Modeling the HIV Transmission with Reinfection

Size: px
Start display at page:

Download "Modeling the HIV Transmission with Reinfection"

Transcription

1 Applied Mathematical Sciences, Vol. 9, 2015, no. 87, HIKARI Ltd, Modeling the HIV Transmission with Reinfection Juan C. Castillo Paz, Carlos A. Abello Muñoz and Anibal Muñoz Loaiza Grupo de modelación matemática en epidemiologia (GMME) Maestria en Biomatemáticas, Universidad del Quindío, Armenia Q, Colombia Copyright c 2015 Juan C. Castillo Paz, Carlos A. Abello Muñoz and Anibal Muñoz Loaiza. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We set a mathematical model for the dynamics of the HIV transmission in a sexually active population, considering infected population and reinfection by sexual contact within the infected population, modeled with a non-linear differential equations system (qualitative analysis of the system is realized). Moreover, the parameters used in the model are obtained using the least-squares method with HIV data of the Armenia Quindio city (Colombia). Keywords: HIV, Reinfection, Mathematical models, Parameter estimation, Basic Reproduction Number 1 Introduction The human immunodeficiency virus is a group of clinical manifestations that appear as consequence of the immune system depression, because of the HIV infection. It is a terminal disease and considered as a XXI century epidemic. This disease has no cure but it can be controlled with medications [4, 5]. HIV has produced millions of deaths in the whole planet, the most deaths, in those countries without prevention mechanisms. In medical terms HIV is a serious clinical disorder that leaves the human body susceptible to direct attack of opportunistic diseases, this disturbance is characterized by a progressive deterioration of the central nervous system. The infected people can be asymptomatic several months or years, before,

2 4324 Juan C. Castillo Paz other clinical issues may appear, such as tuberculosis, hepatitis, toxoplasmosis, pneumonia, etc [1]. The HIV reinfection has been debated for a long time, do not exist a theoretical reason to support that reinfection is not possible, since the immune system does not have a complete control of the initial infection, moreover, doctors maintain the hope that reinfection not occurs or seldom occurs. In this point of view are based the beliefs of HIV-positive people who think that sexual relations without protection or syringe exchange each other do not involve any risk. Almost all the virologists think that reinfection is probable, but they do not know the clinical consequences at short and long term in HIV-positive people, since reinfection can vary person to person [6]. 2 HIV model with reinfection Taking into account the previous statements, we formulate and analyze a model to describe the HIV transmission dynamics in a sexually active population, with the following assumptions: a) differentiation of the infected and reinfected people, b) reinfection interpreted as a virus mutation and an increase of the viral charge because of the infected people contact, c) death rate of the infected and reinfected people by natural causes. The variables and parameters used in this model are: x(t) average number of susceptible persons to acquire HIV, y(t) average number of infected persons in an asymptomatic stage, y r (t) average number of reinfected persons at time t, Λ the constant increment of the susceptible population, β the transmission probability by contact with an infected and undiagnosed person, κ the successful meetings rate by contact between infected and susceptible persons, σ reinfection probability by contact between infected people, α the mortality rate of infected people associated with the HIV infection, µ natural mortality rate, θ the rate of treated people after a time t, and ω is the reinfected people rate that develops the HIV infection [?, 8]. The following compartmental flowchart represents the transmission dynamics of the HIV (Figure 1):

3 Modeling the HIV transmission with reinfection 4325 Λ x(t) βκyx y(t) θy µx σκy 2 µy y r (t) (µ + ω)y r Figure 1: Transmission dynamics of the HIV with reinfection. The differential equations to model the HIV transmission dynamics in a sexually active population are: dx dt dy dt dy r dt = Λ βκyx µx (1) = βκyx (µ + θ)y σκy 2 (2) = σκy 2 (µ + ω)y r (3) where β, κ, µ, θ, σ, α, ω > 0, Λ R and initial conditions x(0) = x 0, y(0) = y 0, y r (0) = y r0, the region of epidemiological sense is: { Ω = (x, y, y r ) R+ 3 : 0 < N Λ } (4) µ The basic reproduction number R 0 have the following expression R 0 (θ) = βκλ µ(µ + θ) this equation indicates the spectral radius of the following generation matrix in a mathematical way. 2.1 Stability analysis of the equilibrium points The stationary solutions are the points where the system does not have any change, namely, the population variation is zero. In terms of the HIV issue,

4 4326 Juan C. Castillo Paz the susceptible, infected, and reinfected population remain constant at time. Through direct calculations we obtain the following solutions: ( ) Λ E 0 = µ, 0, 0 y E 1 = (x, y, yr) with x = Λ βκy + µ y r = σκ µ + ω (y ) 2 where, using easy algebraic calculations it is showed the positivity of the point E 1. From these equilibrium points we formulate the following stability theorems. Theorem 2.1 (Local stability of the ( infection-free ) equilibrium point) The Λ infection-free equilibrium point E 0 =, 0, 0 of the system (1)-(3) is local µ and asymptotically stable if R 0 < 1. Proof: Evaluating the Jacobian matrix (J) in the equilibrium point E 0 and writing it in terms of R 0, we have µ βκλ J(E 0 ) = µ 0 0 (µ + θ) [R 0 1] (µ + ω) Defining the characteristic polynomial J(E 0 ) λi = 0 gives P (λ) = [(µ + ω) + λ]p 2 (λ) (5) where P 2 (λ) = λ 2 γ 0 λ + δ 0 is the characteristic polynomial of the minor matrix J(E 0 ) 33 and γ 0 = µ + (µ + θ)[r 0 1] is the trace of that matrix. δ 0 = µ(µ + θ)[r 0 1] is the determinant of the minor matrix, using the trace-determinant criterion it is obtained R 0 < 1, γ 0 < 0 and δ 0 > 0. As the eigenvalue is negative, the roots of the P (λ) have a real negative part. So then, the equilibrium point E 0 is local and asymptotically stable. Theorem 2.2 (local stability of the equilibrium point with infection) The equilibrium point with infection (E 1 = (x, y, y r)) of the system (1)-(3) is local and asymptotically stable, if R 0 > 1. Proof: Evaluating the J matrix in the equilibrium point E 1, it is obtained: βκŷ µ βκˆx 0 J(E 1 ) = βκŷ βκˆx (µ + θ) 2σκŷ 0 0 2σκŷ (µ + ω)

5 Modeling the HIV transmission with reinfection 4327 and the characteristic polynomial is J(E 1 ) λi = 0 P (λ) = [(µ + ω) + λ]p 2 (λ) (6) with P 2 (λ) = λ 2 + a 1 λ + a 0 the characteristic polynomial of the minor matrix J(E 1 ) 33 where a 1 = βκŷ + µ βκˆx + (µ + θ) + 2σκŷ and a 0 = β 2 κ 2ˆx ŷ + (βκŷ + µ)((µ + θ) + 2σκŷ βκˆx ): If we want to analyze a 1, it is necessary to analyze only the x y difference since the remaining terms are positive, then y x = y Λ βκy + µ = βκ(y ) 2 + µy Λ βκy + µ The denominator always is positive, the quadratic equation of the numerator could have a positive value if their solutions have a positive term obtained using the quadratic formula. y 1 = µ ± µ 2 + 4βκΛ 2βκ Then, there exist at least one positive solution, where y x > 0 then a 1 > 0. In a similar way we analyze the sign of a 0, where at least there is one positive solution, where 2σy βx > 0 then a 0 > 0 The Routh-Hurwitz criterion is fulfilled for the case k = 2 where a 0 > 0, a 1 > 0 and the third eigenvalue λ = (µ+ω) is negative with ŷ > 0, if R 0 > 1, then, the equilibrium point with infection (E 1 ) is local and asymptotically stable [3]. 3 Estimation of the model parameters (HIV) with reinfection We compute the parameters values for the transmission dynamics of the HIV in a sexually active population adjusted to the previously described model with data of the Secretaria de Salud de Armenia Quindío in a period from 2012 to 2014, using the least-squares method, and the desolve code of the R package. We introduce a new variable in the model A(t), this variable represents the accumulated infected number per month. A(t) includes the number of HIV infected people, plus reinfected people, dead people by natural causes and HIV-infected people until that year. Then, the variation of A(t) depends on y and y r, therefore da = dy + dyr. We use the least-squares method adjusted dt dt dt to A(t, Θ), with Θ the parameters vector, to the number of HIV accumulated

6 4328 Juan C. Castillo Paz cases. For this procedure we use the function implemented in the R package with the method L-BFGS-B, with this method we can indicate the ranges of minimization. Table 1 depict the obtained values for the parameters. parameter estimate parameter estimate parameter estimate Λ βκ µ θ σκ ω Infectados Acumulados tiempo Figure 2: Fitted plots to the data (Green line) and accumulated data (Magenta line with dots). Figure 2 illustrates the best fits to the data and accumulated data. Moreover, in figure 3 it is observed that under the estimated parameters, the infected population remains in low levels, since the infected people are passing to the reinfected stage, therefore the new HIV cases in Armenia Q. increase their viral charge. In epidemiological terms, there is a systematic and constant increment in the HIV infected people. 4 Conclusion Incorporation of the reinfection phenomenon allows to study the HIV in a global way, giving a comprehension of the systematic increase of the infected

7 Modeling the HIV transmission with reinfection Comportamiento de las poblaciones Susceptibles, Infectadas y Reinfectadas del VIH Susceptibles Infectados Reinfectados 500 Poblaciones Tiempo Figure 3: Behavior of the susceptible population (Blue dashed line), infected population (Green line) and reinfected population (Red dotted line). population, that is product of the lack of knowledge of the reinfection phenomenon. The estimation of the parameters give us an approach in the theoretical models to treat real issues and gives information to the health agencies for the application of effective plans about disease evolution. Especially in Armenia Quindío Colombia the reinfection phenomenon is causing a constant increment in the HIV infected population. Acknowledgements. The authors thank M.E. Dalia Marcela Pizza and M.C. J. Guerrero-Sánchez (IFUAP-BUAP) for useful discussions References [1] B. Abram, Revista Panamericana de la Salud, Vol 2 No 6, Washington D.C. (1997), [2] G. Paula A, Q. José R, Un modelo de VIH-SIDA con reinfección, Matemáticas: Enseñanza universitaria, universidad del Valle, Diciembre (2002), Vol 10, [3] L. Perko, Differential equations and dynamical systems, Texts in applied mathematics 7, New York, Springer, (2001). [4] OPS, Qué es el sida?, Ed. Organización Panamericana de la Salud, Washington, D.C. (2005).

8 4330 Juan C. Castillo Paz [5] Project Inform, Constituye la reinfección una preocupación para las personas con VIH?, Información, inspiración y defensa para las personas conviviendo con VIH/SIDA, (2003), Project Inform, Inc., 205, San Fransisco, CA. [6] R. Z. Díaz F, J. Jaimes F, A. Rugeles M, Origen no infeccioso del sida: mito o realidad?. Asociación colombiana de infectología, Vol. 11-4, (2007), [7] S. Cassels, S. Clark, M. Morris, Mathematical Models for HIV Transmission Dynamics, Tools for Social and Behavioral Science Research, J Acquir Immune Defic Syndr, Vol 47, Supplement 1, March 1, (2008). [8] Y. Wang, Y. Zhou, J. Wu, J. Heffernan, Oscillatory viral dynamics in a delayed HIV pathogenesis model, Mathematical Biosciences, Vol 219 (2009), Received: March 11, 2015; Published: June 12, 2015

Analysis of a Mathematical Model for Dengue - Chikungunya

Analysis of a Mathematical Model for Dengue - Chikungunya Applied Mathematical Sciences, Vol. 11, 217, no. 59, 2933-294 HIKARI Ltd, www.m-hikari.com https://doi.org/1.12988/ams.217.7135 Analysis of a Mathematical Model for Dengue - Chikungunya Oscar A. Manrique

More information

A Simulation Model Including Vaccination and Seasonality for Influenza A-H1N1 Virus

A Simulation Model Including Vaccination and Seasonality for Influenza A-H1N1 Virus Applied Mathematical Sciences, Vol. 10, 2016, no. 26, 1269-1276 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.511694 A Simulation Model Including Vaccination and Seasonality for Influenza

More information

How Relevant is the Asymptomatic Population in Dengue Transmission?

How Relevant is the Asymptomatic Population in Dengue Transmission? Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1699-1708 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.810150 How Relevant is the Asymptomatic Population in Dengue Transmission?

More information

Simulating the Effect of Aedes aegypti by the Acquired Resistance to Chemicals

Simulating the Effect of Aedes aegypti by the Acquired Resistance to Chemicals Applied Mathematical Sciences, Vol. 12, 2018, no. 29, 1433-1440 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.810155 Simulating the Effect of Aedes aegypti by the Acquired Resistance to

More information

Impact of the Latent State in the R 0 and the Dengue Incidence

Impact of the Latent State in the R 0 and the Dengue Incidence Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1709-1718 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.810154 Impact of the Latent State in the R 0 and the Dengue Incidence Angie

More information

Problem for the Optimal Control of Cigarette Addiction

Problem for the Optimal Control of Cigarette Addiction Contemporary Engineering Sciences, Vol. 12, 2019, no. 1, 41-49 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2019.914 Problem for the Optimal Control of Cigarette Addiction Anibal Muñoz L.,

More information

Numerical Analysis of the Prevention with Vaccination Against Zika Virus (ZIKV)

Numerical Analysis of the Prevention with Vaccination Against Zika Virus (ZIKV) Contemporary Engineering Sciences, Vol. 12, 2019, no. 1, 33-40 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ces.2019.913 Numerical Analysis of the Prevention with Vaccination Against Zika Virus

More information

Reduction of Mortality Rate Due to AIDS When Treatment Is Considered

Reduction of Mortality Rate Due to AIDS When Treatment Is Considered Pure and Applied Mathematics Journal 216; 5(4): 97-12 http://www.sciencepublishinggroup.com/j/pamj doi: 1.11648/j.pamj.21654.12 ISSN: 2326-979 (Print); ISSN: 2326-9812 (Online) Reduction of Mortality Rate

More information

Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate

Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate To cite this article: Linli Zhang and Lin Wang

More information

Global Stability of SACR Epidemic Model for Hepatitis C on Injecting Drug Users

Global Stability of SACR Epidemic Model for Hepatitis C on Injecting Drug Users PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 2016 Global Stability of SACR Epidemic Model for Hepatitis C on Injecting

More information

Cancer Dynamics: Integrating Immune System and the Chemotherapy

Cancer Dynamics: Integrating Immune System and the Chemotherapy Applied Mathematical Sciences, Vol. 12, 2018, no. 32, 1687-1697 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ams.2018.88122 Cancer Dynamics: Integrating Immune System and the Chemotherapy Oscar

More information

Modeling Pulmonary Tuberculosis for Optimal Control Including Prevention

Modeling Pulmonary Tuberculosis for Optimal Control Including Prevention British Journal of Mathematics & Computer Science 21(6): 1-8, 2017; Article no.bjmcs.30381 ISSN: 2231-0851 SCIENCEDOMAIN international www.sciencedomain.org Modeling Pulmonary Tuberculosis for Optimal

More information

Evaluating the Impact of a Tetravalent Vaccine in Populations with High-Incidence of Dengue: A Mathematical Model

Evaluating the Impact of a Tetravalent Vaccine in Populations with High-Incidence of Dengue: A Mathematical Model Nonlinear Analysis and Differential Equations, Vol. 4, 216, no. 3, 133-142 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/1.12988/nade.216.51148 Evaluating the Impact of a Tetravalent Vaccine in Populations

More information

A Mathematical Model of Tuberculosis Control Incorporating Vaccination, Latency and Infectious Treatments (Case Study of Nigeria)

A Mathematical Model of Tuberculosis Control Incorporating Vaccination, Latency and Infectious Treatments (Case Study of Nigeria) International Journal of Mathematics and Computer Science, 12(2017), no. 2, 97 106 M CS A Mathematical Model of Tuberculosis Control Incorporating Vaccination, Latency and Infectious Treatments (Case Study

More information

Epidemiological Model of HIV/AIDS with Demographic Consequences

Epidemiological Model of HIV/AIDS with Demographic Consequences Advances in Applied Mathematical Biosciences. ISSN 2248-9983 Volume 5, Number 1 (2014), pp. 65-74 International Research Publication House http://www.irphouse.com Epidemiological Model of HIV/AIDS with

More information

Mathematical Analysis of an HIV/AIDS Epidemic Model

Mathematical Analysis of an HIV/AIDS Epidemic Model American Journal of Mathematics and Statistics 15, 5(5): 53-58 DOI: 1.593/j.ajms.1555.5 Mathematical Analysis of an HIV/AIDS Epidemic Model Udoy S. Basak 1,*, Bimal Kumar Datta, Prodip Kumar Ghose 3 1

More information

Sensitivity analysis for parameters important. for smallpox transmission

Sensitivity analysis for parameters important. for smallpox transmission Sensitivity analysis for parameters important for smallpox transmission Group Members: Michael A. Jardini, Xiaosi Ma and Marvin O Ketch Abstract In order to determine the relative importance of model parameters

More information

Mathematical Model on Influenza Disease with Re-Susceptibility

Mathematical Model on Influenza Disease with Re-Susceptibility AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 2309-8414 Journal home page: www.ajbasweb.com Mathematical Model on Influenza Disease with Re-Susceptibility 1 Deepak Kumar and 2

More information

Australian Journal of Basic and Applied Sciences. Stability Analysis and Qualitative Behavior of Giving up Smoking Model with Education Campaign

Australian Journal of Basic and Applied Sciences. Stability Analysis and Qualitative Behavior of Giving up Smoking Model with Education Campaign Australian Journal of Basic and Applied Sciences, 9(17) Special 215, Pages: 46-53 ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Stability Analysis

More information

Heroin Epidemic Models

Heroin Epidemic Models Heroin Epidemic Models icholas A. Battista Intro to Math Biology Project School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, Y 14623-5603, USA May 21,

More information

Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells

Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells Fathalla A. Rihan Duaa H. Abdel-Rahman ICM 2012, 11-14 March, Al Ain Abstract In this paper, we introduce a mathematical

More information

Mathematical Model of Hepatitis B in. the Bosomtwe District of Ashanti Region, Ghana

Mathematical Model of Hepatitis B in. the Bosomtwe District of Ashanti Region, Ghana Applied Mathematical Sciences, Vol. 8, 2014, no. 67, 3343-3358 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.44263 Mathematical Model of Hepatitis B in the Bosomtwe District of Ashanti

More information

Mathematical Analysis to Reduce the Death Rate of HIV Malaria Co-infection

Mathematical Analysis to Reduce the Death Rate of HIV Malaria Co-infection Applied Mathematics 216, 6(3): 56-63 DOI: 1.5923/j.am.21663.3 Mathematical Analysis to Reduce the Death Rate of HIV Malaria Co-infection Udoy S. Basak 1,*, Bimal Kumar Datta 2 1 Lecturer, Department of

More information

Structured models for dengue epidemiology

Structured models for dengue epidemiology Structured models for dengue epidemiology submitted by Hannah Woodall for the degree of Doctor of Philosophy of the University of Bath Department of Mathematical Sciences September 24 COPYRIGHT Attention

More information

Mathematical Modelling of Pulmonary and Extra-pulmonary Tuberculosis

Mathematical Modelling of Pulmonary and Extra-pulmonary Tuberculosis Mathematical Modelling of Pulmonary and xtra-pulmonary Tuberculosis ita H. Shah # and Jyoti Gupta * # Professor, Department of Mathematics, Gujarat University, Ahmedabad, Gujarat, India, Research Scholar,

More information

Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child

Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child Basavarajaiah.D. M. B. Narasimhamurthy, K. Maheshappa. B. Leelavathy ABSTRACT:- AIDS is a devastating disease, more than 2.50 million

More information

Theoretical Assessment of Public Health Impact of Imperfect Prophylactic HIV-1 Vaccines with Therapeutic Benefits

Theoretical Assessment of Public Health Impact of Imperfect Prophylactic HIV-1 Vaccines with Therapeutic Benefits Bulletin of Mathematical Biology (2006) 68: 577 614 DOI 101007/s11538-005-9057-5 ORIGINAL ARTICLE Theoretical Assessment of Public Health Impact of Imperfect Prophylactic HIV-1 Vaccines with Therapeutic

More information

Modeling the Impact of Screening and Treatment on the Dynamics of Typhoid Fever

Modeling the Impact of Screening and Treatment on the Dynamics of Typhoid Fever ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 14 (2018) No. 4, pp. 298-306 Modeling the Impact of Screening and Treatment on the Dynamics of Typhoid Fever Nkuba Nyerere 1

More information

= Λ μs βs I N, (1) (μ + d + r)i, (2)

= Λ μs βs I N, (1) (μ + d + r)i, (2) Advanced Studies in Biology, Vol., 29, no. 8, 383-39 Mathematical Model of the Influenza A(HN) Infection K. Hattaf and N. Yousfi 2 Laboratory Analysis, Modeling and Simulation Department of Mathematics

More information

A Mathematical Model of Cerebrospinal Meningitis Epidemic: A Case Study for Jirapa District, Ghana

A Mathematical Model of Cerebrospinal Meningitis Epidemic: A Case Study for Jirapa District, Ghana KMITL Sci. Tech. J. Vol. 1 No. 2 Jul. - Dec. 21 A Mathematical Model of Cerebrospinal Meningitis Epidemic: A Case Study for Jirapa District, Ghana E. N. Wiah 1 and I. A. Adetunde *2 1 Department of Mathematics,

More information

On Simulation of the Effect of Compatibility Test on the Transmission Dynamics of HIV in a Heterosexual Population

On Simulation of the Effect of Compatibility Test on the Transmission Dynamics of HIV in a Heterosexual Population On Simulation of the Effect of Compatibility Test on the Transmission Dynamics of HIV in a Heterosexual Population Onoja Abu 1 Patrick Noah Okolo 2* 1. Department of Mathematics and Statistics, Federal

More information

Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay Journal of Physics: Conference Series PAPER OPEN ACCESS Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay To cite this article: Cascarilla Novi W and Dwi

More information

A model of a malaria vaccine

A model of a malaria vaccine A model of a malaria vaccine Epidemiology of malaria Details of the vaccine Research questions The mathematical model Derive analytical thresholds Recommendations. Malaria One of the most important human

More information

Appendix (unedited, as supplied by the authors)

Appendix (unedited, as supplied by the authors) Appendix (unedited, as supplied by the authors) Details of the mathematical model The model used for the simulations in this manuscript was adapted from a previously described model of HCV transmission

More information

MODELLING THE IMPACT OF SEROSORTING AND SEROADAPTATION ON THE SPREAD OF HIV IN MEN WHO HAVE SEX WITH MEN

MODELLING THE IMPACT OF SEROSORTING AND SEROADAPTATION ON THE SPREAD OF HIV IN MEN WHO HAVE SEX WITH MEN MODELLING THE IMPACT OF SEROSORTING AND SEROADAPTATION ON THE SPREAD OF HIV IN MEN WHO HAVE SEX WITH MEN by Sarah Kok B.Sc., Simon Fraser University, 2010 a Thesis submitted in partial fulfillment of the

More information

Dynamics and Control of Infectious Diseases

Dynamics and Control of Infectious Diseases Dynamics and Control of Infectious Diseases Alexander Glaser WWS556d Princeton University April 9, 2007 Revision 3 1 Definitions Infectious Disease Disease caused by invasion of the body by an agent About

More information

The local and global stability of the disease free equilibrium in a co infection model of HIV/AIDS, Tuberculosis and malaria.

The local and global stability of the disease free equilibrium in a co infection model of HIV/AIDS, Tuberculosis and malaria. IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 6 Ver. IV (Nov. - Dec. 2015), PP 33-43 www.iosrjournals.org The local and global stability of the disease free

More information

The roadmap. Why do we need mathematical models in infectious diseases. Impact of vaccination: direct and indirect effects

The roadmap. Why do we need mathematical models in infectious diseases. Impact of vaccination: direct and indirect effects Mathematical Models in Infectious Diseases Epidemiology and Semi-Algebraic Methods Why do we need mathematical models in infectious diseases Why do we need mathematical models in infectious diseases Why

More information

A patient-specific treatment model for Graves hyperthyroidism

A patient-specific treatment model for Graves hyperthyroidism Pandiyan et al. Theoretical Biology and Medical Modelling (2018) 15:1 DOI 10.1186/s12976-017-0073-6 RESEARCH Open Access A patient-specific treatment model for Graves hyperthyroidism Balamurugan Pandiyan

More information

Mathematical Formulation and Numerical Simulation of Bird Flu Infection Process within a Poultry Farm

Mathematical Formulation and Numerical Simulation of Bird Flu Infection Process within a Poultry Farm Mathematical Formulation and Numerical Simulation of Bird Flu Infection Process within a Poultry Farm Arrival Rince Putri, Tertia Delia Nova and M. Watanabe, Graduate School Environmental and Life Science,

More information

A Delay-Differential Equation Model of

A Delay-Differential Equation Model of International Mathematical Forum, Vol. 7, 2012, no. 30, 1475-1481 A Delay-Differential Equation Model of HIV Infection of CD4 + T-Cells with Cure Rate 1 Mei Yan 2 and Zhongyi Xiang 1,2 1 Key Laboratory

More information

Controlling Co-Epidemics: Analysis of HIV and Tuberculosis Infection Dynamics

Controlling Co-Epidemics: Analysis of HIV and Tuberculosis Infection Dynamics OPERATIOS RESEARCH Vol. 56, o. 6, ovember December 8, pp. 1366 1381 issn 3-36X eissn 156-563 8 566 1366 informs doi 1.187/opre.18.571 8 IFORMS Controlling Co-Epidemics: Analysis of HIV and Tuberculosis

More information

0.1 Immunology - HIV/AIDS. 0.2 History & biology of HIV

0.1 Immunology - HIV/AIDS. 0.2 History & biology of HIV 0.1 mmunology - HV/ADS n our previous models we assumed a homogeneous population where everyone was susceptible and infectious to the same degree. n contrast, the dynamics of STDs is affected by the general

More information

The role of treatment and counseling in an HIV/AIDS, Malaria and Tuberculosis model: an analysis of HIV/AIDS and Malaria

The role of treatment and counseling in an HIV/AIDS, Malaria and Tuberculosis model: an analysis of HIV/AIDS and Malaria IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 6 Ver. III (Nov. - Dec. 2015), PP 50-64 www.iosrjournals.org The role of treatment and counseling in an HIV/AIDS,

More information

Modeling of cancer virotherapy with recombinant measles viruses

Modeling of cancer virotherapy with recombinant measles viruses Modeling of cancer virotherapy with recombinant measles viruses Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Collaborators: Krešimir Josić Dept. of Mathematics, University

More information

A Statistical Method for Modelling Hepatitis A Vaccination in Bulgaria

A Statistical Method for Modelling Hepatitis A Vaccination in Bulgaria A Statistical Method for Modelling Hepatitis A Vaccination in Bulgaria DAVID GREENHALGH () AND NIKOLAOS SFIKAS () () Department of Statistics and Modelling Science University of Strathclyde Livingstone

More information

Modelling the spread of HIV/AIDS epidemic in the presence of irresponsible infectives

Modelling the spread of HIV/AIDS epidemic in the presence of irresponsible infectives African Journal of Biotechnology Vol. (5, pp. 87-95, 6 June, Available online at http://www.academicjournals.org/ajb DOI:.5897/AJB.786 ISSN 684-535 Academic Journals Full Length Research Paper Modelling

More information

Stochastic and Numerical Modeling of HIV/AIDS. Spread in a Complex System and Its Application to. the HIV Cases in Indonesia

Stochastic and Numerical Modeling of HIV/AIDS. Spread in a Complex System and Its Application to. the HIV Cases in Indonesia Applied Mathematical Sciences, Vol. 9, 2015, no. 122, 6095-6106 HIKAI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2015.59564 Stochastic and Numerical Modeling of HIV/AIDS Spread in a Complex System

More information

MLE #8. Econ 674. Purdue University. Justin L. Tobias (Purdue) MLE #8 1 / 20

MLE #8. Econ 674. Purdue University. Justin L. Tobias (Purdue) MLE #8 1 / 20 MLE #8 Econ 674 Purdue University Justin L. Tobias (Purdue) MLE #8 1 / 20 We begin our lecture today by illustrating how the Wald, Score and Likelihood ratio tests are implemented within the context of

More information

Article Epidemic Analysis and Mathematical Modelling of H1N1 (A) with Vaccination

Article Epidemic Analysis and Mathematical Modelling of H1N1 (A) with Vaccination Article Epidemic Analysis and Mathematical Modelling of H1N1 (A) with Vaccination Jagan Mohan Jonnalagadda and Kartheek Gaddam Department of Mathematics, Birla Institute of Technology & Science Pilani,

More information

On the behavior of solutions in viral dynamical models

On the behavior of solutions in viral dynamical models BioSystems 73 (2004) 157 161 On the behavior of solutions in viral namical models Henry C. Tuckwell a,b,, Frederic Y.M. Wan a a Department of Mathematics, University of California, Irvine, CA 92697, USA

More information

A Critical Protection Level Derived from Dengue Infection Mathematical Model Considering Asymptomatic and Symptomatic Classes

A Critical Protection Level Derived from Dengue Infection Mathematical Model Considering Asymptomatic and Symptomatic Classes Journal of Physics: Conference Series A Critical Protection Level Derived from Dengue Infection Mathematical Model Considering Asymptomatic and Symptomatic Classes To cite this article: N Anggriani et

More information

Large Graph Mining: Power Tools and a Practitioner s guide

Large Graph Mining: Power Tools and a Practitioner s guide Large Graph Mining: Power Tools and a Practitioner s guide Task 6: Virus/Influence Propagation Faloutsos, Miller,Tsourakakis CMU KDD'09 Faloutsos, Miller, Tsourakakis P6-1 Outline Introduction Motivation

More information

A Mathematical Approach to Characterize the Transmission Dynamics of the Varicella-Zoster Virus

A Mathematical Approach to Characterize the Transmission Dynamics of the Varicella-Zoster Virus Proceedings of The National Conference On Undergraduate Research (NCUR) 2012 Weber State University, Ogden Utah March 29 31, 2012 A Mathematical Approach to Characterize the Transmission Dynamics of the

More information

Correlation between Hepatitis and Cancer: A Mathematical Model

Correlation between Hepatitis and Cancer: A Mathematical Model INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING, VOL., NO., 79 Correlation between Hepatitis and Cancer: A Mathematical Model M. Agarwal and A.S. Bhadauria Abstract In this paper, a nonlinear

More information

10-1 MMSE Estimation S. Lall, Stanford

10-1 MMSE Estimation S. Lall, Stanford 0 - MMSE Estimation S. Lall, Stanford 20.02.02.0 0 - MMSE Estimation Estimation given a pdf Minimizing the mean square error The minimum mean square error (MMSE) estimator The MMSE and the mean-variance

More information

Behavior-Disease Models with respect to HIV Dynamics

Behavior-Disease Models with respect to HIV Dynamics Behavior-Disease Models with respect to HIV Dynamics Aidan Grennell Western Carolina University 1 Abstract Expanding on the Susceptible-Infected-Recovered (SIR) epidemiological models, we review Towards

More information

Deterministic Compartmental Models, Application: Modeling the Interaction of HIV and Malaria

Deterministic Compartmental Models, Application: Modeling the Interaction of HIV and Malaria Deterministic Compartmental Models, Application: Modeling the Interaction of HIV and Malaria Mathematical Modeling of Infectious Diseases: Tools of the Trade Laith J. Abu-Raddad Fred Hutchinson Cancer

More information

Thursday. Compartmental Disease Models

Thursday. Compartmental Disease Models Thursday Compartmental Disease Models Model Formulation Major decisions in designing a model Even after compartmental framework is chosen, still need to decide: Deterministic vs stochastic Discrete vs

More information

Modelling the H1N1 influenza using mathematical and neural network approaches.

Modelling the H1N1 influenza using mathematical and neural network approaches. Biomedical Research 2017; 28 (8): 3711-3715 ISSN 0970-938X www.biomedres.info Modelling the H1N1 influenza using mathematical and neural network approaches. Daphne Lopez 1, Gunasekaran Manogaran 1*, Jagan

More information

Evolution of pathogens: a within-host approach

Evolution of pathogens: a within-host approach / 52 Evolution of pathogens: a within-host approach Vitaly V. Ganusov Theoretical Biology Utrecht University, Utrecht, The Netherlands Outline Introduction evolution of virulence 2 Evolution of infectious

More information

3. On the role of alcohol drinking on the dynamics transmission of Hepatitis B

3. On the role of alcohol drinking on the dynamics transmission of Hepatitis B Transworld Research Network 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India Understanding the Dynamics of Emerging and Re-Emerging Infectious Diseases Using Mathematical Models, 2012: 49-89 ISBN:

More information

A Mathematical Model for the Transmission Dynamics of Cholera with Control Strategy

A Mathematical Model for the Transmission Dynamics of Cholera with Control Strategy International Journal of Science and Technology Volume 2 No. 11, November, 2013 A Mathematical Model for the Transmission Dynamics of Cholera with Control Strategy Ochoche, Jeffrey M. Department of Mathematics/Statistics/Computer

More information

MODELLING THE SPREAD OF PNEUMONIA IN THE PHILIPPINES USING SUSCEPTIBLE-INFECTED-RECOVERED (SIR) MODEL WITH DEMOGRAPHIC CHANGES

MODELLING THE SPREAD OF PNEUMONIA IN THE PHILIPPINES USING SUSCEPTIBLE-INFECTED-RECOVERED (SIR) MODEL WITH DEMOGRAPHIC CHANGES MODELLING THE SPREAD OF PNEUMONIA IN THE PHILIPPINES USING SUSCEPTIBLE-INFECTED-RECOVERED (SIR) MODEL WITH DEMOGRAPHIC CHANGES Bill William M. Soliman 1, Aldous Cesar F. Bueno 2 1, 2 Philippine Science

More information

Mathematical Modeling of Hand-Foot-Mouth Disease: Quarantine as a Control Measure

Mathematical Modeling of Hand-Foot-Mouth Disease: Quarantine as a Control Measure E S Scholars www.setscholars.org T Knowledge is Power April 2012 Volume 1, Issue 2 Article #04 IJASETR Research Paper ISSN: 1839-7239 Mathematical Modeling of Hand-Foot-Mouth Disease: Quarantine as a Control

More information

Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics

Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics The Effect of Antibodies on the Probability of Transmission Aidan Backus Angelica Bloomquist Carlos Villanueva-Chavez J Montgomery

More information

Adults and Children estimated to be living with HIV, 2013

Adults and Children estimated to be living with HIV, 2013 Adults and Children estimated to be living with HIV, 2013 Spending on HIV/AIDS Recent increase in the available money for HIV/AIDS The Gates foundation alone has over $60 billion Present plans are to hold

More information

Parasitism. Key concepts. Tasmanian devil facial tumor disease. Immunizing and non-immunizing pathogens. SI, SIS, and SIR epidemics

Parasitism. Key concepts. Tasmanian devil facial tumor disease. Immunizing and non-immunizing pathogens. SI, SIS, and SIR epidemics Parasitism Key concepts Immunizing and non-immunizing pathogens SI, SIS, and SIR epidemics Basic reproduction number, R 0 Tasmanian devil facial tumor disease The Tasmanian devil Sarcophilus harrisii is

More information

SENSITIVITY ANALYSIS OF TREATMENT AND COUNSELING IN A CO INFECTION MODEL OF HIV/AIDS, TUBERCULOSIS AND MALARIA

SENSITIVITY ANALYSIS OF TREATMENT AND COUNSELING IN A CO INFECTION MODEL OF HIV/AIDS, TUBERCULOSIS AND MALARIA www.arpapress.com/volumes/vol26issue2/ijrras_26_2_03.pdf SENSITIVITY ANALYSIS OF TREATMENT AND COUNSELING IN A CO INFECTION MODEL OF HIV/AIDS, TUBERCULOSIS AND MALARIA Ochieng Ombaka Physical Sciences

More information

MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE

MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE ORIGINAL RESEARCH ARTICLE OPEN ACCESS MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE *G. R. Phaijoo, D. B. Gurung Department of Natural Sciences (Mathematics), School

More information

The cost-effectiveness of screening men who have sex with men for rectal chlamydial and

The cost-effectiveness of screening men who have sex with men for rectal chlamydial and The cost-effectiveness of screening men who have sex with men for rectal chlamydial and gonococcal infection to prevent human immunodeficiency virus (HIV) infection: Supplemental appendix 1. The model

More information

Mathematical Model to Simulate Tuberculosis Disease Population Dynamics

Mathematical Model to Simulate Tuberculosis Disease Population Dynamics merican Journal of pplied Sciences 5 (4): 31-36, 28 SSN 1546-9239 28 Science Publications Mathematical Model to Simulate Tuberculosis Disease Population Dynamics O.K. Koriko and T.T. Yusuf Mathematical

More information

Mathematical Model of Vaccine Noncompliance

Mathematical Model of Vaccine Noncompliance Valparaiso University ValpoScholar Mathematics and Statistics Faculty Publications Department of Mathematics and Statistics 8-2016 Mathematical Model of Vaccine Noncompliance Alex Capaldi Valparaiso University

More information

Study on control of bird flu outbreak within a poultry farm

Study on control of bird flu outbreak within a poultry farm ANZIAM J. 51 (EMAC009) pp.c668 C681, 010 C668 Study on control of bird flu outbreak within a poultry farm T. Delia Nova 1 H. Mawengkang M. Watanabe 3 (Received 10 July 010; revised 8 September 010) Abstract

More information

A Mathematical Comparison of Prevention Strategies for Addicted Women

A Mathematical Comparison of Prevention Strategies for Addicted Women A Mathematical Comparison of Prevention Strategies for Addicted Women Angela Ortiz Department of Mathematics and Statistics, Arizona State University David Murillo Department of Mathematics and Statistics,

More information

Estimating the influenza disease burden in SARI sentinel hospitals using WHO method

Estimating the influenza disease burden in SARI sentinel hospitals using WHO method Estimating the influenza disease burden in SARI sentinel hospitals using WHO method Implementation experience in Bolivia, Colombia, Ecuador, and Honduras. Pablo Acosta MD. MPH. Ministry of Public Health

More information

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world and

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world and Abstract Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world and inflicts significant health, economic and social burden on populations. Various mathematical models have

More information

RESEARCH & KNOWLEDGE

RESEARCH & KNOWLEDGE Vol. 4 No. 2 page 26-32 DOI :.4456/randk.28.8 RESEARCH & KNOWLEDGE Research Article Modeling the effect of drug therapy on hepatitis B virus infection Pensiri Yosyingyong and Ratchada Viriyapong* Department

More information

Supplementary Materials: Identifying critical transitions and their leading biomolecular networks in complex diseases

Supplementary Materials: Identifying critical transitions and their leading biomolecular networks in complex diseases Supplementary Materials: Identifying critical transitions and their leading biomolecular networks in complex diseases Rui Liu, Meiyi Li, Zhiping Liu, Jiarui Wu, Luonan Chen, Kazuyuki Aihara Contents A

More information

Could low-efficacy malaria vaccines increase secondary infections in endemic areas?

Could low-efficacy malaria vaccines increase secondary infections in endemic areas? Could low-efficacy malaria vaccines increase secondary infections in endemic areas? Robert Smith? The University of Ottawa Malaria One of the most important human diseases throughout the tropical and sub-tropical

More information

Infectious Disease Epidemiology and Transmission Dynamics. M.bayaty

Infectious Disease Epidemiology and Transmission Dynamics. M.bayaty Infectious Disease Epidemiology and Transmission Dynamics M.bayaty Objectives 1) To understand the major differences between infectious and noninfectious disease epidemiology 2) To learn about the nature

More information

Modelling the Transmission Dynamics and Control of the Novel 2009 Swine Influenza (H1N1) Pandemic

Modelling the Transmission Dynamics and Control of the Novel 2009 Swine Influenza (H1N1) Pandemic Bull Math Biol (2011) 73: 515 548 DOI 10.1007/s11538-010-9538-z ORIGINAL ARTICLE Modelling the Transmission Dynamics and Control of the Novel 2009 Swine Influenza (H1N1) Pandemic O. Sharomi C.N. Podder

More information

A Model for the CD4 Cell Counts in an HIV/AIDS Patient and its Application in Treatment Interventions

A Model for the CD4 Cell Counts in an HIV/AIDS Patient and its Application in Treatment Interventions American Journal of Infectious Diseases (): 6-65, 5 ISSN: 553-63 5 Science Publications A Model for the CD4 Cell Counts in an HIV/AIDS Patient and its Application in Treatment Interventions Richard O.

More information

Some Mathematical Models in Epidemiology

Some Mathematical Models in Epidemiology by Department of Mathematics and Statistics Indian Institute of Technology Kanpur, 208016 Email: peeyush@iitk.ac.in Definition (Epidemiology) It is a discipline, which deals with the study of infectious

More information

The Chemostat: Stability at Steady States. Chapter 5: Linear & Non-Linear Interaction Models. So, in dimensional form, α 1 > 1 corresponds to

The Chemostat: Stability at Steady States. Chapter 5: Linear & Non-Linear Interaction Models. So, in dimensional form, α 1 > 1 corresponds to Introduction & Simple Models Logistic Growth Models The Chemostat: Stability at Steady States 1 So, in dimensional form, α 1 > 1 corresponds to K max < V F. As K max is max bacterial repro rate with unlimited

More information

Chapter 3 Modelling Communicable Diseases

Chapter 3 Modelling Communicable Diseases Chapter 3 Modelling Communicable Diseases [Spread Awareness not the Disease] Jyoti Gupta 53 3.1: Introduction The diseases that can be transmitted directly or indirectly from one person to other are known

More information

Mathematical Model for Pneumonia Dynamics among Children

Mathematical Model for Pneumonia Dynamics among Children Mathematical Model for Pneumonia Dynamics among Children by Jacob Otieno Ong ala Strathmore University, Nairobi (Kenya) at SAMSA 2010, Lilongwe (Malawi) Outline 1. Background information of pneumonia 2.

More information

A Mathematical Model for Treatment-Resistant Mutations of HIV

A Mathematical Model for Treatment-Resistant Mutations of HIV Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 4-1-2005 A Mathematical Model for Treatment-Resistant Mutations of HIV Helen Moore American

More information

Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens

Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens and Libin Rong Department of Mathematics Purdue University Outline HIV-1 life cycle and Inhibitors Age-structured models with combination

More information

A Stochastic Model for the Estimation of Time to. Seroconversion of HIV Transmission Using. Geometric Distribution

A Stochastic Model for the Estimation of Time to. Seroconversion of HIV Transmission Using. Geometric Distribution Applied Mathematical Sciences, Vol. 8, 014, no. 157, 7803-7811 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.1988/ams.014.49773 A Stochastic Model for the Estimation of Time to Seroconversion of HIV

More information

Open Access Study Applicable for Multi-Linear Regression Analysis and Logistic Regression Analysis

Open Access Study Applicable for Multi-Linear Regression Analysis and Logistic Regression Analysis Send Orders for Reprints to reprints@benthamscience.ae 782 The Open Electrical & Electronic Engineering Journal, 2014, 8, 782-786 Open Access Study Applicable for Multi-Linear Regression Analysis and Logistic

More information

The Correlation Analysis of Chinese Stock Market Based on the Time-Varying Copula Model

The Correlation Analysis of Chinese Stock Market Based on the Time-Varying Copula Model International Journal of Contemporary Mathematical Sciences Vol. 11, 2016, no. 10, 479-484 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ijcms.2016.61058 The Correlation Analysis of Chinese Stock

More information

Cancer Treatment Using Multiple Chemotheraputic Agents Subject to Drug Resistance

Cancer Treatment Using Multiple Chemotheraputic Agents Subject to Drug Resistance Cancer Treatment Using Multiple Chemotheraputic Agents Subject to Drug Resistance J. J. Westman Department of Mathematics University of California Box 951555 Los Angeles, CA 90095-1555 B. R. Fabijonas

More information

Modelling The Impact of BCG Vaccines on Tuberculosis Epidemics

Modelling The Impact of BCG Vaccines on Tuberculosis Epidemics Journal of Mathematical Modelling and Application 2014, Vol. 1, No. 9, 49-55 ISSN: 2178-2423 Modelling The Impact of BCG Vaccines on Tuberculosis Epidemics S.A. Egbetade Department of Mathematics and Statistics,

More information

26:010:557 / 26:620:557 Social Science Research Methods

26:010:557 / 26:620:557 Social Science Research Methods 26:010:557 / 26:620:557 Social Science Research Methods Dr. Peter R. Gillett Associate Professor Department of Accounting & Information Systems Rutgers Business School Newark & New Brunswick 1 Overview

More information

THE MODELLING OF THE TRANSMISSION OF HIV INFECTION IN SELECTED EUROPEAN COUNTRIES: A MARKOW CHAIN APPROACH

THE MODELLING OF THE TRANSMISSION OF HIV INFECTION IN SELECTED EUROPEAN COUNTRIES: A MARKOW CHAIN APPROACH THE MODELLING OF THE TRANSMISSION OF HIV INFECTION IN SELECTED EUROPEAN COUNTRIES: A MARKOW CHAIN APPROACH STANISŁAW MACIEJ KOT GDANSK UNIVERSITY OF TECHNOLOGY, Department of Economics and Business Management,

More information

Modeling Multi-Mutation And Drug Resistance: A Case of Immune-Suppression

Modeling Multi-Mutation And Drug Resistance: A Case of Immune-Suppression Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 14, Number 6 (2018), pp. 787-807 Research India Publications http://www.ripublication.com/gjpam.htm Modeling Multi-Mutation And Drug

More information

Research Article Modelling the Influence of Awareness Programs by Media on the Drinking Dynamics

Research Article Modelling the Influence of Awareness Programs by Media on the Drinking Dynamics Abstract and Applied Analysis, Article ID 9388, 8 pages http://dx.doi.org/1.1155/214/9388 Research Article Modelling the Influence of Awareness Programs by Media on the Drinking Dynamics Hai-Feng Huo and

More information

A Hormone Therapy Model for Breast Cancer Using Linear Cancer Networks

A Hormone Therapy Model for Breast Cancer Using Linear Cancer Networks Rose-Hulman Undergraduate Mathematics Journal Volume 15 Issue 1 Article 9 A Hormone Therapy Model for Breast Cancer Using Linear Cancer Networks Michelle McDuffie Western Carolina University, mjmcduffie1@catamount.wcu.edu

More information