From single-trial EEG to brain area dynamics

Similar documents
From Single-trial EEG to Brain Area Dynamics

ABSTRACT 1. INTRODUCTION 2. ARTIFACT REJECTION ON RAW DATA

EEG changes accompanying learned regulation of 12-Hz EEG activity

DATA MANAGEMENT & TYPES OF ANALYSES OFTEN USED. Dennis L. Molfese University of Nebraska - Lincoln

Beyond Blind Averaging: Analyzing Event-Related Brain Dynamics. Scott Makeig. sccn.ucsd.edu

To appear in Advances in Neural Information Processing Systems 10. Extended ICA Removes Artifacts from.

Advances in Neural Information Processing Systems 8, D. Touretzky, M. Mozer and. Independent Component Analysis. Howard Hughes Medical Institute and

John E. Richards* Department of Psychology, University of South Carolina, Columbia, SC 29208, United States

Electroencephalographic brain dynamics following visual targets requiring manual responses

Top-Down versus Bottom-up Processing in the Human Brain: Distinct Directional Influences Revealed by Integrating SOBI and Granger Causality


Information-based modeling of event-related brain dynamics

Decisions Have Consequences

Multiscale Evidence of Multiscale Brain Communication

Mining Electroencephalographic Data Using Independent Component Analysis

EEG reveals divergent paths for speech envelopes during selective attention

On the tracking of dynamic functional relations in monkey cerebral cortex

WAVELET ENERGY DISTRIBUTIONS OF P300 EVENT-RELATED POTENTIALS FOR WORKING MEMORY PERFORMANCE IN CHILDREN

Morton-Style Factorial Coding of Color in Primary Visual Cortex

Information-based modeling of event-related brain dynamics

Sum of Neurally Distinct Stimulus- and Task-Related Components.

Computational Perception /785. Auditory Scene Analysis

Multichannel Classification of Single EEG Trials with Independent Component Analysis

Model-free detection of synchrony in neuronal spike trains, with an application to primate somatosensory cortex

Electroencephalographic Brain Dynamics Following Manually Responded Visual Targets

Working Memory Impairments Limitations of Normal Children s in Visual Stimuli using Event-Related Potentials

Processed by HBI: Russia/Switzerland/USA

What is novel in the novelty oddball paradigm? Functional significance of the novelty P3

The neurolinguistic toolbox Jonathan R. Brennan. Introduction to Neurolinguistics, LSA2017 1

This presentation is the intellectual property of the author. Contact them for permission to reprint and/or distribute.

Human Brain Institute Russia-Switzerland-USA

Event Related Potentials: Significant Lobe Areas and Wave Forms for Picture Visual Stimulus

Supporting Information

1 Introduction Synchronous ring of action potentials amongst multiple neurons is a phenomenon that has been observed in a wide range of neural systems

Oscillations: From Neuron to MEG

Measure Projection Analysis: A Probabilistic Approach to EEG Source Comparison and Multi-Subject Inference

Neurophysiologically Driven Image Triage: A Pilot Study

Neuro Q no.2 = Neuro Quotient

Depth/surface relationships: Confronting noninvasive measures to intracerebral EEG

Supplementary Information on TMS/hd-EEG recordings: acquisition and preprocessing

Variability of frontal midline EEG dynamics during working memory

PCA Enhanced Kalman Filter for ECG Denoising

Functional Connectivity and the Neurophysics of EEG. Ramesh Srinivasan Department of Cognitive Sciences University of California, Irvine

Stefan Debener a,b, *, Scott Makeig c, Arnaud Delorme c, Andreas K. Engel a,b. Research report

EEG Analysis on Brain.fm (Focus)

Tonic Changes in EEG Power Spectra during Simulated Driving

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES

Figure 1. Source localization results for the No Go N2 component. (a) Dipole modeling

Input-speci"c adaptation in complex cells through synaptic depression

Transitions between dierent synchronous ring modes using synaptic depression

Robust Neural Encoding of Speech in Human Auditory Cortex

Medial Prefrontal Theta Bursts Precede Rapid Motor Responses during Visual Selective Attention

Independent Component Analysis of Electroencephalographic Data

Depth/Surface Relationships: Confronting noninvasive measures to intracerebral EEG

Frontal midline EEG dynamics during working memory

At What Latency Does the Phase of Brain Oscillations Influence Perception?

Beyond bumps: Spiking networks that store sets of functions

Supporting Information

EEG Recordings from Parent/Child Dyads in a Turn-Taking Game with Prediction Error

Theta Oscillation Related to the Auditory Discrimination Process in Mismatch Negativity: Oddball versus Control Paradigm

A micropower support vector machine based seizure detection architecture for embedded medical devices

Examination of Multiple Spectral Exponents of Epileptic ECoG Signal

Spatiotemporal clustering of synchronized bursting events in neuronal networks

Neurophysiologically Driven Image Triage: A Pilot Study

Neural Networks: Tracing Cellular Pathways. Lauren Berryman Sunfest 2000

Classification of EEG signals in an Object Recognition task

Physiological and Physical Basis of Functional Brain Imaging 6. EEG/MEG. Kâmil Uludağ, 20. November 2007

Neural Correlates of Human Cognitive Function:

Automatic Identification and Removal of Ocular Artifacts from EEG using Wavelet Transform

Long-term depression and recognition of parallel "bre patterns in a multi-compartmental model of a cerebellar Purkinje cell

Effects of Light Stimulus Frequency on Phase Characteristics of Brain Waves

Competing Streams at the Cocktail Party

Mind Monitoring via Mobile Brain-Body Imaging. Scott Makeig. Human-Computer Interface International 2009 San Diego, CA, 2009

Supplementary materials for: Executive control processes underlying multi- item working memory

ISSN: (Online) Volume 3, Issue 7, July 2015 International Journal of Advance Research in Computer Science and Management Studies

SUPPLEMENTARY INFORMATION. Table 1 Patient characteristics Preoperative. language testing

PARAFAC: a powerful tool in EEG monitoring

Computational Explorations in Cognitive Neuroscience Chapter 7: Large-Scale Brain Area Functional Organization

Supplementary Online Content

Clinical Neurophysiology

Chapter 5. Summary and Conclusions! 131

Novel single trial movement classification based on temporal dynamics of EEG

Analysis of the generators of epileptic activity in early-onset childhood benign occipital lobe epilepsy

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening

Relating ACT-R buffer activation to EEG activity during an attentional blink task

Visual Context Dan O Shea Prof. Fei Fei Li, COS 598B

EEG/ERP Control Process Separation

Functional connectivity in fmri

Brain wave synchronization and entrainment to periodic acoustic stimuli

FREQUENCY DOMAIN HYBRID INDEPENDENT COMPONENT ANALYSIS OF FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA

Power-Based Connectivity. JL Sanguinetti

Spectro-temporal response fields in the inferior colliculus of awake monkey

To link to this article: PLEASE SCROLL DOWN FOR ARTICLE

HST 583 fmri DATA ANALYSIS AND ACQUISITION

Est-ce que l'eeg a toujours sa place en 2019?

The power of Tensor algebra in medical diagnosis

Electroencephalography II Laboratory

NeuroImage. EEG correlates of haptic feedback in a visuomotor tracking task

Discrimination of EEG-Based Motor Imagery Tasks by Means of a Simple Phase Information Method

Transcription:

Neurocomputing 44 46 (2002) 1057 1064 www.elsevier.com/locate/neucom From single-trial EEG to brain area dynamics A. Delorme a;, S. Makeig a, M. Fabre-Thorpe b, T. Sejnowski a a The Salk Institute for Biological Studies, 10010 N. Torey Pines Read, La Jolla, CA92109, USA b Centre de Recherche Cerveau and Cognition (CERCO) (UMR 5549), Faculte de medecine, 133 route de Narbonne, 31062 Toulouse Cedex, France Abstract We here present a new technique for visualizing the temporal dynamics of brain area activation and interaction at high-temporal resolution. We rst applied independent component analysis to concatenated single-trial EEG data from a fast go nogo categorization task of natural images and showed that individual independent components might index neural synchrony within and between intracranial brain sources. We used time-frequency decomposition to model their dynamic interactions. In particular, following stimulus presentations, we showed that several independent components were activated and synchronized in the theta frequency range (near 4 Hz). c 2002 Elsevier Science B.V. All rights reserved. Keywords: EEG & ERP; Visual categorization; ICA; Time-frequency analysis; Brain areas synchronizations 1. Introduction None of the current functional imaging techniques is well suited to address the dynamics of brain source activity and their dynamic relationships during visual perception and categorization. Only EEG has the sucient time resolution to capture the macroscopic dynamics of brain activation and synchronization. However, using EEG we face problem of reconstructing the intracranial brain sources from the observed signals: the projections on the scalp of separately generated EEG processes typically overlap both in time and space, becoming inextricably mixed in recordings from scalp electrodes. Recovering the locations and activities of these brain processes is known as the EEG Corresponding author. Centre de Recherche Cerveau and Cognition (CERCO) (UMR 5549), Faculte de medecine, 133 route de Narbonne, 31062 Toulouse Cedex, France. Tel.: +33-562-173-774; fax: +33-562-172-809. E-mail addresses: arno@salk.edu (A. Delorme), scott@salk.edu (S. Makeig), mft@cerco.ups-tlse.fr (M. Fabre-Thorpe), terry@salk.edu (T. Sejnowski). 0925-2312/02/$ - see front matter c 2002 Elsevier Science B.V. All rights reserved. PII: S0925-2312(02)00415-0

1058 A. Delorme et al. / Neurocomputing 44 46 (2002) 1057 1064 inverse problem. To avoid fully solving this problem, one can compute dierences between stimulus-locked averages of sets of trials diering by only one characteristic. The remaining dierence wave average may then be more easily interpreted [12]. However, this technique assumes that the dierence is composed of activity from a few easily separable brain electrical sources, which may not be the case. Here we investigated the potential of a new statistical technique, independent component analysis (ICA), to separate EEG sources mixed at scalp electrodes and to help solve the inverse problem [1,6]. We showed that individual independent components may index neural synchrony in intracranial brain sources. We illustrate their dynamics and time-varying coherence following stimulus presentation. 2. Material and methods We used EEG data recorded during a rapid go=nogo visual categorization task using natural photographs [2]. Subjects were presented with photographs, half of which included an animal for 20 ms at random intervals of 1.8 2:2 s. Subjects were asked to release a held button whenever a presented photograph contained an animal image. Overall performance was high both in terms of accuracy (94% correct responses) and speed (median reaction time 440 ms). Moreover, though the task involved complex visual processing, averaged EEG epochs for target and non-target stimuli diered signicantly as early as 150 ms after stimulus onset [11]. Thus, despite the complexity of the task, it appeared to involve automated processing in the visual system. For this reason we believe the task is well suited for studying the dynamics of brain electric elds during visual processing. To decompose the data into brain source activities, we used an infomax ICA algorithm. ICA algorithms nd a coordinate frame onto which the projection of the data has minimal temporal overlap. The core mathematical concept of ICA is to minimize mutual information among the data projections. ICA can be viewed as a linear decomposition alternative to principal component analysis (PCA). In PCA, the data is represented using perpendicular axes, whereas ICA is not limited by this constraint [7]. ICA has been applied to various problems including decomposing fmri data and performing speech and noise separation [9]. However, performing ICA decompositions is most appropriate when sources are linearly mixed in the recorded signal, which is precisely the case for the various brain processes summed by volume conduction in scalp EEG. Some earlier studies applied ICA to collections of single-trial EEG data averages, but this raises several problems. First, ICA may require many observations to separate two or more processes, so a problem often faced using averaged EEG data is that there are not enough conditions in the training set to obtain stable ICA components. Another problem with using averaged EEG data is that the averaging process may cancel out the activity of many brain sources. Finally, data averages by their nature contain sums of activity occurring at similar times. When two or more sources reliably contribute to the response average at the same times, ICA may assign their sum to a single component.

A. Delorme et al. / Neurocomputing 44 46 (2002) 1057 1064 1059 Fig. 1. Properties of two independent components (2 and 3). (a) Component scalp map (shading indicates relative projection strength, arbitrary units). (b) ERP-image plots of activity of stimulus-locked trials target response of component 2 and 3 (shading indicates activity, arbitrary units). The trials are ordered (from top to bottom) according to the reaction time of the subject (black thick line). Plots (a) and (b) show the spatial and temporal patterns constitutive of the two components. (c) Equivalent dipole location for components 2 and 3 found by BESA. See Fig. 2 concerning the accuracy of these models. (d) Spectral power and inter-trial coherence changes following target stimuli. The top panels indicate the power spectral perturbations (in db, relative to pre-stimulus baseline); the bottom panels show the inter-trial coherence (from 0 to 1) (see text for details). (e) Cross-coherence between components 2 and 3. Top panel: cross-coherence magnitude (from 0 to 1) indicating the amount of synchronization of the two components at each frequency and time window. Bottom panel: cross-coherence phase indicating which of the 2 components is leading (phase in degrees). These time=frequency measures may be used to visualize the global interaction between selected independent components in a specic frequency band (see Fig. 3). To tackle these problems, we chose to train ICA on the whole collection of correct single-trial data from each subject [5]. More specically, we used the infomax ICA algorithm of the ICA=EEG toolbox of Makeig et al. [6]. After applying ICA, we manually [3,4] or semi-automatically distinguished those components that were related to neural activity from those related to artifacts. Software we developed for artifact identication is available at www.sccn.ucsd.edu/eeglab. Each independent component consists of a time course of its activity (Fig. 1b) and a scalp topography (Fig. 1a) specifying its projection to the electrodes. From the non-artifact independent components, we choose

1060 A. Delorme et al. / Neurocomputing 44 46 (2002) 1057 1064 the six for each subject that contributed the most to the early averaged visual response (from 0 to 400 ms). 3. Results Most neural activity-related independent component could be well modeled using a simple intracranial electrical source conguration (Fig. 1c) by a single brain equivalent dipole or by two bilateral and symmetrical equivalent dipoles in a spherical head model using the BESA software [8]. It is important to note that the ICA algorithm only relies on statistics and knows nothing about the biophysics or geometry of the head. The positions of the electrodes are irrelevant for the algorithm, and shuing the time order of the data also does not alter the resulting decomposition. As a consequence, the fact that most independent components were accounted by single equivalent dipoles with low residual variance suggests that these components likely represent the activity of unitary (or in some cases possibly bilateral) brain sources. Among the six selected independent components for the subject shown, three (4; 5; 6) had equivalent dipole locations in or near visual cortex, two (1; 2) had pre-central midline equivalent dipole locations, and one (3) had an equivalent dipole location near the right hand motor cortex. When localizations were calculated separately for two task sessions for this subject, there was a clear correspondence between the equivalent dipole locations for the two sessions (Fig. 2). We then applied time-frequency analysis to the activity time course of the six selected independent components to detect the occurrence of spectral power changes at specic frequencies and times relative to stimulus onset. We used single-cycle wavelets to obtain a better time resolution than standard Fourier transforms (we veried that the results using the two methods were similar). Fig. 1 (d and e upper panels) shows the dynamics of two of the selected components. All changes shown were signicant at the p 0:01 level according to a bootstrap test using surrogate data. We observed that activity of the six components varied with time and conditions in several frequency bands. Several of the selected independent components became more active in the low theta frequency band (near 4 Hz) following both target and non-target stimuli (Fig. 3). At this frequency, it appeared that visual brain components were rst to increase their activity in this frequency band, then midline components and nally the motor area component. The motor component became more active only in target trials, consistent with the fact that the subject was instructed to give a motor response only following target images. We also found a similar pattern of independent component activations at the same frequency in data from the same subject performing the task on a dierent day (data not shown). The method allows close study of component activities in any frequency range. To determine the consistency of these changes across trials in the selected independent components, we used inter-trial coherence, a measure of the reproducibility of the phase of stimulus-locked trial activity at each frequency (for details about these measures see [7]). Fig. 1 (d and e lower panels) illustrates inter-trial coherence results for two of the selected independent components. Fig. 3 represents the time course of

A. Delorme et al. / Neurocomputing 44 46 (2002) 1057 1064 1061 Fig. 2. Equivalent dipole location of the six selected independent components contributing to the evoked response of the same subject in two dierent sessions. Across sessions correspondences are indicated. On the right, the table indicates the accuracy of the model for all selected components (residual variance unaccounted for in the BESA spherical head model). For each component we chose the better t of two models: a single equivalent dipole model and two bilateral equivalent dipoles constrained to left=right symmetry. All electrodes were considered in the localization of the equivalent dipoles (except at most 2 pairs of bilateral noisy temporal electrodes in some cases). Among the equivalent dipoles, 3 could be interpreted as being in or near the visual cortex (4; 5; 6), two along the pre-central midline (1; 2) and one near the right hand motor cortex (3). inter-trial coherence (and power and cross-coherence) in low theta frequency range for the six selected components. With respect to this measure, each component had a specic behavior. For instance, stimulus-locked inter-trial coherence for component 6 at 300 ms was higher following non-target stimuli than following target stimuli. Though the independent components returned by ICA were maximally independent, we observed that they were not totally independent. The amplitude of the cross-coherence value at a given frequency between stimulus-locked trial activity of two components indexed the amount of synchronization of these components at that frequency. The phase of the cross-coherence indicated which of the two components activities tended to lead at that frequency. For instance, a high cross-coherence amplitude and zero phase dierence for two components at 4 Hz would indicate that they tended to be highly synchronized in that frequency range. Fig. 3 visualizes signicant synchronizations between all pairs of the six selected independent components for target and non-target trials near 3:6 Hz using broken lines connecting them. Overall, the synchronization of the selected components was higher following stimulus presentation (100 500 ms) than during the pre-stimulus baseline or thereafter (before 0 ms or after 500 ms, data not shown). We also observed both event-related synchronization and desynchroniza-

1062 A. Delorme et al. / Neurocomputing 44 46 (2002) 1057 1064 Fig. 3. Frames from an animation showing the activation of the independent components and their cooperativity in the low theta range frequency during visual processing (from 0 to 350 ms) of target and non-target stimuli in the low theta frequency band (3:6 Hz). For details on the indicated components, see Fig. 2. Relative spectral power (in db, relative to pre-stimulus baseline) is visualized by the size of the circles, whereas the shading of the circles represents the strength of inter-trial coherence (ITC). The thickness and color of the lines connecting each pair of components illustrate the magnitude of their synchronization (cross-coherence amplitude from 0 to 1). The gap in the lines connecting two components shows the relative phase of the two components activity (cross-coherence phase in degree). If this gap is centered, it indicates that the two components activity have zero phase dierence and tend to be synchronous in this frequency range. The histogram, on the upper part of each head plot, indicates the relative probability of response of the subject. In this example one can clearly see that peaks in power occurs at dierent times with respect to stimulus onset for the dierent selected components, and the appearance of theta synchronization among the components (peaking near 250 ms). A movie of this gure is available at www.cnl.salk.edu/ arno/movies.html together with Matlab programs used to generate the animations. tion between independent components. As an example, the phase relationship of two components with occipital equivalent dipole locations (components 4 and 6) changed across time: from a tendency towards synchronization near 150 ms, the two components tended to become anti-synchronized by 200 ms (Fig. 3).

A. Delorme et al. / Neurocomputing 44 46 (2002) 1057 1064 1063 4. Discussion We have shown that the use of an advanced set of signal-processing tools can reveal the dynamics of brain activation and synchronization phenomena at high-temporal resolution which otherwise appeared to be inextricably embedded in the multi-channel EEG signals and are not revealed by standard averaging methods. In the visual categorization task, we showed for one subject across two sessions, a reproducible pattern of activation at several brain locations in a low-frequency range. Changes in EEG activity appeared in and between cortical visual areas, pre-central midline areas and a motor-related cortical area. We believe further study of the result of our analyses can cast new light on the debate about feedforward and feedback hypotheses of visual processing [10 12]. The mathematical tools we used are still unconventional in neuroscience. However, infomax ICA is now widely used by the scientic community, and the spectral measures of coherence and cross-coherence we used are standard techniques for determining the relationship of two or more electrical sources. The method presented here allows us to tackle the complex dynamics and relationships of brain intracranial equivalent dipole locations of independent components. While it might be still too early for us to interpret the observed coherences and synchronizations, our results indicate the potential utility of these techniques over traditional approaches. In conventional EEG analyses, spectral analyses are applied at the electrode level, including measures of synchrony between scalp electrodes using cross-coherence [13]. However, the interpretation of electrode coherences are ambiguous as they may be produced by various amplitude changes in several processes at dierent brain locations. For example, coherence increases between two electrodes may be accounted for by an increase in the power of a single major EEG sources projecting to both electrodes, and thus synchronizing the recorded activity. In our case, computing cross-coherence between components means we may more directly assess the dynamic relationships between dierent brain areas. Acknowledgements This research was supported by the Institut National de Recherche en Informatique et Automatique of France, by the Howard Hughes Medical Institute, the National Institutes of Health, USA and by the Swartz foundation. References [1] A.J. Bell, T.J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution, Neural Comput. 7 (1995) 1129 1159. [2] M. Fabre-Thorpe, A. Delorme, C. Marlot, S. Thorpe, A limit to the speed of processing in ultra-rapid visual categorization of novel natural scenes, J. Cogn. Neurosci. 13 (2001) 171 180. [3] T.P. Jung, S. Makeig, C. Humphries, T.W. Lee, M.J. McKeown, V. Iragui, T.J. Sejnowski, Removing electroencephalographic artifacts by blind source separation, Psychophysiology 37 (2000) 163 178.

1064 A. Delorme et al. / Neurocomputing 44 46 (2002) 1057 1064 [4] T.P. Jung, S. Makeig, M. Westereld, J. Townsend, E. Courchesne, T.J. Sejnowski, Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects, Clin. Neurophysiol. 111 (2000) 1745 1758. [5] T.P. Jung, S. Makeig, M. Westereld, J. Townsend, E. Courchesne, T.J. Sejnowski, Analysis and visualization of single-trial event-related potentials, Hum. Brain Mapp. 14 (2001) 166 185. [6] S. Makeig, A.J. Bell, T.P. Jung, T.J. Sejnowski, Independent component analysis of electroencephalographic data, Neural Inform. Proc. System (1996) 145 151. [7] S. Makeig, M. Westereld, T.P. Jung, J. Covington, J. Townsend, T.J. Sejnowski, E. Courchesne, Functionally independent components of the late positive event-related potential during visual spatial attention, J. Neurosci. 19 (1999) 2665 2680. [8] W. Miltner, C. Braun, R. Johnson Jr., G.V. Simpson, D.S. Ruchkin, A test of brain electrical source analysis (BESA): a simulation study Electroencephalogr. Clin. Neurophysiol. 91 (1994) 295 310. [9] H.-M. Park, H.-Y. Jung, T.-W. Lee, S.-Y. Lee, On subband-based blind signal separation for noisy speech recognition, Electron. Lett. 35 (1999) 2011 2012. [10] E. Rodriguez, N. George, J.P. Lachaux, J. Martinerie, B. Renault,.J. Varela, Perception s shadow: long-distance synchronization of human brain activity, Nature 397 (1999) 430 433. [11] S.J. Thorpe, M. Fabre-Thorpe, Seeking categories in the brain, Science 291 (2001) 260 263. [12] S. Thorpe, D. Fize, C. Marlot, Speed of processing in the human visual system, Nature 381 (1996) 520 522. [13] F. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, The brainweb: phase synchronization and large-scale integration, Nat. Rev. Neurosci. 2 (2001) 229 239.