong Heart Study

Association between serum IGF-1 and diabetes mellitus among US adults

Figure S1. Comparison of fasting plasma lipoprotein levels between males (n=108) and females (n=130). Box plots represent the quartiles distribution

Risk Factors for Heart Disease

Transcription:

ORIGINAL INVESTIGATION C-Reactive Protein Concentration and Incident Hypertension in Young Adults The CARDIA Study Susan G. Lakoski, MD, MS; David M. Herrington, MD, MHS; David M. Siscovick, MD, MPH; Stephen B. Hulley, MD, MPH Background: There is increasing evidence that C- reactive protein (CRP) concentration, a measure of inflammation, is an independent risk factor for the development of hypertension in older adults. However, it is unknown whether a similar relationship exists in younger individuals. Methods: The Coronary Artery Risk Development in Young Adults (CARDIA) study was initiated in 1985-1986 to determine the factors that are associated with coronary risk development in young adults. C-reactive protein concentrations were measured in 3919 African American and white men and women enrolled in CARDIA using blood specimens from the year 7 examination (1992-1993), when the age of the cohort was 25 to 37 years, and the year 15 examination (2-21). Results: In unadjusted analyses, CRP concentrations greater than 3 mg/l, compared with those less than 1 mg/l, was associated with a 79% greater risk of incident hypertension (odds ratio [OR], 1.79; 95% confidence interval [CI], 1.4-2.28). However, CRP concentration did not predict risk of incident hypertension after adjusting for year 7 body mass index (BMI) (OR, 1.14; 95% CI,.86-1.53) or year 7 BMI and other potential confounders (OR, 1.13; 95% CI,.83-1.52). In addition, year 7 CRP concentration was not associated with change in systolic or diastolic blood pressure after adjusting for BMI (P=.1 and P=.7, respectively). These findings were similar within each of the race- and sex-specific groups. Conclusion: C-reactive protein is associated with hypertension in young adults, but in contrast to the finding in older populations, the association is no longer present after adjusting for BMI. Arch Intern Med. 26;166:345-349 Author Affiliations: Department of Internal Medicine/Cardiology, Wake Forest University School of Medicine, Winston-Salem, NC (Drs Lakoski and Herrington); Department of Medicine and Epidemiology, University of Washington, Seattle (Dr Siscovick); and Department of Epidemiology and Biostatistics, University of California, San Francisco (Dr Hulley). THERE IS INCREASING EVIdence that inflammation may play a role in the development of hypertension. For example, several prospective studies have shown that elevated levels of C-reactive protein (CRP) are independently associated with incident hypertension in middle-aged adults. 1,2 However, it is unknown whether a similar relationship exists in younger individuals. Identifying factors in a young adult population that contribute to the development of hypertension may allow for earlier and more aggressive interventions aimed at risk factor prevention. The Coronary Artery Risk Development in Young Adults (CARDIA) study was initiated in 1985-1986 to determine the factors that contribute to coronary risk factor development in young adults. C- reactive protein concentrations were measured in 3919 men and women enrolled in CARDIA at the 7-year follow-up examination (1992-1993), when the age of the cohort was 25 to 37 years. In the present study, we examined whether CRP concentration at the year 7 examination was associated with incident hypertension assessed at the year 15 examination. We also determined whether year 7 CRP concentrations were predictive of change in systolic or diastolic blood pressure (BP) from the year 7 to the year 15 examination. METHODS MEASURES The CARDIA study is a longitudinal study of cardiovascular risk factors in white and African American men and women aged 18 to 3 years. Full details of the study design and methods have been published previously. 3 Briefly, 5115 individuals were recruited from 4 US cities (Birmingham, Ala; Chicago, Ill; Minneapolis, Minn; and Oakland, Calif) to take part in the baseline clinical examination in 1985-1986. Highly sensitive CRP concentrations were measured at the year 7 (1992-1993) and 15 (2-21) examinations. Retention rates for year 7 and 15 examinations were 81% and 73%, respectively. (REPRINTED) ARCH INTERN MED/ VOL 166, FEB 13, 26 345 26 American Medical Association. All rights reserved. Downloaded From: on 1/26/218

Table 1. Baseline Characteristics at the Year 7 Examination by CRP Category* Characteristic (n = 1834) (n = 152) (n = 133) P Value Age, y 32 ± 3.6 32 ± 4 32 ± 3.7.3 Sex Male 54 28 18.1 Female 4 26 33.1 Race White 53 25 2.1 African American 39 28 33.1 Current smoker 4 31 3.1 History of diabetes 24 33 45.1 Cholesterol-lowering medication use 4 3 3.9 Aspirin (3 times per wk) 39 32 3.3 BMI 24.2 ± 3.7 26.9 ± 5.2 31. ± 7.7.1 LDL-C, mg/dl 15 ± 31 11 ± 32 111 ± 32.1 HDL-C, mg/dl 54 ± 14 51 ± 14 49 ± 13.1 Ethanol use, ml 12 ± 22 11 ± 25 1 ± 31.1 Physical activity score 378 ± 278 336 ± 277 271 ± 251.1 Abbreviations: BMI, body mass index (calculated as weight in kilograms divided by the square of height in meters); CRP, C-reactive protein; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. SI conversion factor: To convert cholesterol to millimoles per liter, multiply by.259. *Data are given as percentage of patients or mean ± SD value. Medical history, BP measurements, and laboratory data for the present study were taken from the year 7 and 15 clinical examinations, except for race and sex, which were obtained at the baseline examination and verified at the next visit. A history of hypertension, diabetes, and use of medications such as aspirin, antihypertensive agents, cholesterollowering medications, or hormone therapy was obtained from questionnaires. Smoking status was classified as never, former, or current smoker, and alcohol use was quantified as mean milliliters of alcohol consumption per day. Physical activity was calculated from an interviewer-administered questionnaire determining participation in multiple activities over the course of a year, weighting frequency and intensity to obtain a total activity score. Blood pressure was determined from the average of the second and third resting BP measurements with a random zero sphygmomanometer by trained technicians. Body mass index was calculated as weight in kilograms divided by the square of height in meters. C-reactive protein was measured using a BNII nephelometer (Dade Behring, Deerfield, Ill). Intra-assay coefficients of variation ranged from 2.3% to 4.4%, and interassay coefficients of variation ranged from 2.1% to 5.7%. Incident hypertension was defined by a BP of 14/9 mm Hg or greater, a history of hypertension, or current use of BP medications at the year 15 examination among persons without hypertension at the year 7 examination. Thus, 475 of 3919 CARDIA participants with CRP measurements at the year 7 examination were excluded secondary to a diagnosis of hypertension, and an additional 192 participants (not hypertensive at year 7) were lost to follow-up between the year 7 and year 15 examinations. C-reactive protein measurements were categorized as CRP level less than 1 mg/l, between 1 and 3 mg/l, and greater than 3 mg/l, based on categories of risk from American Heart Association/Centers for Disease Control and Prevention guidelines. 4 C-reactive protein was also categorized by quartiles based on CRP concentrations for the entire cohort at year 7(.48 mg/l,.48-1.13 mg/l, 1.14-3.19 mg/l, and.19 mg/l). C-reactive protein concentration, when used as a continuous variable, was log-transformed to more closely reflect a normal distribution for the statistical analysis. STATISTICAL ANALYSIS Differences in baseline characteristics by CRP category at the year 7 examination were determined by analysis of variance and 2 test. Logistic regression analysis was used to compute the relative odds and 95% confidence intervals (CIs) of incident hypertension for increasing plasma CRP category, with the lowest level as the referent. Models first included CRP concentration at year 7 and then adjusted for year 7 BMI. Covariates in the fully adjusted model included variables from the year 7 examination: age, race, sex, clinic site, diabetes history, BMI, smoking status, physical activity score, alcohol consumption, high-density lipoprotein and low-density lipoprotein cholesterol, and use of cholesterol-lowering medication. Similar analyses were conducted treating CRP concentration as a continuous variable and determining the relative odds and 95% CIs of incident hypertension for 1 SD difference in year 7 CRP concentration and then separately for each of the sex- and race-specific groups. General linear modeling was used to determine whether CRP concentration at year 7, treated as a continuous variable, predicted change in systolic BP over an 8-year period. Models first included CRP concentration, then adjusted for year 7 BMI and year 7 systolic BP. Similar models were for diastolic BP. When determining change in systolic or diastolic BP, analyses were conducted with and without individuals on BP medications (n=292) and/or CRP concentrations greater than 1 mg/l (n=225). Similar analyses were conducted after stratifying by sex- or race-specific group. Statistical analyses were performed using SAS version 9. software (SAS Institute Inc, Cary, NC). RESULTS Differences in the baseline characteristics of the CARDIA cohort were apparent by CRP category. Compared with 18% of men, 33% of women had year 7 CRP levels greater than 3 mg/l. Similarly, 33% of African Americans had year 7 CRP levels greater than 3 mg/l compared with 2% of whites (Table 1). Of the patients with diabetes, 45% (REPRINTED) ARCH INTERN MED/ VOL 166, FEB 13, 26 346 26 American Medical Association. All rights reserved. Downloaded From: on 1/26/218

Table 2. Incident Hypertension (Assessed at Year 15) by CRP Category at Year 7 Cases of hypertension, No. 157 112 144 Unadjusted OR (95% CI) 1. 1.28 (.99-1.66) 1.79 (1.4-2.28).1 BMI-adjusted OR (95% CI) 1. 1.1 (.84-1.43) 1.14 (.86-1.53).35 Multivariable-adjusted OR (95% CI)* 1. 1. (.76-1.33) 1.13 (.83-1.52).59 *Adjusted for age, race, BMI, smoking status, ethanol use, low- and high-density lipoprotein cholesterol, history of diabetes, cholesterol-lowering medication use, physical activity, and clinic site. had CRP concentrations in the highest category. Mean BMI measurements and low-density lipoprotein cholesterol concentrations were greater, while physical activity scores and high-density lipoprotein cholesterol levels were lower, by increasing CRP category. Overall, there was a strong univariate association between CRP category and incident hypertension (P.1) (Table 2). In unadjusted analyses, individuals with CRP concentrations greater than 3 mg/l had 79% greater odds of developing hypertension compared with a CRP level less than 1 mg/l (odds ratio [OR], 1.79; 95% CI, 1.4-2.28). However, CRP levels greater than 3 mg/l were not associated with the risk of incident hypertension after adjusting for year 7 BMI (OR, 1.14; 95% CI,.86-1.53) or for BMI and other covariates (OR, 1.13; 95% CI,.83-1.52). Similar results were found when risk of incident hypertension was assessed by quartiles of CRP (based on CRP concentrations for the entire cohort at year 7). Comparing the highest quartile (.19 mg/l) with the referent (.48 mg/l), there was more than a 2-fold greater risk of developing hypertension (OR, 2.25; 95% CI, 1.66-3.6; P.1). However, this risk was attenuated and no longer statistically significant after adjusting for BMI (OR, 1.35; 95% CI,.95-1.92; P=.2) and for BMI and additional covariates (OR, 1.29; 95% CI,.89-1.87; P=.4). In addition, when treating CRP level as a continuous variable, 1 SD in year 7 CRP level was not associated with incident hypertension after adjustment for BMI (OR, 1.1; 95% CI,.93-1.38; P=.23) and BMI and additional covariates (OR, 1.1; 95% CI,.9-1.37; P=.3). Figure 1 and Figure 2 demonstrate change in systolic and diastolic BP over an 8-year period (between year 7 and year 15 examinations) by year 7 CRP concentration. In generalized linear models, year 7 CRP concentration was not associated with change in systolic or diastolic BP after adjusting for BMI (P=.1 and P=.7, respectively). These results were similar whether individuals on BP medications were included or excluded. Further analysis was conducted to determine sex and racial differences in the relationship between CRP concentration and incident hypertension. There was no significant association between year 7 CRP concentrations and risk of incident hypertension in men (OR, 1.2; 95% CI,.78-1.83) or women (OR, 1.26; 95% CI,.84-1.9) when comparing CRP levels greater than 3 mg/l with levels less than 1 mg/l after adjustment for BMI (Table 3). Systolic Blood Pressure, mm Hg 8 6 4 2 2 4 6 1 2 3 4 5 6 7 8 9 1 Figure 1. Change in systolic blood pressure by year 7 C-reactive protein concentration. Diastolic Blood Pressure, mm Hg 8 6 4 2 2 4 1 2 3 4 5 6 7 8 9 1 Figure 2. Change in diastolic blood pressure by year 7 C-reactive protein concentration. Similar results were demonstrated by race-specific group (OR,.83 [P=.4] for whites and OR 1.21 [P=.31] for African Americans) (Table 4). Additional analyses treating CRP concentration as a continuous variable produced similar results with no independent association between year 7 CRP concentration and incident hypertension (data not shown). Lastly, no apparent linear relationship was present between change in systolic or diastolic BP and year 7 CRP levels in any of the sexand race-specific groups (Figure 3 and Figure 4). (REPRINTED) ARCH INTERN MED/ VOL 166, FEB 13, 26 347 26 American Medical Association. All rights reserved. Downloaded From: on 1/26/218

Table 3. Incident Hypertension by CRP Category for Men and Women Men Cases of hypertension, No. 95 62 47 Unadjusted OR (95% CI) 1. 1.33 (.94-1.88) 1.68 (1.15-2.46).6 BMI-adjusted OR (95% CI) 1. 1.15 (.8-1.63) 1.2 (.78-1.83).36 Multivariable-adjusted OR (95% CI)* 1. 1.6 (.73-1.55) 1.2 (.77-1.89).44 Women Cases of hypertension, No. 62 5 97 Unadjusted OR (95% CI) 1. 1.29 (.87-1.9) 2.1 (1.5-2.95).1 BMI-adjusted OR (95% CI) 1. 1.8 (.72-1.63) 1.26 (.84-1.9).26 Multivariable-adjusted OR (95% CI)* 1..94 (.62-1.43) 1.7 (.7-1.63).75 *Adjusted for age, race, body mass index, smoking status, ethanol use, low- and high-density lipoprotein cholesterol, history of diabetes, cholesterol-lowering medication use, physical activity, and clinic site. Table 4. Incident Hypertension by CRP Category for Whites and African Americans Whites Cases of hypertension, No. 75 35 37 Unadjusted OR (95% CI) 1..97 (.64-1.47) 1.4 (.92-2.12).17 BMI-adjusted OR (95% CI) 1..79 (.52-1.22).83 (.51-1.37).4 Multivariable-adjusted OR (95% CI)* 1..69 (.43-1.9).99 (.59-1.67).71 African Americans Cases of hypertension, No. 83 77 17 Unadjusted OR (95% CI) 1. 1.35 (.96-1.9) 1.6 (1.17-2.2).3 BMI-adjusted OR (95% CI) 1. 1.24 (.88-1.76) 1.21 (.84-1.73).31 Multivariable-adjusted OR (95% CI)* 1. 1.25 (.87-1.79) 1.22 (.83-1.79).32 *Adjusted for age, race, BMI, smoking status, ethanol use, low- and high-density lipoprotein cholesterol, history of diabetes, cholesterol-lowering medication use, physical activity, and clinic site. COMMENT In a young adult cohort, we found no independent association between CRP concentrations and development of hypertension, irrespective of sex or race. In addition, year 7 CRP levels were not predictive of change in systolic or diastolic BP over an 8-year period. There have been 2 cohort studies that have looked at the relationship between CRP concentration and incident hypertension in older adults. Results from the Women s Health Study (WHS) demonstrated that baseline CRP levels predicted development of hypertension in women with an average age of 5 years. 1 The relative risk of hypertension increased by CRP quintile, with the largest risk in those individuals with CRP levels greater than 3.5 mg/l compared with levels less than.43 mg/l (relative risk, 2.5; 95% CI, 2.27-2.75). This risk was attenuated but still statistically significant after adjusting for BMI and other confounders (relative risk, 1.52; 95% CI, 1.36-1.69). The second cohort study involved 379 men with an average age of 5 years. 2 C-reactive protein concentration was a significant predictor of incident hypertension after adjusting for waist circumference and other confounding variables, in addition to accounting for change in waist circumference, alcohol intake, or smoking status. In our young cohort, CRP concentration did not predict incident or prevalent hypertension after adjusting for BMI. There are at least 2 possible explanations for these results. Obesity is an important predictor of hypertension. 5 Because obesity is associated with elevated CRP concentrations and is also an important determinant of incident hypertension, it is possible that obesity is a confounder in the relationship between CRP concentration and hypertension. Alternatively, inflammation, as reflected by CRP concentration, may be in the causal pathway between obesity and hypertension but measured less (REPRINTED) ARCH INTERN MED/ VOL 166, FEB 13, 26 348 26 American Medical Association. All rights reserved. Downloaded From: on 1/26/218

B Systolic Blood Pressure, mm Hg A Systolic Blood Pressure, mm Hg B Systolic Blood Pressure, mm Hg A Systolic Blood Pressure, mm Hg 8 6 4 2 2 4 1 2 3 4 5 6 7 8 9 1 8 6 4 2 2 4 6 1 2 3 4 5 6 7 8 9 1 8 6 4 2 2 4 6 8 6 4 2 2 4 6 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 Figure 3. Change in systolic blood pressure in whites (A) and African Americans (B) by year 7 C-reactive protein concentration. precisely and thus not surviving the multivariable analysis. These results in young adults are in contrast to previously published studies in predominately middleaged white populations in which the association between CRP concentration and hypertension remained after adjustment for measures of obesity. It is possible that as a cohort ages, unknown variables in addition to obesity either influence BP by an inflammatory mechanism or inflammation and BP independently. There is limited evidence to suggest that interleukin 6 and tumor necrosis factor, but not CRP concentration, are associated with hypertension in a crosssectional study of 196 individuals aged 3 to 64 years from Bucaramanga, Columbia. 6 A limitation of the present study is that we did not assess whether other inflammatory markers, such as interleukin 6 or tumor necrosis factor, were predictive of incident hypertension in the CARDIA cohort. In conclusion, CRP concentration is a significant predictor of incident hypertension as young adults become middle-aged, but after adjusting for BMI, we found no independent association between CRP concentration and the development of hypertension. Further studies are needed to understand the role of CRP in hypertension development and to determine the effect of other factors, such as obesity, on this relationship. Accepted for Publication: August 28, 25. Correspondence: Susan G. Lakoski, MD, MS, Division Figure 4. Change in systolic blood pressure in men (A) and women (B) by year 7 C-reactive protein concentration. of Internal Medicine/Cardiology, Medical Center Boulevard, Winston-Salem, NC 27157 (slakoski@wfubmc.edu). Author Contributions: Dr Lakoski had access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Financial Disclosure: None. Funding/Support: The study was funded by contracts N1-HC-4847, N1-HC-4848, N1-HC-4849, N1- HC-9595 (CARDIA) from the National Heart, Lung, and Blood Institute (NHLBI), Bethesda, Md, and NHLBI research training grant 1 T32 HL76132-1. REFERENCES 1. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. JAMA. 23;29:2945-2951. 2. Niskanen L, Laaksonen DE, Nyyssonen K, et al. Inflammation, abdominal obesity, and smoking as predictors of hypertension. Hypertension. 24;44:859-865. 3. Hughes GH, Cutter G, Donahue R, et al. Recruitment in the Coronary Artery Disease Risk Development in Young Adults (Cardia) Study. Control Clin Trials. 1987; 8:68S-73S. 4. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 23;17:499-511. 5. Franklin SS, Pio JR, Wong ND, et al. Predictors of new-onset diastolic and systolic hypertension: the Framingham Heart Study. Circulation. 25;111:1121-1127. 6. Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-alpha) and essential hypertension. J Hum Hypertens. 25;19:149-154. (REPRINTED) ARCH INTERN MED/ VOL 166, FEB 13, 26 349 26 American Medical Association. All rights reserved. Downloaded From: on 1/26/218