EVALUATION OF ANTICANDIDAL ACTIVITIES OF SPIRULINA METABOLITE AGAINST CANDIDA ALBICANCE

Similar documents
Sensitization of Solvent Extract of Spirulina platensis (Geitler) against Some Dermatophytes and Related Fungi

Potential of Different Light Intensities on the Productivity of Spirulina maxima

Nitrogen, Phosphorus and Minerals (Sodium, Potassium and Calcium) Contents of Some Algae's Species (Anabaena and Spirulina platensis)

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

In vitro study of antibacterial activity of Carissa carandas leaf extracts

J. Algal Biomass Utln. 2012, 3 (3): 7 11 Purification, and antibacterial activity of phycocyanin from Spirulina PHYCO SPECTRUM INC

To evaluate Lab scale Cultivation of Spirulina by using different substrates and to Evaluate its Chlorophyll and Protein content

Available online at

Evaluation of Biomass Production of Spirulina maxima on Different Reported Media. 2- School of Environmental Biology, A. P. S. University, Rewa (M.P.

Effect of nitrogen source on the growth and lipid production of microalgae

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

Isolation, Characterization of algal Chlorophyll and Hydrocarbon content in algae found in National Capital Region

Cultivation of Spirulina species in different liquid media

POTENTIAL USE OF MOUGEOTIA SP. ALGAE IN FOOD PRODUCTION, BASED ON ITS CAROTENOID CONTENT. Abstract

Sequential Extraction of Plant Metabolites

CONTROL OF RICE BLIGHT PATHOGEN XANTHOMONAS ORYZAE THROUGH HERBAL PLANT EXTRACT

Enhanced Biomass and γ-linolenic Acid Production of Mutant Strain Arthrospira platensis

Octa Journal of Biosciences

Arsenate Exposure Affects Amino Acids, Mineral Nutrient Status and Antioxidant

Impact of Monosodium glutamate on the production and chemical constituents of Spirulina maxima

The effect of ph, dark - light cycle and light colour on the chlorophyll and carotenoid production of Spirulina sp.

Spirulin BOTANY V 03-10/ ,

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

Research Journal of Pharmaceutical, Biological and Chemical Sciences

In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.)

EFFECT OF PHYTOHORMONES ON FATTY ACID PROFILE OF SPIRULINA PLATENSIS

Research Article ISSN Vol 2/Issue 4/Oct-Dec 2012 PRAGYA RATHORE*, PRATIK SHAH, HARSHPREET CHANDOK, SATYENDRA PATEL

Antibacterial activity of freshwater green- algae, Chara vulgaris

Chiang Mai, 50200, Thailand

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

Screening of Antimicrobials of some Medicinal Plants by TLC Bioautography

International Journal of Food Engineering

Evaluation of Biological Activity (In-Vitro) of Some 2-Phenyl Oxazoline Derivatives

In vitro Evaluation of Antibacterial Activity of Bark and Flower Extracts of Pimenta officinalis Lindl.

Isolation of Microalgae Strains from Pond Water and their Medium Standardization for Lipid Production

Correlation between inhibition of photosynthesis and growth of Chlorella treated with methyl parathion

Effect of Modified Zarrouk s Medium on Growth of Different Spirulina Strains

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material

Antifungal activity of some plant extracts against Clinical Pathogens

Puducherry. Antimicrobial activity, Crude drug extraction, Zone of Inhibition, Culture Media, RVSPHF567.

CHAPTER 8 ANTIBACTERIAL ACTIVITY OF THE CRUDE ETHANOLIC EXTRACT AND THE ISOLATED COMPOUNDS FROM THE STEM OF COSTUS IGNEUS

Spirulina is a multicellular, filamentous, unbranched,

COMPARATIVE ANTI MICROBIAL STUDY OF SHUDDHA KASISA AND KASISA BHASMA

Plants, soil, and nutrients. Created in partnership with Alex Lindsey, Ph.D., The Ohio State University

STUDIES ON THE ALTERATIONS IN PHOTOSYNTHETIC ELECTRON TRANSPORT AND SPECTRAL PROPERTIES OF THE CYANOBACTERIUM, SPIRULINA PLATENSIS

International Journal of Food Nutrition and Safety, 2012, 1(2): International Journal of Food Nutrition and Safety

APPENDIX Reagents. Appendix. Alsever s solution Citric acid 0.55g Sodium citrate 8.0g D-glucose 20.5g Sodium Chloride 4.2g

Chapter 3. Spirulina platensis has been selected for the present study on the basis of the following

Antimicrobial activity of some medicinal plants against multidrug resistant skin pathogens

Impact of cobalt chloride on growth and biopigments of Chlorella Vulgaris

Antifungal activity of methanolic and ethanolic leaf extracts of medicinal plants

Aspergillus foetidus BY AQUEOUS TWO PHASE

Antifungal Activity of Eleutherine Bulbosa Bulb against Mycelial Fungus

International Journal of Pharma and Bio Sciences

Effective Recycling of Lignite Fly Ash for the Laboratory Cultivation of Blue Green Algae - Spirulina platensis

Antimicrobial activity of aqueous and methanolic extracts from Arthrospira maxima

Hong-qi Sun, Xue-mei Lu, Pei-ji Gao* State Key Laboratory of Microbial Technology, Shandong University, Jinan , China.

Pelagia Research Library

Affinity Purification of Photosystem I from Chlamydomonas reinhardtii using a Polyhistidine Tag

Heterotrophic Growth of Chlorella sp. KKU-S2 for Lipid Production using Molasses as a Carbon Substrate

EVALUATION OF ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL ANALYSIS OF Zingiber officinale (GINGER) RHIZOME EXTRACT

Research & Reviews: Journal of Botanical Sciences

A STUDY ON ANTIBACTERIAL PROPERTIES OF TINOSPORA CORDIFOLIA LEAF, STEM, ROOT EXTRACTS

ANTIMICROBIAL AND PHYTOCHEMICAL SCREENING OF TRAGIA INVOLUCRATA L. USING UV-VIS AND FTIR

Evaluation of antifungal activity of Zingiber officinale against Fusarium oxysporum f.sp. lycopersici

Metabolism of echitamine and plumbagin in rats

Antibacterial activity and morphological changes in human pathogenic bacteria caused by Chlorella vulgaris extracts.

APPLICATION OF CAROTENOIDS WITH SPECIAL REFERENCE TO MICROALGAE

Effect of ph on the production of protease by Fusarium oxysporum using agroindustrial waste

Influence of different concentrations of sodium bicarbonate on growth rate and chlorophyll content of Chlorella salina

Chapter 4. Anti-bacterial studies of PUFA extracts from Sardinella longiceps and Sardinella fimbriata. 4.1 Introduction

Phytochemical screening and antibacterial properties of Garcinia kola

DEVELOPMENT AND VALIDATION OF AN UV- SPECTROPHOTOMETRIC METHOD FOR THE ESTIMATION OF FLUOXETINE IN PURE AND TABLET DOSAGE FORMS

Total lipid accumulation and fatty acid profiles of microalga Spirulina under different nitrogen and phosphorus concentrations

APPENDIX 1 MEDIA PREPARATION

The Biochemical Composition of Some Micro-Algal Species Isolated From the Shatt al-arab River

Induced biochemical changes in the CMV infected cucurbit plants

Screening of bacteria producing amylase and its immobilization: a selective approach By Debasish Mondal

Study of Phytochemical Screening and Antimicrobial Activity of Citrus aurantifolia Seed Extracts

Antimicrobial activity of Terminalia chebula

Studies on the Antibacterial Activity of Quercus Infectoria Galls

Isolation of Herbal Plants: Antifungal and Antibacterial Activities

Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

SYNTHESIS, SPECTROSCOPIC AND FUNGICIDAL STUDIES OF COPPER SOAPS DERIVED FROM MUSTARD AND SOYABEAN OILS AND THEIR UREA COMPLEXES

ANTIBACTERIAL ACTIVITY OF GYMNEMA SYLVESTRE HYDROALCOHOLIC LEAF EXTRACT.

ANTIBACTERIAL EFFECTS OF CRUDE EXTRACT OF Azadirachta indica AGAINST Escherichia coli and Staphylococcus aureus

Spirulina Culture in Bangladesh XI Selection of a Culture Medium, Suitable for Culturing a Local Strain of Spirulina

Preservative Evaluation of Novel 2,4-Hexadienoic Acid Derivatives in Aluminium Hydroxide Gel USP

EFFECT OF ZNO NANO PARTICLES AGAINST STRAINS OF ESCHERICHIA COLI

EFFECT OF ADDITIONAL MINERAL IONS ON CITRIC ACID PRODUCTIVITY BY ASPERGILLUS NIGER NG-110

Ecological evaluation of marine cyanobacteria of El-Khadra lake in Egypt

Plant, Soil, and Nutrients

22 Bicozamycin (Bicyclomycin)

Production and characterization of antimicrobial active substance from Spirulina platensis

Biomarkers as a Tool for Validation of Herbs and Spices

Using chloroform as a preservative for trivalent foot and mouth disease vaccine in comparison to thiomersal

Determination of MIC & MBC

(Camellia sinensis) Downloaded from journal.skums.ac.ir at 16: on Sunday September 9th

Evaluation of Antibacterial Activity of Disulfiram.

Transcription:

IJPSR (2015), Vol. 6, Issue 3 (Research Article) Received on 24 July, 2014; received in revised form, 14 October, 2014; accepted, 27 December, 2014; published 01 March, 2015 EVALUATION OF ANTICANDIDAL ACTIVITIES OF SPIRULINA METABOLITE AGAINST CANDIDA ALBICANCE Pragya Mishra 1 and Sheo Mohan Prasad * 2 Centre of Food Technology 1, Ranjan Physiology and Biochemistry Laboratory 2, Department of Botany, University of Allahabad, Allahabad -211002, India Keywords: Spirulina maxima and Spirulina platensis, antifungal activity, anticandidal activity Candida albicans, Zarrouk media Correspondence to Author: Sheo Mohan Prasad Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Allahabad, India. E-mail: sheomohanp@yahoo.co.in INTRODUCTION: A number of cyanobacteria and microalgae produce various intracellular and extracellular biologically active compounds with diverse biological activities such as antibacterial, antifungal and anti viral activity 1 including Nostoc muscorum, Anabaena flosaquae, Anabaena oryzae, Woll easaccata, Phormedium fragile, Oscillatoria sp., Nostoc humifusum etc.) and also some green alga such as Chlorella vulgaris. Among them, Spirulina extract could show physiological benefits as antioxidant, antibacterial, anti-inflammatory 2, 3. QUICK RESPONSE CODE ABSTRACT: In this pilot study, Zarrouk medium was optimized in terms of biomass production and metabolites for the culture growth of, Spirulina species; Spirulina maxima and Spirulina platensis and their extract were tested against a nosocomial fungal species Candida albicans (C. albicans) to explore anticandidal activity. The corresponding growth and metabolite were measured in terms of turbidity, chlorophyll, carotenoids and protein contents. The culture was harvested by centrifugation and extracted with 75% methanol by freeze thaw method. Supernatant was collected, evaporated to dryness and stored at -20 0 C. Anticandidal activities were assessed based on the agar-well diffusion method. The lawn of C. albicans was maintained at 1.5 10 5 CFU/ml on Sarbourd dextrose (SD) agar plates under sterile conditions. The plates were dried at 37 0 C for 30 min. Wells of 6_mm diameter were created by using sterile agar borer. The dried supernatants were dissoluted in normal saline (0.8% NaCl) and poured in each well (100µl); Control well carried 100µl normal saline. Poured wells were incubated for 18 h at 37 0 C and after that measured the zone of growth inhibition. Anticandidal activity was found to be maximum in the dissolute of late stationary phase of S. maxima where in S. platensis dissolute was less effective. The study concludes that antifungal activity of Spirulina species should be explored on the basis of their metabolite structure and function DOI: 10.13040/IJPSR.0975-8232.6(3).1241-47 Article can be accessed online on: www.ijpsr.com DOI link: http://dx.doi.org/10.13040/ijpsr.0975-8232.6(3).1241-47 which is needed to develop an effective edible fungicide in near future. Spirulina species belongs to the family Oscillatoriaceae are free floating, helical, multicellular and filamentous in shape. The filaments are 50-300µ long and 10µ in diameter and non-nitrogen fixing, nitrate utilizing, whose biochemical machinery for nitrogenmetabolism resembles higher plants 4, 5. Spirulina species are found in diverse environment such as saline lakes, soil, marshes, brackish water, seawater, thermal spring and freshwater which is rich in bicarbonate and carbonate. The optimum temperature for the growth of Spirulina species lies between 30 to 35 0 C under laboratory conditions. However, previously it was reported that optimum growth temperature for Spirulina maxima (S. maxima) and Spirulina platensis (S. platensis) is ranging from 20 to 40 0 C 6. The yield of Spirulina International Journal of Pharmaceutical Sciences and Research 1241

species is influenced by various environmental factors such as luminosity, temperature, inoculation size, stirring speed, dissolved solids, ph, water quality, and presence of macro and micronutrients such as C, N, P, K, S, Mg, Na, Cl, Ca and Fe, Zn, Cu, Ni, Co, Se etc. The metabolites obtained from Spirulina species are involved in the production of various biologically active compounds. Spirulina has γ- linolenic acid which modulates inflammatory, immunological and cardiovascular responses 7. Anticandidal activity of Spirulina is under investigation by different groups of researcher, because Candida is causing lethal effects on humans. Candida is a fungus belonging to family Saccharomycetaceae having infectious effects resulting in the diseases called candidiasis and candidemia. Certain species of Candida were found to be insusceptible to the common antifungal chemicals. Candida albicans (C. albicans) can cause infections such as, candidiasis or thrush, in humans and other animals, especially in immunocompromised patients 8. Due to limited medication against candidemia, we propose this study. It was meseared that Spirulina activity for different solvent extracts was differing. It was reported that butanol extracts show 13 mm (growth inhibition zone) activity against C. glabrata 9. Allophycocyanin of S. platensis has antioxidant, anti-inflammatory and antiviral properties. It was also found that S. platensis and A. oryzae had antifungal activity towards the plant pathogenic fungi 10. pathogenic fungi such as C. albicans and therefore; an effort is made in the present investigation to evaluate the anticandidal activity of Spirulina extract. MATERIALS AND METHODS: Study Design and collection of Spirulina species: Study was designed after search results of National Centre for Biotechnology Information (NCBI) portal (Pubmed / Pubmed Central / Medline) using different search term; Antifungal Spirulina platensis Anticandidal Spirulina maxima Spirulina species as an antifungal Anti-Candidal activities of Spirulina species Anti-Candidal activities of Spirulina species: A possible approach for development of plant based antifungal. Spirulina species was collected from water containing cyanobacterial mat at the end of rainy season in November 2012 from paddy field of agriculture farmhouse area of Er. Shivendra Ranjan Mishra, Institute of Biomedical Sciences Technology and Engineerieng Shivendrapuri, 57- Shivam Edifice, Balkaranpur, Soraon, Allahabad (24 0 77 and 25 0 47 north latitudes and 81 0 19 and 82 0 21 east longitudes). Collected species was identified and authenticated by Dr. RR Mishra, Head-Department of Biotechnology, ASHOKA Institute of Technology and Management of Uttar Pradesh Technical University Lucknow, wide reference number DRRM/DBT-AITM/Dec.-13. Culture was characterized as two species i. e. S. maxima and S. platensis (Fig. 1). Antifungal activity of different extract of Spirulina was tested against Aspergillus niger 11. It has also been reported that a wide range of in vitro antifungal activities have been reported from extracts of green algae, diatoms and dinoflagellates. Spirulina like other microalgae, such as Ochromonas sp., Prymnesiumparvum, and a number of blue-green algae produce toxins that may have potential pharmaceutical applications 12, 13. There are meager reports available regarding the antifungal activity of Spirulina against human FIG. 1: SITE OF SAMPLE COLLECTION FROM PADDY FIELD IN MONTH OF NOVEMBER 2012 AND CHARACTERIZATION OF S. MAXIMA AND S. PLATENSIS. International Journal of Pharmaceutical Sciences and Research 1242

Organism and growth condition: The procured strains of S. maxima and S. platensis were cultured in Zarrouk medium 14 (Table 1). Growth and maintenance of the culture was done in an illuminated (75 µmol m -2 s -1 ) growth room under 12/12 hour light-dark cycles at 27±2 0 C. Shaking of culture was done 3-4 times daily. Preparation of Spirulina cell extracts: The culture was harvested after 18 days by centrifugation at 5000g for 10 min., after centrifugation pellets of S. maxima and S. platensis were dried and collected for further use. The pellets were crushed using pestle and mortar, extracted with 75% methanol by freeze thaw method. Supernatant was collected, evaporated to dryness and stored at -20 0 C and dissolute was mixed with 10 ml normal saline (0.8% NaCl) and allowed for shaking for 15 min. The extracts in aqueous solvents used for bioassay of anticandidal activity. TABLE 1: COMPOSITION OF ZARROUK S MEDIUM (ZARROUK 1966). Macronutrient Amount g/l at ph 9.0 NaHCO 3 16.8 K 2 HPO 4 0.5 NaNO 3 2.5 K 2 SO 4 1.0 NaCl 1.0 MgSO 4 0.2 CaCl 2 0.04 FeSO 4 0.01 Na-EDTA 0.08 H 3 BO 3 2.860 MnCl 2.4H 2 O 1.810 ZnSO 4.7H 2 O 0.222 Na 2 MoO 4.H 2 O 0.007 CuSO 4.5H 2 O 0.079 Estimation of growth and metabolite: Estimation of growth: Measurement of survival and growth of the test organisms i. e. S. maxima and S. platensis were estimated by spectrophotometry (UV-VIS-1700, Shimadzu, Japan). The absorbance of samples was recorded at 750 nm. Estimation of protein: For protein estimation a definite amount of cell suspension was taken, centrifuged and 1N NaOH was added and the sample was kept on boiling water bath for 10 min. After cooling the reagents were added to the sample and the amount of protein was determined according to the method of Lowry 15. Amount of protein was calculated using a calibration curve prepared by using lysozyme solution in the range of 10-100 µg ml -1. Chlorophyll estimation: Culture (5 ml) was centrifuged at 10,000g for 10 min in CPR 30 (Remi, India) and the pellets obtained were resuspended in 100% methanol, mixed well and kept at 4 0 C overnight for pigment extraction After 24 h samples were centrifuged, Chl a and carotenoids were extracted by following the methods of Porra 16 and Goodwin 17, respectively. The absorbance (UV-VIS-1700, Shimadzu, Japan) of pigment extracts was read at 665 nm for Chl a and at 450 nm for carotenoids. The amount of Chl a and carotenoids is expressed as µg ml 1 culture. Culture of Candida albicans and assessment of anticandidal activity: Culture of C. albicans, American Type Culture Collection (ATCC) 90028 strain was obtained from the laboratory of Dr. Gopal Nath, Professor and Head, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India. Anticandida activity was assessed based on the agar-well diffusion method 18. The lawn of C. albicans was maintained at 1.5 10 5 CFU/ml on Sarbourd dextrose (SD) agar plates under sterile conditions. The plates were dried at 37 0 C for 30 min. Wells of 6mm diameter were created by using sterile agar borer. The above dried pellets were dissolute in normal saline (0.8% NaCl) and poured in each well (20, 40, 60, 80 and 100 µl) and control well carried 100µl normal saline. Poured wells were incubated for 18h at 37 0 C and after that measured the diameter of growth inhibition zone. These test were performed in triplicate. RESULTS AND DISCUSSION: There were few data available to anti-candidal activities of spirulina species on NCBI (Pub Med & PMC). On to the topic of study anti-candidal activities of spirulina species: a possible approach and review for development of plant based antifungal had also data was nil. Our pilot study results indicated towards prospective study will needed. Organism and growth condition: In the present study we investigated the growth rate of S. International Journal of Pharmaceutical Sciences and Research 1243

platensis and S. maxima (Fig. 2) showing the lag phase lasted about less than 48 h, whereas the logarithmic growth started approximately after 48 h of inoculation and continued to the 16th day and thereafter reached at stationary phase. The average growth (recorded as absorbance) of S. platensis and S. maxima at the stationary phase was found to be 0.82 and 0.81 respectively. The Chl a content of S. platensis and S. maxima was found to be 10.06±0.012 and 10.02±0.017µg ml -1 culture the carotenoids content: 4.54±0.005 and 4.53±0.001 µg ml -1 culture and the protein content: 209.932±1.51 and 222.05±2.18 respectively on the 18 th day of growth (Fig 3). Since ancient times Spirulina has been used as a source of food because of its high nutritional value 24. The cyanobacterium S. platensis is rich in nutrients, such as proteins, vitamins, minerals, carbohydrates, and γ-linolenic acid. It is gaining more and more attention of researcher, not only for the foods aspects but also for the development of potential pharmaceuticals 25. S. platensis was also 26, reported to have antimicrobial activity 27. Spirulina has gained an importance and international demand for its high phytonutrients value and pigments which have applications in healthy foods, animal feed, therapeutics and diagnostics 28. FIG. 2: GROWTH CURVE OF S. PLATENSIS AND S. MAXIMA. At this time, consumers are more focusing on plant products with antimicrobial properties and has become matter of intensive research 19. Significant, widespread sources of potentially important new drugs 8 have been reported from verity of habitats 20. In addition, algae are found to be most promising organisms for providing essential compounds for human sustenance 21. In recent drug research from naturally available sources imply that algae proved as a capable group to provide new biochemically active substances 22. Till date from the algal biomass a lot of biologically active substances been isolated 22, having antibacterial, antiviral, fungicide, enzyme inhibitor, immunosuppressive, cytotoxic and algicide activity 22, 23. FIG. 3: CHL A, CAROTENOIDS AND PROTEIN CONTENT OF S. PLATENSIS AND S. MAXIMA International Journal of Pharmaceutical Sciences and Research 1244

Assessment of Spirulina species anticandidal activity against C. albicans: In this prospective study anticandidal activity was found to be maximum in the dissolute of late stationary phase of culture of S. maxima (Table 2, Figure 4) whereas S. platensis dissolute was less effective. In our study different amount of dissolute of both species of Spirulina were poured in each well (i.e. 20, 40, 60, 80 and 100 µl) and control well carried 100 µl normal saline and it was also observed during study that 100µl/well has been found to be more effective than other which shows diameter of inhibition zone of C. albicans in mm 18.3±0.57 and 21.3±0.57 for S. platensis and S. maxima respectively. TABLE 2: DIAMETER OF GROWTH INHIBITION ZONE. ANTICANDIDALACTIVITYOF S. PLATENSIS AND S. MAXIMA AGAINST C. ALBICANS CULTURE. Concentration of extract ( µl/well) Diameter of inhibition zone of C. albicans in mm (S. platensis) Diameter of inhibition zone of C. albicans in mm ( S. maxima) 20 0.00 0.00 40 5.33 ± 0.57 7.33 ± 0.57 60 09.6 ± 0.57 12.6 ± 1.15 80 12.3 ± 0.57 15.3 ± 1.53 100 18.3 ± 0.57 21.3 ± 0.57 FIG.4: PATTERN OF GROWTH INHIBITION ZONE (MM) OF S. PLATENSIS (A) AND S. MAXIMA (B) EXHIBITED AGAINST C. ALBICANS CULTURE. In some of the study it was reported to investigate the antibacterial activity of different extracts of laboratory grown culture of S. platensis. The effectiveness of S. platensis in different solvent was studied such as petroleum ether, chloroform, acetone, and methanol extract against three dermatophytic fungi namely A. fumigates, A. niger, C. albicans and found out that the methanolic extract of S. platensis showed significant activity against A. fumigates 29. They used different methods such as agar-well diffusion method 30, paper disc diffusion method 31, MIC (Minimal Inhibitory Concentration) and 32 reduction in mycelial weight of fungi to determine the antifungal activity of methanolic extract of S. platensis against A. fumigatus and ensured the S. platensis extract as a potential source of antifungal compound against fungal disease. A few studies have been done to screen antimicrobial substances from cyanobacteria from paddy-fields. Cyanobacteria showed a defense mechanism by synthesizing highly active toxin against other microorganism existing in the environment like bacteria, fungi, viruses and eukaryotic microalgae 33. In one of the study antifungal activity the strains of cyanobacteria belonging to family Nostaceae, Microchaetaceae and Scytonematacaea were isolated from the Argentinian paddy fields, against Staphylococcus aureus and C. albicans was reported 34. In Iran 150 strains of cyanobacteria were isolated out of which, 21 showed significant in vitro antibacterial activities and 13 of them had antifungal effect with the proportion of the isolates International Journal of Pharmaceutical Sciences and Research 1245

with antibacterial and antifungal activities were found to be approximately 14% and 9%, respectively 35. CONCLUSION: Based on the results of our study, it is believed that dissolutes of Spirulina species can be used as antifungal drugs. Our study suggests that antifungal activity of Spirulina species needs exploration on the basis of their metabolite structure and function is develop an effective anticandidal agent in near future. ACKNOWLEDGEMENT: This article is dedicated to Late Er. Shivendra Ranjan Mishra (1982-2012). The authors thank to University Grant Commission for financial assistance for Pragya Mishra and also thankfull to Dr. G Nath, Professor and Head, Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi and Dr. RR Mishra, Head Department of Biotechnology, ASHOKA Institute of Technology and Management of Uttar Pradesh Technical University Lucknow, for providing strains of Candida albicans. REFERENCES: 1. Noaman NH, Fattah A, Khaleafa M, Zaky SH: Factors affecting antimicrobial activity of Synechococcus leopoliensis. Microbiol. Res. 2004; 159: 395-402. 2. Careri M, Furlattini L, Mangia A, Musci M, Anklam E, Theobald A and Hoist C: Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina Pacifica algae: a chemometric approach. J. Chromatogr. A 2001; 912: 61-17. 3. Mishra P, Prasad SM: Isolation of Spirulina species (Spirulina maxima and Spirulina platensis) from paddy fields of Allahabad region and comparative growth analysis in two different culture media. Tatvanveshan 2014; 3: 71-84. 4. Vonshak A: Spirulinaplatensis (Arthrospira): Physiology, Cell-Biology and Biotechnology. 1997a; Taylor & Francis Ltd, London UK 5. Vonshak A: Use of Spirulina biomass. Pages 205 212 in Spirulinaplatensis (Arthrospira): Physiology, Cell-biology and Biotechnology. 1997b; A. Vonshak, ed. Taylor and Francis Ltd., London, UK 6. Tomaselli L: Morphology, ultrastructure and taxonomy of Arthrospira (Spirulina) maxima and Arthrospira (Spirulina) platensis. Pages 1 15 in Spirulinaplatensis (Arthrospira): Physiology, Cell-biology and Biotechnology. 1997; A. Vonshak, ed. Taylor and Francis Ltd., London, UK. 7. Oliveira MACL De, Monteiro MPC, Robbs PG and Leite SGF: Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquacult. Int. 1999; 7: 261-275 8. Khan Z, Bhadouria P, and Bisen PS: Nutritional and therapeutic potential of Spirulina. Curr. Pharm. Biotechnol. 2005; 6: 373-379 9. Ryan K: Plague and Other Bacterial Zoonotic Diseases. In: Sherris J.C., Ryan K.J., Ray C.G. (eds) Medical Microbiology: An Introduction to Infectious Diseases. Fourth Edition. McGraw-Hill, USA, 2004; 481 491 10. Sivakumar J and Santhanam P: Antipathogenic activity of Spirulina powder. Recent Res. Sci. Technol. 2011; 3: 158-161 11. Abedin Rania MA, Taha Hala M: Antibacterial and antifungal activity of cyanobacteria and green microalgae evaluation of medium components by Plackett Burman design for antimicrobial activity of Spirulina platensis. J. Biochem. 2008; 3: 22-31 12. Santoyo S, Herrero M, Senorans F and Javier: Functional characterization of pressurized liquid extracts of Spirulina platensis. Eur. Food Res. Technol. 2006; 224(1): 75-81 13. Borowitzka AM: Microalgae as source of pharmaceuticals and biologically active compounds. J. Appl. Phycol. 1995; 7: 3-15 14. Zarrouk C. Contribution à l étude d une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et photosynthèse de Spirulina maxima Geitler. Ph.D. Thesis. University of Paris. 1966 15. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J. Bio. Chem. 1951; 193: 265-275 16. Porra RJ, Thompson WA, Kriedemann PE: Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents; verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochem. Biophys. Acta 1989; 975: 384-394 17. Goodwin TW: Carotenoids. In: K. Paech, M.V. Tracey (Eds.) Handbook of Plant Analysis Springer-Varlag Berlin 1954; 3: 272-311 18. Attaie R, Whalen J, Shahani KM, Amer MA: Inhibition of growth of Spirulina production of acidophilus yogurt. J Food Protec. 1987; 50: 224-228 19. Lanciotti R, Gianotti A, Patrignani A, Belleti N, Guerzoni ME and Gardini F: Use of natural aroma compounds to improve shelf-life of minimally processed fruits. Trends Food Sci Tech 2004; 15: 201-208 20. Kamble SM, Rokde AU and ChavanAM: Antifungal activity of algal extracts against plant pathogenic fungi. Int. Multidisciplinary Res. J. 2012; 2: 23-24 21. Mishra P, Mishra RR, Pragya Mishra, Tewari M, Shukla HS: Pages 373 388 in Implication of endophytic metabolite and their derivatives in cancer chemotherapy: a prospective study 2014; Advances in Endophytic Research, ed VC Verma, AC Gange, Springer-India, DOI: 10.1007/978-81-322-1575-2_19. 22. Mayer AMS and Hamann MT: Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous system and other miscellaneous mechanism of action. Mar. Biotecnol. 2004; 6: 37-52. 23. Harrigan GG, Luesch H, Yoshida WY, Moore RE, Nagle DG and Paul VJ: Symplostatin 2: a dolastatin 13 analogue from the marine cyanobacterium Symplocahydnoides. J. Nat. Prdts. 1999; 62: 655-658. 24. Dillon JC, Phuc AP, Dubacq JP: Nutritional value of the alga Spirulina. World Rev. Nutr. Diet 1995; 77: 32-46. International Journal of Pharmaceutical Sciences and Research 1246

25. Quoc KP, Pascaud M: Effects of dietary gammalinolenic acid on the tissue phospholipid fatty acid composition and the synthesis of eicosanoids in rats. Annals of Nutri. and Metabol. 1996; 40: 99 108. 26. Demule MCZ, Decaire GZ, Decano MS: Bioactive substances from Spirulina platensis (cyanobacteria). Int. J. Exp. Bot. 1996; 58: 93-96. 27. Ozdemir G, Karabay NU, Dalay MC and Pazarbasi B: Antibacterial activity of volatile component and various extracts of Spirulina platensis. Phytother. Res. 2004; 18: 754-757. 28. Becker EW: Microalgae. Cambridge Univ Press. Cambridge, New York 1994. 29. Vinay K, Usmani SK and Shrivastava JN: Antifungal Activity of Spirulina platensis (Geitler) against some Human Pathogenic Fungi Microbiology Laboratory, Department of Botany, Dayalbagh Educational Institute, Dayalbagh, Agra 282 005.Vegetos 22: 83-89, 2009. 30. Shanmuga PK, Gnanamani A, Radhakrishnan N Babu M: Antimicrobial activity of Daturaalba. Indian Drugs 2002; 39: 113-116. 31. Okigbo RN, Mbajiuka CS and Njoku CO: Antimicrobial potentials of (UDA) Myopias aesthetical and Acetum gratissimum L. on some pathogens of man. Int J Mole Medi Adv Sci 2005; 1: 392-397. 32. Kunert J: Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experintia. 1972; 28: 1025-1026. 33. Mundt S, Kreitlow S, Nowotny A, and Effmert U: Biological and pharmacological investigation of selected cyanobacteria. Int. J. Hyg. Environ. Health 2001; 203: 327-334. 34. De Caire GZ, De Cano MMS, De Mule MCZ and De Halperin DR: Screening of cyanobacterial bioactive compounds against human pathogens. Phyton. 1993; 54: 59-65. 35. Ghasemi Y, Tabatabaei Yazdi M, Shokravi S, Soltani N, and Zarrini G: Antifungal and Antibacterial Activity of Paddy-Fields Cyanobacteria from the North of Iran. J. Sci. I. R. 2003; 14: 203-209. How to cite this article: Mishra P and Prasad SM: Evaluation of Anticandidal Activities of Spirulina Metabolite against Candida Albicance. Int J Pharm Sci Res 2015; 6(3): 1241-47.doi: 10.13040/IJPSR.0975-8232.6(3).1241-47. All 2013 are reserved by International Journal of Pharmaceutical Sciences and Research. This Journal licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. This article can be downloaded to ANDROID OS based mobile. Scan QR Code using Code/Bar Scanner from your mobile. (Scanners are available on Google Playstore) International Journal of Pharmaceutical Sciences and Research 1247