Risk factor analysis and trends of dyslipidemia in Type 2 diabetes mellitus subjects of an industrial population.

Similar documents
Efficacy of Using Who's Steps Approach to Identify "At Risk" Subjects for Diet Related Non-Communicable Diseases

Prevalence and Distribution of Cardiovascular Risk Factors in An Urban Industrial Population in South India: A Cross- Sectional Study

Prevalance of Lifestyle Associated Risk Factor for Non- Communicable Diseases among Young Male Population in Urban Slum Area At Mayapuri, New Delhi

Total risk management of Cardiovascular diseases Nobuhiro Yamada

Figure S1. Comparison of fasting plasma lipoprotein levels between males (n=108) and females (n=130). Box plots represent the quartiles distribution

The Metabolic Syndrome: Is It A Valid Concept? YES

Know Your Number Aggregate Report Comparison Analysis Between Baseline & Follow-up

Identification of subjects at high risk for cardiovascular disease

Biomed Environ Sci, 2016; 29(3): LI Jian Hong, WANG Li Min, LI Yi Chong, ZHANG Mei, and WANG Lin Hong #

The investigation of serum lipids and prevalence of dyslipidemia in urban adult population of Warangal district, Andhra Pradesh, India

EXECUTIVE SUMMARY OF THE MINOR RESEARCH PROJECT Submitted to UNIVERSITY GRANTS COMMISSION

National Strategy. for Control and Prevention of Non - communicable Diseases in Kingdom of Bahrain

290 Biomed Environ Sci, 2016; 29(4):

Depok-Indonesia STEPS Survey 2003

Hypertension in the South-East Asia Region: an overview

Risk Factors of Non-Communicable Diseases in an Urban Locality of Andhra Pradesh. Prabakaran J 1, Vijayalakshmi N 2, Ananthaiah Chetty N 3

Screening Results. Juniata College. Juniata College. Screening Results. October 11, October 12, 2016

A Study to Show Postprandial Hypertriglyceridemia as a Risk Factor for Macrovascular Complications in Type 2 Diabetis Mellitus

ASIA-PACIFIC HEART HEALTH CHARTER

Plasma fibrinogen level, BMI and lipid profile in type 2 diabetes mellitus with hypertension

Non communicable Diseases

National Health & Morbidity Survey 2015; NCD Risk Factors

DIABETES. A growing problem

Non communicable Diseases in Egypt and North Africa

Socioeconomic status and the 25x25 risk factors as determinants of premature mortality: a multicohort study of 1.7 million men and women

Diabetes Mellitus: A Cardiovascular Disease

Know Your Number Aggregate Report Single Analysis Compared to National Averages

Cardiovascular Complications of Diabetes

Diabetes and Cardiovascular risk factors among Oil Sector Workers in the State of Kuwait (2013 KOC Periodical Medical Exam.)

Indian J. Prev. Soc. Med. Vol. 44 No.1-2, 2013

Hypertension with Comorbidities Treatment of Metabolic Risk Factors in Children and Adolescents

Diabetes is a condition with a huge health impact in Asia. More than half of all

Low-density lipoproteins cause atherosclerotic cardiovascular disease (ASCVD) 1. Evidence from genetic, epidemiologic and clinical studies

Why Do We Treat Obesity? Epidemiology

Guidelines on cardiovascular risk assessment and management

CHAPTER 3 DIABETES MELLITUS, OBESITY, HYPERTENSION AND DYSLIPIDEMIA IN ADULT CENTRAL KERALA POPULATION

New Delhi Declaration

Media centre Obesity and overweight

Combating NCDs Challenge and the Evolving Responses in India

Secondary prevention and systems approaches: Lessons from EUROASPIRE and EUROACTION

Different worlds, different tasks for health promotion: comparisons of health risk profiles in Chinese and Finnish rural people

National Strategic Action Plan for Prevention and control of NCDs ( ) Myanmar. April 2017

Prevalence of Risk Factors of Non-communicable Diseases in a District of Gujarat, India

Cardiovascular Risk Assessment and Management Making a Difference

Impact of Physical Activity on Metabolic Change in Type 2 Diabetes Mellitus Patients

It is currently estimated that diabetes prevalence by

DECLARATION OF CONFLICT OF INTEREST. None

BDS, MSc, MSPH, MHPE, FFPH, ScD. Associate Prof. of Epidemiology and Biostatistics. Associate Prof. Medical Education

RISK FACTORS FOR HYPERTENSION IN INDIA AND CHINA: A COMPARATIVE STUDY

Health and Wellness. ENRIQUE A. TAYAG, MD, PHSAE, FPSMID, CESO III Assistant Secretary of Health Support to Service Delivery Technical Cluster II

The growing burden of noncommunicable diseases (NCDs)

Optimizing risk assessment of total cardiovascular risk What are the tools? Lars Rydén Professor Karolinska Institutet Stockholm, Sweden

Physical activity levels during work, leisure time and transport and its association with obesity in urban slum of Mumbai, India

Prevenzione cardiovascolare e cambiamento degli stili di vita. Gian Franco Gensini

Client Report Screening Program Results For: Missouri Western State University October 28, 2013

Obesity Causes Complications and Dietary Weight Loss Strategy

Report Operation Heart to Heart

Prevalence of diabetes and impaired fasting glucose in Uygur children of Xinjiang, China

ABSTRACT: 9 DOES SOY CONSUMPTION HAVE AN EFFECT ON HYPERTENSION IN LOW-INCOME RURAL SOUTH AFRICAN WOMEN?

Myths, Heart Disease and the Latino Population. Maria T. Vivaldi MD MGH Women s Heart Health Program. Hispanics constitute 16.3 % of US population!

Prevalence of Diabetes Mellitus and Pre-Diabetes in the Philippines: A Sub-study of the 7 th National Nutrition and Health Survey (2008)

CARDIOVASCULAR DISEASE RISK FACTOR ESTIMATION IN GUJARATI ASIAN INDIAN POPULATION USING FRAMINGHAM RISK EQUATION

The Metabolic Syndrome Update The Metabolic Syndrome Update. Global Cardiometabolic Risk

GUIDELINES FOR DYSLIPIDEMIA MANAGEMENT AND EDUCATION THROUGH NOVA SCOTIA DIABETES CENTRES

Health Indicators and Status in the European Union

A study of waist hip ratio in identifying cardiovascular risk factors at Government Dharmapuri College Hospital

Association between arterial stiffness and cardiovascular risk factors in a pediatric population

Diabetes Research Unit, Department of Clinical Medicine Faculty of Medicine, University of Colombo, Colombo, Sri Lanka. 2

Obesity and the Metabolic Syndrome in Developing Countries: Focus on South Asians

Is Knowing Half the Battle? Behavioral Responses to Risk Information from the National Health Screening Program in Korea

SOUTH AND SOUTHEAST ASIA

Yuqing Zhang, M.D., FESC Department of Cardiology, Fu Wai Hospital. CAMS & PUMC, Beijing, China

OBESITY IN PRIMARY CARE

Amruth M, Sagorika Mullick, Balakrishna AG, Prabhudeva MC

Original article Effects of lifestyle interventions in adults with pre- hypertension and hypertension - an interventional study

CVD Prevention at work place settings

Metabolic syndrome in females with polycystic ovary syndrome and International Diabetes Federation criteria

Unraveling the concealed and calculated cardiovascular risks in diabetes

Andrejs Kalvelis 1, MD, PhD, Inga Stukena 2, MD, Guntis Bahs 3 MD, PhD & Aivars Lejnieks 4, MD, PhD ABSTRACT INTRODUCTION. Riga Stradins University

IJBCP International Journal of Basic & Clinical Pharmacology

the African scenario

High sensitive C-reactive protein, an independent and early novel inflammatory marker in healthy obese women.

Metabolic Syndrome and Workplace Outcome

2003 World Health Organization (WHO) / International Society of Hypertension (ISH) Statement on Management of Hypertension.

The Battle against Non-communicable Diseases can be won IA.. Lidia Belkis Archbold Health Ministries - IAD

Chapter 18. Diet and Health

Trends In CVD, Related Risk Factors, Prevention and Control In China

The DIABETES CHALLENGE IN PAKISTAN FIFTH NATIONAL ACTION PLAN

The Drivers of Non- Communicable Diseases

Metabolic Syndrome.

Why Non communicable Diseases? Why now?

Association of hypothyroidism with metabolic syndrome - A case- control study

Prevalence of Hypertension among Urban Adult Population (25-64 years) of Nellore, India

Biomarkers and undiagnosed disease

EFFICIENCY AND COST-EFFECTIVENESS OF DYSLIPIDEMIA SCREENING METHODS AMONG WORKERS IN BANGKOK

Supplementary Online Content. Abed HS, Wittert GA, Leong DP, et al. Effect of weight reduction and

Prevalence and risk factors of hypertension, among adults residing in an urban area of North India

Faculty of Health Sciences Outcomes of campaigns for Palestine refugees with diabetes mellitus attending UNRWA health centers

Health outcomes & research objectives in (crosscultural)international

Abdominal volume index and conicity index in predicting metabolic abnormalities in young women of different socioeconomic class

Transcription:

Biomedical Research 2010; 21 (4): 371-375 Risk factor analysis and trends of dyslipidemia in Type 2 diabetes mellitus subjects of an industrial population. Shonima Venugopal and Uma M Iyer Department of Foods and Nutrition, Faculty of Family and Community Sciences, The Maharaja Sayajirao University of Baroda, Vadodara-390002, Gujarat, India Abstract Type 2 diabetes is increasing in prevalence in all populations world wide. The workplace has been internationally recognized as an appropriate setting for health promotion. The investigation was carried out to determine the prevalence of risk factors and trends of dyslipidemia and hypertension in an industrial diabetic (type 2) population. A total of 54 type 2 diabetic subjects were enrolled in the study from an industry in Vadodara. Anthropometric data (height, weight), fasting blood sugar, lipid profile values and blood pressure measurements were obtained from medical records. Student s t test and ANOVA were applied. A high prevalence of risk factors was found among the diabetic subjects including prehypertension (37%), hypertension (53.7%), overweight (14.8%), obesity (57.4%), hypercholesterolemia (25.9%) and hypertriglyceridemia (39.6%). Around 87.2% of the subjects had 5 risk factors. Tracking data revealed consistently elevated blood sugar, lipid profile and blood pressure values. In conclusion, the results obtained indicate that there is a lot of scope for and benefit in initiating low cost and comprehensive diabetes prevention programs at the workplace for employees. Key-words: Diabetes, industry, tracking Introduction Non communicable diseases, especially cardiovascular disease, cancer and Type 2 diabetes mellitus, are projected to account for 53% of all deaths in India [1]. The prevalence of diabetes is increasing globally. India leads the global top ten in terms of the highest number of people with diabetes, with a figure of 50.8 million for 2010 [2]. In the period from 2005-2015, deaths from diabetes in India have been projected to increase by 35% [1]. This huge disease burden puts an enormous load on the country's health care infrastructure. Contrary to what is found in developed countries, where the majority of persons with diabetes are age 65 years and above, most diabetics in the South-East Asia Region belong to the young and economically productive age groups (45-64 years) [3]. A healthy workforce is essential in the context of optimal productivity and enhanced competitiveness. The workplace has been recognized internationally as an appropriate setting for health promotion. Health promotion in the workplace has been broadly recommended by international bodies through numerous charters and declarations [4] [5]. The workplace is an advantageous setting because of the significant proportion of time spent at work by the large majority of the population, and also because it offers Accepted July 8 2010 an opportunity to utilize peer pressure to encourage employees to make desirable alterations to their health habits. As highlighted in the World Health Report 2002, for non-communicable diseases, the most important risk factors are high blood pressure, high concentrations of blood cholesterol, inadequate intake of fruit and vegetables, overweight/obesity, physical inactivity and tobacco use [6]. Risk factor data are especially important as predictors of future disease or injury. This type of information is vital to promoting disease prevention and control programmes. Studies in many developed and developing countries worldwide have used subjects in industrial populations to track changes in coronary risk factors and to determine incidence of cardiovascular end points successfully. Examples include the Railroad Workers Prospective study, Chicago Firemen Study, and others in USA, Whitehall Study in UK, Norwegian and Finnish studies, many international cohorts in WHO-MONICA (MONItoring trends of CArdiovascular risk factors) study, the Chinese workplace study in Joint USAPeople s Republic of China cardiovascular (USA-PRC) risk factor study, Japanese and Korean studies [7]. Few studies with focus on the risk profile of a diabetic industrial population and tracking the trends of dyslipidemia and hypertension in the diabetic industrial population are available in litera- Biomedical Research Volume 21 Issue 4 371

Venugopal/Iyer ture. The present study thus made an attempt to evaluate the diabetes risk profile in an industrial productive population of Vadodara. Material and Methods In the study, a total of 54 type 2 diabetics were identified from an industry of Vadodara. Information pertaining to various risk factors like heredity, lifestyle factors and medical history was obtained using a structured questionnaire. Anthropometric data (height, weight), fasting blood sugar, lipid profile values and blood pressure measurements were obtained from medical records. Data on fasting blood sugar, lipid profile and blood pressure for the past four years (2005-2008) was obtained for 43 of the 54 diabetic subjects. This data was used to arrive at the trends of dyslipidemia and blood pressure over a period of four years. Results are expressed as Mean ± S.D and percentages. The significance of the data was evaluated using ANOVA and Student s t test. A result was declared to be statistically significant only if the p value of an analysis was less than 0.05. The statistical analysis was carried out using Microsoft Office Excel 2003. The study was approved by the local medical ethics committee. Results All the subjects were in their productive years with the subjects in the age range of 39-57 years. Mean age was 50.1 ± 4.7 years. Family history for diabetes, hypertension and heart disease was found in 57.4%, 38.9% and 16.7 % of the subjects respectively. Information on the medical history showed that the complication of hypertension was common in the diabetic subjects. Around 35.2 % of the subjects confirmed having blood pressure as a complication in addition to diabetes. Risk Factor Analysis Data on the prevalence of risk factors is given in Table 1. Hypertension remains undetected and uncontrolled even in organized sector industries with medical facilities. Based on blood pressure values, pre-hypertension ( 120/80 mmhg - < 140/90 mmhg) and hypertension ( 140/90 mmhg) were prevalent in 37% and 53.7% subjects respectively. Based on the Asia Pacific classification 14.8% of the study population was overweight and 57.4% were obese. The habit of smoking, tobacco usage and alcohol consumption was present in 14.8%, 22.2% and 13% of the study population respectively. Physical activity and diet, are among the leading causes of the major noncommunicable diseases. Around 70.4% of the subjects reported exercising > 3 hours a week. About 57.4 % of the subjects reported that their consumption of fruits was more than thrice a week and 77.8% of the subjects reported that their consumption of green leafy vegetables was more than thrice a week. 372 Glycemic and Lipemic Status of the T2DM Subjects The glycemic and lipemic status of the T2DM subjects is depicted in Table 2. The subjects had high mean levels for FBS, TG, LDL-C, Non HDL-C, TG/H and low levels of HDL-C. The prevalence of dyslipidemia was also looked into for these T2DM subjects (Table 3). About 25.9% of the subjects were hypercholesterolemic and 39.6% were hypertriglyceridemic. It was disheartening to note that 53.7% of the subjects had low levels of HDL-C and 62.96% had high levels of LDL-C. Atherogenic Index of Plasma (AIP) levels predict cardiovascular risk (Table 4). It was observed that 94.3% of the subjects had AIP levels in the high risk category. High levels of atherogenic lipoproteins can predispose the subjects to cardiovascular morbidity and mortality. Table 1. Prevalence of risk factors in the subjects Variable N (%) 95 % CI Limits Prehypertension 20 (37.0) 23.9-50.1 Hypertension 29 (53.7) 40.1-67.3 Overweight 8 (14.8) 5.1-24.5 Obesity 31 (57.4) 43.9-70.9 Smoking 8 (14.8) 5.1-24.5 Tobacco use 12 (22.2) 10.9-33.5 Alcohol consumption 7 (13) 3.8-22.2 Exercise Pattern < 3 hours/week 16 (29.6) 17.2-42.0 > 3 hours/week 38 (70.4) 58.0-82.8 Fruit and Vegetable Consumption Fruits < 3 times/week 23 (42.6) 29.1-56.1 >3 times/week 31 (57.4) 43.9-70.9 Green Leafy vegetables < 3 times/week 12 (22.2) 10.9-33.5 >3 times/week 42 (77.8) 66.5-89.1 Table 2. Glycemic and lipemic status of the T2DM subjects Variable (Mean ± SD, mg/dl) TG 165 ± 109 TC 185 ± 32 HDL-C 39 ± 8 LDL-C 112 ± 30 VLDL-C 33 ± 22 Non HDL-C 145 ± 30 TG/H 4.55 ± 3.51 FBS 162 ± 47 Diabetics are recommended to undergo certain tests on a routine basis to help them monitor their glycemic status and for early detection of the development of secondary complications. Table 5 gives the percentage of subjects who had undergone these tests for diabetes in the past one Biomedical Research Volume 21 Issue 4

Risk factor analysis in industrial setting Table 3. Prevalence of dyslipidemia in the subjects Variable (%) 95 % CI Limits TC 200 25.9 14.0-37.8 TG 150 39.6 26.3-52.9 LDL 100 62.96 49.8-76.1 HDL < 40 53.7 40.1-67.3 Non HDL 130 64.8 51.8-77.8 TG/H 3 54.7 41.2-68.2 Table 4. Atherogenic index of plasma risk levels in T2DM subjects AIP Levels N (%) Low Risk (<0.11) 2 (3.8) Intermediate Risk (0.11-0.21) 1 (1.9) High Risk (>0.21) 50 (94.3) year. Among the various tests, majority of the diabetic subjects (85.2%) used to get their serum lipids tested followed by eye examination (for spectacles) (72.2%) and kidney function tests (68.5%) excluding microalbuminuria. Less than 50% got their GHb monitored. Around 40% got ECG/Stress test done and only 20% underwent a foot examination. Table 5. Percent subjects undergoing routine tests Test N (%) 95 % CI Limits GHb 26 (48.1) 34.5-61.7 Kidney Function Tests 37 (68.5) 55.9-81.1 Lipid Profile 46 (85.2) 75.5-94.9 Foot Examination 11 (20.4) 9.4-31.4 Eye Examination 39 (72.2) 60.0-84.4 ECG/Stress Test 21 (38.9) 25.6-52.2 Table 6. Longitudinal data on blood sugar and lipid profile of diabetic subjects over four year duration (Mean ± SD) Risk Factor Scenario 2005 2006 2007 2008 FBS (mg/dl) 126±29 143 ± 47* 144 ± 44 158±48 TC (mg/dl) 192±30 195 ± 34 178 ± 36 183±31 TG (mg/dl) 164±90 173 ± 110 168 ± 93 169±120 LDL-C (mg/dl) 118±27 119 ± 30 106 ± 31 110±29 HDL-C (mg/dl) 42±8 41 ± 6 39 ± 7 40±8 Non-HDL-C (mg/dl) 151±27 154±31 139 ± 33 144±28 TG/H 4.07±2.28 4.28±2.59 4.54±2.90 4.65±3.82 SBP (mm Hg) 126±12 127±18 128±12 128±19 DBP (mm Hg) 84±6 87±11 85±7 87±9 BMI (Kg/m 2 ) 25.74±4.14 25.56±4.39 25.43±4.45 25.71±4.39 * - Significantly different from levels in 2005 at p< 0.01 - Significantly different from levels in 2005 at p< 0.01 - Significantly different from levels in 2005 at p< 0.001 Owing to the poor glycemic and lipemic status of the diabetic subjects the risk factor prevalence among the subjects was looked into. A range of 15 risk factors (Family history for diabetes, BMI 23, FBS 140, TC 200, TG 150, LDL 100, HDL < 40, Non HDL 130, hypertension, current smoking, alcohol usage, tobacco usage, physical inactivity, low intake of fruits and low intake of GLV s) were accounted for. It was observed that all the diabetic subjects had risk factors. An astonishing 87.2% of the subjects had 5 risk factors. On an average the diabetic subjects had 5-8 risk factors indicating the presence of a multiple risk factor scenario. Table 7. Percent prevalence of dyslipidemia in diabetic subjects over four year duration (%) 2005 2006 2007 2008 Range TC 200 30.2 41.9 27.9 23.3 23.3-41.9 TG 150 40.5 47.6 47.6 40.5 40.5-47.6 LDL 100 72.1 74.4 44.2 60.5 44.2-74.4 HDL < 40 41.9 41.9 46.5 53.5 41.9-53.5 Non HDL 130 76.7 79.1 48.8 62.8 48.8-79.1 TG/H 3 64.3 61.9 61.9 52.4 52.4-64.3 AIP >0.21 90.5 100 92.9 92.9 90.5-100 Biomedical Research Volume 21 Issue 4 373

Venugopal/Iyer Table 8. Cumulative incidence of dyslipidemia and hypertension (per 100 subjects) 374 2006 2007 2008 2005-2008 TC 23.3 8.7-30 TG 32 5.9-36 Prehypertension 100 - - 100 Hypertension 34.5 26.3 21.4 62.1 Table 6 gives the mean FBS, lipid profile, SBP, DBP and BMI values of the diabetic subjects over a period of four years. As can be seen from the table the subjects consistently had elevated levels of FBS, TG, LDL, Non HDL, TG/H, SBP, DBP and BMI. In 2006, 2007 and 2008 the FBS levels were significantly higher as compared to the levels in 2005. There was high prevalence of dyslipidemia among the diabetic subjects over the four year duration (Table 7). It was observed that high LDL values were present in about 44-74% of the subjects over this four year duration. More than 40% of the subjects consistently had low levels of HDL and high TG levels. Around 90-100% of the subjects had high risk AIP values thus predisposing them to CHD in the future. The cumulative incidence of hypercholesterolemia, hypertriglyceridemia and hypertension over the four years is given in Table 8. The cumulative incidence for hypercholesterolemia in 2006 was 23.3. In 2007 this figure dropped to 8.7 and no new cases were identified in 2008. For the entire four year duration the cumulative incidence for hypercholesterolemia was 30 per 100 persons. Similarly the cumulative incidence for hypertriglyceridemia was 32 in 2006 and 5.9 in 2007. Again in 2008 no new cases were identified. The cumulative incidence for hypertriglyceridemia for the period from 2005-2008 was 36 p er 100 persons. The cumulative incidence of hypertension over the four year duration was also calculated. In the year 2006 cumulative incidence using 140/90 as the cutoff was 34.5. This figure dropped to 26.3 and 21.4 in 2007 and 2008 respectively. For the period 2005-2008 the figure was 62.1. Discussion The present study found a high prevalence of risk factors among the industrial diabetic population. The risk factors included pre-hypertension (37%), hypertension (53.7%), overweight (14.8%), obesity (57.4%), smoking (14.8%), tobacco usage (22.2%), alcohol consumption (13%), physical inactivity (29.6%), low fruit intake (42.6%) and low vegetable intake (22.2%), hypercholesterolemia (25.9%), hypertriglyceridemia (39.6%), high LDL-C levels (62.96%), low HDL-C levels (53.7%), high risk AIP levels (94.3%). Earlier studies have identified similar non communicable disease risk profiles [8,9,10,11,12]. There is robust evidence of increased vascular risk even in the presence of pre-hypertension (or high-normal blood pressure) [13]. This risk category has a high rate of progression to hypertension. The high prevalence of prehypertension (37%) in the present study suggests that there is a large vulnerable population which can develop an overt adverse risk profile and CVD in the future. Health education among employees can thus improve early detection and management. Around 57.4% and 77.8% subjects reported more than thrice a week consumption of fruits and green leafy vegetables respectively. This observation is contrary to other studies that have observed lower fruit and vegetable intake than recommended [11] [12]. Over reporting as a possibility cannot be ruled out. A recent paper reported lower intake of vegetables and fruits among south Asians as compared to other ethnic groups based on Interheart study data [14]. It was also emphasized that vegetarianism in Indians does not necessarily mean adequate intake of fruits and vegetables. There is a need to improve awareness among Indians to increase fruit and vegetable intake. An attempt to quantify fruit and vegetable intake may substantiate the claims made by the diabetic subjects. Nevertheless the positive habit needs to be encouraged for maintaining health benefits. Early diagnosis and regular monitoring is of prime importance for controlling the behavioural risk factor profile which can be modified by adopting a healthy lifestyle. Corporate health departments are frequently required to perform routine health examinations for occupational health and safety reasons. Meeting these obligations can provide opportunities to intervene in a positive way to reduce the burden of diabetes. Detection of previously unrecognized diabetes and pre-diabetes cases is possible by integrating a diabetes screening strategy into an existing occupational medical programme. In this study, apart from the parameters monitored by the medical centre in the health check ups, anthropometric measurements like the waist circumference (an indicator of abdominal obesity), GHb, microalbuminuria (the earliest clinical evidence of nephropathy) and foot examination also need to be carried out. Upon identification of the at risk individuals regular monitoring of this group also needs to be carried out. This target group needs continuous monitoring to prevent secondary complications associated with glucose toxicity. Longitudinal data on blood sugar, blood pressure and lipid profile for four consecutive years revealed consis- Biomedical Research Volume 21 Issue 4

Risk factor analysis in industrial setting tently elevated levels of BMI, SBP, DBP, FBS and lipid profile over the four year duration. A study in employees of an industrial plant which measured height, weight, BMI and blood pressure successively for 5 years observed a significantly increasing trend in weight and BMI, a significant decline in mean SBP and unchanged DBP [7]. Adding to the existing problem was the identification of new cases of dyslipidemia over the years. The persistently high risk AIP values indicate a high risk for CVD among the industrial diabetic population. This underlines the importance of identifying the employees at risk by regular monitoring and by taking preventive measures. The tracking data highlight the need for tighter glycemic control along with blood pressure control to arrest the progression of macro and micro complications in diabetes mellitus. Conclusions The high prevalence of risk factors present in the industrial population despite having an annual health check up calls for action on the part of the management to take appropriate remedial measures. Health screening of the employees should be carried out on a regular basis in order to identify the at risk individuals. Nutrition health awareness programs should be implemented in the industries to help reduce the future prevalence and incidence of chronic diseases. Our results reinforce the need for initiating low-cost workplace intervention programs to identify and manage individuals at high risk for diabetes and its complications. The ultimate goal is to develop medical strategies to maximize good health in employees and to minimise the morbidity and mortality related to diabetes mellitus. Acknowledgements Financial assistance from the University Grants Commission in the form of Junior Research Fellowship in Science (RFSMS) is duly acknowledged. This study forms a part of the doctoral dissertation work of Ms. Shonima Venugopal submitted to the M S University of Baroda, Vadodara, Gujarat, India. international conference on health promotion: new players for a new era leading health promotion into the 21st century, Jakarta]. 1997. 5. [5] World Health Organization. Bangkok Charter for health promotion in a globalized world. [Sixth global conference on health promotion, Thailand]. 2005. 6. [6] World Health Organization. The World Health Report, Reducing Risks, Promoting Healthy Life. 2002. 7. [7] Tongia R, Gupta R, Agarwal M, et al. Five-year blood pressure trends and regression-to-the-mean in an industrial population. J Assoc Physicians India 2005; 53:693-696. 8. Kaur P, Rao TV, Sankarasubbaiyan S, et al. Prevalence and distribution of cardiovascular risk factors in an urban industrial population in south India: A crosssectional study. J Assoc Physicians India 2007; 55:771-776. 9. Prabhakaran D, Shah P, Chaturvedi V, et al. Cardiovascular risk factor prevalence among men in a large industry of northern India. The Natl Med J India 2005; 18:59-65. 10. Reddy KS, Prabhakaran D, Chaturvedi V, et al on behalf of the Sentinel Surveillance System for Indian Industrial Populations Study Group. Methods for establishing a surveillance system for cardiovascular diseases in Indian industrial populations. Bulletin of the World Health Organization 2006; 84:461-469. 11. [11] Mehan MB, Srivastava N, Pandya H. Profile of non communicable disease risk factors in an industrial setting. J Postgrad Med 2006; 52:167-171. 12. Mehan MB, Kantharia NB, Surabhi S. Risk factor profile of noncommunicable diseases in an industrial productive (25-59 years) population of Baroda. Int J Diabetes Dev Ctries 2007; 27:116-121. 13. Vasan RS, Larson MG, Leip EP, et al. Impact of highnormal blood pressure on the risk of cardiovascular disease. N Engl J Med 2001; 345: 1291 1297. 14. Goyal A, Yusuf S. The burden of cardiovascular diseases in the Indian sub continent. Indian J Med Res 2006; 124: 235-244. Correspondence: E-mail: umamsufn@hotmail.com References 1. World Health Organization. Preventing chronic diseases: A vital investment. 2005. 2. IDF Diabetes Atlas, 4 th edition; International Diabetes Federation (2009). Available from: http://www. diabetesatlas.org. 3. World Health Organization. Noncommunicable Diseases. About NCDs. Available from: http://www.- searo.who.int/en/section1174/section1459_7409.htm 4. [4] World Health Organization. Jakarta Declaration on leading health promotion into the 21st century. [Fourth Biomedical Research Volume 21 Issue 4 375

Biomedical Research Volume 21 Issue 4 371