When is an intervening line-up most likely to affect eyewitness identification accuracy?

Similar documents
Interviewing Witnesses: The Effect of Forced Confabulation on Event Memory

I know your face but not where I saw you: Context memory is impaired for other-race faces

Forced confabulation affects memory sensitivity as well as response bias

The phenomenology of carryover effects between show-up and line-up identification

EVIDENCE OF SOURCE MISATTRIBUTIONS IN FACIAL IDENTIFICATIONS

The effect of lineup member similarity on recognition accuracy in simultaneous and sequential lineups.

Memory part I. Memory Distortions Eyewitness Testimony Lineup Studies

CAN A CONTEXTUAL MEMORY AID INCREASE THE ACCURACY OF EYEWITNESS IDENTIFICATION? David R. Foster

A Field Experiment on Eyewitness Report

When Eyewitnesses Are Also Earwitnesses: Effects on Visual and Voice Identifications

The Suggestibility of Older Witnesses

Why misinformation is more likely to be recognised over time: A source monitoring account

The Ontogeny and Durability of True and False Memories: A Fuzzy Trace Account

Iris Blandón-Gitlin, PhD Associate Professor of Psychology

Imagination and memory: Does imagining implausible events lead to false autobiographical memories?

Creating Fair Lineups for Suspects With Distinctive Features Theodora Zarkadi, Kimberley A. Wade, and Neil Stewart

Assessing the influence of recollection and familiarity in memory for own- vs. other-race faces

Accuracy and Confidence in Person Identification: The Relationship is Strong when Witnessing Conditions Vary Widely

STATE OF WISCONSIN MODEL POLICY AND PROCEDURE FOR EYEWITNESS IDENTIFICATION

Memory Schemas, Source Monitoring & Eyewitness Memory

Multiple Lineup Identification Procedure: Utility with Face-Only Lineups NATALIE KALMET. the degree of Master of Science. Queen s University

Cross-Racial Identification

Brad Schaffer Forensic Psychology July 22, Schaffer 1

Eyewitness Lineups: Is the Appearance-Change Instruction a Good Idea?

TRAINING POTENTIAL WITNESSES TO PRODUCE HIGHER QUALITY FACE COMPOSITES

Reducing Children s False Identification Rates in Lineup Procedures

Does scene context always facilitate retrieval of visual object representations?

Applied Aspects of the Instructional Bias Effect in Verbal Overshadowing

Evidence for the superiority of the large line-up.

NORTH CAROLINA ACTUAL INNOCENCE COMMISSION RECOMMENDATIONS FOR EYEWITNESS IDENTIFICATION

Recognition and context memory for faces from own and other ethnic groups: A remember know investigation

Use of Facial Composite Systems in U.S. Law Enforcement Agencies 1

THE IMPACT OF SEQUENTIAL LINEUPS ON UNCONSCIOUS TRANSFERENCE: DOES KNOWING THE NUMBER OF PHOTOS IN THE LINEUP MATTER? Dominick Joseph Atkinson

Memory 2/15/2017. The Three Systems Model of Memory. Process by which one encodes, stores, and retrieves information

Eyewitness Testimony. Student s Name. Institution of Learning

Developmental trajectory of familiar and unfamiliar face recognition in children: evidence in support of experience

Co-Witness Influences on Eyewitness Identification Accuracy

Journal of Applied Research in Memory and Cognition

Eye tracking and eyewitness memory.

Does Trial Presentation Medium Matter in Jury Simulation Research? Evaluating the Effectiveness of Eyewitness Expert Testimony

Verbal Descriptions of Faces From Memory: Are They Diagnostic of Identification Accuracy?

Misleading Postevent Information and the Memory Impairment Hypothesis: Comment on Belli and Reply to Tversky and Tuchin

Live, video, and photo eyewitness identification procedures

The Counterintuitive Relationship between Conceptual and Perceptual Similarities and Eyewitness Suggestibility

Eyewitness Identification: A Psychological Perspective

Memory II. Reconstructive Memory Forgetting

The Hybrid Lineup Combining

Do pre-admonition suggestions moderate the effect of unbiased lineup instructions?

testing for implicit bias

The Role of Memory and Eye Witness Testimony

Misled Subjects May Know More Than Their Performance Implies

Fukuoka University of Education

How much can you trust your memory?

Mugshot Exposure Effects: Retroactive Interference, Mugshot Commitment, Source Confusion, and Unconscious Transference

A Critical Mass of Knowledge: Heightened Stress and Retention Interval

IDENTIFICATION: IN-COURT IDENTIFICATION ONLY. (Defendant), as part of his/her general denial of guilt, contends that the State has

THE ROLE OF TIME DELAY IN MEMORY CONFORMITY

Department of Psychology, Goldsmiths College, University of London, New Cross London SE14 6NW England

The Show-Up Identification Procedure: A Literature Review

Pros & Cons of Testimonial Evidence. Presentation developed by T. Trimpe 2006

Eyewitness Identification

THE RELIABILITY OF EYEWITNESS CONFIDENCE 1. Time to Exonerate Eyewitness Memory. John T. Wixted 1. Author Note

Meta-Analyses of Estimator and System Variables

What We Know Now: An Overview of Recent Eye Witness Research

Pros & Cons of Testimonial Evidence. Presentation developed by T. Trimpe

Verbalizing Facial Memory: Criterion Effects in Verbal Overshadowing

Eyewitness decisions in simultaneous and sequential lineups: A dual-process signal detection theory analysis

Observations on the Illinois Lineup Data Nancy Steblay, Ph.D. Augsburg College May 3, 2006

5/28/2015. Please recall all of the words that you were asked to learn at the beginning of the lecture. 1. Elaborations during encoding

AN EXPERIMENTAL STUDY OF A GESTALT BASED DATABASE FOR MUG SHOTS

PSYCHOLOGICAL SCIENCE. Research Article

Eyewitness identification evidence and innocence risk

Eyewitness Evidence. Dawn McQuiston School of Social and Behavioral Sciences Arizona State University

The Effects of Post-Identification Feedback and Age on Retrospective Eyewitness Memory

A HYBRIDIZATION OF SIMULTANEOUS AND SEQUENTIAL LINEUPS REVEALS DIAGNOSTIC FEATURES OF BOTH TRADITIONAL PROCEDURES

Cognitive Psychology. Mark Rafter Multiple Intelligences

PC_Eyewitness: A computerized framework for the administration and practical application of research in eyewitness psychology

Criminal psychology. July 2016

DIFFERENT CONFIDENCE-ACCURACY RELATIONSHIPS FOR FEATURE-BASED AND FAMILIARITY-BASED MEMORIES

The effect of testing on the vulnerability to misinformation in adolescents and adults

Research on jury instructions An experimental test of the novel NJ instruction

Enhancing the Effectiveness of Video. Identification

Running head: Making Sense of Sequential Lineups 1. Effects. Brent M. Wilson, Kristin Donnelly, Nicholas J. S. Christenfeld, & John T.

Running head: PERCEIVED STEREOTYPICALITY AND EYEWITNESS MEMORY. Perceived stereotypicality and eyewitness memory: Does the

Prof. Greg Francis 5/23/08

In uences of Temporal Factors on Memory Conjunction Errors

Open Research Online The Open University s repository of research publications and other research outputs

The Influence of Test-Set Similarity in Verbal Overshadowing

Distinguishing Accurate From Inaccurate Eyewitness Identifications via Inquiries About Decision Processes

Reevaluating the potency of the memory conformity effect

Journal of Applied Research in Memory and Cognition

Pros & Cons of Testimonial Evidence. Presentation developed by T. Trimpe

When Misinformation Improves Memory: The Effects of Recollecting Change

Older adults associative deficit in episodic memory: Assessing the role of decline in attentional resources

EYEWITNESS IDENTIFICATION. Mary F. Moriarty SPD Annual Conference 2015

Testing the reflection assumption: an examination

Curt A. Carlson Texas A&M University - Commerce

Memory Processes in Elderly Eyewitnesses: What We Know and What We Don t Know

SEQUENTIAL LINEUPS REDUCE UNCONSCIOUS TRANSFERENCE AND MISTAKEN LINEUP IDENTIFICATION: BUT AT WHAT COST? Paul Rosenberg

Leading Words and Estimation

Transcription:

247 Legal and Criminological Psychology (2005), 10, 247 263 q 2005 The British Psychological Society The British Psychological Society www.bpsjournals.co.uk When is an intervening line-up most likely to affect eyewitness identification accuracy? Kathy Pezdek 1 * and Iris Blandon-Gitlin 2 1 Claremont Graduate University, USA 2 California State University, Fullerton, USA Purpose. Intervening line-ups affect identification accuracy in subsequent line-ups. We conducted 3 experiments to investigate the conditions under which viewing multiple line-ups is more likely to affect eyewitness identification accuracy. Method. In each of the 3 experiments, a forensically relevant factor known to affect the accuracy of face recognition memory was manipulated to assess how the factor impacted the suggestive influence of an intervening line-up on eyewitness identification accuracy in a subsequent test line-up. These factors were (a) in Experiment 1, samerace versus cross race target faces, (b) in Experiment 2, whether the intervening line-up occurred on the day of the presentation phase (close to presentation) or 1 month later on the day of the subsequent test line-up ( far from presentation), and (c) in Experiment 3, whether the target face was presented for 10 seconds or 60 seconds. Results. In each experiment, factors associated with poorer memory for the target face led to a greater suggestive influence of the intervening line-up on identification accuracy in the subsequent line-up, evidenced by lower hit rates and higher false-alarm rates. Conclusions. These findings suggest that the problem of decreased identification accuracy following the viewing of an intervening photograph is especially of concern when memory for the perpetrator is likely to be poor. Implications of these findings for interpreting line-up results in the courtroom are discussed. The US Supreme Court, in the case of Simmons v. United States (1968), recognized the problem of decreased identification accuracy following the viewing of intervening photographs. According to the court, viewing a mug shot photograph may have a detrimental effect on eyewitness identification accuracy because the witness :::is apt to retain in his memory the image of the photograph rather than of the person actually seen. * Correspondence should be addressed to Kathy Pezdek, Department of Psychology, Claremont Graduate University, Claremont CA 91711, USA (e-mail: Kathy.Pezdek@cgu.edu). DOI:10.1348/135532505X49846

248 Kathy Pezdek and Iris Blandon-Gitlin Since this ruling, numerous studies have demonstrated that witnesses frequently misidentify a familiar face without having conscious recollection of the previous exposure to the face (Read, Tollestrup, Hammersley, McFadzen, & Christensen, 1990; Ross, Ceci, Dunning, & Toglia, 1994). The term unconscious transference has been used to describe this general phenomenon. More specifically, if an individual s face is presented in multiple line-ups, but the individual was not at the original target event, then they are likely to be misidentified as having been seen at the target event. Brown, Deffenbacher, and Sturgill (1977, Experiment 3) had participants view two target individuals. Participants were later shown an intervening photographic line-up followed 2 or 3 days later by a live line-up. In the live line-up, the probability of selecting the target individual who was viewed in the classroom but not in the intervening photograph lineup (p ¼ :24) was equal to the probability of selecting a foil face that was viewed in the intervening photographic line-up but not in the classroom (p ¼ :29). Memory for the target individuals was suggestively influenced by viewing the faces in the intervening mug shot photographs. Similarly, Gorenstein and Ellsworth (1980) staged a class interruption. Twenty-five minutes later, the experimental group, but not the control group, was asked to select the intruder from a target-absent array of 12 mug shot photographs. Four to six days later, both groups were presented a 6-person photographic line-up. Of the control group, 39% correctly identified the target compared with only 22% of the experimental group. Of the experimental group, 44% incorrectly identified the individual from the previous mug shot array as the intruder. More recently, Hinz and Pezdek (2001) had participants view a single photograph of one target individual for 60 seconds. One week later, they were tested with an intervening target-absent photographic line-up. Two days later, they were shown one of three 6-person photographic line-ups that included a different photograph of the target face (present or absent), the critical foil face repeated from the intervening line-up (present or absent), plus additional new foil faces. The hit rate to the target face was higher when the foil face from the intervening line-up was not in the test line-up, and the false-alarm rate was higher when the target face was not in the test line-up. Thus, simple exposure to an innocent suspect in an intervening line-up whether that innocent suspect is identified or not increases the probability of misidentifying the innocent suspect and decreases the probability of correctly identifying the true perpetrator in a subsequent test line-up. This pattern of results was recently replicated by Memon, Hope, Bartlett, and Bull (2002). These results, along with those of Brigham and Cairns (1988) and Davies, Shepherd, and Ellis (1979), provide strong support for the US Supreme Court s decision in Simmons v. United States (1968); intervening line-ups have a suggestive influence on identifications in subsequent line-ups, irrespective of whether the eyewitness actually selects the innocent suspect in the initial line-up. This study advances these findings and their forensic application by investigating the specific conditions under which intervening line-ups are more likely to influence eyewitness identification accuracy in subsequent line-ups. Research on the effect of intervening line-ups on subsequent eyewitness identification accuracy conceptually dovetails with the cognitive psychology research on the suggestibility of memory. In the classic suggestibility paradigm (Loftus, 1975; Loftus, Miller, & Burns, 1978; Pezdek, 1977), participants first viewed a sequence of slides, a videotape, or a film of an event. Later, they read a narrative or were asked questions that misled them about the identity of target items viewed in the original event

Eyewitness memory 249 (the misled condition), or they did not receive the misleading information (the control condition). A recognition memory test followed. The principal result was that the hit rate to the original target item was higher and the false-alarm rate to the suggested item was lower in the control condition than in the misled condition; that is, participants were suggestively misled by the post-event information presented in the narrative or question. It is predicted that the intervening line-ups will serve as a source of misleading information, and thus, factors that affect the suggestibility of memory will also affect eyewitness identification accuracy when multiple line-ups are presented to eyewitnesses. This prediction is consistent with the speculation in United States v. Wade (1967) that an eyewitness s susceptibility to interfering effects in general is more likely to occur under conditions associated with poor memory for the perpetrator and the target event. The predictions in this research follow from the theory of memory suggestibility proposed by Pezdek and Roe (1995). Accordingly, memories are more resistant to suggestibility if they were acquired under conditions associated with good recognition memory performance. Relying on the memory model of Brainerd, Reyna, Howe, and Kingman (1990), items for which recognition accuracy is high are likely to be associated with a memory representation that includes a high proportion of the information from the originally presented stimulus, which is retained in an elaborated form within a richly associated semantic network that includes numerous contextual attributes. These contextual attributes can serve as cues for the correct source of the face observed either at the crime scene or in the intervening line-up. There are two principal explanations for why memories acquired under conditions associated with poor recognition memory are more vulnerable to suggestibility. The cognitive mechanisms implied by these two explanations are not necessarily independent; in fact, they probably work together. First, according to the trace alteration hypothesis, a more loosely integrated poor memory permits more trace intrusions from suggestive external sources. Second, according to the coexistence hypothesis, suggested information is more likely to coexist with memory for the original information if the original information is poor and has begun to disintegrate. If the suggested information and the weakened original information coexist in memory, then either (a) the relatively stronger suggested information will receive greater activation at test than the relatively weaker original information; or (b) a source monitoring error (Johnson, Hashtroudi, & Lindsay, 1993) or source activation confusion (Ayer & Reder, 1998) can result. The results of several studies suggest that individuals are more likely to be suggestively misled under conditions associated with lower levels of recognition memory. Pezdek and Roe (1995), for example, reported that memory for more frequently occurring events was more resistant to suggestibility than memory for events experienced only once. Taylor (1998) reported that events inconsistent with expectations (i.e. more likely to be correctly recognized) were more resistant to suggestibility than events consistent with expectations. Moreover, Loftus et al. (1978) reported that with an increase in the time delay between the original and the misleading items, the probability of being suggestively misled increased. Three experiments were conducted to investigate the conditions under which viewing multiple line-ups is more likely to affect eyewitness identification accuracy. The central thesis of this study is that factors associated with lower recognition memory for the originally viewed target face will make the memory more vulnerable to the suggestive influence of intervening line-ups. In each of the three experiments,

250 Kathy Pezdek and Iris Blandon-Gitlin a forensically relevant factor known to affect the accuracy of face recognition memory was manipulated to assess how the factor impacted the suggestive influence of an intervening line-up on eyewitness identification accuracy in a subsequent test line-up. These factors are (a) in Experiment 1, same-race versus cross race target faces; (b) in Experiment 2, whether the intervening line-up occurs on the day of the presentation phase (close to presentation) or 1 month later on the day of the subsequent test line-up ( far from presentation); and (c) in Experiment 3, whether the target face is presented for 10 seconds or 60 seconds. In each experiment, it is predicted that memory for the target face would be more vulnerable to the suggestive influence of the intervening lineup under conditions known to produce poorer recognition memory for the target face; that is, with a cross race target face (Experiment 1), when the intervening line-up occurs in the far condition, 1 month after the presentation phase on the day of the test line-up (Experiment 2), and when the target face is presented for 10 seconds (Experiment 3). EXPERIMENT 1 A major factor affecting the accuracy of eyewitness memory is whether the witness and the perpetrator are of the same race or different race. Same-race faces are recognized more accurately than cross race faces. This cross race effect (also termed own-race bias) has been demonstrated with young children as well as adults (Pezdek, Blandon-Gitlin, & Moore, 2003), in field settings (Brigham, Maass, Snyder, & Spaulding, 1982; Platz & Hosch, 1988), as well as in numerous laboratory studies (see Meissner & Brigham, 2001, for a review). The effect is a robust one that is evident in measures of hit rates and falsealarm rates (Meissner & Brigham, 2001), reaction time (Valentine, 1991), forensically relevant tasks such as photo line-up constructions by police officers (Brigham & Ready, 1985), and the Photo-fit face reconstruction system (Ellis, Davies, & McMurran, 1979). The cross race effect in eyewitness identification has also been recognized by attorneys (Brigham, 1981; Brigham & WolfsKeil, 1983), which accounts for the fact that expert testimony on this topic is so common. One interpretation of the cross race face effect is that compared with same-race faces, with cross race faces, less of the information that was in the originally presented face is preserved in memory and retrievable thereafter (Valentine, 1991). Accordingly, it is predicted in Experiment 1 that cross race faces will be more vulnerable to the suggestive influence of intervening line-ups than same-race faces, with a lower hit rate to target faces and higher false-alarm rate in the cross race than same-race condition. The cross race variable is forensically relevant because of the prevalence with which eyewitness identifications in real-world cases involve cross race identification. Method Participants and design Participants in Experiment 1 were 78 volunteers (age: 18 to 27 years, M ¼ 19:54, SD ¼ 1:91) who participated individually or in small groups from psychology classes at community colleges and state universities in the metropolitan Los Angeles area. Samples were drawn from this same population in all three experiments. Of the participants, 27 were African-American (22 female and 5 male) and 51 were non-hispanic Caucasian (25 female and 26 male). The design was a 2 (African-American or Caucasian participant) 2 (African- American or Caucasian target face) 2 (experimental or control intervening line-up)

Eyewitness memory 251 mixed factorial design with the race of the target face the only within-subject variable. The first two factors were combined in the analyses to produce two conditions samerace and cross race. Materials The authors photographed and videotaped the test stimuli used in this study at a county prison. All men were dressed alike and had the same short haircut. Men at the prison were asked to volunteer to be photographed on the basis of the similarity of their appearance. From the volunteers, 12 African-American men and 12 Caucasian men were selected for inclusion in the study. Within each of these two groups of physically similar looking men, one was randomly selected to be the target, one was selected to be the critical foil (i.e. the only face repeated in the intervening line-up and the test line-up), and the other 10 men were foils 6 for the intervening line-up and 4 for the test line-up. To control for similarity effects in the appearance of the photographed men, as the critical foil, we chose a face from our set of photographs that matched the verbal description of the target face but did not look most similar to the target face. Based on suggestions by Wells (1993), each line-up was pilot tested to determine if any bias existed in the line-up; that is, if the a priori rate for selecting the target face and the critical foil face differed significantly from chance. In Phase 1 of the pilot test, a group of four participants viewed both target faces and provided a detailed verbal description of each. The seven most frequently provided descriptors of each face were then used as the general description of each face to be presented to the pilot participants in phase two. A different group of 30 pilot participants served as participants in Phase 2. Each of these 30 pilot participants was Black or White. These participants were given the general verbal description of each target individual generated in Phase 1 of the pilot test and were asked to guess who the target individual was in the test line-up. The results for the Caucasian line-up were that the target face was selected 23% of the time and the critical foil was selected 13% of the time, x 2 ð5þ ¼3:8, p. :05, F ¼ :36. Three of the foil faces in the line-up were selected more frequently than the critical foil. For the African-American line-up, the target face was selected 23% of the time and the critical foil was selected 13% of the time, x 2 ð5þ ¼8:00, p. :05, F ¼ :51. Two of the foil faces in the line-up were selected more frequently than the critical foil. These results suggest that the critical foil was not the face most similar to the description of the target face in the test line-up for either the Caucasian face or the African-American face. This procedure was also followed to insure that in the intervening line-ups the critical foil was not more similar to the target face than were the other foils. Thirty pilot participants who did not otherwise participate in this study were given the description of each target face generated in Phase 1 of the above pilot test and were asked to guess who the target individual was among the six faces in the corresponding intervening lineup. Each of these 30 pilot participants was, by race, either Black or White. The Caucasian critical foil was selected 23% of the time, x 2 ð5þ ¼6:4, p. :05, F ¼ :46, and the African-American critical foil was selected 30% of the time, x 2 ð5þ ¼10:8, p. :05, F ¼ :69, and in both of these intervening line-ups, one foil face was chosen more frequently than the critical foil. Thus, the critical foil was not the face most similar to the description of the target face in the intervening line-up for either the Caucasian or the African-American faces.

252 Kathy Pezdek and Iris Blandon-Gitlin Procedure This study consisted of three phases; the presentation phase, followed by the intervening line-up phase, and then the test line-up phase. In the presentation phase, participants viewed the two target men, one African-American and one non-hispanic Caucasian. The two men were videotaped while working at an island counter making cinnamon rolls. This interaction had the appearance of a cooking show. Both men were visible from the waist up throughout the 60-second segment. Prior to viewing the video, participants were simply instructed to pay attention to the segment. One week later, participants were presented two intervening line-ups one at a time. Each line-up included colour photographs of six men, arranged in two rows of three photographs. Each photograph in the line-up was approximately 1.5 2.5 inches in size. All photographic line-ups used in this study had this appearance. Each of the intervening line-ups corresponded to one of the previously seen target faces, one for the African-American target and one for the Caucasian target. Participants were randomly assigned to the control or the experimental intervening item condition. In the control condition, participants viewed two 6-person target-absent intervening line-up. In the experimental condition, participants viewed the same two 6-person target-absent intervening line-ups as in the control condition except that in each, a photograph of one of the foil faces was replaced with the critical foil face for that line-up. The critical foil was a new face and was the only foil face subsequently repeated in the test line-up. The critical foil thus served as the innocent suspect in that this was not the target face but was repeated in the intervening photographic line-up and in the subsequent test line-up. Participants were first handed a copy of one intervening line-up and a response sheet. They were asked to view the photographic line-up and circle the number on the response sheet that corresponded to the face they identified. This procedure was repeated for the second face. The order of presenting these two intervening line-ups was counterbalanced across participants. Prior to being handed the intervening lineups, participants were told that: (a) the target face may or may not be present; (b) only one choice was allowed; and (c) they had the option of responding, not present. Two days later, the test line-ups were presented. For each of the two target faces, participants viewed a videotape of a live line-up. Each test line-up included six faces the target, the critical foil, and four other foils. Each video line-up tape lasted 3 minutes. In each video line-up, six men walked onto a stage and faced the camera. Then, one at a time, each one stepped forward, faced the camera for 5 seconds, turned to the right for 5 seconds, turned to the left for 5 seconds, and then faced the camera again for 5 seconds. The order of presenting the African-American and Caucasian test line-ups was counterbalanced across participants. Prior to presenting the test line-ups, participants were told that the target faces may or may not have been included in the intervening phase. They were told that they would be presented videotapes of two live line-ups. Their task was to identify, in each one, the target face they saw in the cooking show and to mark this choice on the response form provided. This was a forced-choice test; a not present option was not available. The decision to use a forced-choice test followed from Hinz and Pezdek (2001) who reported that the majority of participants, who chose the not present option later, chose the target face when given a forced-choice test. Although this finding may simply be a result of the stimuli used in the previous study, the finding suggests that when given the not present option, participants may place their response criterion high and consequently miss the target face. Because in this study, we were interested in

Eyewitness memory 253 assessing memory effects rather than effects of shifting response criteria, we chose to use a forced-choice test. Although an identification test with the not present option is more similar to police identification procedures, we chose to use a measure more sensitive to memory effects rather than to simulate this aspect of real police procedures. Results and discussion The principal hypothesis was tested with z tests comparing the proportion of hits and the proportion of false alarms in the experimental versus the control conditions for same-race versus cross race faces. This analysis was necessitated by the fact that each participant was tested with only one face in each condition. Throughout this study, because predictions are directional, all comparisons are tested with one-tailed significance tests. The mean hit rates and false-alarm rates are presented in the top panel of Fig. 1. The obtained results fit the predicted pattern. As can be seen in top left panel of Fig. 1, whereas the difference in hit rates between the control and experimental conditions was not significant in the same-race condition (M ¼ 0:53 and 0.48, respectively, z ¼ 0:43, r ¼ :05), the difference in hit rates between the control and experimental conditions was significant in the cross race condition (M ¼ 0:63 and 0.43, respectively, z ¼ 1:74, p, :05, r ¼ :20). Similarly, with false-alarm rates, as can be seen in top right panel of Fig. 1, whereas the difference between the control and experimental conditions was not significant in the same-race condition (M ¼ 0:19 and 0.22, respectively, z ¼ 0:33, r ¼ :04), the difference between the control and experimental conditions was marginally significant in the cross race condition (M ¼ 0:19 and.35, respectively, z ¼ 1:58, p, :06, r ¼ :18). We next assessed identification accuracy on the test line-up based on how participants responded on the intervening line-up. On the intervening line-up, participants in the experimental intervening line-up condition were asked to identify the target from a target-absent line-up that included the critical foil along with five other foils. Three responses were possible; participants could identify the critical foil, identify one of the foils faces, or they could respond not present. Only responses from the experimental condition are included in this analysis because only in this condition were participants exposed to the critical foil in the intervening phase. The hit rate to the target face and the false-alarm rate to the critical foil on the test line-up were examined in each experimental condition as a function of whether each participant chose the critical foil or not on the intervening line-up. Because these comparisons involve such small sample sizes, only descriptive statistics will be presented for these results. As can be seen in the top panel of Table 1, in the same-race condition, on the test lineup, neither the hit rate to the target face nor the false-alarm rate to the critical foil were affected much by whether participants chose the critical foil or not in the intervening line-up. On the other hand, in the cross race condition, on the test line-up, the hit rate to the target face was somewhat lower and the false-alarm rate to the critical foil was higher if participants chose the critical foil on the intervening line-up. This result suggests that in the cross race condition, but not the same-race condition, choosing the innocent suspect (i.e. the critical foil) from the intervening line-up reduced the probability of identifying the target face and increased the probability of misidentifying the innocent suspect in the subsequent test line-up. Together, these results suggest that the effect of an intervening line-up on identification accuracy in a subsequent test line-up is enhanced under conditions associated with poorer recognition memory for the target face; that is, in Experiment 1,

254 Kathy Pezdek and Iris Blandon-Gitlin Figure 1. Mean hit rate to the target face and false-alarm rate to the critical foil face as a function of condition in each experiment. with a cross race target face. This is not to say that intervening line-ups do not ever affect memory for same-race target faces, but simply that under the procedural conditions in Experiment 1, viewing the critical foil in the intervening line-up did not affect memory for the same-race target face. EXPERIMENT 2 Another factor that affects the probability that intervening material will suggestively influence memory for information from the presentation phase is whether the

Eyewitness memory 255 Table 1. Hit rate to the target face and false-alarm rate to the critical foil in each experiment as a function of each participant s choice on the intervening line-up Choice on the Subsequent Test Line-up Experiment 1 Own-race test face Cross race test face Choice on the intervening line-up in the experiment condition Hit rate to target False-alarm rate to CF Hit rate to target False-alarm rate to CF Critical Foil (CF).50 (3/6).17 (1/6).38 (5/13).46 (6/13) Other than Critical Foil.48 (19/40).23 (9/40).45 (15/33).30 (10/33) Experiment 2 Choice on the intervening line-up Intervening line-up close Intervening line-up far in the experiment condition Hit rate to target False-alarm rate to CF Hit rate to target False-alarm rate to CF Critical Foil (CF) 1.00 (2/2).50 (1/2).63 (5/8).50 (4/8) Other than critical foil.73 (29/40).18 (7/40).38 (17/45).27 (12/45) Experiment 3 Choice on the intervening line-up 60-second presentation rate 10-second presentation rate in the experiment condition Hit rate to target False-alarm rate to CF Hit rate to target False-alarm rate to CF Critical foil (CF).50 (4/8).25 (2/8).33 (1/3).67 (2/3) Other than critical foil.84 (32/38).05 (2/38).60 (27/45).20 (9/45)

256 Kathy Pezdek and Iris Blandon-Gitlin intervening material is presented temporally close to the presentation phase (close) or temporally close to the test phase ( far). This finding was first reported by Loftus et al. (1978, Experiment 3). Their participants viewed a series of slides and were given a recognition memory test 20 minutes, 1 day, 2 days, or 1 week later. At each retention interval, misleading information was inserted either immediately after the presentation phase or just prior to the recognition memory test. The misleading information had a larger impact on reducing the accuracy of memory for the presented information if introduced just prior to the final test rather than immediately after the presentation phase. Further, when the misleading information was delayed, it had a greater detrimental effect at longer retention intervals. The interpretation of this effect was that the poorer the memory for the originally presented information, the easier it is to alter. In addition, if memory for the misleading information is relative stronger than memory for the originally presented information, the misleading information is probably relatively more accessible at the time of test. In Experiment 2, the test phase always followed the presentation phase by 1 month. The intervening line-up occurred on the day of the presentation phase (close) or 1 month later on the day of the test line-up ( far). It was predicted that at the time of the test phase, memory for the target face would be poorer relative to memory for the faces in the intervening line-up, in the far condition but not the close condition. Thus, participants were more likely to be misled by the familiar critical foil in the far than in the close condition. Consequently, the difference between the experimental condition (critical foil present in the intervening line-up) and the control condition (critical foil not present in the intervening line-up) would be greater in the far than the close condition. Specifically, the hit rate would be lower and the false-alarm rate higher in the experimental condition compared with the control condition in the far condition. The placement of the intervening line-up is a forensically relevant variable because in real-world cases, the placement of the intervening line-up can vary between the time of the original observation and the time of the subsequent line-up that includes the actual suspect. Method Participants and design Participants in Experiment 2 were 96 individuals (age: 15 to 49 years, M ¼ 24:65, SD ¼ 7:93) who did not participate in any other experiment in this study. There were 69 female and 26 male (one participant did not indicate gender) volunteers. There were 55.2% Caucasian, 24% Hispanic, 9.4% Asian, 6.3% African American, and 5.1% other ethnicities. The design was a 2 (close versus far placement of the intervening line-up) 2 (experimental or control intervening line-up) mixed factorial design with placement of the intervening line-up the only between-subjects variable. The placement of the intervening line-up was on the day of the presentation phase (close condition) or one week later on the day of the test line-up (far condition). In this experiment, the experimental versus control intervening line-up variable was manipulated within subjects; each participant viewed two target faces, one in the experimental condition and one in the control condition.

Eyewitness memory 257 Procedure and materials This study also consisted of a presentation phase, an intervening line-up phase, and then a test line-up phase. New stimulus materials were used in Experiment 2. There were two Caucasian target faces in Experiment 2. These two target faces included the Caucasian target face from Experiment 1 (with the corresponding critical foil and foil faces) and the single target face (with the corresponding critical foil and foil faces) used by Hinz and Pezdek (2001). In the presentation phase, participants viewed a colour photograph of each of two target faces for 60 seconds. The order of presenting the two target faces, as well as the order of presenting the intervening line-ups and the test line-ups, was counterbalanced across subjects. The test phase was 1 month later. Participants participated in groups that were randomly assigned to the close or the far intervening item condition; this variable was manipulated between subjects. In the close condition, participants viewed the intervening line-up on the day of the presentation phase, about 2 hours after viewing the target faces. In the far condition, participants viewed the intervening line-up on the day of the test phase, about 2 hours prior to the recognition memory test. Each of the intervening line-ups corresponded to one of the two target faces previously seen by each participant with one in the control condition and one in the experimental. In the control intervening line-up condition, participants viewed one of two 6-person target-absent intervening line-ups. The experimental intervening line-ups were the same as the control intervening line-ups except that the photograph of one of the foil faces in each line-up was replaced with the critical foil face for that line-up. The critical foil was a new face and was the only foil face subsequently repeated in the test line-up. In the test phase, for each of the two target faces, participants viewed a 6-person target-present photographic line-up including the target, the critical foil, and four foils. As in Experiment 1, the test line-up was a forced-choice test without the not present option. Results and discussion The mean hit rates and false-alarm rates are presented in the middle panel of Fig. 1. The obtained results fit the predicted pattern of results. As can be seen in middle left panel of Fig. 1, whereas the difference in the hit rates between the control condition and the experimental condition was not significant in the close condition (M ¼ 0:72 and 0.74, respectively, z ¼ 0:08, r ¼ :01), the difference in hit rates between the control condition and the experimental condition was significant in the far condition (M ¼ 0:62 and 0.42, respectively, z ¼ 2:06, p, :05, r ¼ :28). A similar pattern resulted with the false-alarm rate data. Whereas the difference in false alarms between the control condition and the experimental condition was not significant in the close condition (M ¼ 0:12 and 0.19, respectively, z ¼ 0:91, r ¼ :14), the difference in false-alarm rates between the control condition and the experimental condition was significant in the far condition (M ¼ 0:15 and 0.30, respectively, z ¼ 1:85, p, :05, r ¼ :25). We next assessed identification accuracy on the test line-up based on how participants responded on the intervening line-up. Relevant results for Experiment 2 are presented in the middle panel of Table 1. First, in the close intervening line-up condition, only 2 participants (of 42 in the experimental condition) chose the critical foil in the intervening line-up. Thus, few conclusions can be reached on the effect of choosing the critical foil in the close intervening line-up condition on the subsequent test line-up based on these data. However, in the far intervening line-up condition, on

258 Kathy Pezdek and Iris Blandon-Gitlin the test line-up, both the hit rate to the target and the false alarm rate to the critical foil were higher if participants chose the critical foil on the intervening line-up. The result suggests that in the far intervening line-up condition, choosing the critical foil from the intervening line-up increased the probability of misidentifying this innocent suspect in the subsequent test line-up. Together, these results suggest that the effect of an intervening line-up on identification accuracy in a subsequent test line-up is enhanced under conditions associated with poorer memory for the target face; that is, in Experiment 2, when the intervening line-up is placed closer to the test line-up and farther from the presentation of the target face. EXPERIMENT 3 It has been widely reported that recognition memory for objects, pictures, and faces improves with increased exposure time (Laughery, Alexander, & Lane, 1971; Potter & Levy, 1969; Reynolds & Pezdek, 1992; Tversky & Sherman, 1975). In Shapiro and Penrod s (1986) meta-analysis of the eyewitness identification research, they reported that faces exposed for longer durations were correctly identified more often (d ¼ 0:61; 69% vs. 57%) and falsely identified less often (d ¼ 0:22, 34% vs. 38%) than faces exposed for shorter durations. Based on these findings, the specific prediction of Experiment 3 is that a face exposed for a shorter duration will be more vulnerable to the suggestive influence of an intervening line-up than a face exposed for a longer duration. Specifically, a lower hit rate to the target face and a higher false-alarm rate to the critical foil were predicted in the shorter than the longer exposure duration condition. Exposure duration is a forensically relevant variable because eyewitnesses in real-world cases ATM robberies, purse snatches, and drive-by shootings frequently observe the perpetrator for only a matter of seconds. Presentation rates of 10 and 60 seconds were selected based on pilot tests conducted to avoid ceiling effects and floor effects in face recognition memory. Method Participants and design In Experiment 3, there were 94 adult participants (age: 15 to 44 years, M ¼ 22:35, SD ¼ 5:76). There were 70 female and 23 male volunteers (1 participant did not provide gender information). Of the participants, 44% were Caucasian, 23% were Hispanic, 14% were Asian, 5% were African-American, and 14% were other ethnicities. The design was a 2 (target face presentation rate; 10 seconds or 60 seconds) 2 (experimental or control intervening line-up) mixed factorial design with target face presentation rate the only between-subjects variable. The experimental versus control intervening line-up variable was manipulated within subjects; each participant viewed two target faces, one in the experimental condition and one in the control condition. Procedure and materials The materials and the instructions in each phase of Experiment 3 were the same as those used in Experiment 2. In the presentation phase, participants viewed the photograph of

Eyewitness memory 259 both target faces for either 10 or 60 seconds, and participants were randomly assigned to one of these presentation rate conditions. Two days later, participants were presented two intervening line-ups one at a time, followed 2 hours later by the test phase. As in Experiment 2, each of the intervening line-ups corresponded to one of the two target faces previously seen by each participant, with one in the control condition and one in the experimental. In the control intervening line-up condition, participants viewed one of two 6-person target-absent intervening line-ups. The experimental intervening lineups were the same as the control intervening line-ups except that the photograph of one of the foil faces in each line-up was replaced with the critical foil face for that line-up. Again, the critical foil face was a new face and was the only foil face subsequently repeated in the test line-up. The test line-up phase occurred 2 hours after the intervening line-ups were viewed. In the test phase, for each of the two target faces, participants viewed a 6-person targetpresent photographic line-up including the target, the critical foil, and four foils. This was a forced-choice test without the not present option. Results and discussion The mean hit rates and false-alarm rates are presented in the bottom panel of Fig. 1. The obtained results fit the predicted pattern of results. As can be seen in bottom left panel of Fig. 1, whereas the difference in the hit rates between the control condition and the experimental condition was not significant in the 60-second condition (M ¼ 0:74 and 0.78, respectively, z ¼ 0:45, r ¼ :07), the difference in hit rates between the control condition and the experimental condition was significant in the 10-second presentation rate condition (M ¼ 0:77 and 0.58, respectively, z ¼ 2:03, p, :05, r ¼ :29). Similarly, with false-alarm rates, as can be seen in bottom right panel of Fig. 1, whereas the difference in the false-alarm rates between the control and the experimental conditions was not significant in the 60-second presentation rate condition (M ¼ 0:09 and 0.09, respectively, z ¼ 0, r ¼ :00), the difference in false-alarm rates between the control condition and the experimental condition was significant in the 10-second presentation rate condition (M ¼ 0:10 and 0.23, respectively, z ¼ 1:74, p, :05, r ¼ :25). We next assessed the identification accuracy on the test line-up based on how participants responded on the intervening line-up. Only responses from the experimental condition are included in this analysis. These results for Experiment 3 are presented in the bottom panel of Table 1. First, in both the 60-second and the 10-second presentation rate conditions, the hit rate to the target face was lower if participants chose the critical foil face in the intervening line-up rather than if they chose one of the other options. Furthermore, in both presentation conditions, the falsealarm rate to the critical foil face was higher if participants had chosen this face on the previous intervening line-up. However, this difference was much larger in the 10-second presentation rate condition than in the 60-second presentation rate condition. These results suggest that the effect of choosing the innocent suspect (i.e. the critical foil) in the intervening line-up on the hit rate to the target face was similar in the 10-second and 60-second presentation rate conditions. However, choosing the innocent suspect in the intervening line-up had a greater impact on increasing the probability of misidentifying this person in the subsequent test line-up in the 10-second than in the 60-second presentation rate condition. Together, these results suggest that the effect of an intervening line-up on identification accuracy in a subsequent test line-up is enhanced under conditions

260 Kathy Pezdek and Iris Blandon-Gitlin associated with poorer memory for the target face; that is, in Experiment 3, with a shorter presentation rate. This is not to say that intervening line-ups do not ever affect memory for target faces viewed for a long duration, but simply that under the procedural conditions in Experiment 3, viewing the critical foil in the intervening line-up did not affect memory for the target face viewed for 60 seconds. GENERAL DISCUSSION Three experiments assessed the conditions under which viewing an intervening photographic line-up is more likely to affect eyewitness identification accuracy in a subsequent line-up. In each experiment, a forensically relevant variable known to relate to the recognition memory for the target face was varied to assess how each in turn affected the suggestive influence of the intervening line-up on eyewitness identification accuracy in a subsequent line-up. For each of these independent variables, one value of the variable was associated with relatively higher recognition memory for the target face the same-race condition in Experiment 1, the close placement of the intervening lineup in Experiment 2, and the 60-second presentation rate in Experiment 3. The other value of each variable was associated with relatively lower recognition memory for the target face the cross race condition in Experiment 1, the far placement of the intervening line-up in Experiment 2, and the 10-second presentation rate in Experiment 3. As can be seen in Fig. 1, in each experiment, whereas the difference between the experimental and the control conditions was not significant for the level of each independent variable associated with better memory for the target faces, this difference was significant or marginally significant (p, :06) for the level of each independent variable associated with poorer memory for the target face. The results across these three experiments are compelling. There were 12 critical comparisons, of which 6 were predicted not to differ significantly and 6 were predicted to differ significantly. Of the 6 comparisons between the experimental and the control conditions for hits and false alarms in the stronger memory conditions, none were significant,; in fact, each of these 6 comparisons produced z tests less than 1. In contrast, of the 6 comparisons between the experimental and the control conditions for hits and false alarms in the three poorer memory conditions, all 6 were in the predicted direction; 5 were significant at p, :05 and 1 was marginally significant at p, :06. To assess the overall effect of the comparison between the control group versus the experimental group in the three experiments, we used Rosenthal s (1984) suggested meta-analytic procedure. For the hit rate data, the combined r value comparing the experimental versus the control condition was not significant (r ¼ :05, z ¼ 0:81) in the three stronger target memory conditions (i.e. the conditions of same-race, close placement of the intervening line-up, and 60-second presentation rate), but significant (r ¼ :25, z ¼ 4:21, p, :001) in the three weaker target memory conditions (i.e. the conditions of cross race, far placement of the intervening line-up, and 10-second presentation rate). For the false-alarm rate data, the combined weighted r value comparing the experimental versus the control condition was not significant (r ¼ :05, z ¼ 0:81) in the three stronger target memory conditions, but significant (r ¼ :22, z ¼ 3:64, p, :001) in the three weaker target memory conditions. The combined weighted r values strongly support the conclusion that under conditions known to be associated with relatively weaker memory for the target face, presenting the innocent suspect in the intervening line-up reduced the hit rate to the target face and increased

Eyewitness memory 261 the false-alarm rate to the innocent suspect. On the other hand, under conditions known to be associated with relatively stronger memory for the target face, the effect of presenting the innocent suspect was not significant. A number of researchers have investigated whether the choice that witnesses make on the intervening line-up affects recognition accuracy on the subsequent test line-up (Hinz & Pezdek, 2001; Memon, et al., 2002). Relevant findings from this study are presented in Table 1. These data need to be interpreted cautiously because they are based on very small sample sizes in some conditions. However, in general, the results suggest that choosing the innocent suspect from the intervening line-up reduced the probability of identifying the target face and increased the probability of misidentifying the innocent suspect in the subsequent test line-up, and did so more consistently in the conditions generally associated with poorer face recognition memory (cross race, far intervening line-up, 10-second presentation rate) than the conditions associated with better face recognition memory (same-race, close intervening line-up, 60-second presentation rate). Thus, the effect of the intervening line-up on subsequent face identification accuracy is enhanced when participants actually select the innocent suspect from the intervening line-up and the effect of doing so is stronger under conditions associated with poorer face recognition memory. How do these results fit with the US Supreme Court s decision in the cases of Simmons v. United States (1968) and United States v. Wade (1967)? These findings suggest that the problem of decreased identification accuracy following the viewing of an intervening photograph is especially of concern when memory for the perpetrator is likely to be poor. In real-world criminal eyewitness memory situations, the eyewitness frequently does not get a good look at the perpetrator, because, for example, the perpetrator s face was observed briefly or the perpetrator was of a different race than the witness. Generally, poor recognition memory for the perpetrator s face would be predicted under these conditions. Further, if the eyewitness views a subsequent intervening line-up, memory for faces in the intervening line-up are likely to intrude on memory for the perpetrator s face. The results of this study suggest that if the eyewitness then views a subsequent line-up, poorer memory for the perpetrator s face and intrusions produced by the subsequent intervening line- are likely to result in a lower hit rate to the target face (i.e. a miss of the true perpetrator) and a higher false-alarm rate or misidentification of the innocent suspect who was repeated in the intervening line-up and the subsequent test line-up. These effects are less likely to occur, however, when the eyewitness gets a good look at the perpetrator and retains a detailed memory for his face. The legal relevance of this research is clear. However, as in all eyewitness memory research, there are several caveats that should be considered in generalizing these results directly to real-world applications. First, although the variables manipulated in this study are forensically relevant, the study clearly did not involve eyewitness memory in a real or even simulated crime situation. Second, the test line-up was a forced-choice test; participants were not given the option of responding, none of these. We know from our previous work (Hinz & Pezdek, 2001) that the hit rate is higher when participants are given a forced-choice test. This makes the obtained results using a forced-choice test even more impressive. Third, only one type of test line-up was included in this study target, innocent suspect and four new foils. The rationale for including only one test line-up that included both the target face and the face of the innocent suspect follows from the results of Hinz and Pezdek (2001); they reported similar patterns of hit rates to the target

262 Kathy Pezdek and Iris Blandon-Gitlin face and false-alarm rates to the innocent suspect in test line-ups that included both the target face and the innocent suspect (with four foils) as well as test line-ups that included only the target face (with five foils). Thus, although it would not frequently be the case that a real police line-up would include both a face from the first line-up and the face of a new suspect, nonetheless, the findings of this study probably generalize to a number of common applied situations that involve administering multiple line-ups. These findings, along with results reported by Hinz and Pezdek (2001), suggest that the pattern of results reported here would occur as well if the test line-up had included the target face alone or the innocent suspect s face alone, as is the more common police procedure. Acknowledgements This article is based upon work supported by the National Science Foundation conducted by Kathy Pezdek under Grant No. SES-9910909. Any opinions, findings, and conclusions or recommendations expressed in this article are those of the authors and do not necessarily reflect the views of the National Science Foundation. References Ayers, M. S., & Reder, L. M. (1998). A theoretical review of the misinformation effect: Predictions from an activation-based memory model. Psychonomic Bulletin and Review, 5, 1 21. Brainerd, C. J., Reyna, V. F., Howe, M. L., & Kingman, J (1990). The development of forgetting and reminiscence. Monograph of the Society for Research in Child Development, 55, (3 4, Serial No. 222). Brigham, J. C. (1981). The accuracy of eyewitness evidence: How do attorneys see it? Florida Bar Journal, 55, 714 721. Brigham, J. C., & Cairns, D. L. (1988). The effect of mugshot inspection on eyewitness identification accuracy. Journal of Applied Social Psychology, 18, 1394 1410. Brigham, J. C., Maass, A., Snyder, L. D., & Spaulding, K. (1982). Accuracy of eyewitness identifications in a field setting. Journal of Personality and Social Psychology, 42, 673 681. Brigham, J. C., & Ready, D. J. (1985). Same-race bias in lineup construction. Law and Human Behavior, 9, 415 424. Brigham, J. C., & WolfsKeil, M. P. (1983). Opinions of attorneys and law enforcement personnel on the accuracy of eyewitness identifications. Law and Human Behavior, 7, 337 349. Brown, E., Deffenbacher, K., & Sturgill, W. (1977). Memory for faces and the circumstances of encounter. Journal of Applied Psychology, 62, 311 318. Davies, G. M., Shepherd, J. W., & Ellis, H. D. (1979). Effects of interpolated mug shot exposure on accuracy of eyewitness identification. Journal of Applied Psychology, 64, 232 237. Ellis, H. D., Davies, G. M., & McMurran, M. M. (1979). Recall of White and Black faces by White and Black witnesses using the Photofit system. Human Factors, 21, 55 59. Gorenstein, G. W., & Ellsworth, P. C. (1980). Effect of choosing an incorrect photograph on a later identification by an eyewitness. Journal of Applied Psychology, 65, 616 622. Hinz, T., & Pezdek, K. (2001). The effect of exposure to multiple lineups on face identification accuracy. Law and Human Behavior, 25, 185 198. Johnson, M. K., Hashtroudi, S., & Lindsay, D. S. (1993). Source monitoring. Psychological Bulletin, 114, 2 18. Laughery, K. R., Alexander, J. F., & Lane, A. B. (1971). Recognition of human faces: Effects of target exposure time, target position, and type of photographs. Journal of Applied Psychology, 59, 490 496.