Research Article Numbers of Beauty: An Innovative Aesthetic Analysis for Orthognathic Surgery Treatment Planning

Similar documents
Soft and Hard Tissue Changes after Bimaxillary Surgery in Chinese Class III Patients

How predictable is orthognathic surgery?

Facial Soft Tissue Changes in Class III Patients Treated With Bimaxillary, Maxillary Advancement or Mandibular Set Back Orthognathic Surgery

The changes of soft tissue profile. skeletal class II patients with mandibular retrognathy treated with extraction of maxillary first premolars

Facial planning for orthodontists and oral surgeons

Longitudinal study of cephalometric soft tissue profile traits between the ages of 6 and 18 years

Case Report. Orthognathic Correction of Class II Open Bite. Using the Piezoelectric System and MatrixORTHOGNATHIC Plating System.

PREDICTING LOWER LIP AND CHIN RESPONSE TO MANDIBULAR ADVANCEMENT WITH GENIOPLASTY A CEPHALOMETRIC STUDY

SURGICAL MODEL ACCURACY DEVICE. 25 years - manufacturing and distribution - around the globe research - design - manufacturing - distribution

/aedj EVALUATION OF THE CHANGES IN THE SOFT AND HARD TISSUE PROFILE AFTER ANTERIOR SEGMENTAL OSTEOTOMY OF MAXILLA AND MANDIBLE.

Changes in soft tissue thickness after Le Fort I osteotomy in different cleft types

AESTHETIC ORTHOGNATHIC SURGERY

Original Research. Journal of International Oral Health 2014; 6(5): Contributors: 1

Correction of Dentofacial Deformities (Orthognathic Surgery)

Facial Soft Tissue Cephalometric Norms in a Central Indian Ethnic Population

The America Association of Oral and Maxillofacial Surgeons classify occlusion/malocclusion in to the following three categories:

Maxillary Advancement Surgery and Nasolabial Soft Tissue Changes

Psychological Evaluation of Patients Scheduled For Orthognathic Surgery

Long Term Stability and Prediction of Soft Tissue Changes Following LeFort I Surgery

IJCMR 553. ORIGINAL RESEARCH Different Population- Different Analysis A Cephalometric Study. Sachin Singh 1, Jayesh Rahalkar 2 ABSTRACT INTRODUCTION

Post-operative stability of the maxilla treated with Le Fort I and horseshoe osteotomies in bimaxillary surgery

Correlation between Gonial Angle and Different Variables after Bilateral Sagittal Split Ramus Osteotomy

Orthognathic surgery. Dr. Mohamed Rahil. ((Maxillofacial surgeon))

Alireza Bakhshaeekia and Sina Ghiasi-hafezi. 1. Introduction. 2. Patients and Methods

MAHP Orthognathic Surgery Guidelines. Medical Policy Statement. Criteria

AFRICAN AMERICAN SOFT TISSUE ANALYSIS LISA JONES WILBORN ANDRE FERREIRA, COMMITTEE CHAIR ALEX JACOBSON P. LIONEL SADOWSKY

Scientific Treatment Goals for Oral and Facial Harmony

ORTHOGNATHIC PROGRAMME FOR SASO

Clinical Study Patient Aesthetic Satisfaction with Timing of Nasal Fracture Manipulation

Non-surgical management of skeletal malocclusions: An assessment of 100 cases

Maxillary Expansion and Protraction in Correction of Midface Retrusion in a Complete Unilateral Cleft Lip and Palate Patient

Orthognathic treatment of facial asymmetry due to temporomandibular joint ankylosis

The effect of tooth agenesis on dentofacial structures

For over 30 years, orthognathic surgery has

Clinical Study Open Reduction of Subcondylar Fractures Using a New Retractor

Surgically assisted rapid palatal expansion (SARPE) prior to combined Le Fort I and sagittal osteotomies: A case report

Soft Tissue Changes after Upper Premolar Extraction in Class II Camouflage Therapy

Postoperative Evaluation on SSRO performed by Short Lingual Osteotomy and IVRO

Class II Correction using Combined Twin Block and Fixed Orthodontic Appliances: A Case Report

The Long Term Outcome of Mandibular Orthognathic Surgery

Combined use of digital imaging technologies: ortho-surgical treatment

ORTHOGNATHIC SURGERY

NIH Public Access Author Manuscript J Oral Maxillofac Surg. Author manuscript; available in PMC 2010 July 27.

Comparison of craniofacial characteristics of typical Chinese and Caucasian young adults

SURGICAL - ORTHODONTIC TREATMENT OF CLASS II DIVISION 1 MALOCCLUSION IN AN ADULT PATIENT: A CASE REPORT

Severe Malocclusion: Appropriately Timed Treatment. This article discusses challenging issues clinicians face when treating

Correlation Between Naso Labial Angle and Effective Maxillary and Mandibular Lengths in Untreated Class II Patients

Nasolabial Soft Tissue Changes After Le Fort I Advancement

Photogrammetric Analysis of Nasolabial Angle and Mentolabial Angle norm in Malaysian Adults

What is Hemifacial Microsomia? By Pravin K. Patel, MD and Bruce S. Bauer, MD Children s Memorial Hospital, Chicago, IL

Sample Case #1. Disclaimer

Assessment of Relapse Following Intraoral Vertical Ramus Osteotomy Mandibular Setback and Short-term Immobilization

ORTHOGNATHIC SURGERY

Postnatal Growth. The study of growth in growing children is for two reasons : -For health and nutrition assessment

Patients with cleft lip and palate (CLP) usually

Ortho-surgical Management of Severe Vertical Dysplasia: A Case Report

Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document.

RESEARCH PROTOCOL. Orthognathic surgery is a common treatment modality used in the correction of severe

Dolphin 3D Imaging 11.7 beta

Mixed-reality simulation for orthognathic surgery

Intraoperative measurement of maxillary repositioning in a series of 30 patients with maxillomandibular vertical asymmetries

Case Report Expansion/Facemask Treatment of an Adult Class III Malocclusion

LATERAL CEPHALOMETRIC EVALUATION IN CLEFT PALATE PATIENTS

06/12/18. [Note: When orthognathic surgery is not a covered benefit, it is non-covered for any diagnosis, including sleep apnea.]

Impact of Bimaxillary Position on Esthetic Preferences among Health Professionals and Lay Persons

A STUDY OF THE RELATIONSHIP BETWEEN NASION PERPENDICULAR AND THE TRUE VERTICAL LINE JEFFREY ALBERT SHELLEY JR.

Case Report: Long-Term Outcome of Class II Division 1 Malocclusion Treated with Rapid Palatal Expansion and Cervical Traction

Vertical relation: It is the amount of separation between the maxilla and

Case Report Bilateral Distal Femoral Nailing in a Rare Symmetrical Periprosthetic Knee Fracture

An Estimation of Mento-Labial Angle on Standardized Digital Photographs in Gujarati Population- A Cross Sectional Study

TWO PHASE FOR A BETTER FACE!! TWIN BLOCK AND HEADGEAR FOLLOWED BY FIXED THERAPY FOR CLASS II CORRECTION

Orthognathic surgery for a patient with trichorhinophalangeal syndrome type I: A case report

Jefferson Cephalometric Analysis--Face and Health Focused

Aesthetic Analysis of the Face: The Maxillofacial Deformity

Dental Research Journal

Incisal and Soft Tissue Effects of Maxillary Premolar Extraction in Class II Treatment

ACCURATE FACIAL ANALYSIS IS

Balanced Angular Profile Analysis

Surgical-Orthodontic Treatment of Gummy Smile with Vertical Maxillary Excess

Facial esthetics play an important role in contemporary

Research & Reviews: Journal of Dental Sciences

The accuracy of video. imaging in. orthognathic surgery CLINICIANS' CORNER

Orthodontic-Surgical Management of a Skeletal Class II Patient with Reverse Smile Arc and Vertical Maxillary Excess

Original Research. This appraisal is based on a system of cephalometric analysis that was developed at Indiana University by Burstone and Legan.

Comparison of an Imaging Software and Manual Prediction of Soft Tissue Changes after Orthognathic Surgery

Effects of camouflage treatment on dentofacial structures in Class II division 1 mandibular retrognathic patients

Research report for MSc Dent. University of Witwatersrand. Faculty of health science. Dr J Beukes. Student number: h

Reliability of A and B point for cephalometric analysis

Stability of Soft Tissue Profile After Mandibular Setback in Sagittal Split Osteotomies: A Longitudinal and Long-Term Follow-Up Study

RMO Data Services FOREWORD

Topic: Orthognathic Surgery Date of Origin: October 5, Section: Surgery Last Reviewed Date: December 2013

Case Report An Undescribed Monteggia Type 3 Equivalent Lesion: Lateral Dislocation of Radial Head with Both-Bone Forearm Fracture

A Countdown to Orthognathic Surgery

Dentofacial characteristics of women with oversized mandible and temporomandibular joint internal derangement

Long-Term Results of. Vertical Height Augmentation Genioplasty using Autogenous Iliac Bone Graft

Angular photogrammetric analysis of the soft tissue profile in 12-year-old southern Chinese

Intraoral mandibular distraction osteogenesis in facial asymmetry patients with unilateral temporomandibular joint bony ankylosis

Introduction. Hélcio Tadeu Ribeiro 1 Ana Célia Faria 1 Alexandre Laguna Terreri 1 Francisco Veríssimo de Mello-Filho 1

A CROSS-SECTIONAL STUDY OF SOFT TISSUE FACIAL MORPHOMETRY IN CHILDREN AND ADOLESCENTS

Transcription:

BioMed Research International Volume 2016, Article ID 6156919, 6 pages http://dx.doi.org/10.1155/2016/6156919 Research Article Numbers of Beauty: An Innovative Aesthetic Analysis for Orthognathic Surgery Treatment Planning Tito Matteo Marianetti, 1 Giulio Gasparini, 1 Giulia Midulla, 2 Cristina Grippaudo, 2 Roberto Deli, 2 Daniele Cervelli, 1 Sandro Pelo, 1 and Alessandro Moro 1 1 Department of Maxillofacial Surgery, Catholic University Medical School, Via Pier Luigi Galletti 3, 00135 Rome, Italy 2 Department of Orthodontics, Catholic University Medical School, Rome, Italy Correspondence should be addressed to Giulio Gasparini; giulio.gasparini@rm.unicatt.it Received 5 September 2015; Accepted 12 November 2015 Academic Editor: Siddik Malkoç Copyright 2016 Tito Matteo Marianetti et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The aim of this study was to validate a new aesthetic analysis and establish the sagittal position of the maxilla on an ideal group of reference. We want to demonstrate the usefulness of these findings in the treatment planning of patients undergoing orthognathic surgery. We took a reference group of 81 Italian women participating in a national beauty contest in 2011 on which we performed Arnett s soft tissues cephalometric analysis and our new Vertical Planning Line analysis. We used the ideal values to elaborate the surgical treatment planning of a second group of 60 consecutive female patients affected by skeletal class III malocclusion. Finally we compared both pre- and postoperative pictures with the reference values of the ideal group. The ideal group of reference does not perfectly fit in Arnett s proposed norms. From the descriptive statistical comparison of the patients values before and after orthognathic surgery with the reference values we observed how all parameters considered got closer to the ideal population. We consider our Vertical Planning Line a useful help for orthodontist and surgeon in the treatment planning of patients with skeletal malocclusions, in combination with the clinical facial examination and the classical cephalometric analysis of bone structures. 1. Introduction The surgery in the treatment of facial deformities is based on skeletal movements of jaw bones. The movements must be carefully planned because even small displacements have highly significant influence on the final aesthetic result. The surgical treatment is based on cephalometric analysis done on lateral cephalometric radiographs. The cephalometric analysis differs from surgeon to surgeon because of their subjective evaluation. The aim is always to determine in detail thespatialityofthesplanchnocraniumandtocomparethe values obtained with the values defined standard for race, gender, and age. The comparison between the two values determine the skeletal movements that can be exploited to achieve the best possible result. Most cephalometric analyses are based on skeletal data but the best results are obtained on analysis based on soft tissue data [1 8]. Today, this aesthetic analysis, providing exact data ranges for several characteristics of the soft tissue profile, is still themostemployedanalysisinthevisualtreatmentplanning of orthognathic patients [9, 10]. This is witnessed by the fact that modern software for orthognatic Visual Treatment PlanningisbasedonArnett sstca. DuringtherepeateduseoftheSTCAonpatientswith prognathism we found a flaw in Arnett s brilliant analysis: for those surgeons who perform their jaws surgery starting from Le Fort I osteotomy, how is it possible to assess the precise position that the upper jaw has to take with surgery? How can we assess the precise position that the upper jaw has to take if the reference line true vertical line origins from Subnasale, whichisasofttissuepointthesurgeonmoves during maxillary displacement with Le Fort 1 osteotomy? [11, 12]. Arnett s STCA does not specify the exact amount of maxillary advancement required in cases of maxillary retrusion. Therefore we realized the importance of locating the reference line on a point the surgeon will not move during bimaxillary surgery [13] in order to identify the exact and ideal position of

2 BioMed Research International NB G NT Sn A ULA LLA B Pog Figure 1: Vertical Planning Line analysis on a participant to Miss Italia 2011. Arnett s soft tissue landmarks, especially the point Subnasale, which we consider expression of the sagittal position of the upper jaw. As a fix reference landmark, we decided to take the soft tissue Glabella, through which we draw our new Vertical Planning Line, perpendicular to the natural head position. The aim of the present study is to validate a new aesthetic analysis and to establish the sagittal position of the maxilla on an ideal group of reference. We also want to demonstrate the usefulness of these findings in the treatment planning of patients undergoing orthognathic surgery for the correction of the sagittal position of the jaw. 2. Material and Methods In order to validate this new aesthetic analysis, we took a reference group consisting of 81 Italian attractive women participating in a national beauty contest in 2011. Every participant has given his consent to participate in this study. The women aged between 18 and 25 years, with an average age of 21 years and 6 months, were selected among thousands of other participants. Their jaw relationship was not considered. Astandardizedfrontalandprofilephotographwastakenfor every participant (Figure 1). This group of women underwent Arnett s soft tissue analysis with the Dolphin software 9.5 on lateral photographs taken with the subjects in natural head position, that is, the position obtained with the subject standing and looking at his reflection in a mirror positioned exactly at eye level. Wecalculatedthemeanandstandarddeviationofeach parameterofarnett sstcatofindoutifthegroupfitsin Arnett s proposed norms. Later on we drew our new Vertical Planning Line on the reference group passing through soft tissue Glabella (G ), the most prominent point on the forehead. We measured the distances in millimetres of the following landmarks from the VPL. We calculated means and standard deviations for all landmarks considered: (1) Nasal tip (NT): most prominent point on the tip of the nose. (2) Nasal base (NB): the deepest point next to the alar base. (3) Subnasale (Sn): where the labial philtrum meets the base of the nose. (4) Soft tissue A point (A ): the most concave point of the philtrum. (5) Upper lip anterior (ULA): the most anterior point of the upper lip mucosa. (6) Lower lip anterior (LLA): the most prominent point of the lower lip mucosa. (7) Soft tissue B point (B ): the most concave point on the labiomental sulcus. (8) Soft tissue Pogonion (Pog ): the most convex point of the chin profile. Another group of 60 female patients, aged between 18 and 40, affected by skeletal class III malocclusion who came to our observation during the period from October 2011 to May2012wasrecruitedforourstudyandanalysedwithour method. Exclusion criteria were congenital syndromes with craniofacial involvement, cleft lip and palate, scars in the maxillomandibular region, and asymmetries on the frontal and vertical planes. The treatment planning for these patients was than assessed on the basis of the classical cephalometric analysis integrated with the data we got from our new Vertical Planning Line analysis, considering the soft tissue changes occurring after orthognathic surgery (soft/hard tissue ratio) using the following formula for each soft tissue landmark: BM = RV d(vpl, STL) :x. (1) BM stands for Bone Movement, the distance in mm the bone has to be moved. RV is the reference value measured on the reference group. d(vpl, STL) is the distance from our Vertical Planning Line to the soft tissue landmark considered. The x value istheratioofeffectivesofttissuechangesthatoccurafter a certain amount of skeletal movement. Scientific literature configured different values for this soft/hard tissue ratio [14, 15]. As other authors [14, 15], we used Epker and Fish s [16] prediction of the soft tissue changes after maxillary advancement and mandibular setback. Considering Subnasale (Sn), the point from where we begin our treatment planning, Epker and Fish [16] indicate a ratio of 0.5 between the skeletal A point and soft tissue Sn. Hence, for example, if the point Sn is located at a distance of 7 mm from the VPL, it is 1.5 mm behind the ideal value 8.5 mm. The surgeon will perform a 3 mm advancement of the maxilla considering our equation: RV d(vpl, STL) :x=bm (8.5 mm 7mm) :0.5 =3mm. (2)

BioMed Research International 3 10.0 9.0 G TVL-Sn 8.0 NB NT Sn A ULA 7.0 LLA B Pog Figure 2: Vertical Planning Line analysis on a woman with skeletal class III malocclusion before orthognathic surgery. 6.0 Misses Before Group After Figure 4: Box plot showing the distribution of the TVL-Sn values in the models population and in the subject who underwent maxillofacial surgery, before and after the surgical. Values in mm. 11.0 G 10.0 9.0 NB NT Sn A ULA LLA B Pog TVL-A 8.0 7.0 6.0 5.0 Figure 3: Vertical Planning Line analysis on the same subject of Figure 1 after orthognathic surgery. 4.0 Misses Before Group After All patients underwent bimaxillary orthognathic surgery with Le Fort I osteotomy for maxillary advancement and bilateral sagittal split osteotomy for mandible setback. Sixteen patients also required genioplasty. The patients entered then a postoperative follow-up program, with photographic and clinical controls after 2 weeks, 1month,3months,and6months(Figures2and3). At the 6-month control we repeated our new aesthetic analysis on the right profile picture. Finally we compared the patients values before and after orthognathic surgery with the reference values we got from the group of women participating in the beauty contest using box plots for all soft tissue landmarks (Figures 4, 5, and 6). To prevent interobserver error, all processes (landmark identification and linear measurements) were performed by one author and were repeated twice during a 2-week interval. Statistical Analysis. We performed a descriptive analysis of the samples included in this study reporting the means and Figure 5: Box plot showing the distribution of the TVL-A values in the models population and in the subject who underwent maxillofacial surgery, before and after the surgical. Values in mm. the standard deviations of the observed quantitative variables. Box plots were used to describe the distributions of the observed values for each segment. Student s t-test was used to assess the presence of significant differences between Arnett s original population and the Italian girls participating in the beauty contest according to Arnett s analysis. The analysis was performed using SPSS software version 12.0 for Windows and statistical significance level was set at p 0.01. 3. Results The comparison of the reference group of girls participating in the beauty contest with Arnett s proposed norms with

4 BioMed Research International Table 1: Arnett s STCA on the reference group. Variable Mean Misses SD Misses Arnett s Mean Arnett s SD p Facial heights Upper lip length (mm) 21.3 ±2.5 21 ±1.9 n.s. Interlabial gap (mm) 1.2 ±0.7 3.3 ±1.3 <0.001 Lower lip length (mm) 44.9 ±4.7 46.9 ±2.3 n.s. Lower 1/3 of face (mm) 67.3 ±6.7 71.1 ±3.5 n.s. Facial height (mm) 118.3 ±16.6 124.6 ±4.7 n.s. Soft tissue thickness Upper lip thickness (mm) 16.1 ±2.9 12.6 ±1.8 <0.001 Lower lip thickness (mm) 11.3 ±1.9 13.6 ±1.4 <0.001 Projections to TVL Glabella (mm) 8.5 ±0.1 8.5 ±2.4 n.s. Orbital rim (mm) 22.1 ±3.4 18.7 ±2.0 <0.001 Cheekbone (mm) 21.6 ±4.1 20.6 ±2.4 n.s. Subpupil (mm) 17.6 ±2.6 14.8 ±2.1 <0.001 Nasal projection (mm) 15.2 ±2.4 16 ±1.4 n.s. Alar base (mm) 12.9 ±2.2 12.9 ±1.1 n.s. Soft tissue A (mm) 1.2 ±1.2 1 ±1.7 <0.001 Upper lip anterior (mm) 1.6 ±1.6 3.7 ±1.2 <0.001 Upper lip angle ( ) 8.7 ±7.9 12.1 ±5.1 n.s. Nasolabial angle ( ) 108.9 ±14 103.5 ±6.8 n.s. Lower lip anterior (mm) 1.8 ±2.7 1.9 ±1.4 <0.001 Soft tissue B (mm) 8.3 ±3.6 5.3 ±1.5 <0.001 Soft tissue Pogonion (mm) 5.9 ±4.4 2.6 ±1.9 <0.001 Throat length (mm) 55.1 ±8.2 58.2 ±5.9 n.s. Facial harmony Facial angle ( ) 166.5 ±4.6 169.3 ±3.4 <0.001 Forehead to maxilla (mm) 7.2 ±1.2 8.4 ±2.7 0.002 Forehead to chin (mm) 2.6 ±4.4 5.9 ±2.3 0.001 Orbital rim to maxilla (mm) 20.9 ±3.2 18.5 ±2.3 0.001 Orbital rim to chin (mm) 16.3 ±4.5 16 ±2.6 n.s. Subnasale to chin (mm) 5.9 ±4.4 3.2 ±1.9 0.006 Maxilla to mandible (mm) 7.1 ±3.0 5.2 ±1.6 0.005 Lip to lip (mm) 3.3 ±1.9 1.8 ±1.0 0.006 Lower lip to chin (mm) 4.1 ±2.8 4.5 ±2.1 n.s. B to chin (mm) 2.5 ±1.8 2.7 ±1.1 n.s. the Student t-test showed significant statistical differences (p < 0.01) for the following parameters: interlabial gap, upper lip thickness, lower lip thickness, orbital rim, subpupil, soft tissue A point, upper lip anterior, lower lip anterior, soft tissue B point, soft tissue Pogonion, facial angle, forehead to maxilla, forehead to chin, orbital rim to maxilla, Subnasale to chin, maxilla to mandible, and lip to lip (Table 1). The means and standard deviations of the landmarks distances from the VPL measured on the reference group are illustrated in Table 2. Regarding the data on the patients with maxillomandibular malformations observed from October 2011 to May 2012, Table3showsthemeansandstandarddeviationsofall patients before and after orthognathic surgery. From the descriptive statistical comparison of the patients values before and after orthognathic surgery with the reference values we observed how all parameters considered got closer to the ideal population (Figures 3, 4, and 5). 4. Discussion The study of patients with skeletal malformations often represents a challenge in the daily clinical practice. The difficulties of the surgical treatment planning of patients affected by skeletal deformities of the jaw are due to the great number of cephalometric analysis methods and the difficulty of choosing an ideal standard population as reference.

BioMed Research International 5 TVL-B 15.0 10.0 5.0 0.0 5.0 10.0 15.0 Misses Before Group After Figure 6: Box plot showing the distribution of the TVL-B values in the models population and in the subject who underwent maxillofacial surgery, before and after the surgical. Values in mm. Table 2: New Vertical Planning Line on the reference group. Variable Misses mean Misses SD VPL-NT (mm) 23.7 ±2.4 VPL-NB (mm) 4.5 ±2.2 VPL-Sn (mm) 8.5 ±0.1 VPL-A (mm) 7.2 ±1.2 VPL-ULA (mm) 10 ±1.7 VPL-LLA (mm) 6.7 ±2.6 VPL-B (mm) 0.1 ±3.5 VPL-Pog (mm) 2.6 ±4.4 From a recent review of the scientific literature and the mass media trends relating to the subject, we can infer there is a growing interest in aesthetic and appearance [14 18]. This tendency brought modern orthodontists to elaborate cephalometric analysis of the soft tissue profile to better study their patients. Arnett proposed his own STCA, as a result of several studies about the soft tissues profile. Nowadays this STCA is still the most employed, in the diagnosis and treatment planning of orthodontic-surgical patients [9, 10]. In order to define ideal aesthetic standards for the study of women with skeletal deformity of the jaws, we decided to study a large group of Italian attractive women, selected by the Italian population for a national beauty contest. From the statistical analysis of our results a significant difference was found between Arnett s proposed values and our reference group. Arnett used a group of 26 adult caucasic models chosen for their good clinical characteristics to define his soft tissue cephalometric values, whereas our group consists of 81 women representative of the current Italian ideal of beauty, selected among the population by a national beauty contest. Our group should not be considered a standard reference group, but an ideal population. Table 3: New Vertical Planning Line on the group of class III patients before and after surgery (SD in brackets). Variable Patient s mean before surgery Patients mean after surgery VPL-NT (mm) 22.4 (±1.2) 23.2 (±0.9) VPL-NB (mm) 8.2 (±0.8) 4.4 (±0.4) VPL-Sn (mm) 5.6 (±0.8) 8.4 (±0.4) VPL-A (mm) 4.9 (±0.8) 6.7 (±0.7) VPL-ULA (mm) 6.4 (±0.8) 8.7 (±0.5) VPL-LLA (mm) 15.9 (±1.9) 5.7 (±0.8) VPL-B (mm) 9.6 (±1.7) 1.3 (±0.7) VPL-Pog (mm) 12.9 (±1.8) 1.2 (±0.9) Using Arnett s STCA for the routinely treatment planning of patients affected by jaw malformations, we found a flaw. This analysis does not provide the exact amount of maxillary advancement required in cases of maxillary retrusion. So how can the surgeon who moves first the upper maxilla plan his in cases presenting maxillary hypoplasia, without a fix landmark of reference? In the attempt to answer these questions we began workingonanewaestheticanalysisbasedonthe Vertical Planning Line passing through the point Glabella (G ), a fixed landmark that the surgeon will not move during surgery. First of all, this new reference line provides standard values on the large reference population. In addition to that, the fixed landmark G allows planning in advance the repositioning of any point of the soft tissue profile, always considering the different distance between the landmark and the VPL and the hard/soft tissue ratio, as explained with the formula in Materials and Methods. Furthermore the innovative advantage of this fix landmarklaysinthefactthatpre-andpostsurgicalprofilepictures caneasilybecompared,bothbetweeneachotherandwiththe reference values. The comparison of pre- and postsurgical pictures of skeletal class III patients with the ideal population demonstrated how orthognathic surgery brought the patient s values closer to the ideal population, obtaining an improvement in facial balance. Suchananalysiscouldbeusedalsotoassesstheideal position of the nose tip, as well as the upper and lower lip anterior projection in those cases where the imperfections couldbecorrectedbyancillarysurgerysuchasgenioplasty, rhinoplasty, or zygomatic augmentation or just with the use of fillers. 5. Conclusions We emphasize that Arnett s soft tissue cephalometric analysis still remains a fundamental tool in the treatment planning of orthognathic surgery. We tried to fulfill Arnett s STCA with our new vertical line, passing through the soft tissue Glabella, a point not influenced by bimaxillary surgery, to define better the sagittal position of the upper jaw.

6 BioMed Research International In fact using an ideal group of attractive Italian women, selected during a beauty contest among thousand participants we have now a value defining the ideal sagittal position of the Subnasale point, which shows a minimal standard deviation (±0.1 mm) in the reference population. We consider our Vertical Planning Line a useful help fororthodontistandsurgeoninthetreatmentplanningof patients with maxillomandibular malocclusions, to integrate theclinicalfacialexaminationandtheclassicalcephalometric analysis of bone structures. Abbreviations VPL: Vertical Planning Line G : Glabella NT: Nasal tip NB: Nasal base Sn: Subnasale A : Soft tissue A point ULA: Upper lip anterior LLA: Lower lip anterior B : Soft tissue B point Pog : Soft tissue Pogonion BM: Bone Movement RV: Reference value d(vpl, STL): Thedistancefromour VerticalPlanning Line tothesofttissuelandmark considered x value: The ratio of effective soft tissue changes that occur after a certain amount of skeletal movement Sn: Subnasale Arnett s STCA: Arnett s soft tissue cephalometric analysis. Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper. Authors Contribution All authors have contributed to inventing and coordinating of the study, collecting the data, and revising the paper and then approved its final version. References [1] A. Kamoen, L. Dermaut, and R. Verbeeck, The clinical significance of error measurement in the interpretation of treatment results, EuropeanJournalofOrthodontics, vol. 23, no. 5, pp. 569 578, 2001. [2] S.T.Adenwalla,J.H.Kronman,andF.Attarzadeh, Porionand condyle as cephalometric landmarks-an error study, American Orthodontics and Dentofacial Orthopedics,vol.94,no. 5, pp. 411 415, 1988. [3] A. Iglesias-Linares, R.-M. Yáñez-Vico, B. Moreno-Manteca, A. M. Moreno-Fernández, A. Mendoza-Mendoza, and E. Solano- Reina, Common standards in facial esthetics: craniofacial analysis of most attractive black and white subjects according to people magazine during previous 10 years, Oral and Maxillofacial Surgery,vol.69,no.6,pp.e216 e224,2011. [4]T.A.AugerandP.K.Turley, Thefemalesofttissueprofile as presented in fashion magazines during the 1900s: a photographic analysis, The International Adult Orthodontics and Orthognathic Surgery,vol.14,no.1,pp.7 18,1999. [5] B.W.BakerandM.G.Woods, Theroleofthedivineproportion in the esthetic improvement of patients undergoing orthodontic/orthognathic surgical treatment, The International Journal of Adult Orthodontics and Orthognathic Surgery, vol.16,no.2, pp.108 120,2001. [6] A. Dürer, Vier Bücher Über Menschlicher Proportion, Hieronymus Formschneyder, Nuremberg, Germany, 1528. [7] L. B. Alberti, On Painting and On Sculpture, Editedand Translated by C. Grayson, Phaidon Press, London, UK, 1972. [8] K.-W. Butow, A lateral photometric analysis for aestheticorthognathic treatment, JournalofMaxillofacialSurgery,vol. 12, no. 5, pp. 201 207, 1984. [9] G. W. Arnett, J. S. Jelic, J. Kim et al., Soft tissue cephalometric analysis: diagnosis and treatment planning of dentofacial deformity, American Orthodontics and Dentofacial Orthopedics,vol.116,no.3,pp.239 253,1999. [10] G. W. Arnett and R. T. Bergman, Facial keys to orthodontic diagnosis and treatment planning. Part I, American Orthodontics and Dentofacial Orthopedics, vol.103,no.4,pp. 299 312, 1993. [11] H. L. Legan and C. J. Burstone, Soft tissue cephalometric analysis for orthognathic surgery, Oral Surgery, vol. 38, no. 10, pp. 744 751, 1980. [12] J.N.Gil,F.E.B.Campos,J.D.P.Claus,L.F.Gil,C.Marin,andS. F. T. de Freitas, Medial canthal region as an external reference point in orthognathic surgery, JournalofOralandMaxillofacial Surgery,vol.69,no.2,pp.352 355,2011. [13] A. T. Altug-Atac, H. Bolatoglu, and U. T. Memikoglu, Facial soft tissue profile following bimaxillary orthognathic surgery, Angle Orthodontist,vol.78,no.1,pp.50 57,2008. [14] W. R. Proffit, Treatment planning: the search for wisdom, in Surgical Orthodontic Treatment,W.R.ProffitandR.P.WhiteJr., Eds., pp. 142 191, Mosby-Year Book, St. Louis, Mo, USA, 1991. [15] M.S.AhmadAkhoundi,G.Shirani,M.Arshad,H.Heidar,and A.Sodagar, Comparisonofanimagingsoftwareandmanual prediction of soft tissue changes after orthognathic surgery, Dentistry,vol.9,no.3,pp.178 187,2012. [16] B. N. Epker and L. C. Fish, Dentofacial Deformities, Mosby,St. Louis, Mo, USA, 1986. [17] J.-Y. Choi, S.-H. Lee, and S.-H. Baek, Effects of facial hard tissue surgery on facial aesthetics: changes in facial content and frames, JournalofCraniofacialSurgery,vol.23,no.6,pp.1683 1686, 2012. [18]F.B.Naini,A.N.A.Donaldson,F.McDonald,andM.T. Cobourne, Assessing the influence of chin prominence on perceived attractiveness in the orthognathic patient, clinician and layperson, International Oral and Maxillofacial Surgery,vol.41,no.7,pp.839 846,2012.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity