The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection

Similar documents
A comparison of chlorhexidine release rate from three polymeric controlled release drug prototypes

Substantive antimicrobial activity in chlorhexidine-treated human root dentin

Microorganisms play an important role in the development of pulpal and periapical

Evaluation of time-dependent antimicrobial effect of sodium dichloroisocyanurate (NaDCC) on Enterococcus faecalis in the root canal

+ 2.0% chlorhexidine (CHX) gel; Group II Ca(OH) 2. + camphorated paramonochlorophenol (CMCP) and propylene glycol; Group III Ca(OH) 2

Introduction. Original Research. ENDODONTOLOGY Volume: 25 Issue 2 December 2013 ABSTRACT

Original Research Article DOI: / Indian Journal of Conservative and Endodontics, October-December, 2017; 2(4):

Antimicrobial effect of calcium hydroxide as an intracanal medicament in root canal treatment: a literature review - Part II.

EGYPTIAN DENTAL JOURNAL

Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection

Effects of sodium hypochlorite on gutta-percha and Resilon cones: An atomic force microscopy and scanning electron microscopy study

Removal efficiency of propolis paste dressing from the root canal

In-vitro antimicrobial evaluation of Endodontic cavity sealers against Enterococcus faecalis

Inhibition of Enterococcus faecalis by Calcium Peroxide

In vitro assessment of the immediate and prolonged antimicrobial action of chlorhexidine gel as an endodontic irrigant against Enterococcus faecalis

Synergistic antibacterial activity of chlorhexidine and hydrogen peroxide against Enterococcus faecalis

Histological Periapical Repair after Obturation of Infected Root Canals in Dogs

Int.J.Curr.Microbiol.App.Sci (2018) 7(12):

Effect of Intracanal Medication with Calcium Hydroxide and 1% Chlorhexidine in Endodontic Retreatment Cases with Periapical Lesions: An In Vivo Study

ENDODONTIC IRRIGATION SYSTEM. Saves time and improves outcomes

EFFECT OF SODIUM HYPOCHLORITE

DETERMINATION of ph AND CALCIUM ION RELEASE PROVIDED BY DIFFERENT CALCIUM HYDROXIDE PASTES

ENDODONTOLOGY. Editor: Larz S. W. Spångberg

Influence of calcium hydroxide as an intracanal medicament on apical leakage following obturation using three different sealers

Influence of Irrigation with NaOCl and Chlorhexidine on Microleakage

Influence of different vehicles on the ph of calcium hydroxide pastes

Influence of 2% chlorhexidine gel on calcium hydroxide ionic dissociation and its ability of reducing endotoxin

Chlorhexidine gluconate in endodontics: an update review

Antimicrobial efficacy of apple cider vinegar against Enterococcus faecalis and Candida albicans: An in vitro study

Evaluation Of Surface Changes On Gutta-Percha Points Treated With Four Different Disinfectants At Two Different Time Intervals - A Sem Study

Corresponding Author:Dr.Sneha Vaidya 3

Antimicrobial efficacy of chlorhexidine as a root canal irrigant: a literature review

In vitro evaluation of root canal preparation with plastic endodontic rotary finishing file - A SEM study

Abstract. Seer Publishing

Evaluation of retrievability using a new soft resin based root canal filling material

White Rose Research Online URL for this paper: Version: Accepted Version

VITAL PULP THERAPY USING PLATELET-RICH FIBRIN IN AN IMMATURE PERMANENT TOOTH : CASE REPORTS

ENDODONTOLOGY. Chair side disinfection of gutta - percha points - An in vitro comparative study between 5 different agents at different concentrations

Best Practice of in vitro Methods on Measuring Anti Microbial of Chemical Substance on Root Canal Treatment: Literature Review

Comparative Efficacy Of Endodontic Medicaments Against Enterococcus Faecalis Biofilms

Effect of intracanal medicament gel materials separate and in combination in the elimination of Enterococcus faecalis biofilm

In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite

Received on Accepted on:

Bacterial invasion of the root canal systems of teeth most frequently results in infection


In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single-species biofilms

The antibacterial activity of three endodontic sealers against Enterococcus faecalis in vitro

Large periapical lesion: Healing without knife and incision

Smear layer removal evaluation of different protocol of Bio Race file and XPendo Finisher file in corporation with EDTA 17% and NaOCl

CONTENTS. Endodontic therapy Permanent open apex teeth Intracanal Medication. A. Introduction I. Problems II. III. IV. B. Research C.

Research Article Effect of Nanosilver Gel, Chlorhexidine Gluconate, and Camphorated Phenol on Enterococcus faecalis Biofilm

Operative dentistry. Lec: 10. Zinc oxide eugenol (ZOE):

Comparative Evaluation of Effectiveness of Sodium Dichloroisocyanurate and Calcium Hydroxide against Candida albicans

Comparison of the Penetration Depth of Conventional and Nano-Particle Calcium Hydroxide into Dentinal Tubules

ENDODONTOLOGY. Introduction. Original Research ABSTRACT

An in vitro comparative study on the antimicrobial effects of bioglass 45S5 vs. calcium hydroxide on Enterococcus faecalis

EVALUATION OF SINGLE AND MULTIPLE VISIT ROOT CANAL THERAPY: A RANDOMIZED CLINICAL CASES

It has been well established that apical periodontitis is caused by bacteria within the

The antibacterial effects of lasers in endodontics

Comparison of particle morphology between commercial- and research-grade calcium hydroxide in endodontics

Afavorable outcome of the endodontic treatment of teeth with apical periodontitis

agents in pulpal and periapical disease.

Review of literature Single Visit versus Multiple Visit Root Canal Therapy

Efficacy of various concentrations of NaOCl and instrumentation techniques in reducing Enterococcus faecalis within root canals and dentinal tubules

Journal of Dental & Oro-facial Research Vol. 14 Issue 01 Jan. 2018

Staining Potential of Calcium Hydroxide and Monochlorophenol Following Removal of AH26 Root Canal Sealer

The antibacterial effect of herbal alternative, green tea and Salvadora Persica (Siwak) extracts on Entercoccus faecalis

Endodontics: All You Need to Know

A New Solution for the Removal of the Smear Layer

chlorhexidine and its applications in Endodontics: a literature review

HISTOLOGIC AND ELECTRON MICROSCOPIC PERIAPICAL TISSUE EXAMINATION RESULTS IN TEETH WITH CHRONIC APICAL PERIODONTITIS

International Journal of Basic and Clinical Studies (IJBCS) 2014;3(1): Uysal I and Oztekin F

Effect of calcium hydroxide and chlorhexidine medicaments on the apical seal

Non-Surgical Endodontic Retreatment after Unsuccessful Apicectomy: A Case Report

INCIDENCE OF ENDODONTIC FLARE-UPS USING EITHER CALCIUM HYDROXIDE OR CREOSOTE AS INTRACANAL MEDICAMENT IN SYMPTOMATIC TEETH

Antimicrobial activity and substantivity of Uncaria tomentosa in infected root canal dentin

Evaluation of Dentin Root Canal Permeability After Instrumentation and Er:YAG Laser Application

TO EVALUATE THE ANTIBACTERIAL PROPERTIES OF SILVER NANO PARTICLE BASED IRRIGANT AS ENDODONTIC ROOT CANAL IRRIGANT

In vitro Study of Apically Extruded Debris and Irrigant Following the Use of Conventional and Rotary Instrumentation Techniques

The role of bacteria in the development and persistence of apical periodontitis is

Endodontics is the prevention or elimination of

Efficacy of different instrumentation techniques on reducing Enterococcus faecalis infection in experimentally infected root canals

JCDP ABSTRACT INTRODUCTION /jp-journals

COMPARATIVE EVALUATION OF THE SUBSTANTIVITY OF VARIOUS CONCENTRATION OF A PLANT BASED IRRIGANT ON CANDIDA ALBICANS. IN VITRO

A Comparison between the Antimicrobial Effects of Triple Antibiotic Paste and Calcium Hydroxide against Entrococcus Faecalis

Power Hydrogen Evaluation of Apexification Materials: EndoCal 10, Mineral Trioxide Aggregate and Calasept Plus

Chlorhexidine in Endodontics

An unusual maxillary canine with two separated root canals

BioRoot RCS, a reliable bioceramic material for root canal obturation Jenner O. Argueta D.D.S. M.Sc.

THE INTERFACE OF GLASS IONOMER SEALER AND CONDITIONED ELEPHANT TUSK DENTINE: A SCANNING ELECTRON MICROSCOPY STUDY

Nagamaheshwari X, et al: Antimicrobial efficacy of calcium hydroxide - chlorhexidine combination with the addition of antioxidants.

COMPARATIVE STUDY OF APICALLY EXTRUDED DEBRIS AND IRRIGANT AFTER USING TWO ROTARY SYSTEMS (K3, RACE)

Periapical Inflammation Affecting Coronallyinoculated Dog Teeth with Root Fillings Augmented by White MTA Orifice Plugs

Influence of plugger penetration depth on the area of the canal space occupied by gutta-percha

GUIDELINES FOR THE MANAGEMENT OF TRAUMATISED INCISORS

/jp-journals An in vitro Study to Compare the Effectiveness of F-file with Ultrasonically Activated K-file to Remove Smear Layer

Original Research. Materials and Methods Test materials used: Regular GP (RGP). (Dentsply, Maillefer)

The evaluation of endodontic flare-ups and their relationship to various risk factors

Transcription:

The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection Young-Bin Bok a, Doug-Youn Lee b, Chang-Young Lee a, Kyung-Nam Kim b, Kee-Yeon Kum a* a Department of Conservative Dentistry, College of Dentistry, Yonsei University, Seoul, Korea, Oral Science Research Center b Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, Seoul, Korea, ABSTRACT The aim of this in vitro study was to evaluate the suitability of using chitosan, poly (lactide-co-glycolide) (PLGA), and polymethyl methacrylate (PMMA) to control the release of chlorhexidine digluconate (CHX) from a prototype of controlled release drug device (CRD) for root canal disinfection. Four different prototypes with different formulations were prepared. Group A (n = 12); The device (absorbent paper point) was loaded with CHX as control. Group B (n = 12); same as group A, but the device was coated with chitosan. In Groups C and D, the device was treated in the same way as group A and then coated three times with 5% PMMA (Group C, n = 12), or coated three times with 3% PLGA (Group D, n = 12). The devices were randomly allocated to experimental groups of 12 each. All CRD prototypes were soaked in 3 ml distilled water. The concentrations of CHX were determined using a UV spectrophotometer. The surface characteristics of each prototype were observed using a scanning electron microscope. The result showed that release rate of CHX was the greatest in the non-coated group, followed by the chitosan-coated group, the PLGA-coated group, and the PMMA-coated group (P < 0.05). Pores were observed on the surface of the prototypes that were coated with PLGA and PMMA. When the pore size was smaller, the release rate was lower. This data indicate that polymer coating can control the release rate of CHX from the CRD prototypes. [J Kor Acad Cons Dent 29(6):548-554, 2004] Key words : Controlled release drug device, Chlorhexidine digluconate, Chitosan, Polymethyl methacrylate, Poly (lactide-co-glycolide), Root canal disinfectant Ⅰ. Introduction * Corresponding author: Kee-Yeon Kum Yonsei University, Young Dong Severance Hospital, Department of Dentistry, Division of Endodontics, Kangnam-Gu, Dokok-Dong 146-92, Seoul, Korea Tel : 82-2-3497-3466 Fax : 82-2-3463-0551 Email : kum6139@yumc.yonsei.ac.kr Complete debridement and effective disinfection of the root canal space are considered essential for predictable long-term success of endodontic treatment 1). However, instrumentation and irrigation is not always effective in eliminating a therapyresistant microflora in the root canal system 1-3). Calcium hydroxide has proven to be an excellent antimicrobial agent for intracanal dressing in the treatment of infected root canals 4,5). However, it is known to be less effective against Enterococcus faeclais, Actinomyces and Candida that are frequently isolated in persistent/infected root canals 6). The antimicrobial efficacy of calcium hydroxide to affect microorganisms entrenched in the dentinal tubules is also questionable 7). Therefore, alter- This study was partly supported with 2003 Yonsei university research fund. 548

The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection native medicaments should be explored that would maximize microbial eradication when used as intracanal dressings. Chlorhexidine is effective against a wide variety of Gram-positive and Gram-negative organisms, as well as fungi. Recent studies have shown that the antimicrobial effect of chlorhexidine digluconate (CHX) was equal to that of the conventional irrigants and medicaments 8-11). In addition, it is retained by the dentinal hard tissues and thus has a substantive antimicrobial action 12-14). It was also suggested as an effective irrigant to prevent root canal reinfection due to coronal leakage 15). However, in order to achieve long-term substantive antimicrobial effect, the infected root dentin must be exposed to CHX for a longer time than that afforded by irrigation 16,17). A number of studies have shown that a controlled release drug (CRD) device with water-permeable polymer could effectively sustain the release of CHX from the CRD 16,17). However, because of a strong, positive charge of chlorhexidine and its high binding affinity, the development of suitable drug carriers for sustained release of CHX still remains a challenge. Chitosan, poly (lactide-co-glycolide) (PLGA), and polymethyl methacrylate (PMMA), are well known polymers as controlled drug release carrier. Miyazaki et al. observed the sustaining effect of chitosan on the release of water insoluble indomethacin from granules 18). A sustained plateau level of indometacin was obtained for drug/chitosan granules (1 : 2 mixtures) versus a sharp peak for conventional commercial capsules in a rabbit model. PLGA is one of the best-known biodegradable polymers. It is hydrolyzed without enzymes and metabolized by the body 19). Moreover, the degradation rate of PLGA can be regulated by changing its molecular weight, chemical composition, and crystal form 20). PMMA has been used as denture base materials, and one recent study suggested that it could be used as a controlled drug release carrier for antibiotics, for the prevention and treatment of osteomyelitis 21). Therefore, all three polymers may be promising controlled drug release carriers. The aim of this in vitro study was to compare the sustaining effect of chitosan, PLGA, and PMMA on the release of CHX from a prototype of CRD device for root canal disinfection. Ⅱ. MATERIALS AND METHODS 1. Standard curve of CHX concentration. CHX solution (20% wt / wt, Sigma, St. Louis, MO, USA) was diluted serially in 1:1 ratios, and the UV absorbance was measured for each dilution using a UV spectrophotometer (Shimadzu, Tokyo, Japan). The standard curve of CHX concentration versus UV absorbance was used to determine CHX concentration in the experiments. 2. Preparation of the prototype of CRD. Absorbent paper points (Sure-Endo TM, #80, Chungju, Korea) were used as core material. Four different prototypes with different formulations were prepared: group A; absorbent paper points were loaded with CHX. The paper points were immersed in 40% concentrated CHX solution obtained by drying process for 30 minutes and then dried. The 40% concentrated CHX solution was obtained by evaporating water of 20% CHX solution in an oven at 50oC until target weight was reached. Group B; after loading with CHX as in group A, the paper points were coated with an acidic aqueous 3% solution of chitosan (Texan MedTech, Kwangju, Korea) and dried. Groups C and D were treated as Group B except that the paper points were coated three times with 5% PMMA (Group C, Aldrich, Milwaukee, WI, USA) in methylene chloride, or three times with 3% PLGA (Group D, Sigma, St. Louis, MO, USA) in methylene chloride, respectively. For Group C and D, the CHX-loaded paper points were dip-coated with polymer solutions and dried, and this process was repeated twice. All loaded absorbent paper points were individually weighed before being coated. The ones with the range of 0.033 ± 8.43 10-5 g were selected, and they were randomly allocated to experimental groups of 12 each. 549

3. Measuring release of CHX from a prototype of CRD. Each prototype was immersed in 3 ml of distilled water. 10 μl of this solution was then sampled at predetermined times (i.e., at 3, 6, 10, 20, 30, 40 and 50 min and at 1, 2, 3, 4, 5 and 6h, and at 7days). UV absorbance was measured using a UV spectrophotometer (Shimadzu, Tokyo, Japan) to determine the concentration of released CHX from the CRD prototype. 4. Surface observations of CRD devices by SEM. Each prototype was coated with a thin palladium-gold film, and viewed the surface characteristics under a scanning electron microscope (JEOL, TSM-6320F, Tokyo, Japan) at magnifications of 100 and 5000. 5. Statistical analysis. One-way ANOVA test was used to compare the release rates of CHX in each group. The significance was established at 5% level (p = 0.05). Ⅲ. Results 1. Standard curve of CHX concentration. The average weight of CHX loaded in the paper points was 0.016g/point. If all the CHX loaded in the paper point was released into 3mL of distilled water, the concentration would have been about 0.53%. From Figure 1, we calculated that the UV absorbance of 0.53% CHX was about 1.1, which thus represented the maximum UV value. 2. Release rate of CHX from the CRD devices. Figure 1. Standard graph of CHX concentration and UV absorbance (Y = 1.99X; X axis: concentration of CHX, Y axis: UV absorbance). Statistically significant differences were found between the groups by one-way ANOVA (P < 0.05). The release rate of the CHX was the greatest in the non-coated group, followed by the chitosan-coated group, 3% PLGA-coated group, and 5% PMMA-coated group (Figures 2 and 3). Figure 2. Short-term release rate of CHX after immersion of controlled release drug device in 3 ml of distilled water. Figure 3. Long-term release rate of CHX after immersion of controlled release drug device in 3 ml of distilled water. 550

The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection 3. Surface observations of CRD devices by SEM. Scanning electron micrographs showed the different surface characteristics of the CRD prototypes. In the non-coated group, the fiber structure of the absorbent paper point was unaffected and no surface pores were observed (Figure 4). In the polymer-coated groups, coated fiber structure was observed in all prototypes. However, the surface pores were only observed in the PMMA- and PLGA-coated groups, and the pore sizes differed between the two groups. The pore size of the PLGA-coated group is about 2 μm and larger than that of the PMMA-coated group which is <1 μm in size (Figures 5 and 6). The chitosan covered absorbent paper points did not show any pores (Figure 7). Figure 4. SEM images of the non-coated paper point which was loaded with CHX; (a) 100 (b) 5000 ; the fiber structure of the paper point was observed without pores. Figure 5. SEM images of a prototype of controlled release drug device coated with 5% PMMA three times; (a) 100, (b) 5000.; surface pores were observed, and all were within 1 μ m. Figure 6. SEM images of a prototype of controlled release drug device coated with 3% PLGA three times; (a) 100, (b) 5000 ; pore sizes larger than those of the PMMAcoated group were observed. Figure 7. SEM images of a prototype of controlled release drug device coated with chitosan; (a) 100, (b) 5000. the fiber structure of paper point was observed without any surface pores. 551

Ⅳ. Discussion Huang et al. 22) developed the cylindrical, needleshaped CRD prototypes with different formulations and demonstrated that the releasing rate of CRD with non- coated formulation was very fast. In contrast, the release rate of CRD with coated formulations was far more controlled. In this study, similar results were obtained. In the non-coated group, the drug release was very fast, and all loaded CHX was released within 2h. In contrast, CHX release from the polymer-coated groups was more controlled. Chitosan was more sensitive to water and easily swollen with water and ruptured. This resulted in faster release of CHX from the chitosan-coated CRD device compared to the PLGA- and PMMA-coated groups. The CHX loaded in the paper point was released through the surface pores on the coated polymer layer. The pore size of PLGA-coated group was larger than that of PMMA-coated group and the release rate of CHX from the latter group was lower than that of the former group. Thus, the surface pore size was very important for the release rate of CHX and various release rates of CHX from CRD devices can be achieved by controlling the pore size of the coated polymer. The ideal CRD device should have the following characteristics. It should not degrade inside the root canal and it should be easily inserted into and removed from the root canal. In addition, the drug should be released continuously for a controlled time period. Heling et al 16,17) developed a CRD device containing a biodegradable polymer and demonstrated that it was more effective than calcium hydroxide at disinfecting dentinal tubules. However, if used for root canal disinfection, it may not be completely degraded at the time for root filling. Any remaining fragments in the root canal may interfere with the permanent filling, and thus result in leakage. Due to this concern, insoluble polymers were used for coating. Chitosan is insoluble at an alkaline or neutral ph 23). PMMA, which has been used for denture base, is also an insoluble and nondegradable material. PLGA is a biodegradable polymer, but the degradation rate of PLGA can be controlled using the lactide to glycolide mole ratio 19). Therefore, all the materials used in the present study are suitable as coatings for drug carrier for root canal disinfection. The use of absorbent paper point as core material can easily be inserted into root canals and they can be easily removed from the root canal after use. Based on the above results, we conclude that the polymer coating can effectively control the release rate of CHX from the CRD prototypes. Further studies are needed to evaluate the antimicrobial effects and the cytotoxicity of these prototypes of CRD device. References 1. Sjogren U, Figdor D, Persson S, Sundqvist G. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J 30:297-306, 1997. 2. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:86-93, 1998. 3. Friedman S, Komorowski R, Maillet W, Klimaite R, Nguyen HQ, Torneck CD. In vivo resistance of coronally induced bacterial ingress by an experimental glass ionomer cement root canal sealer. J Endod 26:1-5, 2000. 4. Bystrom A, Claesson R, Sundqvist G. The antimicrobial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol 1:170-5, 1985. 5. Cvek M, Hollender L, Nord CE. Treatment of non-vital permanent incisors with calcium hydroxide. Odontol Revy 27:93-108, 1976. 6. O/rstavik D, Haapasalo M: Disinfection by endodontic irrigants and dressings by experimentally infected dentinal tubules. Endod Dent Traumatol 6:142-9, 1990. 7. O/rstavik D, HaapasaloM: In-vitro infection and disinfection of dentinal tubules. J Dent Res 66:1375-9, 1987. 8. Gomes BPFA, Souza SFC, Ferraz CCR, Teizeira FB, Zaia AA, Valdrigh L, Souza-Filho FJ. Effectiveness of 2 % chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro. Int Endod J 36:267-75, 2003. 9. Basrani B, Tajderhane L, Santos M, Pascon E, Grad H, Lawrence HP, Friedman S. Efficacy of chlorhexidine- and hydroxide-containing medicaments against Enterococcus faecalis in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 96:618-24, 2003. 10. Vianna ME, Gomes BP, Berber VB, Zaia AA, Ferraz CC, de Souza-Filho FJ. In vitro evaluation of the 552

The sustaining effect of three polymers on the release of chlorhexidine from a controlled release drug device for root canal disinfection antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 97:79-84, 2004. 11. Jeansonne MJ, White RR. A comparison of 2% chlorhexidine gluconate and and 5.25% sodium hypochlorite as antimicrobial endodontic irrigants. J Endod 20:276-8, 1994. 12. White RR, Hay GL, Janer LR. Residual antimicrobial activity after canal irrigation with chlorhexidine. J Endod 23:229-31, 1997. 13. Barsani B, Santos JM, Tjaderhane L, Grad H, Gorduysus O, Huang J, Lawrence HP, Friedman S. Substantive antimicrobial activity in chlorhexidinetreated human root dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 94:240-5, 2002. 14. Komorowski R, Grad H, Wu Y, Friedman S. Antimicrobial substantivity of chlorhexedine-treated bovine root dentin. J Endod 26:315-7, 2000. 15. Jung S, Safavi K, Spangberg L: The effectiveness of Chlorhexidine in the prevention of root canal reinfection [abstract]. J Endod 25:288, 1999. 16. Heling I, Sommer M, Steinberg D, Friedman M, Sela MN: Microbiological evaluation of the efficacy of chlorhexidine in a sustained-release device for dentine sterilization. Int Endod J 25:15-19, 1992. 17. Heling I, Steinberg D, Kenig S, Gavrilovich I, Sela MN, Friedman M: Efficacy of a sustained-release device containing chlorhexidine and Ca (OH)2 in preventing secondary infection of dentinal tubules. Int Endod J 25:20-4, 1992. 18. Miyazaki S, Yamaguchi H, Yokouchi C, Takada M, Hou WM. Sustained-release and intragastric-floating granules of indomethacin using chitosan in rabbits. Chem Pharm Bull 36:4033-8, 1988. 19. James MA, Matthew SS: Biodegradation and biocompatibility of PLA and PLGA microsphers. Adv Drug Rev 28:5-24, 1997. 20. Cam D, Hyon SH, Ikada Y: Degradation of high molecular weight poly (L-lactide) in alkaline medium. Biomaterials 16:833-43, 1998. 21. Bayston R, Milner RDG: The sustained release of antimicrobial drugs from bone cement. J Bone Joint Surg 64B:460-4, 1982. 22. Huang J, Wong HL, Zhou Y, Wu XY, Grad H, Komorowski R: In vitro studies and modeling of a controlled-release device for root canal therapy. J Cont Rel 67:293-307, 2000. 23. Singla AK, Chawla M: Chitosan: some pharmaceutical and biological aspects-an update. J Pharm Pharmacol 53:1047-67, 2001. 553

국문초록 제어방출형근관소독제로부터클로르헥시딘의방출에미치는 3 가지 POLYMER 의제어효과 복영빈 1 이덕연 2 이찬영 1 김경남 2 금기연 1 * 연세대학교치과대학치과보존학교실 1, 생체재료학교실 2 본연구는서방형근관소독제 (CRD) 의 prototype 으로부터 chlorhexidine (CHX) 의방출속도를제어하기위한 3 가지 polymer (chitosan, PMMA, PLGA) 의제어효과를평가하기위해이루어졌다. 80 번 paper point (Sure-Endo TM, #80) 에 20% CHX 를 loading 한후각군당 10 개씩 4 군으로분류하였다 ; Group A: Non-polymer coated prototype, Group B: chitosan-coated prototype, Group C: PMMA-coated prototype, Group D: PLGA-coated prototype. 각각의 paper point 에함유된 CHX 양을동일하게하기위해, CHX loading 후무게를측정하여유사한무게의 sample 을선택하여사용하였다. 모든시편은 3ml 증류수가담긴큐벳에넣은후 3, 6, 10, 20, 30, 40, 50 분마다, 1, 2, 3, 4, 5, 6 시간마다각각 10 μl씩채취하고, 1 주일후다시 10 μl을채취하여 UV 흡광도를이용하여 CHX 의방출속도를비교하였다. 또한, 각 prototype 의표면관찰을위하여 100 배와 5000 배의주사전자현미경을이용하여표면구조를촬영하였다. 1. CHX 의방출속도는 non-coated groupo, chitosan-coated group, PLGA-coated grouop, PMMA-coated group 순이었으며각군간에는통계학적인유의차가있었다 (p < 0.05). 2. PMMA 나 PLGA 를도포한 CRD 표면에서만 pore 가관찰되었으며 pore size 가커질수록방출속도가빨랐다. 결론적으로 polymer coating 에의해제어방출형근관소독제의 protoytype 으로부터약물 (CHX) 의방출속도를제어할수있었다. 주요단어 : 제어방출형근관소독제, 클로르헥시딘, Chitosan, PLGA, PMMA 554