Renal artery stenosis (RAS) is a relatively common

Similar documents
Evaluation of Intermediate Coronary lesions: Can You Handle the Pressure? Jeffrey A Southard, MD May 4, 2013

FFR: Tips and Tricks. A/Prof (Adj) Yeo Khung Keong, MBBS, FAMS, FACC, FSCAI National Heart Centre Singapore

Current Role of Renal Artery Stenting in Patients with Renal Artery Stenosis

Endovascular treatment of transplant renal artery stenosis based on hemodynamic assessment using a pressure wire: a case report

Translesional Pressure Gradients to Predict Blood Pressure Response After Renal Artery Stenting in Patients With Renovascular Hypertension

Assessment of Renal Flow and Flow Reserve in Humans

FFR Incorporating & Expanding it s use in Clinical Practice

Fractional Flow Reserve: Basics, FAME 1, FAME 2. William F. Fearon, MD Associate Professor Stanford University Medical Center

Case report. Resistance in the cath lab : the utility of hyperemic stenosis resistance in the functional assessment of coronary artery disease

FFR in Left Main Disease

Cardiac transplant related arteriopathy remains a leading

av ailab le at jou rn al h om epa g e:

Pressure Wire Study. Fractional Flow Reserve (FFR) Nishat Jahagirdar Principal Clinical Cardiac Physiologist Kings College Hospital

FFR and intravascular imaging, which of which?

ORIGINAL ARTICLE. Abstract. Introduction

Anatomy is Destiny, But Physiology is Here Today

Fractional Flow Reserve. A physiological approach to guide complex interventions

Declaration of conflict of interest. Nothing to disclose

Renal Artery Stenting

Fractional Flow Reserve (FFR) --Practical Set Up Pressure Measurement --

Fractional Flow Reserve (FFR) --Practical Set Up Pressure Measurement --

A Novel Simple Technique Using Hyperemia to Enhance Pressure Gradient Measurement of the Lower Extremity During Peripheral Intervention

Fractional flow reserve: a new paradigm for diagnosis and management of coronary artery disease

PCIs on Intermediate Lesions NCDR Cath-PCI Registry

There exists little controversy regarding the clinical

FRACTIONAL FLOW RESERVE Step-by-step measurement, Practical tips & Pitfalls

FFR vs icecg in Coronary Bifurcations FIESTA ClinicalTrials.gov Identifier: NCT

Safety and Efficacy of Adenosine 5 -Triphosphate as a Hyperemic Agent for the Assessment of Peripheral Fractional Flow Reserve

Life After CORAL: What Did CORAL Prove? David Paul Slovut, MD, PhD Co-director TAVR, Dir of Advanced Intervention

Fractional Flow Reserve from Coronary CT Angiography (and some neat CT images)

Appropriate Patient Identification For Renal Artery Intervention Remains Challenging

Functional and Anatomical Diagnosis of Coronary Artery Stenoses

The fluid, dynamic interaction of multiple sequential

Fractional Flow Reserve and instantaneous wave -free Ratio. Λάμπρος Κ. Μόσιαλος Επεμβατικός Καρδιολόγος ΓΝ Παπαγεωργίου

Three-vessel fractional flow reserve measurement for predicting clinical prognosis in patients with coronary artery disease

Controversies in the management of the renal artery stenosis

New Insight about FFR and IVUS MLA

Integrated Use of IVUS and FFR for LM Stenting

Plaque Shift vs. Carina Shift Prevalence and Implication

Low fractional diastolic pressure in the ascending aorta increased the risk of coronary heart disease

Instantaneous Wave-Free Ratio

RAS Epidemiology. Renal Artery Stenosis. Pathophysiology of RAS. Disclosure of Potential Conflicts. Background Pathophysiology of RAS.

FRACTIONAL FLOW RESERVE: STANDARD OF CARE

Vascular Imaging Original Research

Clinical case in perspective. Cases from Poland

Effect of Intravascular Ultrasound- Guided vs. Angiography-Guided Everolimus-Eluting Stent Implantation: the IVUS-XPL Randomized Clinical Trial

Coronary stenting: the appropriate use of FFR

For Personal Use. Copyright HMP 2013

Coronary Physiology in the Cath Lab: Beyond the Basics

The coronary flow reserve assesses the physiological

FRACTIONAL FLOW RESERVE USE IN THE CATH LAB BECAUSE ANGIOGRAPHY ALONE IS NOT ENOUGH!!!!!!!!

Control of Myocardial Blood Flow

Effects of Increasing Doses of Intracoronary Adenosine on the Assessment of Fractional Flow Reserve

Renal Artery Stenting With Embolic Protection

How to assess the hemodynamic importance of a renal artery stenosis. Felix Mahfoud, MD Saarland University Hospital Homburg/Saar, Germany

FFR Fundamentals and Measurements

Technical Aspects and Clinical Indications of FFR

Σεμινάριο Ομάδων Εργασίας Fractional Flow Reserve (FFR) Σε ποιούς ασθενείς; ΔΗΜΗΤΡΗΣ ΑΥΖΩΤΗΣ Επιστ. υπεύθυνος Αιμοδυναμικού Τμήματος, Βιοκλινική

IVUS-Guided d Provisional i Stenting: Plaque or Carina Shift. Soo-Jin Kang, MD., PhD.

SCAI Expert Consensus Statement for Renal Artery Stenting Appropriate Use

Between Coronary Angiography and Fractional Flow Reserve

Κλινική Χρήση IVUS και OCT PERIKLIS A. DAVLOUROS ASSOCIATE PROFESSOR OF CARDIOLOGY INVASIVE CARDIOLOGY & CONGENITAL HEART DISEASE

Angiographic Versus Functional Severity of Coronary Artery Stenoses in the FAME Study

Atherosclerotic renal artery stenosis and reconstruction

Fibromuscular Dysplasia (FMD) of the renal arteries Angiographic features and therapeutic options

Evaluation of the Safety and Effectiveness of Renal Artery Stenting After Unsuccessful Balloon Angioplasty The ASPIRE-2 Study

Interventional Cardiology

Should we be using fractional flow reserve more routinely to select stable coronary patients for percutaneous coronary intervention?

Diffuse Disease and Serial Stenoses. Bernard De Bruyne Cardiovascular Center Aalst Belgium

Masahiko Fujihara, MD

JACC: CARDIOVASCULAR INTERVENTIONS VOL. 4, NO. 7, PUBLISHED BY ELSEVIER INC. DOI: /j.jcin

Fractional Flow Reserve: The Past, Present and Future

FIRST: Fractional Flow Reserve and Intravascular Ultrasound Relationship Study

Functional Assessment of Jailed Side Branches in Coronary Bifurcation Lesions Using Fractional Flow Reserve

SCAI Fall Fellows Course Subclavian/Innominate Case Presentation

Impact of coronary atherosclerotic burden on clinical presentation and prognosis of patients with coronary artery disease

Disclosure of Potential Conflicts. Renal Artery Stenosis. RAS Epidemiology. Road Map. Background. ASDIN 7th Annual Scientific Meeting

Intravascular ultrasound-based analysis of factors affecting minimum lumen area in coronary artery intermediate lesions

Culprit Lesion Remodeling and Long-term (> 5years) Prognosis in Patients with Acute Coronary Syndrome

Debate Should we use FFR? I will say NO.

Fractional Flow Reserve (FFR) estimation GRAIDIS CHRISTOS. EUROMEDICA-KYΑNOUS STAVROS Interventional Cardiologist, FSCAI

Intracoronary Continuous Adenosine Infusion

Journal of the American College of Cardiology Vol. 46, No. 5, by the American College of Cardiology Foundation ISSN /05/$30.

Microvascular Disease: How to Diagnose and What s its Treatment

Intravascular Ultrasound (IVUS) and Optical Coherence Tomography (OCT)

Interventional Cardiology

NOT FOR PUBLICATION, QUOTATION, OR CITATION RESOLUTION NO. 22

Invited Experts' Case Presentation and 5-Slides Focus Review

Le# main treatment with Stentys stent. Carlo Briguori, MD, PhD Clinica Mediterranea Naples, Italy

Case Review: Borderline LM with IVUS and FFR. Ravi Ramana, DO Heart Care Centers of Illinois SCAI Annual Conference 2010

What do the guidelines say?

FFR vs. icecg in Coronary Bifurcations (FIESTA) - preliminary results. Dobrin Vassilev MD, PhD National Heart Hospital Sofia, Bulgaria

Application of Fractional Flow Reserve in the diagnostics of coronary artery disease

Coral Trials: A personal experience that challenges its results in patients with uncontrolled blood pressure.

Renal Artery FFR. Woo-Young Chung. Seoul National University, College of Medicine Boramae Medical Center Cardiovascular Center

Dave Kettles, St Dominics Hospital East London.

Bifurcation stenting with BVS

Post PCI functional testing and imaging: case based lessons from FFR React

Z S Kyriakides, A Antoniadis, T M Kolettis, D T Kremastinos

Transcription:

The Importance of Appropriate Renal Artery Stenting Considerations for diagnosis and treatment of patients with renal artery stenosis. By Massoud A. Leesar, MD, FACC, FSCAI Renal artery stenosis (RAS) is a relatively common disease with a mortality rate of approximately 16% annually, which is mostly related to cardiovascular disease. 1 RAS is associated with both hypertension and chronic kidney disease, the treatment of which has been based primarily on stenting guided by angiography. 2 The guidelines for renal artery revascularization 3 suggest that a hemodynamically significant RAS is defined as the presence of 50% to 70% diameter stenosis by visual estimation on angiography, a systolic pressure gradient 20 mm Hg, or a mean gradient 10 mm Hg measured with a 5-F catheter or a pressure guidewire. However, one study 4 proposed the notion that the systolic pressure gradient was significantly overestimated when a 4-F catheter is used compared with a 0.014-inch pressure guidewire. Despite the high procedural success rate of renal artery stenting, an improvement in hypertension has been inconsistent. This most likely reflects the absence of predictors for blood pressure improvement after renal artery stenting. One study 5 reported that stenting of RAS based on visual estimation resulted in blood pressure improvement in 47% of patients at 24 months. However, others have reported an improvement in blood pressure in 62% 6 and 76% of patients at 12 months. 7 These studies required more stringent criteria before stenting, including duplex ultrasound or evidence of a critical RAS based on quantitative renal angiography. In contrast, the ASTRAL trial 8 randomized 806 patients with RAS to medical therapy versus stenting based on renal artery stenting based on renal pressure gradient allows for better patient selection and determines who might benefit most from this procedure. angiographic stenosis and demonstrated no significant benefit from stenting in patients who underwent stenting compared with medical therapy. Because the correlation between renal pressure measurements and angiographic diameter stenosis is poor, it is likely that patients without significant pressure gradient have been included in the ASTRAL trial. Such an inconsistent blood pressure response to renal stenting underscores the value of renal pressure measurements for appropriate patient selection. In particular, in light of the observed 19.7% major adverse events that have been reported after renal artery stenting, 9 renal artery stenting based on renal pressure gradient allows for better patient selection and determines who might benefit most from this procedure. Assessment of RENAL ARTERY STENOSIS Both intravascular ultrasound (IVUS) and fractional flow reserve (FFR) are well-validated techniques for assessing the significance of coronary artery stenosis. 10,11 The discordance between high procedure success rates and moderate clinical response rates in patients with RAS may stem from the limitations of angiography for assessing the significance of RAS. February 2012 Endovascular Today 67

Figure 1. A representative example of quantitative renal angio graphy, IVUS analysis, and translesional pressure gradient is shown in one study patient with RAS. The minimum lumen diameter and minimum lumen area from the stenotic segment (A) as well as the reference diameter and reference lumen area from the reference segment (B) were selected for both quantitative angiographic and IVUS analyses. Panel C shows the segment with poststenotic dilation. Quantitative renal angio graphy demonstrates that the diameter stenosis of the renal artery is 57%, not significant by CORAL Study Criteria. IVUS area stenosis and HSG are 72% and 31 mm Hg, respectively; both are indicative of significant RAS. Reprinted from Journal of the American College of Cardiology, 53/25, Massoud A, et al. Prediction of hypertension improvement after stenting of renal artery stenosis: comparative accuracy of translesional pressure gradients, intravascular ultrasound, and angiography, 2363 2387, 2009, with permission from Elsevier. 12 Recently, there has been considerable interest in using endovascular techniques for assessing the significance of RAS. In this respect, a number of studies 13-15 demonstrated poor correlations comparing diameter stenosis by quantitative renal angiography with a number of renal pressure measurements, including resting systolic gradient (RSG), renal FFR, hyperemic mean gradient (HMG), and hyperemic systolic gradient (HSG). We recently compared the diagnostic accuracy of renal translesional pressure gradient, IVUS, and angiographic parameters in predicting hypertension improvement after stenting of RAS in 62 patients. 12 Following renal angiography, we advanced a 0.014-inch pressure guidewire (PressureWire, St. Jude Medical, Inc., St. Paul, MN) into the renal artery through a guiding catheter. After equalization of pressures, the pressure transducer was advanced through the stenosis, and RSG was measured. Next, a 30-mg bolus dose of papaverine was diluted in Figure 2. RSG = 9 mm Hg (A); HSG = 16 mm Hg (B). A renal angiogram demonstrates a 70% stenosis of the renal artery at the bifurcation (C). Reference lumen area = 16.3 mm 2 (D). IVUS at bifurcation demonstrates that minimum lumen area (MLA) at the main branch was 9.5 mm 2 (E). Reprinted with permission from Tariq S et al. Catheter Cardiovasc Interv (2007;69:894 901). 13 sterile water and administered directly into the renal artery to induce hyperemia, as previously reported. 14,15 After papaverine injection, the guiding catheter was retracted from the ostium of the renal artery to prevent dampening of pressures, and then translesional gradients such as HSG, FFR, and HMG were measured. After obtaining pressure measurements, an IVUS catheter (Atlantis SR Pro, Boston Scientific Corporation, Natick, MA) was advanced into the renal artery over the pressure guidewire. Ultrasound images were recorded after initiation of automated pullback at a speed of 0.5 mm/s, starting approximately 10 mm distal to the lesion. After performing IVUS, all patients underwent renal artery angioplasty followed by stenting using the standard technique. Because the pressure guidewire does not provide enough support for the deployment of peripheral stents, a 0.014-inch Spartacore guidewire (Abbott Vascular, Santa Clara, CA) was advanced into the renal artery, the pressure guidewire was removed, and then stenting of the renal artery was performed using the Spartacore guidewire. Inclusion of patients for the study was based on the visual estimation of stenosis (RAS with a diameter stenosis of 50% to 90%). Stent size was determined by IVUS based on media-to-media diameter measured at a normal-looking segment distal to poststenotic dilation; stent length was also determined by IVUS (Figure 1). After stenting, the pressure guidewire was readvanced into the renal artery, and HSG was measured to ensure that optimal results were achieved. 68 Endovascular Today February 2012

As demonstrated in Table 1, an HSG 21 mm Hg as measured by the pressure guidewire was the strongest predictor of hypertension improvement after stenting of RAS. Although FFR-, HMG-, and IVUS-determined minimum lumen area were predictors of hypertension improvements by univariate analysis, of these parameters, HSG was the only independent predictor of hypertension improvement, suggesting that an HSG 21 mm Hg is indicative of hemodynamically significant RAS. In contrast, diameter stenosis measured by quantitative renal angiography did not predict hypertension improvement. At 12-month follow-up, blood pressure, dosage, and the number of antihypertensive medications were significantly lower in patients with an HSG 21 mm Hg than in those with an HSG < 21 mm Hg. Figure 2 shows a representative case from this study. Although by angiography, the renal artery appeared significantly stenosed, the HSG was 16 mm Hg (nonsignificant). Figure 3 demonstrates another representative case from this study in which angiography showed a 50% RAS but an HSG of 32 mm Hg, which is indicative of significant RAS. Resting Versus Hyperemic Pressure Gradient Measurements Maximal hyperemia is paramount in determining the physiological significance of a coronary stenosis. A number of studies have demonstrated that after intrarenal papaverine administration, hyperemia can be induced in renal circulation. 16-19 Intracoronary papaverine has been used for the physiological assessment of coronary artery stenosis; however, this was associated with prolongation of the QT interval and induction of polymorphous ventricular tachycardia. 21-25 Adenosine, on the other hand, is now commonly used in lieu of papaverine for the physiological assessment of a coronary artery stenosis. However, intrarenal adenosine can reduce the glomerular filtration rate by constricting afferent arterioles, 26 and thus, it is not a suitable agent to induce hyperemia. In contrast, studies have shown that intrarenal papaverine significantly increased renal flow reserve. 16-18 Likewise, it has also been demonstrated 19 that intrarenal dopamine significantly increases renal flow reserve in normotensive patients. In line with these observations, we have demonstrated 20 that renin production, an index of renal ischemia, was markedly greater at hyperemia than at rest, suggesting that RAS with an HSG of 21 mm Hg is indicative of hemodynamically significant stenosis (Figure 4). We have also shown 20 strong correlations between HSG and renal FFR, as measured during hyperemia, but found moderate correlations between HSG and RSG, suggesting that hyperemic reserve exists in the renal circulation. Taken together, the results of these studies suggest that hyperemia can be induced by dilating the renal microvasculature and is essential in maintaining renal autoregulation. Therefore, it is conceivable that, analogous to Figure 3. Renal angiography demonstrates a 50% stenosis of the renal artery at the bifurcation (A). Reference lumen area = 22 mm 2 (B). IVUS at bifurcation demonstrates that MLA was 4.9 mm 2 (C). RSG = 20 mm Hg (D). HSG = 32 mm Hg (E). Reprinted with permission from Tariq S et al. Catheter Cardiovasc Interv (2007;69:894 901). 14 Figure 4. When RSG (shown in triangles) exceeded 16 mm Hg, renal vein renin activity (RVRA) increased modestly (18%) (A). In contrast, when HSG (shown in circles) exceeded 21 mm Hg, RVRA markedly increases (120%). The average RVRA in the stenotic kidneys during hyperemia was significantly greater than that of RSG (B). In addition, the average RVRA in the stenotic kidneys during hyperemia was significantly greater compared with RVRA at resting and after stenting. Reprinted with permission from Kapoor N et al. Catheter Cardiovasc Interv (2010;76:726 732). 20 70 Endovascular Today February 2012

the coronary circulation, the measurements of hyperemic gradients, such as HSG or renal FFR, can estimate the significance of RAS more accurately than resting gradients. Papaverine is metabolized in the liver and excreted in the kidney. The elimination half-life of papaverine is 1.5 to 2 hours. The proposed mechanism of papaverine-induced ventricular arrhythmia is linked to the prolongation of repolarization by papaverine. 21,25 Recently, we compared resting and hyperemic pressure gradients induced by intrarenal papaverine for the assessment of RAS in 55 patients. 20 We demonstrated that intrarenal papaverine neither prolonged the QT interval nor induced ventricular arrhythmia. One plausible explanation for the lack of the QT prolongation after intrarenal papaverine resides in the fact that a portion of the papaverine is eliminated by excretion into the urine, but the remaining portion of the drug that returns to systemic circulation via the renal vein is diluted; thereby, the myocardial concentration of papaverine is expected to be considerably lower after intrarenal papaverine. Summary of Physiological Studies for Assessing the Severity of the RAS Four recent studies investigated the significance of RAS using the pressure guidewire. Jones et al 27 measured HSG in 22 patients with RAS and demonstrated that after stenting of RAS in 13 patients with HSG > 20 mm Hg, systolic blood pressure significantly improved at follow-up. Mitchell et al 13 reported that stenting in 17 patients with RAS resulted in a significant Table 1. Receiver Operating Characteristics Analyses of the optimal Cut Points of Parameters in Predicting Hypertension Improvement after Stenting of RAS Parameters AUC 95% Confidence Interval Renal Pressure Measurements Cut Point Sensitivity (%) Specificity (%) HSG 0.87 0.72 0.96 21 mm Hg 82 84 84 FFR 0.85 0.76 0.94 0.9 73 88 79 HMG 0.81 0.7 0.91 6 mm Hg 80 76 79 RSG 0.81 0.71 0.92 7 mm Hg 78 76 77 IVUS Parameters MLA 0.86 0.76 0.95 7.8 mm 2 78 80 79 Area stenosis 0.82 0.71 0.92 67% 75 80 77 MLD 0.78 0.67 0.9 2.7 mm 70 76 72 a Plaque plus media area 0.73 0.6 0.85 9 mm 2 73 68 70 a Angiographic Parameters Diameter stenosis 0.74 0.61 0.86 60% 68 72 69 a MLD 0.69 0.55 0.82 2.25 mm 51 80 62 a,b Clinical Parameters Systolic blood pressure 0.55 0.41 0.7 170 mm Hg 43 68 53 a,b Diastolic blood pressure 0.51 0.36 0.66 95 mm Hg 41 64 50 a,b Mean blood pressure 0.54 0.39 0.68 118 mm Hg 51 60 54 a,b a P <.05 vs HSG. b P <.05 vs MLA and FFR. Abbreviations: AUC, area under the curve; MLD, minimum lumen diameter. Predictive Accuracy (%) February 2012 Endovascular Today 71

HSG 21 mm Hg after administration of intrarenal papaverine was an independent predictor of hypertension improvement. hypertension improvement in patients who had a renal FFR < 0.8 compared with those with an FFR > 0.8. Although the measurement of FFR is useful in the coronary circulation, 28 we demonstrated that FFR had a lower predictive power for hypertension improvement. 12 This is probably linked to lower vasodilator reserve in the renal circulation than in the coronary microvasculature. 16,19 Mangiacapra et al 29 investigated the predictive value of translesional gradient on hypertension improvement after intrarenal administration of dopamine (50 µg/kg) or papaverine (30 mg) in patients with RAS and demonstrated that a mean pressure gradient of 20 mm Hg induced by intrarenal dopamine was highly predictive of hypertension improvement after renal stenting. On the other hand, we demonstrated 12 that hyperemic systolic gradient after intrarenal administration of papaverine had a higher predictive accuracy compared with mean gradient in predicting hypertension improvement. Furthermore, our data showed that HSG 21 mm Hg after administration of intrarenal papaverine was an independent predictor of hypertension improvement. The differences between our study and that of Mangiacapra et al lie in the fact that the duration of follow-up in the Mangiacapra et al study was limited to 3 months, whereas in our study, blood pressure improvement was assessed at the end of 12 months. In this respect, a large randomized study is needed to assess the value of translesional pressure gradient measurements during maximal hyperemia induced by either dopamine or papaverine to assess the prediction of blood pressure improvement after stenting of the RAS. CONCLUSION Among patients with RAS, regardless of the angiographic severity, a measurement of translesional pressure gradient during hyperemia such as an HSG 21 mm Hg would indicate a hemodynamically significant RAS. Furthermore, in this setting, HSG can easily be measured after renal angiography with a pressure guidewire, circumventing the need for IVUS or a renal vein renin study to determine the significance of RAS. This would, in turn, facilitate decision making regarding medical therapy versus stenting in patients with RAS. n Massoud A. Leesar, MD, FACC, FSCAI, is Professor of Medicine, Associate Chief, Division of Cardiology, and Director of Cardiac and Vascular Invasive Services at the University of Cincinnati in Ohio. He has disclosed that he has no financial interests related to this article. Dr. Leesar may be reached at leesarma@uc.edu. 1. Cheung CM, Wright JR, Shurrab AE, et al. Epidemiology of renal dysfunction and patient outcome in atherosclerotic renal artery occlusion. J Am Soc Nephrol. 2002;13:149-157. 2. van Jaarsveld BC, Krijnen P, Pieterman H, et al. The effect of balloon angioplasty on hypertension in atherosclerotic renal artery stenosis. N Engl J Med. 2000;342:1007-1014. 3. Hirsch AT, Haskal ZJ, Hertzer NR, et al. Practice guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric and abdominal aortic). Circulation. 2006;113:e463-e654. 4. Colyer WR, Cooper CJ, Burket MW, Thomas WJ. Utility of a 0.014 pressure-sensing guidewire to assess renal artery translesional systolic pressure gradients. Catheter Cardiovasc Intervent. 2003;59:372-377. 5. Rocha Singh K, Jaff MR, Rosenfield K. Evaluation of the safety and effectiveness of renal artery stenting after unsuccessful balloon angioplasty. J Am Coll Cardiol 2005;46:776-783. 6. Blum U, Krumme B, Flugel P, et al. Treatment of ostial renal artery stenosis with vascular endoprostheses after unsuccessful balloon angioplasty. N Engl J Med. 1997;336:459-465. 7. Zeller T, Frank U, Muller C, et al. Predictors of improved renal function after percutaneous stent supported angioplasty of severe atherosclerotic ostial renal artery stenosis. Circulation. 2003;108:2244-2249. 8. ASTRAL Investigators, Wheatley K, Ives N, et al. Revascularization versus medical therapy for renal artery stenosis. N Engl J Med. 2009;361:1953-1962. 9. Rocha Singh K, Jaff MR, Rosenfield K. Evaluation of the safety and effectiveness of renal artery stenting after unsuccessful balloon angioplasty. J Am Coll Cardiol. 2005;46:776-783. 10. Leesar MA, Abdul-Baki T, Akkus NI, et al. Use of fractional flow reserve versus stress perfusion scintigraphy after unstable angina. Effect on duration of hospitalization, cost, procedural characteristics, and clinical outcome. J Am Coll Cardiol. 2003;7:1115-1121. 11. Takagi A, Tsurumi Y, Ishii Y, et al. Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation. 1999;100:250-255. 12. Leesar MA, Varma J, Shapira A, et al. Prediction of hypertension improvement after stenting of renal artery stenosis: comparative accuracy of translesional pressure gradients, intravascular ultrasound, and angiography. J Am Coll Cardiol. 2009;53:2363-2371. 13. Mitchell JA, Subramanian R, White CJ, et al. Predicting blood pressure improvement in hypertensive patients after renal artery stent placement. Catheter Cardiovasc Interv. 2007;69:685-689. 14. Siddiqui TS, Elghoul Z, Reza ST, Leesar MA. Renal hemodynamics: theory and practical tips. Catheter Cardiovasc Interv. 2007;69:894-901. 15. Subramanian R, White CJ, Rosenfield K, et al. Renal fractional flow reserve: a hemodynamic evaluation of moderate renal artery stenoses. Catheter Cardiovasc Interv. 2005;64:480-486. 16. Mounier-Vehier C, Cocheteux B, Haulon S, et al. Changes in renal blood flow reserve after angioplasty of renal artery stenosis in hypertensive patients. Kidney Int. 2004;65:245-250. 17. Beregi JP, Lahoche A, Willoteaux S, et al. T. Renal artery vasomotion: in vivo assessment in the pigs with intravascular Doppler. Fundam Clin Pharmacol. 1998;12:613-618. 18. Slovut DP, Lookstein R, Bacharach JM, Olin JW. Correlation between noninvasive and endovascular Doppler in patients with atherosclerotic renal artery stenosis: a pilot study. Catheter Cardiovasc Interv. 2006;67:426-433. 19. Manoharan G, Pijls NH, Lameire N, et al. Assessment of renal flow and flow reserve in humans. J Am Coll Cardiol. 2006;47:620-625. 20. Kapoor N, Fahsah I, Karim R, et al. Physiological assessment of renal artery stenosis: comparisons of resting with hyperemic renal pressure measurements. Catheter Cardiovasc Interv. 2010;76:726-732. 21. Kern MJ, Deligonul U, Serota H, et al. Ventricular arrhythmia due to intracoronary papaverine: analysis of QT intervals and coronary vasodilatory reserve. Catheter Cardiovasc Diag. 1990;19:229-236. 22. Talman CL, Winniford MD, Rossen JD, et al. Polymorphous ventricular tachycardia: a side effect of intracoronary papaverine. J Am Coll Cardiol. 1990;15:275-278. 23. Inoue T, Asahi S, Takayanagi K, et al. QT prolongation and possibility of ventricular arrhythmias after intracoronary papaverine. Cardiology. 1994;84:9-13. 24. Vrolix M, Piessens J, De Geest H. Torsades de pointes after intracoronary papaverine. Eur Heart J. 1991;12:273-276. 25. Wilson RF, White CW. Serious ventricular dysrhythmias after intracoronary papaverine. Am J Cardiol. 1988;62:1301-1302. 26. Vallon V, Mühlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev. 2006;86:901-940. 27. Jones JJ, Bates ER, Chetcuti DJ, et al. Usefulness of translesional pressure gradient and pharmacological provocation for the assessment of intermediate renal artery disease. Catheter Cardiovas Interv. 2006;68:429-434. 28. Jasti V, Ivan E, Yalamanchili V, et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation. 2004;110:2831-2836. 29. Mangiacapra F, Trana C, Sarno G. Translesional pressure gradient to predict blood pressure response after renal artery stenting in patients with renovascular hypertension. Circ Cardiovasc Interv. 2010;3:537-542. 72 Endovascular Today February 2012