Clinical Study Reducing the Health Burden of HPV Infection Through Vaccination

Similar documents
Prophylactic HPV vaccines: Reducing the burden of HPV-related diseases

Epidemiology and Natural History of Human Papillomavirus Infections in the Female Genital Tract

Prevention strategies against the human papillomavirus: The effectiveness of vaccination

The Korean Journal of Cytopathology 15 (1) : 17-27, 2004

Prophylactic HPV Vaccines. Margaret Stanley Department of Pathology Cambridge

The promise of HPV vaccines for Cervical (and other genital cancer) prevention

Pathology of the Cervix

A Short Review on Human Papillomavirus Vaccines

HUMAN PAPILLOMAVIRUS VACCINES AND CERVICAL CANCER

Focus. A case. I have no conflicts of interest. HPV Vaccination: Science and Practice. Collaborative effort with Karen Smith-McCune, MD, PhD 2/19/2010

HPV/Cervical Cancer Resource Guide for patients and providers

warts or papillomas in the upper respiratory tract, particularly the larynx, and that is associated with extensive morbidity (Table 1). RISK FACTORS G

2 HPV E1,E2,E4,E5,E6,E7 L1,L2 E6,E7 HPV HPV. Ciuffo Shope Jablonska HPV Zur Hausen HPV HPV16. HPV-genome.

SCCPS Scientific Committee Position Paper on HPV Vaccination

Strategies for HPV Vaccination in the Developing World

Supplementary Appendix

Opinion: Cervical cancer a vaccine preventable disease

An update on the Human Papillomavirus Vaccines. I have no financial conflicts of interest. Case 1. Objectives 10/26/2016

Prophylactic human papillomavirus vaccines

Quick Reference: Immunization Communication Tool For Immunizers HPV 2010

Human Papillomavirus. Kathryn Thiessen, ARNP, ACRN The Kansas AIDS Education and Training Center The University of Kansas School of Medicine Wichita

Eradicating Mortality from Cervical Cancer

Human Papillomavirus

HPV and the Prevention of Cervical Cancer

Human Papillomaviruses and Cancer: Questions and Answers. Key Points. 1. What are human papillomaviruses, and how are they transmitted?

Cervical Dysplasia and HPV

9/11/2018. HPV Yoga. Human Papillomavirus. Human Papillomavirus (HPV) Disease. Most common sexually transmitted infection in the U.S.

Largest efficacy trial of a cervical cancer vaccine showed Cervarix protects against the five most common cancercausing

News. Laboratory NEW GUIDELINES DEMONSTRATE GREATER ROLE FOR HPV TESTING IN CERVICAL CANCER SCREENING TIMOTHY UPHOFF, PHD, DABMG, MLS (ASCP) CM

Cervical Cancer Screening - Improving PAP Rates. Objectives

Chapter 13: Current findings from prophylactic HPV vaccine trials

HPV vaccination: the promise & problems

How do we compare? IP724/BMTRY Introduction to Global and Public Health. Feb 21, 2012 Basic Science Rm Sharon Bond, PhD, CNM

Commonly asked questions on human papillomavirus vaccine

What is the Safety and Efficacy of Vaccinating the Male Gender to Prevent HPV Related Neoplastic Disorders in Both the Male and Female Genders

FREQUENCY AND RISK FACTORS OF CERVICAL Human papilloma virus INFECTION

OPPORTUNISTIC HPV VACCINATION: AN EXPANDED VISION

In February 2007, the National Advisory Committee on

Cervical Cancer 8/20/2008. New genital HPV infections are commonest amongst young adults. Development of antibody to HPV capsids after HPV infection

Human papillomavirus and vaccination for cervical cancer

Infectious Disease Epidemiology and Transmission Dynamics. M.bayaty

PRODUCT INFORMATION GARDASIL 9. [Human Papillomavirus 9-valent (Types 6, 11, 16, 18, 31, 33, 45, 52, 58) vaccine, Recombinant]

HPV AND CERVICAL CANCER

HPV the silent killer, Prevention and diagnosis

COLLEGE WOMEN S PERCEPTIONS OF HPV VACCINES AND THEIR PERCEIVED BARRIERS TO ADOPTION OF VACCINATION

Appropriate Use of Cytology and HPV Testing in the New Cervical Cancer Screening Guidelines

Cervical screening. Cytology-based screening programmes

PAP smear. (Papanicolaou Test)

T he ability to generate human papillomavirus

Clinical overview of GSK s AS04 adjuvanted vaccine: data up to 6.4 years

Objectives. Background. Background. Background. Background 9/26/16. Update on Cervical and HPV Screening Guidelines: To pap or not to pap?

Should Anal Pap Smears Be a Standard of Care in HIV Management?

Cervical Cancer Screening Update. Melissa Hartman, DO Women s Health

Woo Dae Kang, Ho Sun Choi, Seok Mo Kim

HPV vaccine perspectives Dr. David Prado Cohrs

INTRODUCTION HUMAN PAPILLOMAVIRUS

Role of Human Papilloma Virus Infection in Cancer of Cervix

Promoting Cervical Screening Information for Health Professionals. Cervical Cancer

Review Article. Abstract. Introduction. HPV Pathogenesis:

Quadrivalent Human Papillomavirus Vaccine

The HPV Vaccination Programme Early intervention in cancer prevention Northern Ireland

Cervical Cancer Screening. David Quinlan December 2013

Worldwide, cervical cancer is second. Decreasing Risk: Impact of HPV Vaccination on Outcomes REPORTS. Pamela Ann Hymel, MD, MPH

UICC HPV and CERVICAL CANCER CURRICULUM. UICC HPV and Cervical Cancer Curriculum Chapter 5. Application of HPV vaccines Prof. Suzanne Garland MD

HPV-Associated Disease and Prevention

Introdução à Medicina I

Gender (in)equality in Human Papilloma Virus (HPV) vaccinations and treatment Prof. Giampiero Favato

New paradigm for prevention of cervical cancer

HIV-infected men and women. Joel Palefsky, M.D. University of California, San Francisco

A Randomized, Double-Blind, Placebo-Controlled Trial of 5-Fluorouracil for the Treatment of Cervicovaginal Human Papillomavirus

Who Should and Who Should Not Be Vaccinated Against Human Papillomavirus Infection?

Are you dying to have sex?

Quadrivalent Human Papillomavirus Vaccine

Towards the elimination of HPV

Cervical Cancer Screening for the Primary Care Physician for Average Risk Individuals Clinical Practice Guidelines. June 2013

Quadrivalent Human Papillomavirus (Types 6, 11, 16, 18) Recombinant Vaccine (Gardasil Ò )

Cervical Cancer 4/27/2016

The Future of Cervical Screening. Jenny Ross

Promise of reduced HPV associated

CERVICAL CANCER VACCINE DEVELOPMENT

HPV FREE IDAHO. Fundamentals of HPV Bill Atkinson, MD MPH

The impact of the HPV vaccine in Scotland.

Study No.: Title: Rationale: Phase: Study Period: Study Design: Centers: Indication: Treatment: Objectives: Primary Outcome/Efficacy Variable:

Making Sense of Cervical Cancer Screening

I have no financial interests in any product I will discuss today.

HPV, Cancer Genes, and Raising Expectations

Research Article Adolescent Understanding and Acceptance of the HPV Vaccination in an Underserved Population in New York City

LECTURE: human papilloma virus vaccine

Impact of Human Papillomavirus (HPV)-6/11/16/18 Vaccine on All HPV-Associated Genital Diseases in Young Women

Human papilloma viruses and cancer in the post-vaccine era

Cervical Cancer The Role of Primary Care in Reducing Cancer Disparities

9/18/2008. Cervical Cancer Prevention for Adolescent Populations Garcia. Faculty disclosure. Objectives. HPV Positivity by Age (UK)

HPV Vaccination Rates

The Global Burden of HPV Related Cancers and Their Prevention

HPV Epidemiology and Natural History

Human papillomavirus Infections, Outcomes, Treatments and Concerns

Objectives. I have no financial interests in any product I will discuss today. Cervical Cancer Screening Guidelines: Updates and Controversies

Cervical cancer is the second most common cancer affecting women worldwide. Cervical

The HPV vaccine: what we know versus what we hope

The HPV Vaccine: A Sheep in Wolf's Clothing

Transcription:

Infectious Diseases in Obstetrics and Gynecology Volume 2006, Article ID 83084, Pages 1 5 DOI 10.1155/IDOG/2006/83084 Clinical Study Reducing the Health Burden of HPV Infection Through Vaccination David Soper Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC 29425, USA Received 18 August 2005; Accepted 20 September 2005 Human papillomavirus (HPV), a sexually transmitted infection and the etiologic cause of genital warts and cervical cancer, is highly prevalent in sexually active men and women. Although cervical screening procedures have significantly reduced the disease burden associated with HPV infection, they are expensive and abnormal results cause significant emotional distress. Therefore, prevention may be an effective strategy for reducing the economic, psychosocial, and disease burden of HPV infection. Multivalent vaccines are now in clinical development. A bivalent vaccine that protects against HPV 16 and 18, and a quadrivalent vaccine which protects against HPV types 6, 11, 16, and 18, have been shown to significantly reduce the occurrence of incident and persistent HPV infections in phase 2 clinical trials; phase 3 trials are currently underway. HPV vaccines will be most effective when administered prior to initiation of sexual activity, and vaccination campaigns should aggressively target preadolescent and adolescent populations. Copyright 2006 David Soper. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. SIGNIFICANCE OF HPV INFECTION Human papillomavirus (HPV) is the most common newly acquired sexually transmitted infection (STI) in the United States, with an estimated 20 million people infected [1]. Furthermore, incidence of HPV infection has increased during the past two decades, with approximately 6.2 million newly diagnosed casesannually [1, 2](Figure 1). HPV infection has a very high prevalence rate in adolescent girls and young women. One study showed that 36% of women 25 years of age or younger are HPV-positive compared with less than 3% of women 45 years of age and older [3]. HPV is the etiologic agent of several genital epithelial lesions including genital warts (condylomata acuminata), cervical intraepithelial neoplasia (CIN), and cervical cancer. Consequently, HPV is a major public health burden. More than 100 different types of HPV have been identified [4, 5](Table 1). Low-risk types, HPV 6 and HPV 11, are the most common types implicated in causing genital warts [6]. Furthermore, due to their ability to cause low-grade cervical lesions, infection with low-risk HPV types is often associated with abnormal Papanicolaou (Pap) test results [7]. Although genital warts are medically benign, and low-grade CIN can spontaneously regress, diagnosis of genital warts or an abnormal Pap smear result can cause emotional distress and impose an economic burden [8]. In contrast to infection with HPV types 6 and 11, infection with high-risk HPV types 16 and 18 can lead to anogenital cancers. HPV types 16 and 18 cause 70% of all cases of cervical cancer, with half of all cervical cancers caused by type 16 alone [4]. Persistent infection with high-risk HPV types is implicated in 99.7% of cervical cancers [9]. Preventing infection with the most common low-risk and high-risk HPV types would prevent the majority of cases of genital warts and cervical cancer, respectively. The transmission typically occurs through the skin-toskin anogenital contact. Increased risk for acquiring HPV has been associated with multiple sexual partners, younger age of sexual debut, failure to use condoms, and sex with uncircumcised males [10]. However, one study reported that 20% of women became infected with only one lifetime sex partner, suggesting that both partners must be sexually naïve to prevent infection [10]. Several studies have shown that the risk of infection increases substantially when initiating a new sexual relationship [5, 10 13]. The transmission of HPV infection can be blocked by latex condoms if the infected area is physically covered [14]. Nonetheless, HPV often manifests on external anogenital sites not covered by a condom, and so the latter does not prevent all infections. However, the use of a condom may reduce HPV persistence and therefore aid in the regression of HPV-associated lesions [15].

2 Infectious Diseases in Obstetrics and Gynecology HPV 5.5million Total 15.4million Herpes simplex 1million Gonorrhea 650,000 Chlamydia 3million Syphilis, HIV, and hepatitis B 210,000 Trichomoniasis 5million Figure 1: Estimated incidence of sexually transmitted infections in the United States [1]. Table 1: Common HPV types associated with HPV-related diseases [4]. HPV types High-risk 16, 19, 31, 33, 45 Low-risk 6, 11 Manifestations Low-grade cervical changes High-grade cervical changes Cervical cancer Anogenital and other cancers Benign low-grade cervical changes Condylomata acuminata (genital warts) ECONOMIC BURDEN OF HPV INFECTION Annual cervical cancer screening is expensive. In a study of women enrolled in a USA health care plan, it was estimated that an average of $26,415 per 1000 women was spent on annual cervical screening and treatment for HPV-related diseases [16]. When these data are extrapolated to the general USA population, it can be estimated that$3.4 billion is spent annually on diagnosis and treatment of HPV infection and its associated cervical diseases [16]. Approximately 90% of the estimated cost can be attributed to strategies for prevention of cervical cancer, such as treatment of precancerous lesions and routine Pap tests, whereas the other 10% is spent on treatmentof cervicalcancer (Figure 2)[16]. HPV infection is most prevalent in adolescents and young adults, and this group also incurs the majority of HPV-associated health care costs. When it comes to HPVrelated health care, women in the 20 29 year age group incurred an annual cost of $51,863 per 1000 women [16]. The estimated lifetime total medical cost of HPV infection for men and women aged 15 24 is $2.9 billion, which makes HPV the second most expensive STI after HIV [17]. In addition, when the cost of treating genital warts is analyzed by itself, it becomes apparent that this too causes a substantial economic burden. Based on an incidence of 500,000 cases of HPV infection per year, the annual total direct medical cost for treatment of anogenital warts in all age groups for the year 2000 was $167.4 million [17]. PROPHYLACTIC VACCINES: A PREVENTATIVE STRATEGY FOR HPV INFECTION Assembly of infectious virus, a necessary step in the HPV life cycle, involves the formation of the capsid, or outer layer, of the virion. The capsid is composed of two proteins, L1 and L2, which are expressed later in infection. The major capsid protein L1 comprises the outermost layer of the capsid and is necessary for virus structure [18]. HPV vaccine development has been considerably advanced due in part to the production of virus-like particles (VLPs). HPV-like VLPs, which mimic the structure of the HPV virion but do not contain genetic material and can be manufactured by exogenous expression of L1 in a variety of cell types, including bacterial, yeast, insect, and mammalian cells [18, 19]. VLPs are noninfectious and nononcogenic, making them ideal candidates for use in HPV vaccine production. VLPs are purified, concentrated, distributed into aliquots, and combined with an adjuvant [20]. Early studies with a monovalent vaccine against HPV 16 have shown that VLP vaccines induce a strong immune response against L1 in animal models [21, 22] and humoral immunity in humans [23]. Other trials demonstrated that booster doses of VLP vaccines induced protective levels of antibodies [23 25]. Furthermore, in a proof-of-principle study, the HPV 16 VLP vaccine was safe, well tolerated, and induced antibody titers to levels significantly higher those produced in response to natural infection [26]. Although this

David Soper 3 Cost ($) per episode of care 3000 2500 2000 1500 1000 500 0 57 Negative 299 ASC 732 Any abnormal 1275 LSIL 1509 AGC 2349 HSIL Visits (n) Pap tests (n) Duration (mo) 1 1 2.6 2.2 7.4 3.5 2.5 9.6 4.5 2.7 10.9 5.1 3.1 13.7 6.9 3.7 17.4 Figure 2: Average health care costs of cervical HPV infection [16]. Average age adjusted to the 1998 US female population; all cost estimates were converted to 2002 dollars; ASC = atypical squamous cells; AGC = atypical glandular cells; LSIL = low-grade squamous intraepithelial lesion; HSIL = high-grade squamous intraepithelial lesion. study was not sufficiently powered to assess vaccine efficacy in preventing clinical disease, vaccine recipients developed fewer cervical lesions than placebo recipients. In addition, the vaccine was 100% effective in preventing persistent infection, suggesting that VLP vaccines may help reduce the incidence of cervical cancer precursors and invasive cervical cancer [26]. Similar results have been reported with other monovalent VLP vaccines [27 29]. Immune responses to HPV infection are type-specific; therefore, vaccine efficacy can be greatly improved by combining VLPs from several types of HPV into one multivalent vaccine. Multivalent vaccines that offer protection against the most common disease-causing HPV types are in late stages of clinical development. Currently, a bivalent vaccine that protects against 2 high-risk HPV types, and a quadrivalent vaccine that protects against 2 high-risk and 2 low-risk HPV types are being tested. To determine the efficacy, immunogenicity, and safety of a bivalent vaccine containing HPV types 16 and 18, a doubleblind, placebo-controlled phase 2 trial was conducted on 1113 women (15 25 years old) with no prior history of HPV infection and normal cervical cytology [30]. In this study, women received intramuscular injections of vaccine (20 µg of each VLP plus adjuvant) or placebo (adjuvant alone) on day 1, at month 1, and at month 6, and then followed for at least 17 months. The bivalent HPV 16/18 vaccine was well tolerated, produced no vaccine-related serious adverse events, and induced a major humoral immune response to both HPV types. Furthermore, the vaccine was 90% efficacious at reducing incident infection and 100% efficacious at preventing persistent infection [30]. Including additional HPV types in vaccines would be expected to cumulatively reduce HPV-associated disease burden by preventing additional HPV infections. A quadrivalent vaccine has been developed to protect against HPV types 6, 11, 16, and 18. A double-blind, placebo-controlled phase 2safetyandefficacy trial was conducted on more than 500 women aged 16 23 years. Women who were enrolled in the trial received either the quadrivalent vaccine (20 µg each of Incidence of HPV infection 8 6 4 2 0 0.7 Vaccine 6.7 Placebo Figure 3: Incidence of infection or disease associated with HPV 6, 11, 16, or 18 after vaccination with a quadrivalent vaccine versus placebo ( reported as incidence per 100 women-year at risk) [31]. HPV 6 and 18 VLP, and 40 µg each of HPV 11 and 16 VLP plus adjuvant) or placebo (adjuvant alone) on day 1, month 2, and month 6, and then were followed for 36 months [31]. Results of this trial showed that the quadrivalent vaccine was well tolerated, produced few serious adverse events (none of which were judged to be related to the vaccine), and stimulated the production of antibodies directed against all four HPV types. Furthermore, the vaccine reduced persistent infection in vaccine recipients by 89% and prevented 100% of clinical disease associated with HPV types 6, 11, 16, and 18 (Figure 3). Similarly high efficacy results were reported for a cohort of women who did not adhere completely to the study protocol [31]. Recently, data from the phase 3 Females United to Universally Reduce Endo-ectocervical disease (FUTURE II) clinical trial were presented. The quadrivalent HPV vaccine was 100% effective at preventing CIN 2/3, AIS, and cervical cancer associated with HPV 16 or 18 infection during two years of follow-up. The vaccine was well-tolerated and there were no vaccine-related serious adverse events [32]. PUBLIC HEALTH BENEFITS OF HPV VACCINATION Vaccines that provide protection against the most common disease-causing HPV types would be expected to significantly

4 Infectious Diseases in Obstetrics and Gynecology reduce the incidence of HPV-associated diseases. Reducing HPV-associated disease burden may also reduce the health care costs associated with these diseases. Although HPV vaccines are not currently available to the public, their potential public health benefits have been reported in several mathematical modeling studies [33 35]. Sanders et al reported that if a hypothetical vaccine that was 75% efficacious at preventing high-risk HPV infection were administered to approximately two million 12-year-old girls, it would prevent 224,255 HPV infections, 3317 cases of cancer, and 1340 cervical cancer-associated mortalities in the girls lifetimes [33]. Another study predicted that an HPV 16/18 vaccine would reduce the number of cervical cancer cases associated with the HPV 16 and HPV 18 by 95% [34]. Mathematical modeling and sexual transmission data have also suggested that both sexes should be vaccinated to provide the greatest reductions in HPV infections. For example, one population-level study predicted that a female-only HPV vaccination program would be only 68% as effective in reducing HPV prevalence as a program aimed at vaccinating both men and women [35]. Genital warts and abnormal Pap tests can also produce anxiety and emotional distress. In fact, diagnosis with genital warts is often the most anxiety-provoking outcome of HPV infection [36]. Because vaccination has shown promising results in the reduction of the disease burden associated with HPV infection, it would be expected to reduce some of the psychosocial and emotional burden as well. A number of obstacles will need to be overcome to maximize the public health benefits of HPV vaccination. Vaccination programs must identify appropriate candidates for vaccination, establish booster requirements, and overcome potential individual, parental, and social barriers to HPV vaccine acceptance. For example, individuals may view acceptance of HPV vaccines as admitting to risky sexual behavior. Furthermore, research has shown that knowledge about HPV, an infection that many people know little about, is directly correlated to vaccine acceptance [37 39]. Parents may feel that their child is not at risk, or that vaccination would support teenage sex or encourage risky sexual behavior (ie, reduced condom use). Societal and cultural issues may include beliefs that sexually transmitted diseases are a deterrent or punishment for non-marital sexual behavior. Alternatively, many people distrust medical technology and are generally opposed to vaccines. Each of these obstacles can be overcome by widespread efforts to educate individuals and society about the prevalence of HPV and the risks associated with forgoing vaccination. Administering HPV vaccines to populations prior to initiating sexual activity will yield the greatest health benefit. Because preadolescent and adolescent children are generally sexually naïve and develop robust immune responses to vaccines, vaccinating young adolescents is predicted to significantly reduce the incidence of HPV infection and HPV-associated diseases. In order to foster broad acceptance of HPV vaccine, public health initiatives will need to educate parents/caregivers as well as health care professionals about the risks associated with HPV infection and the benefits of vaccination. CONCLUSIONS Vaccination has been widely accepted as an effective means by which infectious diseases can be prevented or eliminated. VLP vaccines that protect against infection with the most common disease-causing HPV types are currently in clinical development and early reports have suggested that HPV vaccines are highly efficacious in preventing HPV infection and HPV-associated disease. HPV vaccines will be most effective when administered prior to initiation of sexual activity and vaccination initiatives will most likely target preadolescent and adolescent populations. REFERENCES [1] Cates W Jr. Estimates of the incidence and prevalence of sexually transmitted diseases in the United States. American Social Health Association Panel. Sexually Transmitted Diseases. 1999;26(4 suppl):s2 S7. [2] Weinstock H, Berman S, Cates W Jr. Sexually transmitted diseases among American youth: incidence and prevalence estimates, 2000. Perspectives on Sexual and Reproductive Health. 2004;36(1):6 10. [3] Burk RD, Kelly P, Feldman J, et al. Declining prevalence of cervicovaginal human papillomavirus infection with age is independent of other risk factors. Sexually Transmitted Diseases. 1996;23(4):333 341. [4] Muñoz N, Bosch FX, de Sanjosé S, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. The New England Medicine. 2003;348(6): 518 527. [5] Peyton CL, Gravitt PE, Hunt WC, et al. Determinants of genital human papillomavirus detection in a US population. The Infectious Diseases. 2001;183(11):1554 1564. [6] Brown DR, Schroeder JM, Bryan JT, Stoler MH, Fife KH. Detection of multiple human papillomavirus types in Condylomata acuminata lesions from otherwise healthy and immunosuppressed patients. Clinical Microbiology. 1999; 37(10):3316 3322. [7] Koutsky LA, Galloway DA, Holmes KK. Epidemiology of genital human papillomavirus infection. Epidemiologic Reviews. 1988;10:122 163. [8] Harper DM. Why am I scared of HPV? CA: A Cancer Journal for Clinicians. 2004;54(5):245 247. [9] Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. The Pathology. 1999;189(1):12 19. [10] Ley C, Bauer HM, Reingold A, et al. Determinants of genital human papillomavirus infection in young women. the National Cancer Institute. 1991;83(14):997 1003. [11] Ho GY, Bierman R, Beardsley L, Chang CJ, Burk RD. Natural history of cervicovaginal papillomavirus infection in young women. The New England Medicine. 1998;338(7): 423 428. [12] Sellors JW, Karwalajtys TL, Kaczorowski J, et al. Incidence, clearance and predictors of human papillomavirus infection in women. CMAJ: Canadian Medical Association Journal. 2003; 168(4):421 425.

David Soper 5 [13] Burk RD, Ho GY, Beardsley L, Lempa M, Peters M, Bierman R. Sexual behavior and partner characteristics are the predominant risk factors for genital human papillomavirus infection in young women. The Infectious Diseases. 1996;174(4):679 689. [14] Manhart LE, Koutsky LA. Do condoms prevent genital HPV infection, external genital warts, or cervical neoplasia? A metaanalysis. Sexually Transmitted Diseases. 2002;29(11):725 735. [15] Hogewoning CJ, Bleeker MC, van den Brule AJ. Condom use promotes regression of cervical intraepithelial neoplasia and clearance of human papillomavirus: a randomized clinical trial. International Cancer. 2003;107(5):811 816. [16] Insinga RP, Glass AG, Rush BB. The health care costs of cervical human papillomavirus related disease. American Journal of Obstetrics and Gynecology. 2004;191(1):114 120. [17] Chesson HW, Blandford JM, Gift TL, Tao G, Irwin KL. The estimated direct medical cost of sexually transmitted diseases among American youth, 2000. Perspectives on Sexual and Reproductive Health. 2004;36(1):11 19. [18] Zhou J, Sun XY, Stenzel DJ, Frazer IH. Expression of vaccinia recombinant HPV 16 L1 and L2 ORF proteins in epithelial cells is sufficient for assembly of HPV virion-like particles. Virology. 1991;185(1):251 257. [19] Hagensee ME, Yaegashi N, Galloway DA. Self-assembly of human papillomavirus type 1 capsids by expression of the L1 protein alone or by coexpression of the L1 and L2 capsid proteins. Virology. 1993;67(1):315 322. [20] Schiller JT, Davies P. Delivering on the promise: HPV vaccines and cervical cancer. Nature Reviews. Microbiology. 2004;2(4): 343 347. [21] Suzich JA, Ghim SJ, Palmer-Hill FJ, et al. Systemic immunization with papillomavirus L1 protein completely prevents the development of viral mucosal papillomas. Proceedings of the National Academy of Sciences of the United States of America. 1995;92(25):11553 11557. [22] Jansen KU, Rosolowsky M, Schultz LD, et al. Vaccination with yeast-expressed cottontail rabbit papillomavirus (CRPV) virus-like particles protects rabbits from CRPV-induced papilloma formation. Vaccine. 1995;13(16):1509 1514. [23] Pastrana DV, Vass WC, Lowy DR, Schiller JT. NHPV16 VLP vaccine induces human antibodies that neutralize divergent variants of HPV16. Virology. 2001;279(1):361 369. [24] Nardelli-Haefliger D, Wirthner D, Schiller JT, et al. Specific antibody levels at the cervix during the menstrual cycle of women vaccinated with human papillomavirus 16 virus-like particles. the National Cancer Institute. 2003;95(15): 1128 1137. [25] Harro CD, Pang YY, Roden RB, et al. Safety and immunogenicity trial in adult volunteers of a human papillomavirus 16 L1 virus-like particle vaccine. the National Cancer Institute. 2001;93(4):284 292. [26] Koutsky LA, Ault KA, Wheeler CM, et al. A controlled trial of a human papillomavirus type 16 vaccine. The New England Medicine. 2002;347(21):1645 1651. [27] Brown DR, Bryan JT, Schroeder JM, et al. Neutralization of human papillomavirus type 11 (HPV-11) by serum from women vaccinated with yeast-derived HPV-11 L1 viruslike particles: correlation with competitive radioimmunoassay titer. The Infectious Diseases. 2001;184(9):1183 1186. [28] Ault KA, Giuliano AR, Edwards RP, et al. A phase I study to evaluate a human papillomavirus (HPV) type 18 L1 VLP vaccine. Vaccine. 2004;22(23-24):3004 3007. [29] Fife KH, Wheeler CM, Koutsky LA, et al. Dose-ranging studies of the safety and immunogenicity of human papillomavirus Type 11 and Type 16 virus-like particle candidate vaccines in young healthy women. Vaccine. 2004;22(21-22):2943 2952. [30] Harper DM, Franco EL, Wheeler CM, et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papillomavirus types 16 and 18 in young women: a randomised controlled trial. The Lancet. 2004;364(9447): 1757 1765. [31] Villa LL, Costa RL, Petta CA, et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 viruslike particle vaccine in young women: a randomised doubleblind placebo-controlled multicentre phase II efficacy trial. The Lancet Oncology. 2005;6(5):271 278. [32] Skjeldestad FE. FUTURE II steering committee. Prophylactic Quadrivalent Human Papillomavirus (HPV) (Types 6, 11, 16, 18) L1 Virus-Like Particle (VLP) Vaccine (Gardasil) Reduces Cervical Intraepithelial Neoplasia (CIN) 2/3 Risk. In: Infectious Disease Society of America 43rd Annual Meeting; 2005; San Francisco, Calif. Abstract LB-8a. Available at: http://www.idsociety.org/template.cfm?section=program2& CONTENTID=14108&TEMPLATE=/ContentManagement/ ContentDisplay.cfm. Accessed at: January 16, 2006. [33] Sanders GD, Taira AV. Cost-effectiveness of a potential vaccine for human papillomavirus. Emerging Infectious Diseases. 2003;9(1):37 48. [34] Taira AV, Neukermans CP, Sanders GD. Evaluating human papillomavirus vaccination programs. Emerging Infectious Diseases. 2004;10(11):1915 1923. [35] Hughes JP, Garnett GP, Koutsky LA. The theoretical population-level impact of a prophylactic human papillomavirus vaccine. Epidemiology. 2002;13(6):631 639. [36] Baer H, Allen S, Braun L. Knowledge of human papillomavirus infection among young adult men and women: implications for health education and research. Community Health. 2000;25(1):67 78. [37] Holcomb B, Bailey JM, Crawford K, Ruffin MT IV. Adults knowledge and behaviors related to human papillomavirus infection. The the American Board of Family Practice. 2004;17(1):26 31. [38] Pitts M, Clarke T. Human papillomavirus infections and risks of cervical cancer: what do women know? Health Education Research. 2002;17(6):706 714. [39] Dell DL, Chen H, Ahmad F, Stewart DE. Knowledge about human papillomavirus among adolescents. Obstetrics & Gynecology. 2000;96(5 pt 1):653 656.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity