Recall rate and incidence of congenital hypothyroidism: A 5-year experience of hospital-based study in Bahrain.

Similar documents
Perinatal variables influencing cord blood thyroid stimulating hormone

Pediatric Endocrine Society and Endocrine Society. Treatment of Primary Congenital Hypothyroidism

Screening for Congenital Hypothyroidism in Newborns: A Literature Update for the U.S. Preventive Services Task Force

Due to the importance of early detection for CH to

Research Article Congenital Hypothyroidism: An Audit and Study of Different Cord Blood Screening TSH Values in a Tertiary Medical Centre in Malaysia

Does Congenital Hypothyroidism Have Different Etiologies in Iran?

Congenital Hypothyroidism

What Has National Screening Program Changed in Cases with Congenital Hypothyroidism?

DR.RUPNATHJI( DR.RUPAK NATH )

The Controversy on Mild (Compensated) Congenital Hypothyroidism The Path We Took to Resolve the Dilemma in Washington Newborn Screening

Congenital Hypothyroidism is the most

Distribution of T4 TSH Values in Children - the Shifa Experience

Transient congenital hypothyroidism (TCH) may occur because of iodine deficiency, iodine overload, transplacental

Congenital hypothyroidism screening program in Turkey: a local evaluation

Thyroid Function Test Ordering Pattern in a Tertiary Care Hospital in Western Uttar Pradesh, India.

Congenital Hypothyroidism: A Review of the Risk Factors

Information for health professionals

Perinatal factors associated with neonatal thyroidstimulating hormone in normal newborns

Article Impact of Lower Screening TSH Cutoff Level on the Increasing Prevalence of Congenital Hypothyroidism

Higher prevalence of permanent congenital hypothyroidism in the Southwest of Iran mostly caused by dyshormonogenesis: a five-year follow-up study

Cord blood albumin as a predictor of neonatal hyperbilirubinemia in healthy neonates.

Lothian Guidance for Diagnosis and Management of Thyroid Dysfunction in Pregnancy

Evaluation of Congenital Hypothyroidism in Fars Province, Iran

Evaluation of Congenital Hypothyroidism in Fars Province, Iran

Department of Pediatrics, Tokai University School of Medicine, Isehara, Kanagawa , Japan

Newborn screening project at departments of genetics and endocrinology SGPGIMS, Lucknow

Thyroid Function Test in Pre-term Neonates During the First Five Weeks of Life

Selective newborn screening of amino acid, fatty acid and organic acid disorders in the Kingdom of Bahrain.

Congenital Hypothyroidism Referral Guidelines for Newborn Bloodspot Screening Wales

Prediction of congenital hypothyroidism based on initial screening thyroidstimulating-hormone

Monitoring and prognostic evaluation of patients with congenital hypothyroidism treated in a pediatric endocrinology unit

International Journal of Health Sciences and Research ISSN:

thyrotrophin concentrations in placental cord blood

Comparison of Two Phototherapy Methods (Prophylactic vs Therapeutic) for Management of Hyperbilirubinemia in Very Low Birth Weight Newborns

Clinical Guideline MANAGEMENT OF INFANTS BORN TO MOTHERS WITH GRAVES DISEASE AND AT RISK OF THYROTOXICOSIS

Cécile Brachet Endocrinologie Pédiatrique Hôpital Universitaire des Enfants Reine Fabiola U.L.B. Bruxelles

Frequency of Congenital Cardiac Malformations in the Neonates with Congenital Hypothyroidism

Case Report Prolonged Ileus in an Infant Presenting with Primary Congenital Hypothyroidism

Update of Newborn Screening and Therapy for Congenital Hypothyroidism

Normal ranges of T4 screening values in low birthweight infants

Testing the Sensitivity and Specificity of right hand and foot pulse oximetry for the detection of congenital heart defects in Saudi Arabia.

Evaluation of the first day transcutaneous bilirubin (TcB) level as a predictor of hyperbilirubinemia in healthy term neonates

Congenital Hypothyroidism Associated with Maternal Hypothyroidism and Iodine Deficiency During Pregnancy

FACTORS INFLUENCING NEONATAL THYROID-STIMULATING HORMONE LEVEL IN NAKHON PATHOM PROVINCE, THAILAND

Neonatal Thyrotoxicosis Management of babies born to mothers with a history of hyperthyroidism (Grave s Disease)

Congenital Hypothyroidism in the Southern Bangladesh

JMSCR Vol 05 Issue 04 Page April 2017

THYROID FUNCTION IN MOTHERS WHO GAVE BIRTH TO NEONATES WITH TRANSIENT CONGENITAL HYPOTHYROIDISM

Impact of Continuing Medical Education on Primary Care Providers Knowledge and Confidence in Caring for Patients with Congenital Hypothyroidism

Original Article. Evaluation of Current Guthrie TSH Cut-off Point in Iran Congenital Hypothyroidism Screening Program: A Cost-Effectiveness

Lothian Guidance for Diagnosis and Management of Thyroid Dysfunction in Pregnancy.

Congenital Dislocation Of The Hip In Newborns Of Mashhad City

A study of clinico-biochemical profile of neonatal seizure: A tertiary care hospital study

Esther Briganti. Fetal And Maternal Health Beyond the Womb: hot topics in endocrinology and pregnancy. Endocrinologist and Clinician Researcher

A descriptive study of the prevalence of hypothyroidism among antenatal women and foetal outcome in treated hypothyroid women

Prevalence of transient congenital hypothyroidism in central part of Iran

COMPLICATIONS OF PRE-GESTATIONAL AND GESTATIONAL DIABETES IN SAUDI WOMEN: ANALYSIS FROM RIYADH MOTHER AND BABY COHORT STUDY (RAHMA)

JMSCR Vol 04 Issue 03 Page March 2016

Intellectual Development in Children Whose Mothers Received Propylthiouracil During Pregnancy

Intra-amniotic thyroxine to treat fetal goiter

Geoffrey Omuse 1*, Ali Kassim 1, Francis Kiigu 1, Syeda Ra ana Hussain 2 and Mary Limbe 2

Screening for hypothyroidism

Prevalence of thyroid disorder in pregnancy and pregnancy outcome

Cancer Incidence and Mortality in the Kingdom of Bahrain Statistics and Trends

Cord blood bilirubin used as an early predictor of hyperbilirubinemia

Referral Rates and Costs of Our Modified Two-Step Newborn Hearing Screening Program at a Japanese Perinatal Center

Maternal Mortality in Women with Sickle Cell Disease. Zainab Al-Jufairi, MHPE, FRCOG* Amarjit Sandhu, MD, FRCOG*

The Healthcare Cost of Symptomatic Congenital CMV Disease in Privately Insured US Children: Estimates from Administrative Claims Data

17 (1), DOI: /bjmg HIGH INCIDENCE OF CONGENITAL HYPOTHYROIDISM IN ONE REGION OF THE REPUBLIC OF MACEDONIA ABSTRACT

Checking the Right Box at the Right Age: the Art of Pediatric Endocrine Testing

NEWBORN FEMALE WITH GOITER PAYAL PATEL, M.D. PEDIATRIC ENDOCRINOLOGY FELLOW FEBRUARY 12, 2015

Should every pregnant woman be screened for thyroid disease?

Newborn Screening for Congenital Hypothyroidism: Recommended Guidelines

Defining the Newborn Blood Spot Screening Reference Interval for TSH: Impact of Ethnicity

Clinical efficacy of therapeutic intervention for subclinical hypothyroidism during pregnancy

Downloaded from journal.gums.ac.ir at 15:41 IRST on Friday February 22nd 2019

Creatine phosphokinase levels in the newborn

Intelligence quotient in children with congenital hypothyroidism: The effect of diagnostic and treatment variables

Reference Intervals for Children and Adults

Morbidity profile of infants of mothers with gestational diabetes admitted to a tertiary care centre

JOURNAL OF INTERNATIONAL ACADEMIC RESEARCH FOR MULTIDISCIPLINARY Impact Factor 3.114, ISSN: , Volume 5, Issue 3, April 2017

NEWBORN SCREENING FOR SICKLE CELL DISEASE Progress Towards Improved Outcomes for Children and Families

Results of a regional cord blood screening programme for detecting neonatal hypothyroidism

Antithyroid drugs in Graves disease: Are we stretching it too far?

Hepatitis B vaccine alone or with HBIG in neonates of HBsAg+/HBeAg- mothers: a systematic review and meta-analysis.

The data were analysed using Fisher s exact test and the chi-squared test.

Introduction. for the prevention of brain damage from less severe CH although this remains to be documented.

Maternal And Fetal Outcome In Pregnancies Complicated With Maternal Cardiac Diseases: Experience At A Tertiary Care Hospital

Thyroid function after assisted reproductive technology in women free of thyroid disease

Osteoporosis Knowledge Assessment among Medical Interns

Initial Clinical Referral Standards after Newborn Screening for Congenital Hypothyroidism

Screening for Congenital CMV Infection

Neonatal Screening for Genetic Blood Diseases. Shaikha Al-Arayyed, PhD* A Aziz Hamza, MD** Bema Sultan*** D. K. Shome, MRCPath**** J. P.

Decoding Your Thyroid Tests and Results

Statistical characteristics of anterior fontanelle size at birth of term Sri Lankan new borns: a descriptive cross sectional study

Neonatal screening for congenital hypothyroidism, along with eradication of iodine deficiency in large parts of the world, has

Congenital hypothyroidism and your child

Severity of Hypoxic Ischaemic Encephalopathy in Neonates with Birth Asphyxia

Lecture title. Name Family name Country

Overt and subclinical hypothyroidism among Bangladeshi pregnant women and its effect on fetomaternal outcome

Transcription:

Curr Pediatr Res 2018; 22 (2): 137-142 ISSN 0971-9032 www.currentpediatrics.com Recall rate and incidence of congenital hypothyroidism: A 5-year experience of hospital-based study in Bahrain. Eman Shajira, Babiker Hassan, Fahad Al-Qashar, Haya Alkhayyat Department of Pediatrics, Bahrain Defence Force Hospital, Royal Medical Services, Riffa, Kingdom of Bahrain. Abstract Background: Different neonatal screening programs for congenital hypothyroidism (CH) have been implemented to prevent its devastating effects on mental development. High recall rate and false positive results subject families to undue stress and impose financial burdens on health care expenditures. Objective: to investigate the CH recall rate and establish an optimum cord blood thyroid-stimulating hormone (CBTSH) level for CH diagnosis. Methods: retrospective cross-sectional study was conducted in Bahrain Defense Force hospital from Jan 2012 to Dec 2016. CBTSH and back-up free thyroxine (T4) results from all newborn infants born during this period were analyzed. All of the infants with CBTSH >37.5 µiu/ml were recalled for confirmatory tests. Results: Out of 20,885 newborns, 413 infants were recalled (recall rate 1.98%). CH incidence was 1:1489, mean CBTSH was 99.5 µiu/ml (95% confidence interval (CI) 98.7-100.3 µiu/ ml), and mean free T4 was 9.1 pmol/l (95% CI, 6.64-11.57 pmol/l). A receiver operating characteristic (ROC) curve identified the new CBTSH cutoff value as 93 µiu/ml. Conclusion: Our study supports setting a higher CBTSH cutoff value based on our population findings and recommends both CBTSH and simultaneous free cord T4 measurements as the ideal screening approach. Keywords: Infants, Health care, Stress. Abbreviations: CH: Congenital Hypothyroidism; CBTSH: Cord Blood Thyrotropin Stimulating Hormone; ROC: Receiver-Operating Characteristic Accepted April 25, 2018 Introduction Congenital hypothyroidism (CH) is one of the most common preventable causes of intellectual disability. It affects 1:2000 to 1:4000 new-born infants worldwide [1,2]. The clinical manifestations are usually subtle or not present at birth [3]. Different neonatal screening programs for CH have been implemented in both developed and some developing countries. It is estimated that only 1/4 of the worldwide birth population undergo screening for CH [4,5]. In many countries, different mass screening programs are performed for early diagnosis and treatment of CH [6], yet most have encountered problems such as high recall rate and therefore, more substantial numbers of falsepositive results are found, which carry a risk for unjustified anxiety and psychological harm in families. On the other hand, fewer false positive results increase physicians 137 and parents trust, reduces families psychological stress, efficiently organize the medical staff members workload and reduce expenses by minimizing unnecessarily repeated laboratory tests [7,8]. In this study, we determined both CH incidence and recall rates based on our local neonatal population that was screened over the study period and redefined the cord blood thyrotropin-stimulating hormone (CBTSH) cut-off levels for identifying neonates at risk of CH. Materials and Methods Materials and Subjects This is a retrospective cross-sectional study that was carried out from January 2012 to December 2016 in Bahrain Defense Force Hospital. All inborn deliveries conducted during this period were part of the study. Primary CBTSH with backup T4 measurements were assayed on single specimens using the electrochemiluminescence

Recall rate and incidence of congenital hypothyroidism: A 5-year experience of hospital-based study in Bahrain. immunoassay ECLIA by Cobase immunoassay analyzer (ROCHE Diagnostics, Germany) with a measurement range of 0.005 to 100 µiu/ml and 0.3 to 100 pmol/l for TSH and free T4, respectively. For confirmation, infants were recalled if cord blood TSH was >37.5 µiu/ml, and serum TSH and free T4 measurements were obtained at an average of five days after birth. Thyroid scans using Tc- 99m were requested to determine the underlying etiology. Clinical data were obtained for all positive cases included sex, gestational age, nationality, type of delivery and single or multiple gestations. Statistical Methods Statistical data were analyzed using SPSS software version 19.0. Descriptive statistics were performed using the calculation of frequency, percentages, mean and standard deviation (SD). Sample characteristics were summarized using mean ± SD for numerical data and frequency and percentages for categorical data. The CBTSH values of all confirmed cases of CH and false positive cases were pooled to generate a receiver operating characteristic (ROC) curve using MedCalc statistical software to determine appropriate CBTSH cutoff value for CH diagnosis. The hospital ethics committee approval was obtained. Results The total number of babies born at Bahrain Defense Force Hospital during the study period was 20,855 newborn infants, of which 413 (1.98%) were identified to be at risk (Table 1) as they had CBTSH >37.5 µiu/ml. Out of that 78.5% were Bahraini and 237 infants (57.7%) were males. Term, pre-term, post-term and extremely pre-term infants accounted for 74.1%, 24.7%, 0.7% and 0.5%, respectively. Cesarean section was the mode of delivery of 57.1% infants compared to 36.6% spontaneous vaginal delivery (SVD) and 6.3% assisted vaginal delivery. (5.3%) were part of multiple gestations. In populations found to be at risk, mean CBTSH and T4 were 55.70 ± 18.53 µiu/ml and 23.51 ± 9.79 pmol/l, respectively (Figure 1). Table 2 shows the number of neonates screened annually and number of true positive and false positive cases. No false negative cases were observed in this study and the overall incidence of congenital hypothyroidism during the study period was 1:1489 (Figure 2). Table 3 demonstrates CBTSH and cord blood free T4 results. Thyroid ultrasound, scintigraphy reports of all 14 confirmed cases of primary hypothyroidism. Table 4 demonstrates the CBTSH distribution. There were 20,442 (98.02%) negative tests (CBTSH <37.5 µiu/ml) and 413 positive tests (CBTSH >37.5 µiu/ml) accounting for 1.98%, which was the recall rate. Figure 3 and Table 5 shows the ROC curve created from plotting the true positive results (sensitivity) against the false positive results (1-Specificity) [9,10]. CBTSH of 93 mu/l as the appropriate detection cutoff for the diagnosing Table 1. Descriptive distribution of all screened positive cases Variable Frequency Percentage Range Gestational Age Preterm 102 24.70% - Post-term 3 0.70% - Extreme 2 0.50% - Preterm Term 306 74.10% - Gender Male 237 57.60% - Female 176 42.60% - Nationality Bahraini 324 78.50% - Non-Bahraini 89 21.50% - Delivery type SVD 151 36.60% - Caesarean 236 57.10% - Assisted Vaginal Delivery CH with a sensitivity of 100% (95% CI, 76.8%-100%) and a specificity of 95% (95% CI, 92.4%-96.9%). Discussion 26 6.30% - No. of Gestation Singleton 392 94.70% - Multiple 21 5.30% - Cord TSH (Mean ± SD) T4 (Mean ± SD) 55.70 ± 18.53-23.51 ± 9.79-37.66-100 3.76-85.70 The use of CBTSH as a screening tool for CH has been validated in numerous studies [11]. CBTSH values have been evaluated and compared with filter paper samples obtained via heel prick [12]. Hardy et al. [13] found CBTSH to be more sensitive than cord blood free T4 screening. There are wide variations in screening strategies worldwide with regard to timing and methods of screening [14,15]. Primary TSH with backup T4 measurements is widely used in Europe, Japan, Canada, Mexico and the United States. Some programs in North America, Israel and the Netherlands also use primary T4 measurements and both methods use heel prick samples at 2 to 5 days after birth [5,16,17]. The use of CBTSH as a screening tool in developing Asian countries provides an attractive alternative because of its simplicity and accessibility considering the obstetric practice in which the majority of mothers are discharged within 24 to 48 h after delivery [14,18,19]. By using a cutoff value of 37.5 µiu/ml in our hospital, we identified 413 infants at risk out of a total population of 20,855 infants. Fourteen infants in the population 138

Year Shajira/Hassan/Al-Qashar/Alkhayyat Table 2. Population incidence of congenital hypothyroidism in Bahrain from 2012 to 2016 No. of Neonates Screened Total Positives No. of True Positives (TP) No. of False Positives (FP) No. false Negatives (FN) Population Incidence 2012 4013 87 3 84 0 1:1337 2013 4034 95 4 87 0 1:1008 2014 4245 95 4 91 0 1:1061 2015 4256 70 1 69 0 1:4256 2016 4307 70 2 68 0 1:2153 Total 20,855 413 14 399 0 1:1489 Table 3. Clinical data for 14 infants with thyroid abnormalities Cases Nationality Gender Cord blood TSH Cord FreeT4 Ultrasound TC99 1 Non-Bahraini Female 100 10.04 Normal N/A 2 Non-Bahraini Female 100 7.23 Not visualizes No uptake 3 Bahraini Male 100 16.3 Enlarged thyroid Increased uptake 4 Bahraini Female 100 8.09 Not visualized No uptake 5 Non-Bahraini Male 100 6,83 Normal size Increase uptake 6 Non-Bahraini Male 100 8.34 N/A Increased uptake 7 Non-Bahraini Male 100 14.6 N/A No uptake 8 Bahraini Male 100 9.33 Enlarge thyroid Increased uptake 9 Bahraini Male 100 6.04 N/A N/A 10 Non-Bahraini Female 100 4.28 N/A N/A 11 Bahraini Male 94.21 9.96 Not visualized No uptake 12 Bahraini Male 100 6.18 Enlarged thyroid Increased uptake 13 Non Bahraini Female 100 6.73 N/A N/A 14 Bahraini Male 100 3.76 Not visualized No uptake Table 4. TSH distribution CBTSH Number of Cases Percentage TSH (<37.5) 20,442 98.02% TSH (>37.5) 413 1.98% Total 20,855 100.0% Table 5. Criterion values and coordinates of the ROC curve Criterion Sensitivity 95% CI Specificity 95% CI +LR -LR 37.66 100.00 76.8-100.0 0.00 0.0-0.9 1.00 >93.96 100.00 76.8-100.0 94.99 92.4-96.9 19.95 0.00 >99.1 92.86 66.1-99.8 95.74 93.3-97.5 21.79 0.075 >100 0.00 0.0-23.2 100.00 99.1-100.0 1.00 identified at risk were confirmed after repeat TSH and free T4 as being hypothyroid. An overall incidence of 1:1489, which was higher than the previously reported incidence of 1:2967 [20] and estimated worldwide incidence of 1:3000 [21], was similar to Najran province in Saudi Arabia (1:1400), Iran (1:1439) and 1:1500 in Ontario, Canada [22-24]. Recall rates in various programs around the world range from 0.01% to 13.3% [6]. Our study had a recall rate of 1.98% compared to 0.05% 0.3% found in other primary TSH screening programs [16,25]. The lowest TSH value detected in confirmed CH cases was 94 µiu/ml, which is consistent with values from a Swedish study (100 µiu/ml) and from Najarn province in Saudi Arabia (117 µiu/ml) [26,27]. The ROC curve identified a new cutoff CBTSH value as 93 µiu/ml. When used, it would improve the efficiency of the test and lead to less false positive cases, and hence lower recall rates, which in return will significantly improve the cost-effectiveness of this screening tool and minimize concerned parents anxiety for whom their infants are identified as at risk [6,8]. Limitations Study limitations included the retrospective design and use of primary TSH and backup free T4 measurements, 139

Recall rate and incidence of congenital hypothyroidism: A 5-year experience of hospital-based study in Bahrain. Figure 1. Frequency distribution of true positive of cord blood thyrotropin stimulating hormone ((CBTSH) n=14) Figure 2. Frequency distribution of true positive free T4 in cord blood (n=14) Figure 3. ROC curve of cord blood TSH 140

Shajira/Hassan/Al-Qashar/Alkhayyat which may miss cases of central hypothyroidism and cases with delayed TSH elevation seen in low birth weight and very low birth weight infants (LBW and VLBW, respectively) and infants with thyroid-binding globulin (TBG) deficiency. An approach using simultaneous TSH and free T4 measurements seems to be the preferred ideal method to diagnose CH [16,28]. Conclusion To date, there is no universal TSH cutoff point to screen for CH. Each country should collect enough data to determine a credible and feasible screening method and cutoff values aiming to achieve low false positive results and recall rate. CBTSH screening per se will detect neonates with primary CH, yet cases with central hypothyroidism and those with delayed TSH elevation can be missed. Our study supports setting higher CBTSH cut-off values based on our population findings and recommends simultaneous cord free T4 measurements as the ideal screening approach. References 1. Grosse SD, Van Vliet G. Prevention of intellectual disability through screening for congenital hypothyroidism: how much and at what level? Arch Dis Childhood 2011. 2. https://www.uptodate.com/contents/clinical-featuresand-detection-of-congenital-hypothyroidism 3. Rastogi MV, LaFranchi SH. Congenital hypothyroidism. Orphanet J Rare Dis 2010; 5: 17. 4. Dussault JH. The anecdotal history of screening for congenital hypothyroidism. J Clin Endocrinol Metab 1999; 84: 4332-4334. 5. Ford G, LaFranchi SH. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract Res Clin Endocrinol Metab 2014; 28: 175-187. 6. Büyükgebiz A. Newborn screening for congenital hypothyroidism. J Clin Res Pediatr Endocrinol 2013; 5: 8. 7. Mehran L, Khalili D, Yarahmadi S, et al. Worldwide recall rate in newborn screening programs for congenital hypothyroidism. Int J Endocrinol Metab 2017; 15. 8. Schmidt JL, Castellanos-Brown K, Childress S, et al. The impact of false-positive newborn screening results on families: A qualitative study. Genet Med 2012; 14: 76. 9. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 2013; 4: 627. 10. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin Chem 1993; 39: 561-577. 11. Ilamaran V, Rathisharmila R, Uvaraj P, et al. Neonatal screening for congenital hypothyroidism using cord blood thyroid stimulating hormone. Curr Pediatr Res 2014; 18. 12. Walfish P. Evaluation of three thyroid-function screening tests for detecting neonatal hypothyroidism. Lancet 1976; 307: 1208-1211. 13. Hardy JD, Zayed R, Doss I, et al. Cord blood thyroxine and thyroid stimulating hormone screening for congenital hypothyroidism: How useful are they? J Pediatr Endocrinol Metab 2008; 21: 245-250. 14. Wong SL, Jalaludin MY, Zaini AA, et al. Congenital hypothyroidism: An audit and study of different cord blood screening TSH values in a tertiary medical centre in Malaysia. Adv Endocrinol 2015. 15. Léger J, Olivieri A, Donaldson M, et al. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis and management of congenital hypothyroidism. Hormone Res Paediatr 2014; 81: 80-103. 16. American Academy of Pediatrics. American Academy of Pediatrics. AAP Section on Endocrinology and Committee on Genetics and American Thyroid Association Committee on Public Health: Newborn screening for congenital hypothyroidism: recommended guidelines. Pediatrics 1993; 91: 1203-1209. 17. Madison LD, LaFranchi S. Screening for congenital hypothyroidism: Current controversies. Curr Opin Endocrinol Diabetes Obes 2005; 12: 36-41. 18. Manglik AK, Chatterjee N, Ghosh G. Umbilical cord blood TSH levels in term neonates: a screening tool for congenital hypothyroidism. Indian Pediatr 2005; 42: 1029-1032. 19. Al-Jurayyan NA, Al-Nuaim AA, El-Desouki MI, et al. Neonatal screening for congenital hypothyroidism in Saudi Arabia: Results of screening the first 1 million newborns. Screening 1996; 4: 213-220. 20. Golbahar J, Al-Khayyat H, Hassan B, et al. Neonatal screening for congenital hypothyroidism: A retrospective hospital based study from Bahrain. J Pediatr Endocrinol Metab 2010; 23: 39-44. 21. LaFranchi SH. Worldwide coverage of newborn screening for congenital hypothyroidism - A public health challenge. Alm 2014; 2: S225-233. 22. Al-Jurayyan NA, Shaheen FI, Al-Nuaim AA, et al. Congenital hypothyroidism: Increased incidence in Najran province, Saudi Arabia. J Trop Pediatr 1996; 42: 348-351. 23. Ordookhani A, Mirmiran P, Moharamzadeh M, et al. A high prevalence of consanguineous and severe congenital hypothyroidism in an Iranian population. J Pediatr Endocrinol Metabol 2004; 17: 1201-1210. 141

Recall rate and incidence of congenital hypothyroidism: A 5-year experience of hospital-based study in Bahrain. 24. Saleh DS, Lawrence S, Geraghty MT, et al. Prediction of congenital hypothyroidism based on initial screening thyroid-stimulating-hormone. BMC Pediatr 2016; 16: 24. 25. Walfish PG, Ginsberg J, Rosenberg RA, et al. Results of a regional cord blood screening programme for detecting neonatal hypothyroidism. Arch Dis Childhood 1979; 54: 171-177. 26. Alm J, Hagenfeldt L, Larsson A, et al. Incidence of congenital hypothyroidism: Retrospective study of neonatal laboratory screening versus clinical symptoms as indicators leading to diagnosis. Br Med J 1984; 289: 1171-1175. 27. Ogunkeye OO, Roluga AI, Khan FA. Resetting the detection level of cord blood thyroid stimulating hormone (TSH) for the diagnosis of congenital hypothyroidism. J Trop Pediatr 2007; 54: 74-77. 28. Rose SR, Brown RS; American Academy of Pediatrics, et al. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics 2006; 117: 2290-2303. Correspondence to: Eman Shajira, Department of Pediatrics, Bahrain Defense Force Hospital, Royal Medical Services, Riffa, Bahrain. Tel: +97317766959; E-mail: eman.shajera@bdfmedical.org 142