Antioxidant Activity and Anticancer Study on Phytochemicals Extract from Tubers of Gloriosa superba against Human Cancer Cell (Hep-G2)

Similar documents
In-vitro assay for Cytotoxicity activity in ethonolic extract of fruit rind of Couropita Guianensis aubl

Phytochemical Analysis and Antioxidant property of Aegle marmelos Extracts

This chapter deals with the evaluation of alpha amylase inhibitory

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

8. CHAPTER IV. ANTICANCER ACTIVITY OF BIOSYNTHESIZED SILVER NANOPARTICLES

Antioxidant Activity of the plant Andrographis paniculata (Invitro)

Asian Journal of Research in Pharmaceutical Sciences and Biotechnology

Anticancer Properties of Phytochemicals Present in Indian Medicinal Plants.

PRELIMINARY PHYTOCHEMICAL SCREENING AND IN-VITRO FREE RADICAL SCAVENGING ACTIVITY OF MELOCHIA CORCHORIFOLIA PLANT EXTRACTS

In vitro antioxidant activity of a flavonoid compound isolated from methanolic extract of Helianthus annuus leaves (Asteraceae)

Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

In Vitro Antioxidant and Cytotoxic Analysis of Boerhaavia diffusa Linn.

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.7, No.2, pp ,

WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 6.

Preparation and characterization of Aloe vera extract

Journal of Chemical and Pharmaceutical Research

3. RESULTS AND DISCUSSION

Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices.

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article

Phytochemical screening and quantitative analysis of hexane, acetone, methanol & water extracts of Salicornia virginica by UV-spectrophotometry

Anti-cancer activity of Aya Thambira Chendooram (ATC) in in-vitro cell line against Breast Carcinoma

Anti-neoplastic Activity of Anisochilus cornosus (L.f) wall on HeLa cell line

Phytochemistry and Free Radical Scavenging Activity of Some Indigenous Vegetables in the Ilocos

CHAPTER 11 INVITRO ANTI-OXIDANT ACTIVITY

International Journal Of Recent Scientific Research

Phytochemical Screening of Tubers and Leaf extracts of Sagittaria sagittifolial.:newsa (Arrowhead)

The Journal of Phytopharmacology

Urinary 8-Isoprostane ELISA kit

S. Sumathi*, G.T. Iswariya, B. Sivaprabha, B. Dharani, P. Radha, and P.R. Padma

Pelagia Research Library. Study of antioxidant activity of ethanolic extract of fresh Eichhornia crassipes (Mart.)Solms

Antiproliferative activity of Solanum anguivi against cancer cell lines

SUPPLEMENTARY MATERIAL Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix

In Vitro Antioxidant Activity and Phytochemical Screening of Pholidota articulata

Supporting Information Nitric oxide releasing photoresponsive nanohybrids as excellent therapeutic agent for cervical cancer cell lines

MTS assay in A549 cells

Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves

A November 2015

3. PRELIMINARY PHYTOCHEMICAL SCREENING

Scholars Research Library. In-vitro antioxidant activity of Triumfetta pilosa Roth

SUPPLEMENTARY MATERIAL

Chapter 2 Biochemical changes and antioxidant activity of elephant- foot yam corm during development

OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM LEAVES AND STEMS OF THAI WATER SPINACH (Ipomoea aquatic var.

Journal of Chemical and Pharmaceutical Research, 2013, 5(5): Research Article. Anticancer properties of Cissus quandrangularis

Research Article An In-Vitro Free Radical Scavenging Activity of Methanolic Extracts of Whole Plant of Teramnus labialis (Linn.)

In vitro Antioxidant Activity of Ethanolic Extract of Psidium guajava Leaves

EVALUATION OF INVITRO ANTIOXIDANT ACTIVITY OF ETHANOLIC ROOT EXTRACT OF CURCULIGO ORCHIOIDES

Appendix A: Preparation of Media and Chemicals. Malt Extract Agar (MEA) weighing g was dissolved in 400 ml of distilled water

International Journal of Pharma Research and Health Sciences. Available online at

In-vitro antioxidative, cytotoxic activity and phytochemical screening from stem bark of Kigelia pinnata

Evaluation of Diuretic Activity of Jussiaea Suffruticosa Linn.

Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples:

In-vitro anticancer activity of Chlorophytum tuberosumand Lagenaria siceraria

International Journal of Research in Pharmacology & Pharmacotherapeutics

RayBio Maltose and Glucose Assay Kit

D-Mannitol Assay Kit (Colorimetric)

Antioxidant and Antimicrobial Activities of Tabebuia Rosea

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

Anti-Aging Skin Care Regimen. Phyto-Stem Cell: Advanced Plant Cell Culture Technology by Bio-FD&C

Studies on the Antioxidant Properties of Various extracts of Hippophae rhamnoide

Mukesh S. Sikarwar et al. Int. Res. J. Pharm. 2018, 9 (10) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

The potential antioxidant activity of ethanolic extract of Aceh ant-plant (Mymercodia sp) on the free radical DPPH(1,1-Diphenyl-2-pikrylhidrazil)

HiPer Carbohydrates Estimation Teaching Kit (Quantitative)

Amudha S et al., Asian Journal of Pharmthiaceutical Technology & Innovation, 04 (21); 2016; Research Article

Caspase-3 Assay Cat. No. 8228, 100 tests. Introduction

PHYTOCHEMICAL SCREENING AND IN VITRO ANTIOXIDANT ACTIVITY OF CHLOROFORM EXTRACT OF URENA SINUATA (L.)

EPIGENTEK. EpiQuik Global Histone H3 Acetylation Assay Kit. Base Catalog # P-4008 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

4. Determination of fat content (AOAC, 2000) Reagents

EPIGENTEK. EpiQuik Global Histone H4 Acetylation Assay Kit. Base Catalog # P-4009 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

IN VITRO ANTIOXIDANT AND ANTICANCER ACTIVITIES OF SEED EXTRACT OF SOLANUM VIRGINIANUM. This paper is available online at

Development and Validation of Analytical Method for Determination of Andrographolide in Bulk Powder

Global Histone H3 Acetylation Assay Kit

EXOTESTTM. ELISA assay for exosome capture, quantification and characterization from cell culture supernatants and biological fluids

International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 1, Issue 1, July-Sep. 2009

Research Article. Evaluation of antibacterial, antioxidant and lipid degradation potential of Psidium guajava leaf extracts

Cholesterol/Cholesteryl Ester Quantitation Assay kit (Colorimetric/Fluorometric)

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Electronic Supporting Information for

6. SUMMARY AND CONCLUSION

PFK Activity Assay Kit (Colorimetric)

Pharmacognostic and preliminary phytochemical analysis of Aegle marmelos L. and Centella asiatica L.

CHAPTER 4 RESULTS AND DISCUSSION. chemistry, polar substances would dissolve in polar solvents while non-polar substances

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

Cholesterol/Cholesteryl Ester Detection Kit

PHYTOCONSTITUENTS OF CYPERUS ROTUNDUS L. THAT ATTRIBUTE TO ITS MEDICINAL VALUE AND ANTIOXIDANT PROPERTY

QUANTITATIVE ESTIMATION OF PHYTOSTEROL FROM TWO MEDICINALLY IMPORTANT PLANTS OF CUCURBITACEAE

6 CHAPTER-6 TOTAL PHENOLIC AND FLAVONOID CONTENT DETERMINATION

Phytochemical and in vitro anti-diabetic activity of methanolic extract of Psidium guajava leaves

STORE AT 4 o C Version 3

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

SUPPLEMENTARY MATERIAL

ab65336 Triglyceride Quantification Assay Kit (Colorimetric/ Fluorometric)

The In Vitro Antioxidant Activity of Polyalthia Longifolia

Galactose and Lactose Assay Kit

Journal of Chemical and Pharmaceutical Research

Research Article In-vitro antioxidant activity of Cassia auriculata Leaves

MTS assay in THP-1 cells

Manual. Precision Red Advanced Protein Assay Reagent. Cat. # ADV02. cytoskeleton.com. Cytoskeleton, Inc.

International Journal of Research in Pharmacy and Science

Transcription:

Antioxidant Activity and Anticancer Study on Phytochemicals Extract from Tubers of Gloriosa superba against Human Cancer Cell (Hep-G2) Simon SE 1* and Jayakumar FA 2 1 Department of Biotechnology, Bharathidasan University, India 2 Department of Biotechnology, Malaysia University of Science and Technology, Malaysia Research Article Received: 20/06/2016 Accepted: 27/09/2016 Published: 07/10/2016 * For Correspondence Samson Eugin Simon, Department of Biotechnology, Bharathidasan University, India. E-mail: samson191847@gmail.com Keywords: Antioxidant, Alkaloid, Cytotoxicity, Cancer, Phytochemicals ABSTRACT Gloriosa superba is an alkaloid plant containing a large amount of alkaloid components like colchicine and gloriosine. This study involves anti-cancer examination on Hep-G2 cells (human liver cancer cells) using phytochemical extract obtained from G. superba tuber. G. superba tubers were identified and collected. The collected sample is shade dried and subjected to pulverisation. The powdered sample is followed for the solvent extraction using soxhlet apparatus for 23 cycles for 48 h in the corresponding temperature of the solvent used. The solvents which are used for the extractions are methanol, water and petroleum ether. Phytochemical qualitative analysis was done. The quantitative analysis was followed to the specific phytochemicals such as saponins and alkaloids which have the anti-cancer properties mentioned from earlier literature studies. The analysed solvents are subjected to anti-oxidant activity by DPPH assay. From each solvent the methanolic extract hold the higher value of anti-oxidant property. The solvent which has the highest antioxidant property were preceded to the anti-cancer test against Hep-G2 cells (human liver cancer cells) by MTT assay. The cell death percentage of Hep-G2 cells were calculated from cell viability obtained by MTT assay. Triplicate values were obtained. From the triplicate value the mean value was determined to obtain the average value for each concentration 5 µg, 10 µg, 25 µg, 50 µg, 100 µg. The higher concentration of 100 µg has the lower viable rate and 50% inhibition of viability (IC 50 ) was determined graphically. Death rate of cells indicated the cancer inhibition rate which is due to Hep-G2 cells failed to retain the viability. Inhibition rate of 100 µg has the higher inhibition range of 54.3%. Death rate of Hep-G2 cells may be due to various reasons like protein binding, DNA replication interaction, receptor binding inhibitors, etc. this current study shows the G. superba tubers has the potential to inhibit the growth of Hep-G2 cell. INTRODUCTION Plants are natural sources of bioactive compounds to treat life threatening diseases such as heart diseases and cancer [1]. Gloriosa superba belongs to Liliaceae and is a well-known species of perennial herb. It is also called as glory lily. This plant G. superba Linn has various phytochemicals, mostly alkaloids like colchicine, gloriosine, colchine, etc. which means that it can be used for treating cancer [2,3]. Seventy-five percentages of the raw materials can be used in this plant; so far the parts of the plants such as tubers, leaves, seeds and flowers are used. These parts of the plants are used in Ayurveda and Yunani as a reputed medicine [4]. G. superba plant has various medicinal properties and each part of the plant is used to treat diseases [5]. Plants have anti-oxidant molecules in form of phytochemicals that protect our cells from damage caused by free radicals [6]. G. superba contains numerous phytochemicals like alkaloids, glycosides, flavonoids and saponins, which can serve as anti-oxidant and it may reduce the risk of cancer and improve heart health [7]. Cancer is a group of diseases involving abnormal cell growth with the potential of spreading to other parts of the body by invading cells [8]. Hep-G2 is an immortal cell line which is consists of human liver carcinoma cells. They can secret many plasminogen proteins; stimulated by human growth hormone [9]. Cancer is a deadly disease; more than 100 types of cancer affects humans. Treating cancer is so painful process as they involve chemotherapy and radio therapies. Phytochemicals does many works in our body. Based upon their work it can also be anti-cancerous agent 7

for various types of cancer. Plant source for treating cancer may reduce painful outcomes unlike from chemotherapy [1]. The Phytochemicals from G. superba can act as anti-oxidant and anticancer by hormonal action, enzymes stimulators, physical action (contact within the cells) and interference with DNA replication. Collection of the Plant Material METHODOLOGY G. superba tubers were collected from cultivation field around Ariyalur and Perambalur district of Tamil Nadu. About 5 kg of tubers were collected and authenticated by Head of the Department, Meenakshi Ramasamy Arts and Science College, Tamil Nadu, India. Then tubers were pulverized obtaining 1.4 kg of sample powder, the extraction was done using soxhlet apparatus in Greens Med Lab, Chennai. Preparation of Plant Extract The air dried plant material was cut into small pieces and dried in shade for two days till it completely dried. Then it was pulverised into fine powder. The 500 g of powdered materials were packed in soxhlet apparatus and successive extraction was performed using petroleum ether, methanol and water solvents. The solution of the extract was filtered through Whattman filter paper no. 1 and concentrated using rotary flash evaporator and dried under vacuum. Phytochemical Analysis Phytochemical screening was performed to assess the qualitative chemical composition of different samples of crude extract using commonly employed precipitation and coloration reactions to identify the major secondary metabolites like alkaloids, flavonoids, glycosides, Proteins, phenolic compounds, saponins, starch, steroids, tannins and terpenoids. The phytochemical analyses were carried out using standard procedures. The extracts of G. superba were screened for the presence of secondary metabolites using the procedures. The observations were recorded for total starch, soluble protein, steroids using steroid test, flavonoids and tannins using shinoda test, alkaloids by Dragendroff s test, proteins and glycosides by Limbermann s tests, saponins using forth test, total phenol by ferric chloride test and reducing sugar using Benedict s test. Quantitative Analysis Quantification of the alkaloids and saponins can help to understand the test for antioxidant and anti-cancer. Quantitative analysis was done for alkaloids and saponins in an applied standard procedure. Anti-Scavenging Activity The free radical scavenging activity of the solvent extracts was determined by 1,1-diphenyl-2-picryl-hydrazil (DPPH). Antioxidant activity was measured. To a fresh tube add 3 ml of methanol which act as a blank. To the second tube add 1 ml of methanol and 3 ml of 0.1 M DPPH. This serves as the control. To the other tubes add respective volume of the sample and make up to 1 ml with Methanol and finally add 3 ml of 0.1 mm DPPH then vortex. Seal the tube with aluminium foil and incubate all the tubes in dark for 30 min at room temperature. Read the absorbance at 517 nm. The capability to scavenge the DPPH radical was calculated using the following equation: DPPH scavenging effect (%)=[(ABS control ABS sample)/(abs control)] 100 where ABS control is absorbance of negative control and ABS sample is the absorbance of the reaction mixture containing the sample extract. In vitro Assay for Cytotoxicity Activity (MTT Assay) The Cytotoxicity of samples on Hep-G2 cells were determined by MTT assay. Cells (1 10 5 /well) were plated in 1 ml of medium/well in 24-well plates (Costar Corning, Rochester, NY). After 48 h incubation, the cell reaches the confluence. Then, the cells were incubated in the presence of various concentrations of the methanol extract in 0.1% DMSO for 48 h at 37 C. After removal of the sample solution and washing with phosphate buffered saline (ph 7.4), 200 µl/well (5 mg/ml) of 0.5% 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl--tetrazolium bromide cells (MTT) phosphate- buffered saline solution was added. After 4 h of incubation, 0.04 M HCl/isopropanol were added. Viable cells were determined by the absorbance at 570 nm. Measurements were performed and the concentration required for 50% inhibition of viability (IC 50 ) was determined graphically. The absorbance at 570 nm was measured with a UV-Spectrophotometer using wells without sample containing cells as blanks. The effect of the samples on the proliferation of Hep-G2 was expressed as the % cell viability, using the formula: % Cell viability=a570 of treated cells/a570 of control cells 100 RESULT AND DISCUSSION The main objective of this study is to analyse the potential of tuber extract of G. superba to prevent Hep-G2 cancer cells by MTT assay [10]. G. superba is an alkaloid plant containing a large amount of alkaloid components like colchicine and gloriosine. 8

Other than alkaloids various phytochemicals compounds like terpenoids, glycoside, tannin, phenol etc., are also present in lower concentration [4]. These phytochemicals were extracted in solvents such as methanol, water and petroleum ether using soxhlet extraction method [11]. The phytochemicals were analysed for qualitative (Table 1) and quantification of alkaloid and saponin. Quantity of alkaloid (1.1311 g/100 g) and saponin (1.7285 g/100 g) were obtained in Table 2. Phytochemical were qualitatively analysed in three different solvents extracts (methanol, petroleum ether, water). Standard procedure was followed and the presence of various phytochemicals was detected by colouration and precipitation. i.e. ( ++ presence; + faint; - negative). Table 1. Qualitative analysis of phytochemicals. Phytochemical Chemical test Solvents Methanol Petroleum Ether Water Alkaloids Dragendroff s test ++ + ++ Flavanoids Shinoda test + ++ + Glycosides Liebermann tests + ++ ++ Saponins Froth s test ++ - ++ Steroids Steroids test ++ - - Phenols Ferric chloride test ++ + - Alkaloids and saponins were qualitatively analysed with standard procedure to check the quality of the specimens. Quantitative analyse was done directly from plant material. Table 2. Quantitative analysis for alkaloids and saponins. Test for Phytochemicals Quantitative Values (g/100 g) Test Method Alkaloids 1.1311 g/100 g Whattman Filter Paper Saponins 1.7285 g/100 g Soxhlet Apparatus The solvent extracts are followed with DPPH assay to obtain the anti-scavenging of free radicals [12]. The values of water (100 µl: 41.48%) & (200 µl: 65.42%), petroleum ether (100 µl: 46.45%) & (200 µl: 58.95%) and methanol (100 µl: 91.04%) & (200 µl: 91.75%) were obtained (Table 3). Anti-scavenging of different extract was determined from calculating the OD value obtained from absorbance in 517 nm and calculation. Table 3. Anti-scavenging activity by DPPH assay. Extract Test (µl) Absorbance Value (517 nm) Percentage of anti-scavenging Methanol Test 1 (100 µl) 0.101 91.04% Test 2 (200 µl) 0.093 91.75% Petroleum Ether Test 1 (100 µl) 0.604 46.45% Test 2 (200 µl) 0.463 58.95% Water Test 1 (100 µl) 0.66 41.48% Test 2 (200 µl) 0.39 65.42% The methanolic extract has the higher value (100 µl: 91.04%) & (200 µl: 91.75%). As the anti-scavenging is the important factor to prevent cancer and heart disease [5]. MTT test were followed using the extract with higher anti-oxidant value [8]. Hep-G2 cells are used in MTT assay with different concentration of the methanolic extract 5 µg, 10 µg, 25 µg, 50 µg and 100 µg. A triplicate value was obtained using UV-Spectrophotometry analysis of formazan formation [13]. Cell viability percentage was obtained from calculation of absorbent using a formula (Figure 1). Figure 1. Bar diagram for anti-scavenging activity by DPPH assay. 9

DPPH assay was performed to analyse the antiscavenging property of solvent extract from G. superba tubers. Each solvent was tested with two concentration 100 µl/ml as test 1, 200 µl/ml as test 2 and bar diagram was plotted from values mentioned in Table 3. Hep-G2 Cytotoxicity Analysis MTT (3-(4, 5 dimethylthiazol 2 yl) 2, 5-diphenyltetrazolium bromide) assay, it is a homogenous cell viability assay works on the principle of formazan formation. Formazan are measured using UV-spectrophotometer [14]. The viable cells convert MTT into formazan due to its active metabolism, producing colouration which acts as a marker indicator of viability of cells. Formazan crystals are solubilized for absorbance [14]. Hep-G2 is a human liver cancer cell line, used in in vitro studies to analysis cytotoxicity of compounds. In this study Hep-G2 cells are used to analyse the cancer inhibition potential of G. superba tuber extract. Plant extract with higher antioxidant property are used to analyse the cytotoxicity assay on Hep-G2 cells, antioxidant are good cancer preventers. Methanolic extract of G. superba holds the higher value of antioxidant activity hence methanolic extract were used to analyse the MTT assay with different concentration [10]. Concentration of 5, 10, 25, 50, 100 µg/ml methanolic sample was tested for cytotoxicity activity on Hep-G2 cancer cell line (Figure 2). G. superba tuber s methanolic extract was tested on Hep-G2 cells with different concentration of 5, 10, 25, 50 and 100 µg/ ml. The colouration of the cell is due to the formation of formazan crystals. The microscopic view, show the cell death in different concentration. The Figure 2A: control, shows Hep-G2 cell line and Figure 2F: 100 µg/ml shows the higher inhibition rate of Hep-G2 cells. Figure 2. Microscopic view of MTT assay on Hep-G2 cells. The variant concentration shows triplicate value from absorbance using UV Spectrophotometry at 570 nm. The absorbance of each concentration shows the viable cell rate with indicating colour of formazan crystals and 5 µg (0.854, 0.856, 0.85), 10 µg (0.739, 0.741, 0.735), 25 µg (0.642, 0.645, 0.638), 50 µg (0.522, 0.524, 0.52), 100 µg (0.436, 0.438, 0.432) were obtained. The absorbent value was then calculated for total viability of Hep-G2 cells form various concentration. Using standard formula, total cell viability % is obtained in triplicate value (Figure 3). Figure 3. Bar diagram for cell viability & inhibition of Hep-G2 cell by MTT assay and IC 50 graph for inhibition rate %. 10

The bar diagram was plotted from the triplicate value of cell viability which mentioned in Table 4. Measurements were made and IC 50 graph was plotted with linear regression curve for 50% of inhibition of Hep-G2 cells, IC 50 =19 and 5 µg (89.51782, 89.72746, 89.09853), 10 µg (77.46331, 77.67296, 77.04403), 25 µg (67.2956, 67.61006, 66.87631), 50 µg (54.71698, 54.92662, 54.50734), 100 µg (45.70231, 45.91195, 45.28302) were obtained (Table 4). The variant concentration shows triplicate value from absorbance using UV Spectrophotometery at 570 nm. Percentage of triplicate viability value was obtained from calculating the standard formula. Table 4. Cell viability in triplicate value. Tested Concentrations (µg/ml) Percentage of cell variability (triplicate value) 5 89.518 89.727 89.099 10 77.463 77.673 77.044 25 67.296 67.61 66.876 50 54.717 54.9266 54.5073 100 45.7023 45.912 45.283 Control 100 - - Cell viability was obtained higher from lower the concentration applied, 5 µg has higher viable cells and the higher concentration of 100 µg has the lower viable rate. Death rate of cells indicated the cancer inhibition rate which is due to Hep-G2 cells failed to retain the viability [15]. Mean values (M ± SD) for the triplicate values of 5 µg (89.4479 ± 0.32022), 10 µg (77.3934 ± 0.32023), 25 µg (67.2606 ± 0.36812), 50 µg (54.7169 ± 0.20964), 100 µg (45.6324 ± 0.32024) measurements were performed and the concentration required for 50% inhibition of viability (IC 50 =19.5145 ± 388.9) (19.93%) was determined graphically. The inhibition rate was calculated from subtracting the viable cell to total control 100% from each concentration (Mean-control). Inhibition rate of 5 µg (10.5520), 10 µg (22.6065), 25 µg (32.7393), 50 µg (45.2830), 100 µg (54.3675) were obtained (Table 5), where 100 µg has the higher inhibition range of 54.3%. From evaluation of IC 50 value (19.93%) cell death indicates the cancer inhibition. Mean average value of viability % from triplicate value; n=3, M ± SD. Inhibition rate % was determined from (mean control). Table 5. Average value of cell viability and inhibition rate. Concentration (µg/ml) Average value of viability % (M ± SD) Inhibition rate % (mean-control) 5 89.44972 ± 0.32022 10.552 10 77.39343 ± 0.32023 22.607 25 67.26066 ± 0.36812 32.78 50 54.71698 ± 0.20964 45.283 100 45.63243 ± 0.32024 54.3676 This study concludes the information on G. superba tubers has the potential to inhibit Hep-G2 (human liver cancer cells) cell line. CONCLUSION The plants are natural source of bio-active compounds which can treat various diseases and life threatening cancer [1]. The G. superba methanolic extracts reveals the presence of different types of phyto constituents which has the capacity of anti-oxidant and cytotoxicity effect on Hep-G2 cells. Thus G. superba has the potentiality to inhibit the human carcinoma cell line growth. ACKNOWLEDGEMENT It is a pleasant aspect that I now have the opportunity to express my gratitude for all who accompanied and supported during my dissertation work. CONFLICT OF INTEREST The authors declare no financial or commercial conflict of interest. REFERENCES 1. Islam F, et al. Antioxidant and Cytotoxic Activities of Mussaenda macrophylla Phytochemical. Pharma J. 2012;15:69-71. 2. Senthilkumar M. Phytochemical Screening of Gloriosa superba L. from different Geographical Positions. Int J Sci Res Pub. 2013;3. 3. Raj J, et al. Quantification of colchicine in various parts of Gloriosa superba by HPLC: J Chem Pharm Sci. 2014;53-55. 4. Dadsena R, et al. Phytochemical analysis of three endangered plants (Costus specious, Gloriosa superba linn and Rauvolfia 11

serpentine (linn) benth) from kanker district of Chhattisgarh, India. The Bioscan. 2013;8:655-659. 5. Megala S and Elango R. Antifungal activity of tubers and seeds extracts of Gloriosa superba L. against in human pathogens. Int J Sci Res. 2013;2. 6. Brand-Williams W, et al. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28:25-30. 7. Patel RM and Patel NJ. In vitro antioxidant activity of Coumarin compounds by DPPH, Super oxide and nitric oxide free radical scavenging methods. J Adv Pharma Edu Res. 2011;1:52-68. 8. Pattarachotanant N, et al. Effect of Gloriosa superba and Catharanthus roseus extracts on IFN-γ-induced keratin 17 expression in HaCaT human keratinocytes. J Evid Based Complement Altern Med. 2014;2014:1-11. 9. Mersch-Sundermann V, et al. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. J Toxicol. 2004;198:329-340. 10. Berridge MV and Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys, 1993;303:474-482. 11. Tiwari P, et al. Phytochemical screening and Extraction: a review. Int Pharma Sci. 2011;1:98-106. 12. Antolovic M, et al. Methods for testing antioxidant activity. Analyst. 2002;127:183-198. 13. Mosmann T. Rapid Colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55-63. 14. Denizot F and Lang R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods. 1986;89:271-277. 15. Hansen MB, et al. Reexamination and further development of a precise and rapid dye method for measuring cell growth/ cell kill. J Immunol Methods. 1989;119:203-210. 12