Virulence of Entomopathogenic Fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the Microbial Control of Spodoptera exigua

Similar documents
CONTROL OF COTTON APHID AND GREENHOUSE WHITEFLY WITH A FUNGAL PATHOGEN

Influence of different storage conditions on vitality and virulence of Beauveria bassiana spores

Efficacy of some entomopathogenic fungi against Aphis fabae Scopoli (Hemiptera: Aphididae)

SUSCEPTIBILITY OF SCHIZONYCHA AFFINIS BEETLES TO NATIVE STRAINS OF BEAUVERIA BRONGNIARTII IN SOUTH AFRICA

Selection of highly virulent entomopathogenic fungal isolates to control the greenhouse aphid species in Iraq

Studies on biodiversity of entomopathogenic fungi isolated from all the agro-climatic zones of Karnataka

Mortality and Development Effects of Transgenic Cotton on Pink Bollworm Larvae

EFFICACY OF ENTOMOPATHOGENIC FUNGUS BEAUVERIA BASSIANA ISOLATES AGAINST THE TWO-SPOTTED SPIDER MITE, TETRANYCHUS URTICAE KOCH (ACARI: TETRANYCHIDAE)

AN ABSTRACT OF THE DISSERTATION OF. effects, but may not be good predictors of field effects. A case study was

American Journal of Agricultural and Biological Sciences. Introduction. Materials and Methods. Fungal Isolate. Original Research Paper

A novel method for the management of mealybug in Cotton.

Efficacy of Oil Based Formulations of Nomuraea rileyi (Farlow) Samson against Spodoptera litura in vitro

Efficacy of Spodoptera litura multiple nucleopolyhedrovirus after serial passage through the homologous insect larval host

Uzma Mustafa and Gurvinder Kaur* Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India.

Mass rearing lepidoptera with persistent baculovirus infections. Insect population dynamics are impacted by lethal and chronic infections

Production of Aerial Conidia of Lecanicillium lecanii by Solid-State Fermentation for Use as a Mycoinsecticide

Pathology and Morphogenesis of a Granulosis Virus of the Diamondback Moth

Incidence of mycopathogens infecting oat birdcherry aphid, Rhopalosiphum padi L. (Homoptera: Aphididae) infesting wheat plants at Assiut

Relative Potency of Selected Nuclear Polyhedrosis Viruses Against Five Species of Lepidoptera 1,2

Characterization of resistance to all bollworms and Spodoptera litura (Fab.) in different Bt transgenic events of cotton

AC303,630 A new novel insecticide-acaricide for control of resistant arthropod pests

Pathogenicity of the entomopathogenic fungus Metarhizium anisopliae to the red-legged tick, Rhipicephalus evertsi evertsi

Biological Control of Wax Moth, Galleria mellonella L. (Lepidoptera: Pyralidae) by Bacillus thuringiensis

Workshop Maximização dos serviços do ecossistema vinha. UTAD, 13 e 14 de Novembro de Lav Sharma and Guilhermina Marques CITAB, UTAD

The Effects of UV Radiation on Metarhizium anisopliae

Efficacy of Nomuraea rileyi and Spinosad against olive pests under laboratory and field conditions in Egypt

INSECTICIDE RESISTANCE MONITORING IN LEPIDOPTERAN COTTON PESTS

Beauveria bassiana sensu lato granules for management of brown planthopper, Nilaparvata lugens in rice

Scientific Insights in the Mode of Action of Microbial Control Agents (mbcas)

Media Composition Influences Growth, Enzyme Activity and Virulence of the Entomopathogen Metarhizium anisopliae (Hypocreales: Clavicipitaceae)

PYRETHROIDS AND NEW CHEMISTRY INSECTICIDES MIXTURES AGAINST SPODOPTERA LITURA (NOCTUIDAE: LEPIDOPTERA) UNDER LABORATORY CONDITIONS

Effect of temperature, relative humidity and aphid developmental stage on the efficacy of the mycoinsecticide Mycotal against Myzus persicae

Infection process of entomopathogenic fungi Beauveria bassiana in the Tetrancyhus kanzawai (Kishida) (Tetranychidae: Acarina)

A study on a trap for autodissemination of the entomopathogenic fungus Beauveria bassiana by red palm weevil adults in date palm plantations

MANAGEMENT OF Spodoptera litura Fabricius ON CABBAGE *RABARI, P. H., DODIA, D. A., PATEL, P. S. AND BARAD, C. S

En tornology. FUNGI PARASITIC ON THE NYMPH OF MOGANNZA HEBES WALKER IN TAIWAN L. S; Leu and Z. N. Wang Tainan Sugar Experiment Station Tainan, Taiwan

Biopesticide-based products and strategies for control of tree pests. Professor Tariq M. Butt

ASSESSING THE IMPACT OF NATURAL PATHOGENS ON SUGARBEET ROOT MAGGOT THROUGH SURVEYS

Isolation and Solid Substrate Mass Production of Paecilomces fumosoroseus with the Help of Basal Salt Solution and Yeast Extract

Scientific and technical work

KEY WORDS Sugarcane, biological control, Scarnbaeidae, grubs, Metarhjzju,", Coleoptera.

The Influence of Entomophtorales Isolates on Aphids Aphis fabae and Metopeurum fuscoviride

Rearing of Diamondback Moth

Life-cycle Parameters of Aphelenchus avenae. on Botrytis cinerea and Fusarium oxysporum

Control of Resistant Pink Bollworm (Pectinophora gossypiella) by Transgenic Cotton That Produces Bacillus thuringiensis Toxin Cry2Ab

The Use of Sludge from Cow Manure Biodigester as Fertilizer and Carrier of Cordyceps sp. for White Grub Pest Control

Plant Biotechnology: Current and Potential Impact For Improving Pest Management In U.S. Agriculture An Analysis of 40 Case Studies June 2002

Toxicity Assessment of Varicosporium Alodeae and Articulospora Inflata on Anopheles Mosquito larvae in South West Nigeria

DICARE R WG37.5 as a partner of anti-resistance strategy programme for the control of diamondback moth (Plutella xylostella L.

The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK;

A Simple, Direct Plating Method, Alternative to Dilution Plating, for Estimation of the Abundance of Penicillium verrucosum on Incubated Cereal Grain

ARTHROPOD MANAGEMENT

Evaluation of Type of Growth Media on Biologi al Attributes and Virulence of Verticillium lecanii (Zimmermann) Viegas against Mealy Bug

Synchronous production of conidial powder of several fungal biocontrol agents in series fermentation chamber system

Impact of different Agents on the Efficacy of Codling Moth Granulovirus in Tank Mixtures

Economical Biomass production of aerial conidia of Metarhizium anisopliae MCC0051 using Agri residues as Solid substrate and its Bioefficacy

What do we (need to) know about low-susceptibility of codling moth against Cydia pomonella granulovirus (CpGV)!

Received 3 February 2010/Accepted 11 May 2010

This is a refereed journal and all articles are professionally screened and reviewed

JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION VOL. 2, No.3

Pome Fruit Diseases IOBC/wprs Bull. 29(1), 2006 pp

Microbial and Other Insecticides to Control Lepidopterous Pests of Cole Crops in Georgia

Susceptibility of Ceratitis capitata Wiedemann (Diptera: Tephritidae) to Entomopathogenic Fungi and their Extracts

Toxicity of Selected Insecticides (Spinosad, Indoxacarb and Abamectin) Against the Diamondback Moth (Plutella xylostella L.

PARASITISM OF SOYBEAN LOOPERS, PSEUDOPLUSIA INCLUDENS, BY COPIDOSOMA FLORIDANUM IN BOLLGARD AND NON-BT COTTON

The bollworm [Helicoverpa zea (Boddie)] and ARTHROPOD MANAGEMENT

MATERIALS AND METHODS

Ampelomyces quisqualis for control of powdery mildew

Susceptibility of Tetranychus urticae Koch. (Acari: Tetranychidae) to Isolates of Entomopathogenic Fungus Beauveria bassiana

Jundishapur J Microbiol June; 7(6): e Published online 2014 June 1. Research Article

Biological Control 59 (2011) Contents lists available at SciVerse ScienceDirect. Biological Control

Cultural and Physiological Variation Between Isolates of Stemphylium botryosum the Causal of Stemphylium Blight Disease of Lentil (Lens culinaris)

Tannic Acid Enhancing Insecticidal Activity of Protoxin Produced in Bacillus thuringiensis subsp. Kurstaki KB100 Strain Against Spodoptera exigua

(Received Dec. 16, 2003; accepted Apr. 26, 2004 )

Biopesticides for the control of storage insect pests

Population dynamics of Plutella xylostella in cruciferae plants and contact toxicity of insecticides to it in Shanxi area

MIDHILA PADMAN and JANARDHANA G R*

P.J. Cotty, Page NO.1 of 8.

SUMMARY AND CONCLUSION

24/01/2011. Bioassays some definitions

: LYMANTRIA DISPAR (L.) [1, 2],, [3]., Lymantria dispar (L.)

Kongming WU 1. Contacting Information 2. Present Ranks Professor, President, Academician, 3. Academic Qualifications 4. Scientific Researches

International Journal of Pure and Applied Sciences and Technology

ANTAGONISTIC EFFECT OF THREE FUNGAL ISOLATES TO AFLATOXIN-PRODUCING^spergiY/HS/JavHS

Incorporation of lyophilized leaves and pods into artificial diet to assess antibiosis component of resistance to pod borer in pigeonpea

Susceptibility Status of Aedes aegypti, Culex quinquefasciatus and Anopheles stephensi against Various Insecticides in Lahore: Pakistan

Time concentration mortality modeling of the synergistic interaction of Beauveria bassiana and imidacloprid against Nilaparvata lugens

Int.J.Curr.Microbiol.App.Sci (2017) 6(7):

Biological control of aquatic weeds by Plectosporium alismatis

Thermo-Therapy and Use of Biofungicides and Fungicides for Management of Internal Discoloration of Horseradish Roots

Tel: ; Fax: URL: Cohen, E., Ph.D. (Head of Department) Shafir, S., Ph.D.

Abstract. Introduction

Biological control agents, such as insect

Tropentag 2012, Göttingen, Germany September 19-21, 2012

Original Article Asian J Agri Biol, 2015, 3(4):

Larvicidal activity of entomopathogenic fungi Metarhizium anisopliae against mosquito larvae in Algeria

Preparation and use of oil formulations of Beauveria bassiana and Metarhizium anisopliae against Spodoptera litura larvae

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

Effect of Environmental Factors on the Growth of Aspergillus Species Associated with Stored Millet Grains in Sokoto.

PLANT PATHOLOGY & NEMATOLOGY

Transcription:

Mycobiology Research Article Virulence of Entomopathogenic Fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the Microbial Control of Spodoptera exigua Ji Hee Han 1, Byung Rae Jin 2, Jeong Jun Kim 1, * and Sang Yeob Lee 1 1 Agricultural Microbiology Division, National Academy of Agricultural Science, Rural Development Administration, Jeonju 565-851, Korea 2 College of Natural Resources and Life Science, Dong-A University, Busan 604-704, Korea Abstract The beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) is difficult to control using chemical insecticides because of the development of insecticide resistance. Several pest control agents are used to control the beet armyworm. Entomopathogenic fungi are one of the candidates for eco-friendly pest control instead of chemical control agents. In this study, among various entomopathogenic fungal strains isolated from soil two isolates were selected as high virulence pathogens against larva of beet armyworm. Control efficacy of fungal conidia was influenced by conidia concentration, temperature, and relative humidity (RH). The isolates Metarhizium anisopliae FT83 showed 100% cumulative mortality against second instar larvae of S. exigua 3 days after treatment at 7 conidia/ml and Paecilomyces fumosoroseus FG340 caused 100% mortality 6 days after treatment at 4 conidia/ml. Both M. anisopliae FT83 and P. fumosoroseus FG340 effectively controlled the moth at 20~ 30 o C. M. anisopliae FT83 was significantly affected mortality by RH: mortality was 86.7% at 85% RH and 13.4% at 45% RH. P. fumosoroseus FG340 showed high mortality as 90% at 45% RH and 100% at 75% RH 6 days after conidia treatments. These results suggest that P. fumosoroseus FG340 and M. anisopliae FT83 have high potential to develop as a biocontrol agent against the beet armyworm. Keywords Beet armyworm, Entomopathogenic fungi, Metarhizium anisopliae, Paecilomyces fumosoroseus, Spodoptera exigua The beet armyworm (Spodoptera exigua Hüber) is a widely distributed polyphagous pest for many economically important crops, such as cotton, tomato, celery, lettuce, cabbage, alfalfa and so on [1, 2]. In Korea, beet armyworm occurs 4~5 generations annually in open fields. In greenhouses, this pest can survive throughout the year and causes yearround damage to crops across the country [3]. The first and second instar larvae of beet armyworm are gregarious and devour plant leaves. Early stage of S. exigua is difficult to control because it feeds in hidden parts of Mycobiology 2014 December, 42(4): 385-390 http://dx.doi.org/10.5941/myco.2014.42.4.385 pissn 1229-8093 eissn 2092-9323 The Korean Society of Mycology *Corresponding author E-mail: jjkim66@korea.kr Received November 13, 2014 Revised November 26, 2014 Accepted December 8, 2014 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. plants, for example, inside of welsh onion and the heart of Chinese cabbage which may be less exposed to insecticides [4]. The late larvae of beet armyworm could not be controlled with chemical insecticides because it develops resistance towards insecticides such as spinosad, chlorinated hydrocarbon, organophosphates, carbamates, pyrethroids, and benzoylphenylureas, etc. [5-11]. Studies on the biocontrol of S. exigua have mainly focused on nuclear polyhedrosis viruses (NPV) [12, 13] and Bacillus thuringiensis which are now commercially available many countries. However, S. exigua have developed B. thuringiensis resistance [14]. Mass production of NPV required much time and cost and productivity is so low. Therefore, it is important to develop alternative biocontrol agents to control S. exigua. There are more than 700 species of fungi belonging to 90 genera which isolated from various insect species [15, 16]. At least 12 species or subspecies of fungi have been used as active ingredients for mycoinsecticides. One hundred seventy-six mycopesticides were developed in several countries using Beauveria bassiana, Metarhizium anisopliae, Isaria fumosorosea, and B. brongniartii to control several agricultural pests. Among these only ten mycopesticides (seven B. bassiana, two M. anisopliae and one mixture of two or more species) have been used to control Noctuidae [17]. 385

386 Han et al. Several fungal isolates including B. brongniartii, Nomuraea rileyi, I. fumosorosea, and B. bassiana were reported the pathogenicity to S. litura in China [18] and M. anisopliae and I. fumosorosea in Pakistan [19]. But there are few studies against S. exigua [20]. Therefore we studied and selected two fungal isolates having high virulence to control beet armyworm [21]. In this study, we conducted several tests at various conidial concentrations, temperatures and relative humidities (RHs) to find effective control condition of the two selected isolates for commercialization. MATERIALS AND METHODS Beet armyworm rearing. Beet armyworms were obtained from the Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration in South Korea. Larvae were reared on artificial diet (#F9219B, mixing direction; Bio-Serv, San Diego, CA, USA) and maintained at 25 ± 1 o C with a 14:10h (L:D) photoperiod. Newly molted second instar larva (7 days after hatching) were used for bioassays. Fungal strains and preparation of conidial suspensions. Two fungal isolates, M. anisopliae FT83 [21] and P. fumosoroseus FG340 isolated from soil of agricultural fields using Tenebrio molitor and Galleria mellonella in Korea, were selected as high pathogenicity isolates to control beet armyworm. These fungi were cultivated at 25 ± 1 o C on potato dextrose agar (PDA) medium for 14 days. Conidia were harvested by adding 5 ml of sterilized 0.05% Tween 80 and scraping with spreader. The suspensions were vortexed for 3 min and then filtered through four layers of sterilized cheese cloth. Conidial concentrations were measured using a hemacytometer. The suspensions were diluted to a range of concentrations for each bioassay. Bioassay at various conidial concentrations, temperatures and RHs. Chinese cabbages for the bioassays were grown in a greenhouse for approximately 30 days. Leaf discs (9 cm diameter) were placed in a 90-mm-diameter insect-breeding dish. Six hundred microliters of conidial suspension at 6 different concentrations ( 4, 5, 1 10 6, 7, 8, and 9 conidia/ml) of M. anisopliae FT83 and P. fumosoroseus FG340 was sprayed onto each sides of the leaf disc infested 10 second instar larvae of beet armyworm inside the breeding dishes using a Plexiglass spray box (90 90 90 cm). The spray box was installed a polyvinyl acetal cone nozzle (1.5 mm diameter) on the top layer and the nozzle was connected to a vacuum pump which was fixed at 100 kpa. To avoid cross contamination among the sprayed isolates, the sprayer head and line were rinsed with 1 ml of 70% ethyl alcohol and 0.05% Tween 80. After air drying, dishes containing the leaf discs + larva were incubated in a Plexiglass cage at 25 ± 1 o C with > 90% RH and a 16L : 8D photoperiod. Mortality was recorded daily for six days, and dead insects were transferred to Petri dishes with dampened filter paper. Mycosis cadavers were counted daily for 1 wk. Spore viability was measured by inoculating 100 µl drops of spore suspension (10 6 conidia/ ml) onto 1.5% water agar in 35-mm-diameter Petri dish, and incubating for 24-hr incubation at 25 o C, as described by Goettel and Inglis [22]. The spore viabilities were 93.4% and 53.6% for P. fumosoroseus FG340 and M. anisopliae FT83, respectively. Each bioassay was conducted three different times. There are 3 replicate dishes with 30 larvae per treatment in each trial. To study the effect of temperature and RH on insect mortality, dishes treated with M. anisopliae FT83 and P. fumosoroseus FG340 ( 8 conidia/ml) were incubated at different temperatures (15 o C, 20 o C, 25 o C, 30 o C, and 35 o C) and different RH (45%, 75%, 85%, and 95%) at 25 o C using the bioassay conditions described above. Constant humidities of 45%, 75%, 85%, and 95% were achieved with saturated solutions of potassium carbonate, sodium chloride, potassium chloride and potassium sulphate, respectively [22]. When the leaf disc of Chinese cabbage sprayed with the conidia suspension dried or were entirely consumed, the larvae were provided artificial diet. Statistical analysis. Normally distributed data were compared using one-way ANOVA (Proc GLM; SAS ver. 9.2, 2010, SAS Institute Inc., Cary, NC, USA). Median lethal times (LT 50 ) were estimated using the LIFEREG procedure, and the data were fitted to a Weibull distribution (SAS ver. 9.2). Goodness of fit was estimated using the Pearson chi-squared test. RESULTS Infection symptoms. Cardaver infected with the isolate M. anisopliae FT83 was covered with white mycelia 3 days after treatment and changed to dark green color by conidia from creamy white mycelia 5 days after treatment. Infection with P. fumosoroseus FG340 caused noticeable hyphal growth on the surface of cuticle 3 days after treatment, and the cadavers covered by white to brown colored conidia 5 days after treatment (Fig. 1). Virulence of entomopathogenic fungi. Larval mortality with M. anisopliae FT83 and P. fumosoroseus FG340 differed significantly at different conidial concentrations: the mortality caused by each fungus increased with conidial concentration. Mortality by M. anisopliae FT83 was 49.8%, 65.3%, 85.8%, 100%, 100%, and 100% at 4, 5, 6, 7,, 1 10 8, and 9 conidia/ml, respectively (F = 40.93, df = 6, 76, p < 0.0001). The mortality caused by P. fumosoroseus FG340 was 100% all concentrations from 4 conidia/ ml to 9 conidia/ml (F =Infty, df = 6, 35, p < 0.0001) (Table 1). P. fumosoroseus FG340 showed higher mortality (100% 6 days after treatment) than about 50% of M. anisopliae FT83 at 4 conidia/ml. The median lethal

Microbial Control of Beet Armyworm with Entomopathogenic Fungi M. anisopliae and P. fumosoroseus 387 Fig. 1. Symptoms of cadavers of Spodoptera exigua infected by Metarhizium anisopliae FT83 and Paecilomyces fumosoroseus FG340. Cadaver infected by M. anisopliae FT83 were covered with mycelia 3 days after treatment and changed to dark green color by conidia from creamy white mycelia 5 days after treatment. Infection with P. fumosoroseus FG340 caused noticeable hyphal growth on the surface of cuticle 3 days after treatment, and the cadaver covered with conidia from white to brown color 5 days after treatment. Table 1. Mortality of second instar larvae of Spodoptera exigua 6 days after treatments of different concentrations of Metarhizium anisopliae FT83 and Paecilomyces fumosoroseus and their median lethal time (LT50) M. anisopliae FT83 P. fumosoroseus FG340 Concentration (conidia/ml) Mortality (%) LT50 (day) Mortality (%) LT50 (day) Control 4 5 6 7 8 9 017.0 ± 4.3 d 049.8 ± 8.7 c 065.3 ± 3.0 b 085.8 ± 5.6 a 5.7 ± 0.4 a 4.7 ± 0.0 b 3.6 ± 0.1 c 2.2 ± 0.1 d 2.1 ± 0.1 d 1.3 ± 0.0 e 000.0 ± 0.0 b 4.2 ± 0.2 a 3.8 ± 0.1 b 3.2 ± 0.2 c 2.9 ± 0.1 c 2.1 ± 0.1 d 2.0 ± 0.1 d Values are prersented as mean ± SE. Means within the same column followed by the same letter are not significantly different using Duncan s multiple range test within the same column. time (LT50) of S. exigua larvae at low concentration from 104 to 106 was shorter by P. fumosoroseus FG340 as 4.2, 3.8, and 3.2 days compared to 5.7, 4.7, and 3.6 days by M. anisopliae FT83, but above 107 LT50 value was reverse. The median lethal times decreased with increase in conidial concentration. Efficacy of entomopathogenic fungi at different temperatures and humidities. Mycelial growth of M. anisopliae FT83 was fastest at 25oC (32.4 ± 2.0 mm) (F = 282.92, df = 4, 8, p < 0.0001) and P. fumosoroseus FG340 was 30oC (29.04 ± 0.3 mm) (F = 60.53, df = 3, 32, p < 0.0001) among the tested five different temperatures (Table 2). Mortality caused by M. anisopliae FT83 and P. fumosoroseus FG340 was temperature-dependent and increased from 20 to 30oC but decreased at 35oC (Fig. 2). The median lethal time (LT50) of M. anisopliae FT83 was 2.6, 2.2, 2.0, and 27.7 days at 20oC, 25oC, 30oC, and 35oC, respectively, and the LT50 of P. fumosoroseus FG340 was 3.0, 2.5, 2.0, and 79.7 days at 20oC, 25oC, 30oC, and 35oC, respectively. Both Table 2. Mycelial growth of Metarhizium anisopliae FT83 and Paecilomyces fumosoroseus FG340 at different temperatures after 7-day cultivation on potato dextrose agar media Mycelial growth after 7 days (mm) Temperature (oc) M. anisopliae FT83 P. fumosoroseus FG340 15 20 25 30 35 11.5 ± 0.5 d 22.2 ± 0.8 c 32.4 ± 2.0 a 28.1 ± 0.7 b 07.0 ± 0.0 e 12.6 ± 0.5 d 18.4 ± 0.6 c 24.9 ± 0.5 b 29.4 ± 0.3 a 07.0 ± 0.0 e Values are prersented as mean ± SE. Means within the same column followed by the same letter are not significantly different using Duncan s multiple range test. fungi showed the highest mortality at 30oC. RH significantly affected infection by M. anisopliae FT83. The mortality of larvae treated with M. anisopliae FT83 (8 conidia/ml) at various RH was higher as RH increases: the mortality was 13.4%, 55.6%, 86.7%, and

388 Han et al. fumosoroseus FG340 ( 8 conidia/ml) at 45%, 75%, 85%, and 95% RH was 90.0%, 100%, 100%, and 100%, respectively (F = 137.7, df = 11, 275, p < 0.0001) (Table 3). DISCUSSION Fig. 2. Cumulative mortality of Spodoptera exigua larvae treated with Metarhizium anisopliae FT83 (A) and Paecilomyces fumosoroseus FG340 (B) at different temperatures: 15 o C, 20 o C, 25 o C, 30 o C, and 35 o C. The conidial concentration used for each treatment was 8 conidia/ml. Control was treated with 0.01% Tween 80. Means above the line followed by the same letter are not significantly different using Duncan s multiple range test (p>0.05). 97.2% at 45%, 75%, 85%, and 95% RH, respectively. P. fumosoroseus FG340 showed high control effects in whole ranges of RHs we conducted tests from 45% to 95% RHs; mortality of second instar larva of S. exigua treated with P. Table 3. Mortality and LT 50 of Spodoptera exigua second instar larvae treated with 8 conidia/ml of Metarhizium anisopliae FT83 and Paecilomyces fumosoroseus FG340 at different relative humidities Humidity (%) Treatment Mortality (%) LT 50 (day) 45 Control 000.6 ± 0.6 e - FT83 013.4 ± 2.9 d 11.2 ± 0.8 a0 FG340 090.0 ± 5.3 ab 4.7 ± 0.5 b 75 Control 001.7 ± 0.9 e - FT83 055.6 ± 6.9 c 9.0 ± 2.2 a FG340 3.4 ± 0.2 b 85 Control 000.0 ± 0.0 e - FT83 086.7 ± 3.7 b 4.4 ± 0.5 b FG340 3.2 ± 0.1 b 95 Control 000.0 ± 0.0 e - FT83 097.2 ± 1.4 ab 3.3 ± 0.3 b FG340 2.9 ± 0.1 b Values are prersented as mean ± SE. Means within the same column followed by the same letter are not significantly different using Duncan s multiple range test. Entomopathogenic fungi are important factors regulating insect populations. M. anisopliae, I. fumosorosea, B. bassiana and Lecanicillium sp. are important natural control agents and sources of mycopecticides for many Noctuidae pests management worldwide [19]. Several studies have examined their potential use as biological control agents. Lin et al. [18] compared the pathogenicity of several fungal species against S. litura. B. brongniartii and N. rileyi showed 100% and 95.2% mortality after treatment with 8 10 7 conidia/ml and LT 50 was 3.0 and 4.1 days against larvae of S. litura, respectively. The cumulative mortality of S. litura exposed to I. fumosorosea and B. bassiana was 85.7% and 71.4%, respectively, and the LT 50 values were 4.9 and 6.3 days, respectively. Asi et al. [19] also examined the susceptibility of S. litura to M. anisopliae and I. fumosorosea. These two fungi caused mortalities of 53.5% and 41.2%, respectively after 10 days of treatment at a concentration 10 7 conidia/ml. Dose-mortality assays using these two isolates revealed that the mortality of third instar larvae was 15%, 21%, 52%, and 58% when applied with I. fumosorosea at 10 5, 10 6, 10 7, and 10 8 conidia/ml, respectively, and 9.3%, 12.0%, 36.2%, and 43.0% with M. anisopliae 10 days after treatment. We observed that M. anisopliae FT83 and P. fumosoroseus FG340 which are used in this study, showed higher mortality than other results. All second instar larvae of S. exigua died after exposure to 10 7 conidia/ml of M. anisopliae FT83 and 10 4 conidia/ml of P. fumosoroseus FG340 within 6 days after application. The pathogenicity of the fungi is primarily mediated by entry through the external larval integument [23]. Conidia attachand germinate on cuticle and penetrate into insect body. Upon entry into the hemocoel, the mycelia grow and spread throughout the whole body and then form hyphae and produce blastospores. Host death often occurs due to a combination of fungal toxins, physical obstruction of blood circulation, nutrient depletion and organ invasion. Efficacy of control agents against insect pests is influenced by abiotic environmental factors such as temperature, RH, water, and solar radiation which have effect on germination, vegetative growth and viability of entomopathogenic fungi. In this study, mycelial growth of the M. anisopliae FT83 and P. fumosoroseus FG340 on PDA media and control efficacy to beet armyworm were affected by temperature but influence of RHs on control efficacy was differed from two isolates. Several studies have examined the insecticidal activity of metabolites produced by entomopathogenic fungi including M. anisopliae and P. fumosoroseus. Beauvericin, beauverolides, 2,6-pyridinecarboxylic acid and dipicolinic acid are metabolites isolated from P. fumosoroseus [24-26]. Beauvericin is a cyclic hexadepsipeptide that has insecticidal activity against

Microbial Control of Beet Armyworm with Entomopathogenic Fungi M. anisopliae and P. fumosoroseus 389 Aedes aegypti mosquito larvae [27]. Dipicolinic acid is toxic to the blowfly Calliphora erythrocephala [28] and third instar nymphs of Bemisia tabaci type B [29]. The toxic crude proteins produced by I. fumosorosea have insecticidal and antifeedant activity against Plutella xylostella [30]. The toxic crude proteins showed 83.3% mortality of third instar larvae 6 days after treatment. In general, entomopathogenic fungi have low control efficacy in low RH or dry condition such as 45% RH or under 75% RH. For example, L. attenuatum having high pathogenicity against cotton aphid showed 49% mortality at 85% RH but 97% mortality at 97% RH [31]. M. anisopliae FT83 also showed low mortality (13.4%) at 45% RH and high mortality (97.2%) at 95% RH. However P. fumosoroseus FG340 showed high mortality (90%) at 45% RH compared with other fungal isolates. We suppose P. fumosoroseus FG340 at low RH was influenced by direct fungal infection as well as the secondary metabolites for high mortality. Based on our results, we suggest that M. anisopliae FT83 and P. fumosoroseus FG340 have good potential to develop mycopesticides to control beet armyworm. Furthermore, we will conduct further study to test the control efficacy of these fungal isolates in greenhouses to control S. exigua larva. ACKNOWLEDGEMENTS This study was supported by the research grant (PJ00865202) of Rural Development Administration (RDA) of Korea. REFERENCES 1. Metcalf CL, Flint WP. Destructive and useful insects: their habits and control. 4th ed. San Francisco: McGrawhill; 1962. 2. Capinera J. Beet armyworm, Spodoptera exigua (Hubner) (Insecta: Lepidoptera: Noctuidae). Publication No. EENY-105 [Internet]. Gainesville: IFAS Extension, University of Florida; 2006 [cited 2014 Nov 1]. Available from: http://edis.ifas.ufl.edu/ in262. 3. Kang EJ, Kang MG, Seo MJ, Park SN, Kim CU, Yu YM, Youn YN. Toxicological effects of some insecticides against Welsh onion beet armyworm (Spodoptera exigua). Korean J Appl Entomol 2008;47:155-62. 4. Yoshida HA, Parrella MP. Chrysanthemum cultivar preferences exhibited by Spodoptera exigua (Lepidoptera : Noctuidae). Environ Entomol 1991;20:160-5. 5. Moulton JK, Pepper DA, Dennehy TJ. Studies of resistance of beet armyworm (Spodoptera exigua) to spinosad in field populations from the southern USA and southeast Asia [Internet]. Arizona: University of Arizona College of Agriculture 1999 Vegetable Report; 1999 [cited 2014 Nov 1]. Available from: http://extension.arizona.edu/sites/extension.arizona.edu/files/ pubs/az1143_21.pdf. 6. Meinke LJ, Ware GW. Tolerance of three beet armyworm strains in Arizona to methomyl. J Econ Entomol 1978;71:645-6. 7. Chaufaux J, Ferron P. Different susceptibility of two populations of Spodoptera exigua Hub. (Lepid., Noctuidae) to baculoviruses and pyrethroid insecticides. Agronomie 1986;6:99-104. 8. Delorme R, Fournier D, Chaufaux J, Cuany A, Bride JM, Auge D, Berge JB. Esterase metabolism and reduced penetration are causes of resistance to deltamethrin in Spodoptera exigua HUB (Noctuidea: Lepidoptera). Pestic Biochem Physiol 1988; 32:240-6. 9. Brewer MJ, Trumble JT. Beet armyworm resistance to fenvalerate and methomyl: resistance variation and insecticide synergism. J Agric Entomol 1994;11:291-300. 10. Laecke VK, Degheele D. Synergism of diflubenzuron and teflubenzuron in larvae of beet armyworm (Lepidoptera: Noctuidae). J Econ Entomol 1991;84:785-9. 11. Layton MB. The 1993 beet armyworm outbreak in Mississippi a future management guidelines. In: Proceedings of Beltwide Cotton Conference; 1993 Jan 13-14; New Orleans, LA, USA. Memphis: National Cotton Council; 1994. p. 854-6. 12. Kondo A, Yamanoto M, Takashi S, Maeda S. Isolation and characterization of nuclear polyhedrosis viruses from the beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) found in Shiga, Japan. Appl Entomol Zool 1994;29:105-11. 13. Caballero P, Zuidema D, Santiago-Alvarez C, Vlak JM. Biochemical and biological characterization of four isolates of Spodoptera exigua nuclear polyhedrosis virus. Biocontrol Sci Technol 1992;2:145-57. 14. Moar WJ, Pusztai-Carey M, Faassen HV, Bosch D, Frutos R, Rang C, Luo K, Adang MJ. Development of Bacillus thuringiensis CryIC resistance by Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae). Appl Environ Microbiol 1995;61:2086-92. 15. Inglis GD, Goettel MS, Butt TM, Strasser H. Use of hyphomycetous fungi for managing insect pests. In: Butt TM, Jackson C, Magan N, editors. Fungi as biocontrol agents: progress, problems and potential. Wallingford: CABI International/AAFC; 2001. p. 23-69. 16. Roberts DW, Humber RA. Entomogenous fungi. In: Cole GT, Kendrick B, editors. Biology of conidial fungi. New York: Academic Press; 1981. p. 201-36. 17. de Faria MR, Wraight SP. Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 2007;43:237-56. 18. Lin HF, Yang XJ, Gao YB, Li SG. Pathogenicity of several fungal species on Spodoptera litura. J Appl Ecol 2007;18:937-40. 19. Asi MR, Bashir MH, Afzal M, Zia K, Akram M. Potential of entomopathogenic fungi for biocontrol of Spodoptera litura Fabricius (Lepidoptera: Noctuidae). J Anim Plant Sci 2013;23: 913-8. 20. Freed S, Saleem, MA, Khan MB, Naeem M. Prevalence and effectiveness of Metarhizium anisopliae against Spodoptera exigua (Lepidoptera: Noctuidae) in southern Punjab, Pakistan. Pak J Zool 2012;44:753-8. 21. Han JH, Kim H, Leem HT, Kim JJ, Lee SY. Characteristics and virulence assay of entomopathogenic fungus Metarhizium anisopliae for the microbial control of Spodoptera exigua. Korean J Pestic Sci 2013;17:454-9. 22. Goettel MS, Inglis GD. Laboratoy techniques used for entomopathogenic fungi: Hypocreales. In: Lacey LA, editor.

390 Han et al. Manual of techniques in invertebrate pathology. 2nd ed. Oxford: Academic Publisher; 2012. p. 189-253. 23. Zimmermann G. The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol 2008;18:865-901. 24. Bernardini M, Carilli A, Pacioni G, Santurbano B. Isolation of beauvericin from Paecilomyces fumoso-roseus. Phytochemistry 1975;14:1865. 25. Jegorov A, Sedmera P, Matha V, Simek P, Zahradnicková H, Landa Z, Eyal J. Beauverolides L and La from Beauveria tenella and Paecilomyces fumosoroseus. Phytochemistry 1994; 37:1301-3. 26. Shima M. On the metabolic products of the silkworm muscardines. Bull Sericult Exp Stn 1955;14:427-49. 27. Grove JF, Pople M. The insecticidal activity of beauvericin and the enniatin complex. Mycopathologia 1980;70:103-5. 28. Claydon N, Grove JF. Insecticidal secondary metabolic products from the entomogenous fungus Verticillium lecanii. J Invertebr Pathol 1982;40:413-8. 29. Asaff A, Cerda-García-Rojas C, de la Torre M. Isolation of dipicolinic acid as an insecticidal toxin from Paecilomyces fumosoroseus. Appl Microbiol Biotechnol 2005;68:542-7. 30. Freed S, Feng-Liang J, Naeem M, Shun-Xiang R, Hussian M. Toxicity of proteins secreted by entomopathogenic fungi against Plutella xylostella (Lpidoptera: Plutellidae). Int J Agric Biol 2012;14:291-5. 31. Kim JJ, Kim KC. Selection of a highly virulent isolate of Lecanicillium attenuatum against cotton aphid. J Asia-Pac Entomol 2008;11:1-4.