Invasive Pulsed-Type, Bipolar, Alternating Current Radiofrequency Treatment Using Microneedle Electrodes for Nasal Rosacea

Similar documents
Treatment of Refractory Rosacea with a Dual Wavelength Long- Pulsed 755-nm Alexandrite and 1,064-nm Nd:YAG Laser

Modified 3-Step Broadband Light Treatment for Inflammatory Acne Vulgaris and Post-Acne Erythema in Asian Patients

Therapeutic Efficacy and Safety of Invasive Pulsed-Type Bipolar Alternating Current Radiofrequency on Melasma and Rebound Hyperpigmentation

Clinical indicators of rosacea progression: a topographic evaluation according to subtype and severity

The Efficacy and Safety of Bipolar Radiofrequency Treatment with Non-Insulated Penetrating Microneedles for Acne Vulgaris and Acne Scars

Evaluation of the wound healing response post deep dermal heating by fractional RF: INTRAcel

SPECIAL TOPIC. AboutSkin Dermatology & DermSurgery, Greenwood Village, CO b. The Aesthetic Clinique, Destin, FL c

Evaluation of the wound healing response post - deep dermal heating by fractional RF: INTRACEL

Clinical Efficacy and Statistical Evaluation of INTRAcel Treatment

Pulsed Dye Laser Treatment Combined with Oral Minocycline Reduces Recurrence Rate of Rosacea

Conventional ablative carbon dioxide (CO 2 ) and

combining Fractional RF and Superficial RF

Hands-on: Lasers. NonAblative Rejuvenation

FEB-2015 ISSUE. Dr. David Pudukadan

Efficacy and safety of ablative fractional carbon dioxide laser for acne scars

NO MORE NEWS AN EVIDENCE BASED APPROACH ON LASERS IN SKIN OF COLOR PATIENTS DR. EDUARDO WEISS, M.D., FAAD

Successful Treatment of Refractory Melasma Using Invasive Micro-Pulsed Electric Signal Device

In-vivo histopathological study of YouLaser MT interaction with the skin. A laser device emitting combined 1540 and nm wavelengths.

Therapeutic Efficacy and Safety of Wavelength-Converted 660-nm Q-Switched Ruby-Like Versatile YAG Treatment on Various Skin Pigmentation Disorders

Pulsed Dye Laser Treatment of Rosacea Using a Novel 15 mm Diameter Treatment Beam

A case of rosacea fulminans in a pregnant woman

Multi-Application Platform. Summary of Peer-reviewed Articles for Various Clinical Indications April 2016

LASERS: CAN THEY TREAT SPIDER VEINS? Steven E. Zimmet, MD

Partial Unilateral Lentiginosis Treated with 532-nm and Subsequent Low-Fluence 1,064-nm Q-Switched Neodymium-Doped Yttrium Aluminum Garnet Lasers

Evidence-based Clinical Practice Guidelines for Treatment of Acne and Rosacea in Canada. Catherine Zip Nov 10, 2016

Clinical Study Treatment of Mesh Skin Grafted Scars Using a Plasma Skin Regeneration System

Chapter 21: FotoFacial RF Pro Treatment of Specific Clinical Subtypes

Superior RF Multi-Treatment Platform

NOVEL MULTI-SOURCE PHASE-CONTROLLED RADIOFREQUENCY TECHNOLOGY FOR NON- ABLATIVE AND MICRO-ABLATIVE TREATMENT OF WRINKLES, LAX SKIN AND ACNE SCARS

A new classification system of nasal contractures

Superior RF Multi-Treatment Platform

Nonpharmacologic Treatment of Rosacea Corporate Medical Policy

Relation between the Peripherofacial Psoriasis and Scalp Psoriasis

Acne is one of the most common skin diseases. It usually occurs during adolescence, but can

RightLight TM Technology Enhanced Dye Wavelengths. WHITE PAPER Synchro VasQ

Clinical Benefit of Combination Treatment with 1,550 nm Fractional Laser and a New Wavelength at 1,927 nm on Photorejuvenation in Asian Patients

Rosacea. This non promotional presentation has been sponsored and developed by Galderma for UK healthcare professionals only.

A Comparison of the Efficacy of Ablative Fractional Laser-assisted Photodynamic Therapy according to the Density of Ablative Laser Channel

Available online at Vol. 07, No. 02, pp , February, 2018 RESEARCH ARTICLE

Dual modality body shaping study with RF and IR technologies utilizing SharpLight s FormaxPlus Platform.

A Never Obsolete Face and Body Platform

Reports on Scientific Meeting

Arisa Ortiz, MD Director, Laser and Cosmetic Dermatology Assistant Clinical Professor Department of Dermatology UC San Diego

PROVIDER ACCREDITATION

The Comparison of the Result of Epiduroscopic Laser Neural Decompression between FBSS or Not

Presentation Product & clinics

Dual wavelength (1540nm nm) mixed technology for fractional resurfacing in skin rejuvenation Background

Diode and diode pumped frequencies doubled solid state. 940 nm, 532 nm

R. Glen Calderhead 1, Boncheol Leo Goo 1, Franco Lauro 2, Devrim Gursoy 3, Satish S. Savant 4 and Adam Wronski 5. Addressee for Correspondence:

Time to Learn. 6 th March 2018 Dr. Shirin Chakera GPwSI Integrated Dermatology Service

High Intensity Focused Ultrasound Facial Skin Lifting

Our Approach to Non-Ablative Treatment Of Photoaging

Impact of Contactless Apoptosis-Inducing RF on Temperature of Human Skin Surface and Subcutaneous Layer as well as Porcine Histology: A Pilot Study

A novel fractional micro-plasma radio-frequency technology for the treatment of facial scars and rhytids: A pilot study

A Novel Approach for Acne Treatment

Low-fluence Q-switched neodymium-doped yttrium aluminum garnet (1064nm) laser for the treatment of facial melasma in local population

NONABLATIVE RESURFACING

COMBINING RADIOFREQUENCY SYSTEMS. to treat the neck BALANCING METHYLATION AGEING AND DISEASE PREVENTION TREATING STRETCH MARKS A LITERATURE REVIEW

Evaluation of Microneedling Fractional Radiofrequency Device for Treatment of Acne Scars

CLINICAL EVALUATION REPORT ON THE EFFICACY AND SAFETY OF THE CORE SYSTEM FOR FACIAL ENHANCEMENT TREATMENTS

Standardized Thyroid Cancer Mortality in Korea between 1985 and 2010

High Power CO2 Laser + Micro-needle Fractional RF

Rosacea: a symptom-based approach to management Edward Seaton MA, MRCP

Successful Treatment of Recalcitrant Remaining Postoperative Wounds by Dual-Frequency Ultrasound

An Open-Label, Split-Face Trial Evaluating Efficacy and Safty of Photopneumatic Therapy for the Treatment of Acne

Randomized Controlled Trial: Comparative Efficacy for the Treatment of Facial Telangiectasias With 532 nm Versus 940 nm Diode Laser

Disclosures. Laser Treatment of Scars. Options for Cutaneous Scarring. Laser Treatment of Erythematous Scars. Laser Scar Revision Scar Type

BBLs BroadBand Light. Daryl Mossburg, RN BSN Clinical Specialist Sciton, Inc. All rights reserved.

ACNE. Jason M Cheyney, MPAS, PA-C Dermatologic Surgery Specialists Macon, Ga 31211

Corporate Medical Policy

NEW IN-DEMAND AESTHETICS IN ONE PLATFORM TECH BREAKTHROUGH PLUS

PHOTO REJUVENATION UTILIZING A KRYPTON LIGHT SOURCE:A CLINICAL AND HISTOLOGICAL STUDY

Hybrid Energy TM Technology

Interesting Case Series. Rhinophyma

Rosacea Subtypes Visually and Optically Distinct When Viewed with Parallel-Polarized Imaging Technique

ClearSkin. Er:Glass 1540nm Laser Module. Orly Baror Gal, Eng.BioMedical. Clinical Applications Specialist

PHYSICIANS GUIDE. Understanding Fraxel TM Laser Treatment

Footprints for Human beings... REV-MED

Treatment of Leg Telangiectasia (Spider Veins) with Magma Long Pulse ND - Laser 1064 nm Case Study

Rosacea Rosacea: how I hates ya! Richard Castillo, OD, DO The Oklahoma College of Optometry Northeastern State University Tahlequah, OK

In Vivo Histological Evaluation of a Novel YSGG Ablative Fractional Device for Cutaneous Remodeling

Consensus Recommendations on the Use of a Fractional Radiofrequency Microneedle and Its Applications in Dermatologic Laser Surgery

OA(Original Article) Key words Asian; Melasma; Fractional photothermolysis; Topical drugs

Technology You Trust Innovation You Need

SPECIAL TOPIC. Cosmetic Dermatology Center, McLean, VA b. Art of Skin, MD, Solana Beach, CA c. Dermatology Associates, Seattle, WA

Icon specifications. Handpiece compatibility

Management of Acne Scarring

HISTOLOGICAL EVALUATION AFTER RADIOFREQUENCY TREATMENT FOR FACE REJUVENATION AND CELLULITIS

Jerry Tan MD FRCPC University of Western Ontario Windsor campus, Ontario, Canada. Pathogenesis & management of acne scarring

Frequently Asked Questions

Update of Rosacea. Case 1. Case 2 8/15/2017

NEHSNORTH EASTERN HEALTH SPECIALISTS

- Final Report - Animal Testing Report for Safety and Efficacy of Ultraskin. October 31, 2012

Dual Wavelength Phototherapy System

Focused Ultrasound Body-shaping system Beijing Sanhe Beauty S & T Co.,Ltd

Introduction. Device Description. Dual-Band Spectral Output

Laser Treatment of Leg Veins

Reduces the appearance of cellulite and improves the appearance of the skin.

Abeer Attia¹*, PhD, Manal Salah, MD², Neiven Sami PhD²

Transcription:

Med Laser 2017;6(1):32-36 https://doi.org/10.25289/ml.2017.6.1.32 pissn 2287-8300 ㆍ eissn 2288-0224 Invasive Pulsed-Type, Bipolar, Alternating Current Radiofrequency Treatment Using Microneedle Electrodes for Nasal Rosacea Tae Hwan Ahn 1 Sung Bin Cho 2,3 1 Fresh Facial Aesthetic Surgery and ENT Clinic, Seoul, Korea 2 Department of Dermatology and Cutaneous Biology Research Center, International St. Mary s Hospital, Catholic Kwandong University College of Medicine, Incheon, Korea 3 Kangskin Sillim Dermatology Clinic, Seoul, Korea Radiofrequency (RF) devices deliver high frequency energy to the biological tissues thath as been either cut or coagulated. A pulsed-type RF irradiation elicits thermal and/or non-thermal effects by delivering a particular rate of gated RF oscillations. In the present study, we describe two patients with nasal rosacea, who were effectively treated with invasive pulsed-type, bipolar alternating current (AC) RF treatment using microneedle electrodes. The RF treatment was delivered to these two patients with a power level of 3, a microneedle penetration depth of 1.5 mm, and 2-3 passes over six (patient 1) and 12 (patient 2) sessions, at two-week intervals. The first patient presented marked clinical improvement with respect to both the overall redness and papulopustular lesions; the second patient exhibited noticeable improvement in both the texture and telangiectatic lesions on the nose. Both patients were satisfied with the clinical outcomes without remarkable side effects. Key words Pulsed-type radiofrequency; Bipolar; Alternating current; Invasive; Nose; Rosacea; Telangiectasia Received June 9, 2017 Accepted June 12, 2017 Correspondence Sung Bin Cho Department of Dermatology and Cutaneous Biology Research Center, International St. Mary s Hospital, Catholic Kwandong University College of Medicine, 25 Simgok-ro, Seo-gu, Incheon 22711, Korea Tel.: +82-32-290-3141 Fax: +82-32-290-3142 E-mail: drsbcho@gmail.com C Korean Society for Laser Medicine and Surgery CC This is an open access article distributed under the terms of the Creative Commons Attribution Non- Commercial License (http://creativecommons.org/ licenses/by-nc/4.0) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 32

Nasal Rosacea and Pulsed-Type RF Tae Hwan Ahn and Sung Bin Cho Introduction Rosacea is a chronic inflammatory disorder of the facial and extrafacial skin that clinically appears as flushing and blushing, persistent erythema and telangiectasia, persistent plaque-form edema, and/or acneiform papulopustules and nodules. 1,2 The five subtypes of rosacea, according to the modified National Rosacea Society classification system, include erythematotelangiectatic, papulopustular, phymatous, ocular, and mixed subtypes. 3-5 Among Koreans with localized nasal rosacea, erythematotelangiectatic rosacea is the most common subtype, followed by papulopustular rosacea. 3 Compared with phymatous or mixed subtypes, erythematotelangiectatic rosacea localized to the nasal areas exhibits shorter disease duration and lower severity. 3 Various energy delivery devices, including pulsed-dye laser and intense pulsed light, have been used for the treatment of rosacea as alternative or combination treatment modalities. 2 Long-pulsed lasers with a pulse duration of 0.35 to 40 milliseconds at the wavelengths of 585 nm or 595 nm effectively destroy congenital and acquired vascular lesions through the selective photothermolysis of target chromophores. 6 The laser energy is preferentially absorbed by vascular components with a sufficient number of chromophores. Thus, pulsed-dye laser therapy has been suggested as an additional therapeutic option for improving rosacea with grade C and D recommendations. 6 In the present study, we report the cases of two patients with papulopustular or erythematotelangiectatic nasal rosacea who were effectively treated with an invasive pulsed-type, bipolar alternating current (AC) radiofrequency (RF) device using microneedle electrodes. Two Korean male patients (24-year-old and 76-yearold) with Fitzpatrick skin type IV, who were clinically diagnosed with nasal rosacea, participated in this study. The first patient presented with localized, recurrent erythematous papulopustular lesions on the nose, along with a few pustules on the perioral area (Fig. 1A). The second patient A B C D Fig. 1. Normal light-exposed photos reveal papulopustular rosacea along the nose in a 24-year old man at (A) baseline, at two weeks after (B) two sessions and (C) four sessions, and (D) at four weeks after six sessions of invasive pulsed-type, bipolar alternating current (AC) radiofrequency (RF) treatment using microneedle electrodes. VOLUME 6 NUMBER 1 JUNE 2017 33

exhibited markedly telangiectatic lesions on a mildly phymatous nose (Fig. 2A). Previously, the first patient had been intermittently treated with oral and topical antibiotics for inflammatory acne lesions; neither patients had been treated with any light or laser devices, oral or topical retinoids, or topical metronidazole or brimonidine tartrate gels for the treatment of localized nasal rosacea within the most recent 1 year. Otherwise, they had no remarkable familial or medical history. After obtaining written informed consent, the patients were treated with six (patient 1) and 12 (patient 2) sessions of invasive pulsed-type, bipolar AC RF treatment using microneedle electrodes (SYLFIRM; Viol, Kyunggi, Korea) for localized nasal rosacea at two-week intervals. The skin along the nose was cleansed with 70% ethanol and anesthetized with topical anesthetic cream for 30 minutes prior to the treatment. Then, invasive pulsed-type, bipolar AC RF treatment was delivered with a power level of 3, a microneedle penetration depth of 1.5 mm, and 2-3 passes. All shots were delivered after gently pressing the disposable tips on the skin for proper penetration of the microneedle electrodes into the target area. Immediately after treatment, the treatment area was cooled with icepacks. No prophylactic systemic or topical antibiotics and corticosteroids were prescribed to the patients immediately after or during the course of treatment. The first patient presented with marked clinical improvement in both overall redness and the papulopustular lesions on the nose from the fourth session of treatment with the invasive pulsed-type, bipolar AC RF device. Further improvement in the nasal rosacea was recorded with subsequent treatments (Fig. 1B-D). The second patient experienced noticeable improvement in both the texture and the telangiectatic lesions of the nose from the fifth session of treatment, and pronounced clinical improvement was recorded at one month after the final treatment session (Fig. 2B-D). Both of the patients were very satisfied with the clinical outcomes, and no remarkable side effects, including immediate excessive bleeding or oozing, worsening of the nasal rosacea, folliculitis or furuncle, post-therapy prolonged erythema, post-therapy dyschromia, or scarring, were reported. As well, pain during the A B C D Fig. 2. Normal light-exposed photos reveal erythematotelangiectatic nasal rosacea in a 76-year old man at (A) baseline, at two weeks after (B) two sessions and (C) seven sessions, and (D) at four weeks after 12 sessions of invasive pulsed-type, bipolar AC RF treatment using microneedle electrodes. 34

Nasal Rosacea and Pulsed-Type RF Tae Hwan Ahn and Sung Bin Cho invasive pulsed-type, bipolar AC RF treatment was well tolerated with topical anesthetic cream in both patients. DISCUSSION RF devices deliver high frequency (HF) monopolar or bipolar AC to the skin in both noninvasive and minimally invasive manners. 7 Invasive bipolar AC RF can deliver electrical currents deeper to target tissues by penetrating microneedle electrodes into the skin, and the penetration depth of HF energy is relatively predictable, compared to monopolar RF. 7,8 Additionally, continuous-type RF irradiation generates thermal ablative effects in target tissues by continuously delivering HF energy over set conduction times, whereas pulsed-type RF irradiation elicits thermal and/or non-thermal effects by delivering a particular rate of gated RF oscillations. 7,9 With these characteristics, invasive pulsed-type, bipolar AC RF treatment has been deemed effective for use in treating refractory melasma. 10 The skin exhibits various current densities among its multiple layers and also among different types of appendage structures. Thus, the patterns of invasive, continuoustype, bipolar, AC RF-induced skin reactions differ mainly according to the depth of microneedle penetration, RF conduction time, and signal amplitude. 11,12 Regardless of the use of insulated or non-insulated microneedles, a larger area of tissue coagulation is generated from the tips of individual microneedles by increasing the depth of penetration or RF conduction time, while a higher signal amplitude induces a higher degree of tissue coagulation. 7,11,12 A previous in vivo micropig skin study revealed that tissue coagulation induced by continuous-type, bipolar AC RF is found preferentially along the outer layers of vessels and perivascular structures in the dermis between individual non-insulated microneedle electrodes. 12 Our two patients presented with localized papulopustular and erythematotelangiectatic nasal rosacea, respectively. As the vascular components and surrounding dermal tissues exhibit high current densities, the pulsedtype delivery of bipolar RF energy was able to effectively treat the abnormal vascular components of the nasal rosacea lesions in our patients without producing excessive thermal injury to the epidermis and dermis. However, the optimal treatment settings for maximizing the vascular selectivity of invasive pulsed-type, bipolar AC RF energy remains to be elucidated. Both of the patients demonstrated noticeable clinical improvement after four to five sessions of invasive pulsed-type, bipolar AC RF treatment and showed further improvement after additional sessions of the treatment. Interestingly, the first patient also experienced marked decreases in inflammation, and the other patient showed textural improvement in the phymatous-appearance of his nose. This led us to suggest that our treatment using a pulsed-type RF device could have generated subcellular, electrical thermo-modulating effects on the inflammatory cells and dermal mesenchymal cells, in addition to the dermal vascular components. In this report, invasive pulsed-type, bipolar AC RF treatment using non-insulated microneedle electrodes proved to be safe and effective in treating papulopustular and erythematotelangiectatic rosacea localized to the nose in two male Korean patients. Accordingly, we suggest that treatment with invasive pulsed-type, bipolar AC RF devices may be an additional therapeutic option for treating various types of localized nasal rosacea. However, histopathologic investigations to evaluate the effects thereof on targeted vascular components are lacking. Randomized, prospective, controlled clinical trials should be followed to confirm our findings. ACKNOWLEDGEMENTS We would like to thank Anthony Thomas Milliken, ELS, (Editing Synthase, Seoul, Korea) for his help with the editing of this manuscript. References 1. Plewig G, Kligman AM. Acne and rosacea. 3rd ed. Berlin: Springer; 2000. p.455-502. 2. Bernstein EF, Kligman A. Rosacea treatment using the newgeneration, high-energy, 595 nm, long pulse-duration pulseddye laser. Lasers Surg Med 2008;40:233-9. 3. Lee WJ, Lee YJ, Won CH, Chang SE, Choi JH, Lee MW. Clinical evaluation of 30 patients with localized nasal rosacea. J Dermatol 2016;43:200-2. 4. Wilkin J, Dahl M, Detmar M, Drake L, Feinstein A, Odom R, et al. Standard classification of rosacea: report of the national rosacea society expert committee on the classification and staging of rosacea. J Am Acad Dermatol 2002;46:584-7. 5. Wilkin J, Dahl M, Detmar M, Drake L, Liang MH, Odom R, et al. Standard grading system for rosacea: report of the national rosacea society expert committee on the classification and staging of rosacea. J Am Acad Dermatol 2004;50:907-12. 6. Erceg A, de Jong EM, van de Kerkhof PC, Seyger MM. The efficacy of pulsed dye laser treatment for inflammatory skin diseases: a systematic review. J Am Acad Dermatol 2013;69:609-15.e8. 7. Cho SB, Kim HS. High-frequency alternating electrical current: VOLUME 6 NUMBER 1 JUNE 2017 35

selective electromagnetic tissue reaction. Med Laser 2016;5:1-6. 8. Taheri A, Mansoori P, Sandoval LF, Feldman SR, Pearce D, Williford PM. Electrosurgery: part I. Basics and principles. J Am Acad Dermatol 2014;70:591.e1-14. 9. Yarmush ML, Golberg A, Serša G, Kotnik T, Miklavčič D. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu Rev Biomed Eng 2014;16:295-320. 10. Choi M, Choi S, Kang JS, Cho SB. Successful treatment of refractory melasma using invasive micro-pulsed electric signal device. Med Laser 2015;4:39-44. 11. Zheng Z, Goo B, Kim DY, Kang JS, Cho SB. Histometric analysis of skin-radiofrequency interaction using a fractionated microneedle delivery system. Dermatol Surg 2014;40:134-41. 12. Na J, Zheng Z, Dannaker C, Lee SE, Kang JS, Cho SB. Electromagnetic initiation and propagation of bipolar radiofrequency tissue reactions via invasive non-insulated microneedle electrodes. Sci Rep 2015;5:16735. 36