Differences in antioxidant properties of ginkgo leaves collected from male and female trees

Similar documents
Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

Keywords: antioxidant; extraction; paper flower; phenolic compound

WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 6.

Vol. 10, No ABSTRACT

Effects of pectolytic enzyme treatment and microfiltration on antioxidant components of elderberry juice

EFFECT OF EXTRACT OF GINKGO BILOBA ON VEGETABLE OILS

Phytochemical and antioxidant properties of some Cassia species

Application Note. Treatment of poor memory, memory loss, Alzheimer s disease, peripheral vascular disease.

A Systematic Review of Published Systematic Reviews on Ginkgo Extract for Mild Cognitive Impairment and Dementia

Research on Extraction Process of Gallic Acid from Penthorum chinense Pursh by Aqueous Ethanol

Folin Ciocalteau Phenolic Content Quantification Assay Kit KB tests (96 well plate)

Evaluation of the in vitro antioxidant potential of extracts obtained from Cinnamomum zeylanicum barks

Antioxidant Activities of Aqueous Extracts of Selected Tropical Plants. Wong S. P. 1 and Leong L. P. 2

Folin Ciocalteau Phenolic Content Quantification Assay Kit KB tests (96 well plate)

Key Words: traditional Chinese medicine herbs polyphenolics oxygen radical absorbance capacity

OPTIMIZATION OF EXTRACTION PROCESS FOR TOTAL POLYPHENOLS FROM ADLAY

Language The full paper must be submitted in English. It is the author s responsibility to pay attention to grammar and spelling.

Total antioxidant and radical scavenging capacities for different medicinal herbs

Protein Cleavage Due to Pro-oxidative Activity in Some Spices

SUPPLEMENTARY MATERIAL Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix

Total phenolic content and antioxidant activities of edible flower tea products from Thailand

OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM LEAVES AND STEMS OF THAI WATER SPINACH (Ipomoea aquatic var.

CHEM104 Exp. 9 Phytochemical Antioxidants with Potential Benefits in Foods Part I. 1

PRODUCTION OF VALUE ADDED PRODUCTS FROM SOME CEREAL MILLING BY-PRODUCTS SAYED SAAD ABOZAIED SMUDA THESIS DOCTOR OF PHILOSOPHY

Research Article An In-Vitro Free Radical Scavenging Activity of Methanolic Extracts of Whole Plant of Teramnus labialis (Linn.)

Antioxidant capacity and total polyphenolic content in quince (Cydonia oblonga Mill.) fruit

Preparation and characterization of Aloe vera extract

SENA. Centro Agropecuario La Granja Tecnoparque Nodo La Granja Regional Tolima Colombia

In Vitro Antioxidant activity of Mentha pulegium from Saudi Arabia

Decision tree for the safety assessment of botanical cosmetic ingredients. Personal Care Products Council CIR Science and Support Committee

China. Keywords: Synergistic Effects, Antioxidant, Ginkgo Leaves Flavonoid, Loquat Leaves Flavonoid, Response Surface Method(RSM).

INFLUENCE OF DIFFERENT EXTRACTION PROCEDURES ON THE ANTIRADICAL ACTIVITY AND PHENOLIC PROFILE OF ROSA RUGOSA PETALS

Amudha S et al., Asian Journal of Pharmthiaceutical Technology & Innovation, 04 (21); 2016; Research Article

PRELIMINARY PHYTOCHEMICAL SCREENING AND IN-VITRO FREE RADICAL SCAVENGING ACTIVITY OF MELOCHIA CORCHORIFOLIA PLANT EXTRACTS

Properties of Extracts from Soy Sauce Cake Using Subcritical Water Treatment

Department of Food Science & Technology (FST), OSU Phone: (541) ;

THE COMPARISON OF ANTI-OXIDATIVE KINETICS IN VITRO OF THE FLUID EXTRACT FROM MAIDENHAIR TREE, MOTHERWORT AND HAWTHORN

Thistle, Mustard, Sunflower, Canola, Canola-fruit, Figure 1. Map of the geographical origin of Hungarian honeys

A high-performance liquid chromatography (HPLC) method for determination of chlorogenic acid and emodin in Yinhuang Jiangzhi Tea

Evaluation of In Vitro Antioxidant Activity of Sateria verticillata Leaves by Using DPPH Scavenging Assay

Antifungal activity of methanolic and ethanolic leaf extracts of medicinal plants

The influence of level and source of microelements on the antioxidant activity of medicinal herbs

Total Phenolic Content and Antioxidant Activity of Spilanthes Species from Peninsular India

Antioxidant Activity of the plant Andrographis paniculata (Invitro)

6. SUMMARY AND CONCLUSION

Antibacterial Activities of Ginkgo biloba L. Leaf Extracts

R. Amarowicz ANTIOXIDANT PROPERTIES OF RAPESEED CAN BE MODIFIED BY CULTIVATION AND BIOLOGICAL STRESS

Uruguayan Native Fruits Provide Antioxidant Phytonutrients and Potential Health Benefits

Éva Sedlák. Pharmaceutical Sciences Doctoral School Semmelweis University. PhD thesis. Supervisors: Dr. István Gyurján D.Sc. Dr. Béla Böddi D.Sc.

Ranking Nutritional Supplements Botanical Medicine Primary

Chiang Mai J. Sci. 2006; 33(1) : Contributed Paper

GINKGO BILOBA. Ingrid Bergman said, Happiness is good health and a bad memory. But a healthy, happy life is one worth remembering.

ANTIOXIDANT ACTIVITY OF β-carboline DERIVATIVES

Journal of Chemical and Pharmaceutical Research, 2017, 9(3): Research Article

In Vitro Antioxidant Activity and Phytochemical Screening of Pholidota articulata

SUPPLEMENTARY MATERIAL

The antioxidant capacity of sea buckthorn (Hippophae rhamnoides L.) berries depends on the genotype and harvest time

High-Performance Liquid Chromatography-Mass Spectrometry for the Determination of Flavonoids in G.biloba Leaves

Guideline on quality of herbal medicinal products 1 /traditional herbal medicinal products

Effect of vacuum drying on blackcurrant s antioxidant components

Comparison of Free Radical Scavenging Activity and Phenoloid Content of Epilobium parviflorum Schreb

Nutritional, Zn bioavailability and antioxidant properties of water leaf (Talinum triangulare) mucilage F. O. Adetuyi 1* and I. B. O.

Antioxidant properties and total phenolic content of a marine diatom, Navicula clavata and green microalgae, Chlorella marina and Dunaliella salina

Salicylic acid treatment saves quality and enhances antioxidant properties of apricot fruit

Project 9357R4: Effect of Purple Majesty Consumption on Antioxidant Status and Markers of Cardiovascular Risk in Healthy Volunteers Final Report

Determination of total phenolic content and antioxidant activity of Ganoderma lucidum collected from Dang district of Gujarat, India

Scholars Research Library. Determination of Phenol and flavonoid content from Vateria indica (Linn)

Safety Assessment of Botanicals and Botanical Preparations. Dr. Balasubramanian

Antioxidant Activity and Lipoxygenase Enzyme Inhibition Assay with Total Flavonoid Content from Garcinia hombroniana Pierre Leaves

Effect of thermal processing on total phenolic content and antioxidant activity of Coriandrum sativum L. leaves

Phytochemical Analysis and Antioxidant property of Aegle marmelos Extracts

Antioxidant Activity by DPPH Radical Scavenging Method of Ageratum conyzoides Linn. Leaves

Optimization of antioxidant extraction from Persicaria barbata leaves using response surface methodology (RSM)

Total Polyphenol Content and Antioxidant Activity of The Extracts from Thunbergia laurifolia Lindl. Leaves

EVALUATION OF TOTAL PHENOLIC, FLAVONOID CONTENT, ANTIOXIDANT AND IN VITRO ANTILITHOGENESIS ACTIVITIES OF CHIVES LEAF (Allium schoenoprasum, L.

Health Promoting Compounds in Black Currants - the Start of a Study Concerning Ontogenetic and Genetic Effects

Potency of Curry (Murayya koeniigi) and Salam (Eugenia polyantha) Leaves as Natural Antioxidant Sources

Pelagia Research Library. Study of antioxidant activity of ethanolic extract of fresh Eichhornia crassipes (Mart.)Solms

Source Variation in Antioxidant Capacity of Cranberries from Eight U.S. Cultivars

Good pharmacopoeial practices: Chapter on monographs on herbal medicines

Quantification of Total Phenolics in Different Parts of Pluchea indica (Less) Ethanolic and Water Extracts

Antioxidant activity of water extracts of some medicinal plants from Herzegovina region

ANTIOXIDANT ACTIVITIES OF FIVE WILD EDIBLE FRUITS OF MEGHALAYA STATE IN INDIA AND EFFECT OF SOLVENT EXTRACTION SYSTEM

1. INTRODUCTION 2. MATERIALS AND METHODS

Quantitative Analysis of Total Phenolic Content in Avocado (Persia Americana) Seeds in Eastern Province of Kenya

Research Article In-vitro antioxidant activity of Cassia auriculata Leaves

Chapter-8 Conclusion and Future Scope of the Study

Characterization and evaluation of antioxidant activity of Cajanus cajan and Pisum sativum

THE IDENTIFICATION OF PHENOLIC ACIDS BY HPLC METHOD FROM STRAWBERRIES. Abstract

Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts

P ISSN: X, E ISSN :

Extraction and Standardization of Medicinal Herbal Products

Molecules 2018, 23, 2472; doi: /molecules

A COMPARATIVE EVALUATION OF IN VITRO ANTIOXIDANT PROPERTIES OF BAMBOO BAMBUSA ARUNDINACEA LEAVES EXTRACTS

Title: Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L.

Production of phenolic antioxidants from apple residue using Rhizopus oligosporus

Optimization of Enzyme-assisted Ultrasonic Extraction of Total Ginsenosides from Ginseng Roots Guangna LIU, Yulin ZUO, Jing ZHANG

Chapter 2 Biochemical changes and antioxidant activity of elephant- foot yam corm during development

Transcription:

Acta Pharm. 65 (2015) 99 104 DOI: 10.1515/acph-2015-0001 Short communication Differences in antioxidant properties of ginkgo leaves collected from male and female trees NOÉMI KOCZKA 1* ZSUZSANNA MÓCZÁR 1 ÉVA STEFANOVITS-BÁNYAI 2 ATTILA OMBÓDI 1 1 Institute of Horticultural Technologies Faculty of Agricultural and Environmental Science Szent István University Gödöllő, Hungary 2 Department of Applied Chemistry Faculty of Food Science Corvinus University of Budapest Budapest, Hungary Total phenolic content and antioxidant capacity (FRAP method) of Ginkgo biloba L. leaves collected from male and female trees were determined and compared. Different water and aqueous ethanolic (water/ethanol 80/20, V/V) extracts were prepared by varying the time of infusing, boiling and steeping in order to determine the effect of the extraction method on the above parameters. Antioxidant activity and phenolic content of ginkgo leaf extracts correlated well with significant correlation coefficients. Slopes of linear regression lines were not statistically different for either sex. Keywords: Ginkgo biloba L., male ginkgo, female ginkgo, ginkgo extracts phenolics, FRAP Accepted October 9, 2014 Products prepared from Ginkgo biloba are among the most widely sold phytopharmaceuticals and dietary supplements in Europe and in the United States. The various compounds found in ginkgo improve blood circulation by opening up blood vessels, mainly in the brain. That is why they can be used for treating dementia and other vasoregulating problems in older age. Ginkgo preparations have been shown to help slow down Alzheimer s disease (1 3). Ginkgo leaves have also antioxidant properties, which are mainly connected to their polyphenolic constituents, particularly phenolic acids, flavonoids, proanthocyanidins and catechins (4 7). Ginkgo is a dioecious species; female trees produce malodorous seeds. That is why only male trees are cultivated in ginkgo plantations in western countries, while both male and female trees are used for leaf production in Asia (8). There are not many literature data about the differences between antioxidant properties of the sexes. In our former study (9) we found significant differences in metal ion compostion, H-donating activity, reducing power property and total scavenger capacity between leaf extracts of male and female ginkgo trees. Besides standardized ginkgo extracts, also ginkgo teas are recently being recommended for consumers with vasoregulating problems. These products are consumed on a * Correspondence; e-mail: koczka.noemi@mkk.szie.hu 99

daily basis for their stimulant properties. The recommended preparation method for commercial ginkgo teas is to make an infusion with a 5 10 min steeping time. Based on our preliminary experiments, it seemed to be important to investigate the effect of different extraction methods. The main objective of this study was to compare the phenolic content and antioxidant activity of extracts of Ginkgo biloba L. leaves collected from male and female trees. Effects of the extraction method aqueous ethanolic extraction, water infusions and decoctions with different steeping and boiling times on these properties were also investigated. Materials EXPERIMENTAL Ginkgo (Ginkgo biloba L., Ginkgoaceae) leaves were collected in botanical gardens in Budapest, from sexually mature male and female trees aged between 80 and 120 years. Collection places were chosen where the male and female trees were of similar age and planted next to each other. Altogether, five male and five female samples were collected in early August of two consecutive years (2011 and 2012). After collection, leaf samples were dried at 30 C and pulverized. Sample preparation Water extracts were prepared by addition of 100 ml water to 1 g of dried leaves. Infusions were steeped for 3, 5 and 10 min and for 24 h, while decoctions were boiled for 3, 5 and 10 min and steeped for 10 min. A 10-min boiling followed by 24-h steeping decoction method was also applied. Aqueous ethanolic extracts were made from 1 g of dried leaves by addition of 100 ml aqueous ethanol (20 C, water/ethanol 80/20, V/V) and were stored at room temperature for 72 h (10). All extraction methods were repeated three times. After steeping for the given time, water and aqueous ethanolic extracts were filtered and centrifuged (12281 x g, 10 min). The supernatants were analyzed. All analytical determinations were performed in two parallel measurements. Total phenolic content Total phenolic content was measured using the method of Singleton and Rossi (11) and was expressed as milligram of gallic acid equivalent per gram of dry mass. Antioxidant capacity To determine the antioxidant capacity, the FRAP assay (ferric reducing ability of plasma) was used (12). This method depends upon reduction of the ferric tripyridyltriazine [Fe(III)-TPTZ] complex to the ferrous complex at low ph. Fe(II)-TPTZ has an intensive blue colour and can be monitored at 593 nm. Standard curve was prepared using different concentrations of ascorbic acid. Data are given in millimole of ascorbic acid equivalent per gram of dry mass. 100

Statistical analysis Results are presented as the means of five samples ± standard deviation, separately for male and for female trees. Unpaired two tailed Student s t-test (in case of homoscedasticity) or Welch s t-test (in case of heteroscedasticity) was performed, separately for each extraction method, to determine the level of significance between male and female trees. Effects of the extraction method were analyzed by one-way analysis of variance, separately for male and female trees; the means were separated by Fisher s protected least significant difference test at p 0.05. Correlations between the phenolic content and antioxidant capacity, and between maceration time and the afore-mentioned properties, were investigated by performing correlation and regression analyses. All statistical analyses were realized using Microsoft Excel 2007 software. Total phenolic content RESULTS AND DISCUSSION As shown in Table I, total phenolic contents of ginkgo leaf extracts exhibited significant differences, depending on the sex of the tree. More phenolics were measured for leaves collected from male trees than from female trees, in almost every extraction method. The extent of these differences was up to 10 % for decoctions and 6 to 30 % for infusions. The largest difference was recorded for aqueous ethanolic extracts; the average data for male trees was by 45 % higher than that for the female trees. Table I. Effect of the sex of the tree and extraction method on total phenolic content (gallic acid equivalents, mg g 1 dry mass) and on antioxidant capacity (ascorbic acid equivalents, mmol g 1 dry mass) of ginkgo leaf extracts Extraction Total phenolic content Antioxidant capacity method a Male trees b Female trees b p c Male trees b Female trees b p d I3min 21.40 ± 0.39 16.46 ± 0.17 5.23 10 10 16.20 ± 0.41 13.05 ± 0.17 8.09 10 7 I5min 22.87 ± 0.58 17.70 ± 0.19 1.66 10 7 17.57 ± 0.42 15.50 ± 0.24 3.00 10 4 I10min 25.77 ± 0.27 20.39 ± 0.41 1.42 10 11 20.32 ± 0.30 18.17 ± 0.14 2.57 10 6 I24h 32.23 ± 0.22 30.29 ± 0.42 5.25 10 4 24.49 ± 0.64 20.85 ± 0.12 4.91 10 5 D3min+S10min 24.08 ± 0.80 21.88 ± 0.20 1.66 10 2 22.11 ± 0.30 17.30 ± 0.15 2.27 10 12 D5min+S10min 23.92 ± 0.30 22.57 ± 0.30 3.40 10 3 24.38 ± 0.23 21.17 ± 0.32 7.94 10 9 D10min+S10min 28.29 ± 0.35 28.59 ± 0.17 4.51 10 1 27.59 ± 0.35 26.75 ± 0.17 4.01 10 2 D10min+S24h 32.69 ± 0.30 31.06 ± 0.12 5.87 10 5 29.61 ± 0.55 27.23 ± 0.14 7.00 10 4 E 79.77 ± 0.83 55.22 ± 0.45 5.49 10 18 62.60 ± 1.00 50.37 ± 0.38 1.02 10 9 LSD 5% d 1.40 0.82 1.44 0.62 a I infusion, steeping for the indicated time; D decoction, boiling followed by steeping for the indicated times, E aqueous ethanolic. b Mean ± standard deviation (n = 15). c Calculated by unpaired two-tailed t-test. d Calculated by Fisher s protected least significant difference (LSD) test at p 0.05. 101

A significant difference was also found in the efficacy of extraction solvents. For both sexes, aqueous ethanolic extraction resulted in almost three times higher phenolic contents than in water extractions (Table I). Similar data were reported by other authors for water extracts (6, 13, 14) and alcoholic extracts (15). Although extraction with aqueous ethanol was much more effective than water extraction, ginkgo teas are used as herbal teas, that is, as water extracts. Significant differences were also found between different water extraction methods. As expected, increasing steeping time for infusions resulted in a significantly higher phenolic content. However, except for the 24-h steeping time, decoction extracted significantly more phenolic compounds than infusion (Table I). Excluding the results of water extractions employing a 24-h steeping time, we have found a strong positive correlation between the maceration time (time of steeping for infusions, or time of boiling plus time of steeping for decoctions) and the phenolic content both for male (R 2 = 0.421, N = 90, p = 4.57 10 12 ) and female (R 2 = 0.897, N = 90, p = 3.19 10 45 ) samples. Thus, it seems that the maceration time had a greater effect on the phenolic level of water extracts than the employed method (infusion or decoction). Antioxidant capacity Measured antioxidant capacity values (using FRAP assay) of the investigated samples of extracts are presented in Table I. FRAP values for water extracts are in accord with the results of Goh (16). Similarly to the trend of phenolic contents, extracts of leaves collected from male trees had higher antioxidant capacity than that for female trees, regardless of the extraction method. Similarly, the highest antioxidant capacity resulted from aqueous ethanolic extractions, it was on average about 2.5 times higher than that from water extractions. Statistically significant differences were found between the antioxidant capacity of the different water extracts (Table I). Similarly to the phenolic content, longer steeping and boiling times resulted in higher FRAP values. Strong positive correlations were also found between the maceration time and the antioxidant capacity of extracts both for male (R 2 = 0.896, N = 90, p = 5.46 10 45 ) and female (R 2 = 0.869, N = 90, p = 1.49 10 40 ) samples. Correlation between total phenolic content and antioxidant capacity Based on all water extract data, a very strong positive correlation was found between total phenolic content and antioxidant capacity of ginkgo leaf extracts (Fig. 1). The correlation was stronger for female than for the male trees. The highly significant correlations with relatively high R 2 values demonstrate that the phenolic content had a determinant role in the antioxidant capacity of ginkgo leaf extracts. Slopes of linear regression lines were not statistically different for either sex (0.803 ± 0.066 for male and 0.769 ± 0.040 for female trees), thus the sex of the tree did not influence the trend of this correlation. Our results are in agreement with some other studies of antioxidant properties of ginkgo leaf extracts. Aoshima et al. (14) as well as Pietta et al. (17) reported close correlations between the phenolic content and antioxidant capacity of ginkgo leaf extracts. In case of collected ginkgo leaves, Sati et al. (18) found a strong positive correlation between the phenolic content and antioxidant capacity measured by the FRAP assay However, Ronowicz 102

male trees linear regression for male trees female trees linear regression for female trees Antioxidant capacity (mmol g 1 dry mass) 35 30 25 20 15 male trees y = 0.803x + 1.57 R 2 = 0.557 ; P = 1.28 10 22 female trees y = 0.769x + 1.84 R 2 = 0.753 ; P = 1.32 10 37 10 10 15 20 25 30 35 40 Phenolic content (mg g 1 dry mass) Fig. 1. Correlation between gallic acid equivalent to phenolic content and ascorbic acid equivalent to antioxidant capacity of ginkgo leaf water extracts. et al. (19) documented a significant negative correlation (R = 0.7668, p 0.01) between the total phenolic content and antioxidant activity (measured by DPPH method) for commercial ginkgo preparations. CONCLUSIONS Leaves collected from male trees had higher phenolic content and higher antioxidant capacity, regardless of the extraction method, than leaves from female trees. Aqueous ethanolic extraction proved to be a much more effective method for extraction of phenolic materials and other antioxidative compounds from ginkgo leaves than aqueous extraction. Thus, the use of tinctures prepared from ginkgo leaves should be emphasized for pharmaceutical use. In case of water extracts, steeping and boiling times had a pronounced effect on the phenolic content and antioxidative capacity. Based on our results, a reasonable, but relatively long, maceration time at least 20 minutes should be recommended for preparing ginkgo teas in order to utilize the potential antioxidant capacity of ginkgo leaves as much as possible. Acknowledgements. This study was funded in part by the Research Centre of Excellence-8526-5/2014/TUDPOL Szent István University and OTKA 84290 projects. REFERENCES 1. S. Weinmann, S. Roll, C. Schwarzbach, C. Vauth and S. N. Willich, Effects of Ginkgo biloba in dementia: systematic review and meta-analysis, BMC Geriatrics 10 (2010) 14 29; DOI: 10.1186/1471-2318-10-14. 2. B. S. Wang, H. Wang, Y. Y. Song, H. Qi, Z. X. Rong, B.-S. Wang, L. Zhang and H. Z. Chen, Effectiveness of standardized Ginkgo biloba extract on cognitive symptoms of dementia with a six-month 103

treatment: A bivariate random effect meta-analysis, Pharmacopsychiatry 43 (2010) 86 91; DOI: 10.1055/s-0029-1242817. 3. B. E. Snitz, E. S. O Meara, M. C. Carlson, A. M. Arnold, D. G. Ives, S. R. Rapp, J. Saxton and O. L. Lopez, Ginkgo biloba for preventing cognitive decline in older adults: A randomized trial, JAMA 302 (2009) 2663 2670; DOI: 10.1001/jama.2009.1913. 4. B. Singh, P. Kaur, D. Gopichan, R. D. Singh and P. S. Ahuja, Biology and chemistry of Ginkgo biloba, Fitoterapia 79 (2008) 401 418; DOI: 10.1016/j.fitote.2008.05.007. 5. M. Ellnain-Wojtaszek, Z. Kruczynski and J. Kasprzak, Investigation of the free radical scavenging activity of Ginkgo biloba L. leaves, Fitoterapia 74 (2003) 1 6; DOI: 10.1016/S0367-326X(02)00306-4. 6. W. Zheng and S. Y. Wang, Antioxidant activity and phenolic compounds in selected herbs, J. Agric. Food Chem. 49 (2001) 5165 5170; DOI: 10.1021/jf010697n. 7. T. A. Van Beek and P. Montoro, Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals, J. Chromatogr. A 1216 (2009) 2002 2032; DOI: 10.1016/j.chroma.2009.01.013. 8. W. Schmid and J. P. Balz, Cultivation of Ginkgo biloba L. on three continents, Acta Hort. (ISHS) 676 (2005) 177 180. 9. E. Stefanovits-Bányai, K. Szentmihályi, A. Hegedűs, N. Koczka, L. Váli, G. Taba and A. Blázovics, Metal ion and antioxidant alterations in leaves between different sexes of Ginkgo biloba L., Life Sci. 78 (2006) 1049 1056; DOI: 10.1016/j.lfs.2005.06.012. 10. Pharmacopoeia Hungarica, 8 th ed., Medicina, Budapest 2004. 11. V. L. Singleton and J. A. Rossi, Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents, Am. J. Enol. Viticult. 16 (1965) 144 158. 12. I. F. F. Benzie and J. J. Strain, Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay, Anal. Biochem. 239 (1996) 70 76; DOI: 10.1006/abio.1996.0292. 13. J. Kobus, E. Flaczyk, A. Siger, M. Nogala-Kalucka, J. Korczak and R. B. Pegg, Phenolic compounds and antioxidant activity of extracts of Ginkgo leaves, Eur. J. Lipid Sci. Technol. 111 (2009) 1150 1160; DOI: 10.1002/ejlt.200800299. 14. H. Aoshima, S. Hirata and S. Ayabe, Antioxidative and anti-hydrogen peroxide activities of various herbal teas, Food Chem. 103 (2007) 617 622; DOI: 10.1016/j.foodchem.2006.08.032. 15. R. Masteikova, J. Muselik, J. Bernatoniene and R. Bernatoniene, Antioxidative activity of Ginkgo, Echinacea and Ginseng tinctures, Medicina 43 (2007) 306 309. 16. L. M. L. Goh, Potential for Ginkgo biloba as a functional food, Ph.D. Thesis, National University of Singapore, Singapore 2004. 17. P. Pietta, P. Simonetti and P. Mauri, Antioxidant activity of selected medicinal plants, J. Agric. Food Chem. 46 (1998) 4487 4490. 18. P. Sati, A. Pandey, S. Rawat and A. Rani, Phytochemicals and antioxidants in leaf extracts of Ginkgo biloba with reference to location, seasonal variation and solvent system, J. Pharm. Res. (2013) 804 809; DOI: 10.1016/j.jopr.2013.09.001. 19. J. Ronowicz, B. Kupcewicz and E. Budzisz, Chemometric analysis of antioxidant properties of herbal products containing Ginkgo biloba extract, Centr. Eur. J. Biol. 8 (2013) 374 385; DOI: 10.2478/ s11535-013-0139-8. 104