Open reduction; plate fixation 1 Principles

Similar documents
Technique Guide. 3.5 mm LCP Periarticular Proximal Humerus Plate. Part of the Synthes locking compression plate (LCP) system.

3. PATIENT POSITIONING & FRACTURE REDUCTION 3 8. DISTAL GUIDED LOCKING FOR PROXIMAL NAIL PROXIMAL LOCKING FOR LONG NAIL 13

Conventus CAGE PH Surgical Techniques

NCB Proximal Humerus Plating System

Surgical Technique. Proximal Humerus Locking Plate

Surgical Technique Guide PANTERA. Proximal Humerus Fracture Fixation Plate System

System. Humeral Nail. Surgical Technique

Humerus shaft - Reduction & Fixation - Compression plate - AO Surgery Reference. Compression plating

Technique Guide. PHILOS and PHILOS Long. The anatomic fixation system for the proximal humerus.

LCP Distal Humerus Plates

Technique Guide. LCP Proximal Femoral Hook Plate 4.5/5.0. Part of the LCP Periarticular Plating System.

TABLE OF CONTENTS. 2 (8144 Rev 2)

Double Engine Orthopedic Bone Nail System Universal Humeral Nail

OPERATIVE TECHNIQUE GALAXY FIXATION SHOULDER

Aesculap Targon FN. Head Preserving Solution for Medial Femoral Neck Fractures. Aesculap Orthopaedics

Humeral SuturePlate. Surgical Technique

Zimmer Periarticular Proximal Humeral Locking Plate

P.R.C.T II FIXATION PLATE FOR ARTICULAR FRACTURE OF THE PROXIMAL HUMERUS SURGICAL TECHNIQUE

Humerus Block. Discontinued December 2016 DSEM/TRM/0115/0296(1) Surgical Technique. This publication is not intended for distribution in the USA.

Humeral Nails With Multiple Locking Options for Simple and Complex Fractures. MultiLoc. Humeral Nails. Surgical Technique

LCP Periarticular Proximal Humerus Plate 3.5. The anatomic fixation system with anterolateral shaft placement.

PHILOS and PHILOS Long. The anatomic fixation system for the proximal humerus.

3.5 MM VA-LCP PROXIMAL TIBIA PLATE SYSTEM

2.7 mm/3.5 mm Variable Angle LCP Elbow System DJ9257-B 1

LCP Medial Distal Tibia Plate, without Tab. The Low Profile Anatomic Fixation System with Angular Stability and Optimal Screw Orientation.

Technique Guide. 3.5 mm LCP Low Bend Medial Distal Tibia Plate Aiming Instruments. Part of the 3.5 mm LCP Percutaneous Instrument System.

Surgical Technique. Targeter Systems Overview

Olecranon Locking Plate II

Percutaneous Humeral Fracture Repair Surgical Technique

2.4 mm Variable Angle LCP Volar Extra-Articular Distal Radius System. For fragment-specific fracture fixation with variable angle locking technology.

Technique Guide. 3.5 mm LCP Proximal Tibia Plate. Part of the Synthes Small Fragment LCP System.

Surgical Technique. CONQUEST FN Femoral Neck Fracture System

LCP Medial Proximal Tibial Plate 3.5. Part of the Synthes small fragment Locking Compression Plate (LCP) system.

WINSTA-C. Clavicle Plating System

Technique Guide. 2.4 mm Variable Angle LCP Distal Radius System. For fragment-specific fracture fixation with variable angle locking technology.

Surgical Technique. Anterolateral and Medial Distal Tibia Locking Plates

LCP Distal Tibia Plate

Technique Guide. 3.5 mm LCP Olecranon Plates. Part of the Synthes locking compression plate (LCP) system.

Orthopedic Bone Nail System - Distal Femoral Nail Surgical Technique Manual

Index. B Backslap technique depth assessment, 82, 83 diaphysis distal trocar, 82 83

3.5 mm LCP Clavicle Hook Plates

Surgical Technique. Intramedullary locked Nailing With Screws for Humerus Fractures Solid/Cannulated. Humeral Interlocking Nail.

Distal Ulnar Locking Plate

AcUMEDr. Locking Proximal Humeral Plate. PoLARUSr PHPt

Zimmer Small Fragment Universal Locking System. Surgical Technique

LCP Anterolateral Distal Tibia Plate 3.5. The low profile anatomic fixation system with optimal plate placement and angular stability.

3. Insert Tocar Sleeves Insert the NCB tissue protection sleeve assembly 1.6 to 10mm through a skin incision (Fig. 38).

LCP Anterolateral Distal Tibia Plate 3.5. The low profile anatomic fixation system with optimal plate placement and angular stability.

Technique Guide. TomoFix Osteotomy System. A comprehensive plating system for stable fixation of osteotomies around the knee.

LCP Superior Clavicle Plate. The anatomically precontoured fixation system with angular stability for clavicle shaft and lateral clavicle.

3.5 mm LCP Extra-articular Distal Humerus Plate

Technique Guide. Locking Attachment Plate. For treatment of periprosthetic fractures.

Instrument and Implant for wrist fracture

Surgical Technique. Clavicle Locking Plate

Olecranon Osteotomy Nail. For simple fractures and osteotomies of the olecranon.

Femur. Monoaxial Locking Plate System. Operative Technique. Distal Lateral Femur Universal Holes Targeting Instrumentation.

NCB Proximal Humerus System. Surgical Technique

MICRONAIL. Intramedullary Distal Radius System SURGICAL TECHNIQUE

LCP Medial Proximal Tibial Plate 4.5/5.0. Part of the Synthes LCP periarticular plating system.

Pre-Operative Planning. Positioning of the Patient

BICEPTOR Tenodesis System

Cannulated Pediatric Osteotomy System (CAPOS). A single system of osteotomy blade plates and cannulated instrumentation.

Locking Radial Head Plates

Surgical Technique. 3.5mm and 4.5mm Lateral Proximal Tibia Locking Plates

3.5 mm LCP Low Bend Medial Distal Tibia Plate Aiming Instruments

3.5 mm LCP Olecranon Plates

Surgical Technique International Version. Clavicle Locking Plate

Surgical Technique. Locking Small Fragment Overview

wave Calcaneal Fracture Plate

Surgical Technique. Olecranon Locking Plate

Technique Guide. 3.5 mm LCP Low Bend Medial Distal Tibia Plates. Part of the Synthes locking compression plate (LCP) system.

Integra. Proximal Humeral Fracture Plate System SURGICAL TECHNIQUE

LCP Superior Clavicle Plate. The anatomically precontoured fixation system with angular stability for clavicle shaft and lateral clavicle.

LCP Percutaneous Aiming System 3.5 for PHILOS. For less invasive surgery at the proximal humerus.

Proximal Humerus Plating System. Surgical Technique TRAUMA

Polarus 3 Solution Plates and Nails. Surgical Technique 4.3. Screws

Types of Plates 1. New Dynamic Compression Plate: Diaphyseal fracture: Radius, Ulna, Humerus, Rarely tibia

Table of contents. Introduction... 3 Indications... 3 Contraindications... 3 TRIGEN Humeral Nail Specifications... 6

QUICK REFERENCE GUIDE. The Orthofix Femoral Nailing System. By Prof. Dr. D. Pennig

LOCKING TEP LOCKING TITANIUM ELASTIC PIN INTRAMEDULLARY NAIL

Proximal Humerus Fractures

Part of the DePuy Synthes Locking Compression Plate (LCP ) System. 3.5 mm LCP Medial Proximal Tibia Plates

LCP Condylar Plate 4.5/5.0. Part of the LCP Periarticular Plating System.

LCP Medial Proximal Tibial Plate 3.5. Part of the Synthes small fragment Locking Compression Plate (LCP) system.

LCP Proximal Radius Plates 2.4. Plates for radial head rim and for radial head neck address individual fracture patterns of the proximal radius.

VA-LCP Anterior Clavicle Plate. The anatomically precontoured fixation system with angular stability for clavicle shaft and lateral clavicle.

Locking Proximal Humerus Plate. For complex and unstable fractures.

Distal Cut First Femoral Preparation

Zimmer MIS Periarticular 3.5mm Proximal Tibial Locking Plate

Surgical Technique. Cannulated Angled Blade Plate 3.5 and 4.5, 90

Technique Guide. VA-LCP Distal Humerus Plates 2.7/3.5. The low-profile fixation system with variable angle locking technology.

3.5 mm LCP Distal Humerus Plates

4.5 mm VA-LCP. Part of the Variable Angle Periarticular Plating System

Surgical Technique. Distal Humerus Locking Plate

OBSOLETED. LCP Medial Distal Tibia Plate, without Tab. The Low Profile Anatomic Fixation System with Angular Stability and Optimal Screw Orientation.

LCP Anterior Ankle Arthrodesis Plates. Part of the Synthes Locking Compression Plate (LCP) System.

LCP Extra-articular Distal Humerus Plate.

2.7 mm/3.5 mm Variable Angle LCP. Ankle Trauma System

Transcription:

Executive Editor: Peter Trafton Authors: Martin Jaeger, Frankie Leung, Wilson Li Proximal humerus 11-A2 Open reduction, plate fixation Search search... Shortcuts All Preparations All Approaches All Reductions & Fixations Open reduction; plate fixation 1 Principles Disimpaction Disimpaction is the key to successful reduction of A2 fractures. Proper reduction After reduction, alignment should be correct in both sagittal and coronal planes. Rotational alignment must also be correct. Correct plate position A correct plate position must be ensured in order to avoid loss of reduction and impingement. Angular stable versus standard plates This procedure describes proximal humeral fracture fixation with an angular stable plate (A). Sometimes, these implants are not available. Standard plates provide an alternative option, for example the modified cloverleaf plate (B). Presently, the specific indications, advantages, and disadvantages of angular stable and standard plates are being clarified. There is some evidence that angular stable plate provide better outcomes. In addition to type and technique of fixation, the quality of reduction, the soft-tissue handling, and the characteristics of the injury and patient significantly influence the results. There is no evidence that the use of angular stable plates will overcome these other factors. Page 1 of 10

2 Reduction and preliminary fixation Reduction Since A2 fractures involve an impaction, pure traction alone may not be effective to reduce the fracture. While longitudinal traction is applied to the limb, insert a periosteal elevator into the fracture gap to disimpact the fracture. The elevator should be inserted from the front and pointed medially and superiorly. fragments. Due to the overlap, the periosteal elevator might not be inserted easily from anterior. If so, insert it into the gap between the fracture fragments. The periosteal elevator might then be used as a lever to disimpact the Confirm proper rotational alignment Correct rotational alignment must be confirmed. This can be done by matching the fracture configurations on both sides of the fracture. This would be useful in the more transverse fracture configuration as shown in the illustration. Pearl: check retroversion Page 2 of 10

The bicipital groove might be a good indicator for correct rotation. In case of correct rotation, no gap/angulation is visible at the level of the fracture. In A2-type fractures the forces by the tendons are normally neutral, therefore, the humeral head is in neutral version. Remember that the humeral head is normally retroverted, facing approximately 25 posteriorly (mean range: 18-30 ) relative to the distal humeral epicondylar axis. This axis is perpendicular to the forearm with the elbow flexed to 90. Preliminary fixation Holding the reduction manually or with a pointed reduction forceps, temporarily secure it with 2 K-wires. Place them outside the foreseen plate position. The illustration shows two such K-wires placed from distal to proximal. Alternatively, they might be inserted from proximal to distal. Avoid the path of the axillary nerve. Confirm reduction The correct reduction must be confirmed in both AP and lateral views by image intensification. 3 Plate position Correct plate position The correct plate position is: 1. about 5-8 mm distal to the top of the greater tuberosity 2. aligned properly along the axis of the humeral shaft 3. slightly posterior to the bicipital grove (2-4 mm) Page 3 of 10

Confirmation of correct plate position The correct plate position can be checked by palpation of its relationship to the bony structures and also confirmed by image intensification. To confirm a correct axial plate position insert a K-wire through the proximal hole of the insertion guide. The K- wire should rest on the top of the humeral head. Pitfall 1: plate too close to the bicipital groove The bicipital tendon and the ascending branch of the anterior humeral circumflex artery are at risk if the plate is positioned too close to the bicipital groove. (The illustration shows the plate in correct position, posterior to the bicipital groove). Pitfall 2: plate too proximal A plate positioned too proximal carries two risks: 1. The plate can impinge the acromion 2. The most proximal screws might penetrate or fail to securely engage the humeral head Page 4 of 10

4 Fixation Attach plate to humeral shaft Attach the plate to the humeral shaft with a bicortical small fragment 3.5 mm screw inserted through the elongated hole. Pearl 1: fine tuning of plate position If the first screw is inserted only loosely in the center of the elongated hole, fine-tuning of the plate position is still possible. With the plate in proper position, tighten this screw securely. joint. Fix plate to the humeral head Drill holes Use an appropriate sleeve to drill holes for the humeral head screws. Do not drill through the subchondral bone and into the shoulder Avoiding intraarticular screw placement Screws that penetrate the humeral head may significantly damage the glenoid cartilage. Primary penetration occurs Page 5 of 10

when the screws are initially placed. Secondary penetration is the result of subsequent fracture collapse. Drilling into the joint increases the risk of screws becoming intraarticular. Two drilling techniques help to avoid drilling into the joint. Pearl 1: Woodpecker -drilling technique (as illustrated) In the woodpecker-drilling technique, advance the drill bit only for a short distance, then pull the drill back before advancing again. Keep repeating this procedure until subchondral bone contact can be felt. Take great care to avoid penetration of the humeral head. Pearl 2: Drilling near cortex only Particular in osteoporotic bone, one can drill only through the near cortex. Push the depth gauge through the remaining bone until subchondral resistance is felt. Determine screw length The intact subchondral bone should be felt with a depth gauge or blunt pin to ensure that the screw stays within the humeral head. The integrity of the subchondral bone can be confirmed by palpation or the sound of the instrument tapping against it. Typically, choose a screw slightly shorter than the measured length. Insert screw Insert a locking-head screw through the screw sleeve into the humeral head. The sleeve aims the screw correctly. Particularly in osteoporotic bone, a screw may not follow Page 6 of 10

the hole that has been drilled. Number of screws and location Place a sufficient number of screws (often 5) into the humeral head. The optimal number and location of screws has not been determined. Bone quality and fracture morphology should be considered. In osteoporotic bone a higher number of screws may be required. Insert additional screws into the humeral shaft Insert one or two additional bicortical screws into the humeral shaft. Any K-wires placed during the procedure may now be removed. Additional tension band suturing To augment fixation of the plate to the proximal humerus, consider adding tension band sutures through the rotator cuff tendon insertions and appropriate holes in the plate. Resorbable sutures are recommended. Page 7 of 10

Pass the sutures through the corresponding holes in the plate and tie them together. nonunion. Pitfall: insufficient reduction A common mistake is inadequate reduction. Residual varus malalignment often results in further (secondary) displacement with varus malunion or fixation failure and possible 5 Use of standard plates If no angular stable plate is available, a standard plate provides an alternative. The described procedure (reduction, preliminary fixation, and rotator cuff sutures) is essentially the same for standard plates, except for the screws. A good choice from the standard Page 8 of 10

plates is the small fragment cloverleaf plate, with its tip cut off, and contoured as necessary. This plate allows multiple small fragment screws for the humeral head. Be aware that angular stable implants provide better fixation, especially in osteoporotic bone. On the other hand, even angular stable plates are not a substitute for good surgical technique and judgment. Advances in fracture classification, understanding of the blood supply, use of rotator cuff tendon sutures, anatomical fracture reduction, and provisional fixation, represent improvements in care. When combined with optimal implants, these contributions offer the best chance of a good outcome. 6 Final check of osteosynthesis Using image intensification, carefully check for correct reduction and fixation (including proper implant position and length) at various arm positions. Ensure that screw tips are not intraarticular. Also obtain an axial view. In the beach chair position, the C-arm must be directed appropriately for orthogonal views. Position arm as necessary to confirm that reduction is satisfactory, fixation is stable, and no screw is in the joint. Page 9 of 10

Tweet 0 0 Like 0 v2.0 2011-05-02 https://www2.aofoundation.org/wps/portal/!ut/p/c1/04_sb8k8xllm9 reduction%3b+plate+fixation&implantstype=&approach=&redfix_url= Page 10 of 10