Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens

Size: px
Start display at page:

Download "Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens"

Transcription

1 Influence of anti-viral drug therapy on the evolution of HIV-1 pathogens and Libin Rong Department of Mathematics Purdue University

2 Outline HIV-1 life cycle and Inhibitors Age-structured models with combination therapies Model analysis Invasion of drug-resistant viruses Evolution of HIV-1 pathogens

3 Human Immunodeficiency Virus (HIV) 1. Attachement Getting in 2. Reverse Transcription From viral RNA to DNA 3. Integration transcription a. Viral DNA joins host DNA b. Making multiple viral RNAs 4. Translation Producing viral proteins 5. Viral Protease Cleaving viral proteins 6. Assembly & Budding Getting out Reverse Transcriptase Inhibitor Protease Inhibitor

4 Suscep tible α H ealthautho rities Quarantin ed Qγ uarantineα Exposλ ed()ts 2 Q E Hospita PQ lized Medica lpractition1εφ ers Presentatio Pr n δ odrom Sympto IP al ms HospitalizPNotQ ed EarlyMeEncoun ME dical ter Progr esionδ ω 1 Hospitalizδ ed3 Respira tory 1 RHP εφ Presentatio nsympto IR ms Hospita RNo lized thp Diagnosi2 δ slatemedencoun ML ical ter Rec overy δ 2 Recov ery Recove red Reδ covery Prog resion Progresio n Infe ction Pr ogresion Waning Recove ry An HIV model with treatment (Perelson and Nelson, 1999) Reverse Transcriptase Inhibitor (Entry Inhibitor?) Protease Inhibitor T(t): uninfected target T cells T *(t): infected T cells V(t): infectious viruses s, b: growth rate of healthy T cells d: per capita death rate of uninfected cells δ: per capita death rate of infected cells c: virus clearance rate k: Infection rate of an uninfected cell N: total viruses produced per infected cell r rt, r p : drug efficacy

5 Suscep tible α H ealthautho rities Quarantin ed Qγ uarantine α Expos λ ed ()ts 2 Q E Hospita PQ lized Medica lpractition 1εφ ers Presentatio Prodrom nsympto IP al ms δ HospitalizPNotQ ed EarlyMe Encoun ME dical ter Progr esion δ ω 1 Hospitalizδ ed 3 Respira tory 1 RHP εφ Presentatio nsympto IR ms Hospita RNo lized thp Diagnosi 2δ slatemed Encoun ML ical ter Rec overy δ 2 Recov ery Recove red Reδ covery Prog resion Progresio n Infe ction Pr ogresion Waning Recove ry An age-structured HIV-1 model (Nelson et al. 2004) (No treatment) T(t): uninfected target T cells at time t T *(a,t): age-density of infected T cells V(t): infectious virus s: recruitment of healthy T cells d: per capita death rate of uninfected cells δ(a): age-specific death rate of infected cells c: virus clearance rate k: Infection rate of an uninfected cell p(a): age-dependent virion production rate

6 Suscep tible α H ealthautho rities Quarantin ed Qγ uarantine α Expos λ ed ()ts 2 Q E Hospita PQ lized Medica lpractition 1εφ ers Presentatio Prodrom nsympto IP al ms δ HospitalizPNotQ ed EarlyMe Encoun ME dical ter Progr esion δ ω 1 Hospitalizδ ed 3 Respira tory 1 RHP εφ Presentatio nsympto IR ms Hospita RNo lized thp Diagnosi 2δ slatemed Encoun ML ical ter Rec overy δ 2 Recov ery Recove red Reδ covery Prog resion Progresio n Infe ction Pr ogresion Waning Recove ry Age-structured model with treatments (Feng and Rong, 2006) β(a): propotion of infected cells of infection age a in the prert phase T ( a, t) = β( a) T ( a, t): * * prert density of infected cells of age a in the prert phase (an RT inhibitor could revert it back to uninfected class) T ( a, t) = ( 1 β( a)) T ( a, t): * * postrt density of infected cells of age a progressed to the postrt phase (a protease inhibitor could hel p) r, r, r : 0 rt p e r ηt ( a, t) da: rt * prert drug efficacy of RT, protease, and entry inhibitors respectively rate at which prert infected cells become uninfected * (1 rp ) TpostRT ( a, t) da: rate at which new virion particl 0 es are produced

7 Suscep tible α H ealthautho rities Quarantin ed Qγ uarantine α Expos λ ed ()ts 2 Q E Hospita PQ lized Medica lpractition 1εφ ers Presentatio Prodrom nsympto IP al ms δ HospitalizPNotQ ed EarlyMe Encoun ME dical ter Progr esion δ ω 1 Hospitalizδ ed 3 Respira tory 1 RHP εφ Presentatio nsympto IR ms Hospita RNo lized thp Diagnosi 2δ slatemed Encoun ML ical ter Rec overy δ 2 Recov ery Recove red Reδ covery Prog resion Progresio n Infe ction Pr ogresion Waning Recove ry An age-structured model with combination therapy (I) (Including reverse transcriptase inhibitors and protease inhibitors) β(a): propotion of infected cells of age a in the prert phase η: conversion factor to non-infected cells by RT inhibitors Remark: RT inhibitors do not reduce the infection rate of target cells (kvt)

8 Suscep tible α H ealthautho rities Quarantin ed Qγ uarantine α Expos λ ed ()ts 2 Q E Hospita PQ lized Medica lpractition 1εφ ers Presentatio Prodrom nsympto IP al ms δ HospitalizPNotQ ed EarlyMe Encoun ME dical ter Progr esion δ ω 1 Hospitalizδ ed 3 Respira tory 1 RHP εφ Presentatio nsympto IR ms Hospita RNo lized thp Diagnosi 2δ slatemed Encoun ML ical ter Rec overy δ 2 Recov ery Recove red Reδ covery Prog resion Progresio n Infe ction Pr ogresion Waning Recove ry An age-structured model with combination therapy (II) (Including entry or fusion inhibitors and protease inhibitors)

9 Notation Age specific survival probability of infected cells: Effective viral production rate of a productively infected cell of age a: Total amount of infectious virion particles produced by one infected cell in its lifespan: The reproductive number Number of uninfected cells in an infection-free population R skk s 1 k K dc d c 2 = = 2 Virus lifespan

10 Reformulation of the system (I) Let B(t)=kV(t)T(t). Solve for T * (a,t) along the characteristic line: Eliminating T*:

11 Equivalent systems (A) (B)

12 Existence of (positive) solutions (A) System (A) can be written as with Existence of solutions follows from Theorem 1.1 in Gripenberg et al. (1990)

13 A limiting system of (B) Steady-states Infection-free SS: Infected SS:

14 Existence of the infection steady-state E Note: E skk 2 Therefore, V > 0 if and only if skk2 > dc, that is, R > 1 ( R = ) dc

15 Stability of E (infection-free) and E (infected) Result 1: E is a global attractor if R< 1, and it is unstable if R> 1 Result 2: E exists and is locally asymptotically stable if R > 1

16 Proof of Result 1 (fluctuation method) Rewrite the V equation: where T ( ) s and R = d ksk cd 2 Therefore, if R < 1 then V = 0, or lim V( t) = 0. From B( t) = kv( t) T( t), lim B( t) = 0 t s s From the T equation we get T. Thus, T = T = d d t * () W = T + Ttotal Let then s Choose a sequence rn s.t. W( rn) W and W '( rn) 0 as n. Then W and T d s d

17 Proof of Result 2 (assume R >1) Characteristic equation at E : (1) where (Laplace transform of K i (a)) Eq. (1) is equivalent to: or If λ > 0 (real) then Kˆ ( λ) K, Kˆ ( λ) K <1. Hence, λ cannot be an eigenvalue if R > If λ is a complex eigenvalue. First show that Re( λ)<0 when R is close to 1, and then use the continuous dependence on R of the characteristic polynomial for any R > 1

18 Stability of E and E (numerical simulations) Result 1: E is a global attractor if R< 1, and it is unstable if R> 1 Result 2: exists and is locally asymptotically stable if E R > 1 R < 1 R > 1

19 Influence of drug therapy on viral fitness Suppose that the drug-sensitive strain of HIV-1 infection is at the infected steady state and that a small number of drug resistant viruses have been introduced into the population. Assume that all parameters are the same for both strains except: r rt and r p: drug efficacy for the resistant strain, r i= σ iri (0< σ i <1, i = rt, p) p ( a) : viron production rate of infected cells with resistant viruses Let R and R denote the reproductive ratios for sensitive and resistant strains s r The reproductive ratio of an invading resistant strain (when the sensitive strain is at its infected equilibrium) is Available uninfected T cells =s/(r s d) The resistant strain can establish in the population if and only if R r > R s R r > Burst size 1 or

20 Optimal reproductive ratio Consider the following specific forms of parameter functions: Cost functions Type 1: Type 2: p p = σ p * * = e p * φ(1/ σ 1) *

21 Drug treatment and invasion of resistant virus Assume Type 1 cost function and all σ the same. Then this relationship holds: Consider R = R ( σ ) as a function of σ, 0 σ 1. A resistant strain with r r resistance σ can invade the sen sitive strain if and only if R r ( σ ) > R s Remark: If r 0 and r 0, then R ( σ) σr R as σ 1 rt p r s s Thus, drug treatments act as a selection force for resistant strains Will derive analytic understanding for the case when only a single-drug therapy with a protease inhibitor is considered, i.e., > 0 and r = 0. The case of combined therapy will be explored numerically r p rt

22 Optimal reproductive number/resistance level Let r > 0 and r = 0. Then p rt 1 2r p R r R s σ 1 1 max 2r p σ

23 Impact of treatment on invasion of resistant strains (r rt =0) R r HaL r p =0.4 R s s max s R r HcL r p =0.7 R s, R 8 rmax 6 4 R r HbL r p =0.5 R r HdL r p = s R rmax 6 R s 4 s 0.1 s max 1 s opt R rmax 6 R s s max s opt s (a) and (b): No resistant strains can invade (c) And (d): Strains with resistance levels σ max < σ < 1 can invade

24 Impact of treatment on invasion of resistant strains (r rt >0) R r r rt =0.1, R r HsL 6 5 r rt =0.1, R s r rt =0.3, R r HsL r rt =0.3, R s r rt =0.5, R r HsL 4 è ò ò è r rt =0.5, R s s The case of combination therapy with r p =0.6 fixed. Type 1 cost function is used

25 Impact of treatment on invasion of resistant strains HaL HbL 3 R s,r r r rt r p R s r rt r p 0.25 rp HcL R s <R r <1 R s <1<R r 1<R s <R r 1<R r <R s rrt Reproductive ratio vs treatment efficacy. Type 1 cost function is used

26 A different cost function f= R r f=0.9 f=2.5 Type 1 cost R s s Qualitative results are similar when Type 2 cost function is used

27 Comparison of combination therapies R r rt r e r rt r e R > 1 (a) (b) η=5 For small η, the entry inhibitor is more effective R > 1 R r rt r e r rt r e (c) (d) η=12 For large η, the RT inhibitor is more effective

28 Conclusion Age-structured model allows us to incorporate distinct features of RT inhibitors and entry inhibitors which may have very different impact on viral persistence There exists a threshold drug efficacy r p * below which no resistant strains can invade. When r p > r p * there is a well defined range of resistance levels for which resistant strains are able to invade As the drug efficacy increases the range of invasion strains, (σ max, 1), increases the optimal resistance level, σ opt, decreases the optimal viral fitness, R r (σ opt ), decreases

29 Acknowledgements National Science Foundation DSM

Mathematical Models for HIV infection in vivo - A Review

Mathematical Models for HIV infection in vivo - A Review ing of ODE DDE SDE s Mathematical s for HIV infection in vivo - A Department of Mathematics and Statistics Indian Institute of Technology, Kanpur Kanpur, 208016, India peeyush@iitk.ac.in January 20, 2010

More information

Decay characteristics of HIV-1- infected compartments during combination therapy

Decay characteristics of HIV-1- infected compartments during combination therapy Decay characteristics of HIV-1- infected compartments during combination therapy Perelson et al. 1997 Kelsey Collins BIOL0380 September 28, 2009 SUMMARY Analyzed decay patterns of viral load of HIV- 1-infected

More information

MODELING THE DRUG THERAPY FOR HIV INFECTION

MODELING THE DRUG THERAPY FOR HIV INFECTION Journal of Biological Systems, Vol. 17, No. 2 (9) 213 223 c World Scientific Publishing Company MODELING THE DRUG THERAPY FOR HIV INFECTION P. K. SRIVASTAVA,M.BANERJEE and PEEYUSH CHANDRA Department of

More information

ON ATTAINING MAXIMAL AND DURABLE SUPPRESSION OF THE VIRAL LOAD. Annah M. Jeffrey, Xiaohua Xia and Ian K. Craig

ON ATTAINING MAXIMAL AND DURABLE SUPPRESSION OF THE VIRAL LOAD. Annah M. Jeffrey, Xiaohua Xia and Ian K. Craig ON ATTAINING MAXIMAL AND DURABLE SUPPRESSION OF THE VIRAL LOAD Annah M. Jeffrey, Xiaohua Xia and Ian K. Craig Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria

More information

VIRUS POPULATION DYNAMICS

VIRUS POPULATION DYNAMICS MCB 137 VIRUS DYNAMICS WINTER 2008 VIRUS POPULATION DYNAMICS Introduction: The basic epidemic model The classical model for epidemics is described in [1] and [Chapter 10 of 2]. Consider a population of

More information

A Delay-Differential Equation Model of

A Delay-Differential Equation Model of International Mathematical Forum, Vol. 7, 2012, no. 30, 1475-1481 A Delay-Differential Equation Model of HIV Infection of CD4 + T-Cells with Cure Rate 1 Mei Yan 2 and Zhongyi Xiang 1,2 1 Key Laboratory

More information

The roadmap. Why do we need mathematical models in infectious diseases. Impact of vaccination: direct and indirect effects

The roadmap. Why do we need mathematical models in infectious diseases. Impact of vaccination: direct and indirect effects Mathematical Models in Infectious Diseases Epidemiology and Semi-Algebraic Methods Why do we need mathematical models in infectious diseases Why do we need mathematical models in infectious diseases Why

More information

Modeling the Effects of HIV on the Evolution of Diseases

Modeling the Effects of HIV on the Evolution of Diseases 1/20 the Evolution of Mentor: Nina Fefferman DIMACS REU July 14, 2011 2/20 Motivating Questions How does the presence of HIV in the body changes the evolution of pathogens in the human body? How do different

More information

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms 5/6/17 Disease Diseases I. II. Bacteria Viruses (including HIV) Biol 105 Chapter 13a Pathogens Pathogens are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic.

More information

= Λ μs βs I N, (1) (μ + d + r)i, (2)

= Λ μs βs I N, (1) (μ + d + r)i, (2) Advanced Studies in Biology, Vol., 29, no. 8, 383-39 Mathematical Model of the Influenza A(HN) Infection K. Hattaf and N. Yousfi 2 Laboratory Analysis, Modeling and Simulation Department of Mathematics

More information

Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate

Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Stability Analysis for an HIV Infection Model with Immune Response and Cure Rate To cite this article: Linli Zhang and Lin Wang

More information

Mathematical Analysis of HIV-1 Dynamics in Vivo

Mathematical Analysis of HIV-1 Dynamics in Vivo SIAM REVIEW Vol. 41, No. 1, pp. 3 44 c 1999 Society for Industrial and Applied Mathematics Mathematical Analysis of HIV-1 Dynamics in Vivo Alan S. Perelson Patrick W. Nelson Abstract. Mathematical models

More information

Author's personal copy

Author's personal copy Differ Equ Dyn Syst (July 2016) 24(3):281 303 DOI 10.1007/s12591-014-0234-6 ORIGINAL RESEARCH he Effects of Latent Infection on the Dynamics of HIV Stephen Pankavich Published online: 21 January 2015 Foundation

More information

A Mathematical Model for Treatment-Resistant Mutations of HIV

A Mathematical Model for Treatment-Resistant Mutations of HIV Claremont Colleges Scholarship @ Claremont All HMC Faculty Publications and Research HMC Faculty Scholarship 4-1-2005 A Mathematical Model for Treatment-Resistant Mutations of HIV Helen Moore American

More information

Homework 6 Solutions

Homework 6 Solutions Homework 6 Solutions Math 314, Fall 216 Problem 1 The HIV virus targets CD4+ T cells, sometimes called helper T cells During an infection, the total number T t) of helper T cells in the blood, the number

More information

Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics

Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics Mathematical Models for Linking Within-Host and Between-Host Viral Dynamics The Effect of Antibodies on the Probability of Transmission Aidan Backus Angelica Bloomquist Carlos Villanueva-Chavez J Montgomery

More information

Appendix (unedited, as supplied by the authors)

Appendix (unedited, as supplied by the authors) Appendix (unedited, as supplied by the authors) Details of the mathematical model The model used for the simulations in this manuscript was adapted from a previously described model of HCV transmission

More information

Towards Modeling HIV Long Term Behavior

Towards Modeling HIV Long Term Behavior Towards Modeling HIV Long Term Behavior Esteban A. Hernandez-Vargas Dhagash Mehta Richard H. Middleton Hamilton Institute, National University of Ireland, Maynooth, Co. Kildare, Ireland (e-mail: Richard.Middleton@nuim.ie,

More information

Modeling of cancer virotherapy with recombinant measles viruses

Modeling of cancer virotherapy with recombinant measles viruses Modeling of cancer virotherapy with recombinant measles viruses Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Collaborators: Krešimir Josić Dept. of Mathematics, University

More information

Mathematical Analysis of an HIV/AIDS Epidemic Model

Mathematical Analysis of an HIV/AIDS Epidemic Model American Journal of Mathematics and Statistics 15, 5(5): 53-58 DOI: 1.593/j.ajms.1555.5 Mathematical Analysis of an HIV/AIDS Epidemic Model Udoy S. Basak 1,*, Bimal Kumar Datta, Prodip Kumar Ghose 3 1

More information

Reduction of Mortality Rate Due to AIDS When Treatment Is Considered

Reduction of Mortality Rate Due to AIDS When Treatment Is Considered Pure and Applied Mathematics Journal 216; 5(4): 97-12 http://www.sciencepublishinggroup.com/j/pamj doi: 1.11648/j.pamj.21654.12 ISSN: 2326-979 (Print); ISSN: 2326-9812 (Online) Reduction of Mortality Rate

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM J. APPL. MATH. Vol. 7, No. 3, pp. 73 75 c 27 Society for Inustrial an Applie Mathematics MATHEMATICAL ANALYSIS OF AGE-STRUCTURED HIV- DYNAMICS WITH COMBINATION ANTIRETROVIRAL THERAPY LIBIN RONG, ZHILAN

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

Mathematical Models of Hepatitis B Virus Dynamics during Antiviral Therapy

Mathematical Models of Hepatitis B Virus Dynamics during Antiviral Therapy Mathematical Models of Hepatitis B Virus Dynamics during Antiviral Therapy Andrea Carracedo Rodriguez Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial

More information

Abstract. Keywords. Gelayol Nazari Golpayegani 1, Amir Homayoun Jafari 2,3*, Nader Jafarnia Dabanloo 1

Abstract. Keywords. Gelayol Nazari Golpayegani 1, Amir Homayoun Jafari 2,3*, Nader Jafarnia Dabanloo 1 J. Biomedical Science and Engineering, 2017, 10, 77-106 http://www.scirp.org/journal/jbise ISSN Online: 1937-688X ISSN Print: 1937-6871 Providing a Therapeutic Scheduling for HIV Infected Individuals with

More information

Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells

Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells Delay Differential Model for Tumor-Immune Dynamics with HIV Infection of CD4 + T Cells Fathalla A. Rihan Duaa H. Abdel-Rahman ICM 2012, 11-14 March, Al Ain Abstract In this paper, we introduce a mathematical

More information

Chapter 13B: Animal Viruses

Chapter 13B: Animal Viruses Chapter 13B: Animal Viruses 1. Overview of Animal Viruses 2. DNA Viruses 3. RNA Viruses 4. Prions 1. Overview of Animal Viruses Life Cycle of Animal Viruses The basic life cycle stages of animal viruses

More information

A Mathematical Model of Cerebrospinal Meningitis Epidemic: A Case Study for Jirapa District, Ghana

A Mathematical Model of Cerebrospinal Meningitis Epidemic: A Case Study for Jirapa District, Ghana KMITL Sci. Tech. J. Vol. 1 No. 2 Jul. - Dec. 21 A Mathematical Model of Cerebrospinal Meningitis Epidemic: A Case Study for Jirapa District, Ghana E. N. Wiah 1 and I. A. Adetunde *2 1 Department of Mathematics,

More information

0.1 Immunology - HIV/AIDS. 0.2 History & biology of HIV

0.1 Immunology - HIV/AIDS. 0.2 History & biology of HIV 0.1 mmunology - HV/ADS n our previous models we assumed a homogeneous population where everyone was susceptible and infectious to the same degree. n contrast, the dynamics of STDs is affected by the general

More information

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics Disease Diseases I. Bacteria II. Viruses including Biol 105 Lecture 17 Chapter 13a are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

Heroin Epidemic Models

Heroin Epidemic Models Heroin Epidemic Models icholas A. Battista Intro to Math Biology Project School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, Y 14623-5603, USA May 21,

More information

ScienceDirect. A mathematical study of combined use of anti-hiv drugs and a mutagen

ScienceDirect. A mathematical study of combined use of anti-hiv drugs and a mutagen Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 35 (2014 ) 1407 1415 18 th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems

More information

VIRUSES. 1. Describe the structure of a virus by completing the following chart.

VIRUSES. 1. Describe the structure of a virus by completing the following chart. AP BIOLOGY MOLECULAR GENETICS ACTIVITY #3 NAME DATE HOUR VIRUSES 1. Describe the structure of a virus by completing the following chart. Viral Part Description of Part 2. Some viruses have an envelope

More information

Viral reproductive cycle

Viral reproductive cycle Lecture 29: Viruses Lecture outline 11/11/05 Types of viruses Bacteriophage Lytic and lysogenic life cycles viruses viruses Influenza Prions Mad cow disease 0.5 µm Figure 18.4 Viral structure of capsid

More information

Sensitivity analysis for parameters important. for smallpox transmission

Sensitivity analysis for parameters important. for smallpox transmission Sensitivity analysis for parameters important for smallpox transmission Group Members: Michael A. Jardini, Xiaosi Ma and Marvin O Ketch Abstract In order to determine the relative importance of model parameters

More information

Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child

Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child Mathematical Model Approach To HIV/AIDS Transmission From Mother To Child Basavarajaiah.D. M. B. Narasimhamurthy, K. Maheshappa. B. Leelavathy ABSTRACT:- AIDS is a devastating disease, more than 2.50 million

More information

HIV Treatment Using Optimal Control

HIV Treatment Using Optimal Control Lab 1 HIV Treatment Using Optimal Control Introduction Viruses are the cause of many common illnesses in society today, such as ebola, influenza, the common cold, and Human Immunodeficiency Virus (HIV).

More information

MedChem 401~ Retroviridae. Retroviridae

MedChem 401~ Retroviridae. Retroviridae MedChem 401~ Retroviridae Retroviruses plus-sense RNA genome (!8-10 kb) protein capsid lipid envelop envelope glycoproteins reverse transcriptase enzyme integrase enzyme protease enzyme Retroviridae The

More information

WEBQUEST: Viruses and Vaccines

WEBQUEST: Viruses and Vaccines WLHS / Biology / Monson / UNIT 8 Viruses & Bacteria Name Date Per Part 1: Viruses WEBQUEST: Viruses and Vaccines Go to the following website: http://science.howstuffworks.com/virus-human.htm 1) Name 5

More information

Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS

Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS 1 Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS What steps are involved in viral infection and replication? Why are some kinds of influenza virus more deadly than others? How do flu

More information

3. on T helper {cells / lymphocytes} ; 3. ACCEPT macrophages / dendritic cells / CD4 cells

3. on T helper {cells / lymphocytes} ; 3. ACCEPT macrophages / dendritic cells / CD4 cells 1(a) 1. (structure G is {glycoprotein / gp120} ; 2. used for {attachment / eq} to CD4 (molecules / receptors /antigens) ; 1. IGNORE gp 41 and gp 160 and other wrong numbers 3. on T helper {cells / lymphocytes}

More information

Immuno-modulatory Strategies for Reduction of HIV Reservoir Cells

Immuno-modulatory Strategies for Reduction of HIV Reservoir Cells Immuno-modulatory Strategies for Reduction of HIV Reservoir Cells H.T. Banks, Kevin B. Flores and Shuhua Hu Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695-8212

More information

Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics

Simple Mathematical Models Do Not Accurately Predict Early SIV Dynamics University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange Faculty Publications and Other Works -- Mathematics Mathematics 3-13-2015 Simple Mathematical Models Do Not Accurately

More information

Viral Genetics. BIT 220 Chapter 16

Viral Genetics. BIT 220 Chapter 16 Viral Genetics BIT 220 Chapter 16 Details of the Virus Classified According to a. DNA or RNA b. Enveloped or Non-Enveloped c. Single-stranded or double-stranded Viruses contain only a few genes Reverse

More information

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations. Unit 2, Lesson 2: Teacher s Edition 1 Unit 2: Lesson 2 Influenza and HIV Lesson Questions: o What steps are involved in viral infection and replication? o Why are some kinds of influenza virus more deadly

More information

Mathematical modeling of viral infection dynamics in spherical organs

Mathematical modeling of viral infection dynamics in spherical organs J. Math. Biol. (2013) 67:1425 1455 DOI 10.1007/s00285-012-0593-y Mathematical Biology Mathematical modeling of viral infection dynamics in spherical organs Ricardo Dunia Roger Bonnecaze Received: 16 November

More information

Global Stability of SACR Epidemic Model for Hepatitis C on Injecting Drug Users

Global Stability of SACR Epidemic Model for Hepatitis C on Injecting Drug Users PROCEEDING OF 3 RD INTERNATIONAL CONFERENCE ON RESEARCH, IMPLEMENTATION AND EDUCATION OF MATHEMATICS AND SCIENCE YOGYAKARTA, 16 17 MAY 2016 Global Stability of SACR Epidemic Model for Hepatitis C on Injecting

More information

SENSITIVITY ANALYSIS OF TREATMENT AND COUNSELING IN A CO INFECTION MODEL OF HIV/AIDS, TUBERCULOSIS AND MALARIA

SENSITIVITY ANALYSIS OF TREATMENT AND COUNSELING IN A CO INFECTION MODEL OF HIV/AIDS, TUBERCULOSIS AND MALARIA www.arpapress.com/volumes/vol26issue2/ijrras_26_2_03.pdf SENSITIVITY ANALYSIS OF TREATMENT AND COUNSELING IN A CO INFECTION MODEL OF HIV/AIDS, TUBERCULOSIS AND MALARIA Ochieng Ombaka Physical Sciences

More information

Size nm m m

Size nm m m 1 Viral size and organization Size 20-250nm 0.000000002m-0.000000025m Virion structure Capsid Core Acellular obligate intracellular parasites Lack organelles, metabolic activities, and reproduction Replicated

More information

Modeling the Effects of Time Delay on HIV-1 in Vivo Dynamics in the Presence of ARVs

Modeling the Effects of Time Delay on HIV-1 in Vivo Dynamics in the Presence of ARVs Science Journal of Applied Mathematics and Statistics 2015; 3(4): 204-213 Published online August 13, 2015 (http://www.sciencepublishinggroup.com/j/sjams) doi: 10.11648/j.sjams.20150304.17 ISSN: 2376-9491

More information

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics 9 Viruses CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV Lecture Presentation

More information

3. On the role of alcohol drinking on the dynamics transmission of Hepatitis B

3. On the role of alcohol drinking on the dynamics transmission of Hepatitis B Transworld Research Network 37/661 (2), Fort P.O. Trivandrum-695 023 Kerala, India Understanding the Dynamics of Emerging and Re-Emerging Infectious Diseases Using Mathematical Models, 2012: 49-89 ISBN:

More information

HIV-1 R.eplication Rate

HIV-1 R.eplication Rate HIV-1 R.eplication Rate Michelle J. Arias and Delmy Iiiguez University of California, Riverside Erika T. Camacho Wellesley College Rafael B. Castillo State University of New York at Stony Brook Eliel Melon

More information

Section 6. Junaid Malek, M.D.

Section 6. Junaid Malek, M.D. Section 6 Junaid Malek, M.D. The Golgi and gp160 gp160 transported from ER to the Golgi in coated vesicles These coated vesicles fuse to the cis portion of the Golgi and deposit their cargo in the cisternae

More information

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat AP Biology Reading Guide Name Chapter 19: Viruses Overview Experimental work with viruses has provided important evidence that genes are made of nucleic acids. Viruses were also important in working out

More information

MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE

MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE ORIGINAL RESEARCH ARTICLE OPEN ACCESS MATHEMATICAL STUDY OF BITING RATES OF MOSQUITOES IN TRANSMISSION OF DENGUE DISEASE *G. R. Phaijoo, D. B. Gurung Department of Natural Sciences (Mathematics), School

More information

Modeling Multi-Mutation And Drug Resistance: A Case of Immune-Suppression

Modeling Multi-Mutation And Drug Resistance: A Case of Immune-Suppression Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 14, Number 6 (2018), pp. 787-807 Research India Publications http://www.ripublication.com/gjpam.htm Modeling Multi-Mutation And Drug

More information

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission Disease Diseases I. Bacteria II. Viruses including are disease-causing organisms Biol 105 Lecture 17 Chapter 13a Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

Bacteriophage Reproduction

Bacteriophage Reproduction Bacteriophage Reproduction Lytic and Lysogenic Cycles The following information is taken from: http://student.ccbcmd.edu/courses/bio141/lecguide/unit3/index.html#charvir Bacteriophage Structure More complex

More information

Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches

Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches Dynamic Multidrug Therapies for HIV: Optimal and STI Control Approaches B. M. Adams 1, H. T. Banks, Hee-Dae Kwon 3, and H. T. Tran Center for Research in Scientific Computation Box 85 North Carolina State

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Super- and Coinfection: Filling the Range

Super- and Coinfection: Filling the Range Adler FR & Mosquera Losada J (2002). Super- and Coinfection: Filling the Range. In: Adaptive Dynamics of Infectious Diseases: In Pursuit of Virulence Management, eds. Dieckmann U, Metz JAJ, Sabelis MW

More information

OPTIMAL CONTROL IN CHEMOTHERAPY OF A VIRAL INFECTION

OPTIMAL CONTROL IN CHEMOTHERAPY OF A VIRAL INFECTION ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LIX, 13, f. OPTIMAL CONTROL IN CHEMOTHERAPY OF A VIRAL INFECTION BY RĂZVAN ŞTEFĂNESCU and MATEI-CIPRIAN POGAN Abstract.

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

On the behavior of solutions in viral dynamical models

On the behavior of solutions in viral dynamical models BioSystems 73 (2004) 157 161 On the behavior of solutions in viral namical models Henry C. Tuckwell a,b,, Frederic Y.M. Wan a a Department of Mathematics, University of California, Irvine, CA 92697, USA

More information

Mathematical Modeling of Hand-Foot-Mouth Disease: Quarantine as a Control Measure

Mathematical Modeling of Hand-Foot-Mouth Disease: Quarantine as a Control Measure E S Scholars www.setscholars.org T Knowledge is Power April 2012 Volume 1, Issue 2 Article #04 IJASETR Research Paper ISSN: 1839-7239 Mathematical Modeling of Hand-Foot-Mouth Disease: Quarantine as a Control

More information

Study on control of bird flu outbreak within a poultry farm

Study on control of bird flu outbreak within a poultry farm ANZIAM J. 51 (EMAC009) pp.c668 C681, 010 C668 Study on control of bird flu outbreak within a poultry farm T. Delia Nova 1 H. Mawengkang M. Watanabe 3 (Received 10 July 010; revised 8 September 010) Abstract

More information

Optimal control strategy of HIV-1 epidemic model for recombinant virus

Optimal control strategy of HIV-1 epidemic model for recombinant virus APPLIED & INTERDISCIPLINARY MATHEMATICS RESEARCH ARTICLE Optimal control strategy of HIV- epidemic model for recombinant virus Nigar Ali *, Gul Zaman and Ali Saleh Alshomrani Received: 0 September 06 Accepted:

More information

APPLICATION OF FUZZY DIFFERENTIAL EQUATION IN HIV INFECTION

APPLICATION OF FUZZY DIFFERENTIAL EQUATION IN HIV INFECTION RESEARCH ARTICE APPICATION OF FZZY DIFFERENTIA EQATION IN HIV INFECTION Dr. EMAN A. HSSIAN 1, MAZIN H. SHHIEM 2 1 Department of Mathematics, College of Sciences, A-Mustansiriyah niversity, Baghdad, Iraq

More information

Stochastic and game-theoretic modeling of viral evolution

Stochastic and game-theoretic modeling of viral evolution Stochastic and game-theoretic modeling of viral evolution February, 21 2010 Department of Chemical and Biological Engineering University of Wisconsin Madison 1/33 Outline 1 2 Modeling viral reproduction

More information

Syllabus: Principles of Virology

Syllabus: Principles of Virology Syllabus: Principles of Virology 1. Course Infromation: Title: Principles of Virology Number: F494 Credits: 3 Prerequisits: Biol 261 Location: To be determined 2. Instructor contact information: Karsten

More information

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world and

Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world and Abstract Dengue is one of the most rapidly spreading mosquito-borne viral diseases in the world and inflicts significant health, economic and social burden on populations. Various mathematical models have

More information

A TRIDENT SCHOLAR PROJECT REPORT

A TRIDENT SCHOLAR PROJECT REPORT A TRIDENT SCHOLAR PROJECT REPORT NO. 452 Mathematical Modeling: Immune System Dynamics in the Presence of Cancer and Immunodeficiency in vivo by Midshipman 1/C Thomas J. Wester, USN UNITED STATES NAVAL

More information

Modeling of HIV and CTL Response

Modeling of HIV and CTL Response Modeling of HIV and CTL Response Catherine Tran Diana Lubyanaya Advisors: Dr. Dominik Wodarz* and Dr. Frederic Wan** *Department of Ecology and Evolutionary Biology **Department of Mathematics University

More information

Summary Report for HIV Random Clinical Trial Conducted in

Summary Report for HIV Random Clinical Trial Conducted in Summary Report for HIV Random Clinical Trial Conducted in 9-2014 H.T. Banks and Shuhua Hu Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695-8212 USA Eric Rosenberg

More information

WHY? Viruses are considered non-living because they do:

WHY? Viruses are considered non-living because they do: Viruses What is a Virus? Non-living particle WHY? Viruses are considered non-living because they do: NOT Carry out metabolism NOT Grow or develop NOT Replicate without the help of a living cell (host).

More information

Chapter 19: The Genetics of Viruses and Bacteria

Chapter 19: The Genetics of Viruses and Bacteria Chapter 19: The Genetics of Viruses and Bacteria What is Microbiology? Microbiology is the science that studies microorganisms = living things that are too small to be seen with the naked eye Microorganisms

More information

The 2016 Summer Institute in Statistics and Modeling of Infectious Diseases Module 6: Infectious Diseases, Immunology and Within-Host Models Author:

The 2016 Summer Institute in Statistics and Modeling of Infectious Diseases Module 6: Infectious Diseases, Immunology and Within-Host Models Author: The 2016 Summer Institute in Statistics and Modeling of Infectious Diseases Module 6: Infectious Diseases, Immunology and Within-Host Models Author: Andreas Handel, Department of Epidemiology and Biostatistics,

More information

Modeling the Impact of Screening and Treatment on the Dynamics of Typhoid Fever

Modeling the Impact of Screening and Treatment on the Dynamics of Typhoid Fever ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 14 (2018) No. 4, pp. 298-306 Modeling the Impact of Screening and Treatment on the Dynamics of Typhoid Fever Nkuba Nyerere 1

More information

Mathematical Formulation and Numerical Simulation of Bird Flu Infection Process within a Poultry Farm

Mathematical Formulation and Numerical Simulation of Bird Flu Infection Process within a Poultry Farm Mathematical Formulation and Numerical Simulation of Bird Flu Infection Process within a Poultry Farm Arrival Rince Putri, Tertia Delia Nova and M. Watanabe, Graduate School Environmental and Life Science,

More information

RESEARCH & KNOWLEDGE

RESEARCH & KNOWLEDGE Vol. 4 No. 2 page 26-32 DOI :.4456/randk.28.8 RESEARCH & KNOWLEDGE Research Article Modeling the effect of drug therapy on hepatitis B virus infection Pensiri Yosyingyong and Ratchada Viriyapong* Department

More information

EXPECTED TIME TO CROSS THE ANTIGENIC DIVERSITY THRESHOLD IN HIV INFECTION USING SHOCK MODEL APPROACH ABSTRACT

EXPECTED TIME TO CROSS THE ANTIGENIC DIVERSITY THRESHOLD IN HIV INFECTION USING SHOCK MODEL APPROACH ABSTRACT EXPECTED TIME TO CROSS THE ANTIGENIC DIVERSITY THRESHOLD IN HIV INFECTION USING SHOCK MODEL APPROACH R.Elangovan and R.Ramajayam * Department of Statistics, Annamalai University, Annamalai Nagar- 68 2

More information

Human Genome Complexity, Viruses & Genetic Variability

Human Genome Complexity, Viruses & Genetic Variability Human Genome Complexity, Viruses & Genetic Variability (Learning Objectives) Learn the types of DNA sequences present in the Human Genome other than genes coding for functional proteins. Review what you

More information

Research Article Mathematical Modeling of Cytotoxic Lymphocyte-Mediated Immune Response to Hepatitis B Virus Infection

Research Article Mathematical Modeling of Cytotoxic Lymphocyte-Mediated Immune Response to Hepatitis B Virus Infection Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology Volume 28, Article ID 74369, 9 pages doi:.55/28/74369 Research Article Mathematical Modeling of Cytotoxic Lymphocyte-Mediated Immune

More information

The local and global stability of the disease free equilibrium in a co infection model of HIV/AIDS, Tuberculosis and malaria.

The local and global stability of the disease free equilibrium in a co infection model of HIV/AIDS, Tuberculosis and malaria. IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 6 Ver. IV (Nov. - Dec. 2015), PP 33-43 www.iosrjournals.org The local and global stability of the disease free

More information

number Done by Corrected by Doctor Ashraf

number Done by Corrected by Doctor Ashraf number 4 Done by Nedaa Bani Ata Corrected by Rama Nada Doctor Ashraf Genome replication and gene expression Remember the steps of viral replication from the last lecture: Attachment, Adsorption, Penetration,

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Reoviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Reoviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Naked icosahedral capsid (T=13), diameter 60-85 nm Capsid consists of two or three concentric protein

More information

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses Medical Virology Lecture 2 Asst. Prof. Dr. Dalya Basil Herpesviruses, Orthomyxoviruses, and Retro virus - Herpesviruses Structure & Composition: Herpesviruses Enveloped DNA viruses. All herpesviruses have

More information

Modeling of epidemic spreading with white Gaussian noise

Modeling of epidemic spreading with white Gaussian noise Article Statistical Physics and Mathematics for Complex Systems December 20 Vol.56 No.34: 3683 3688 doi: 0.007/s434-0-4753-z SPECIAL TOPICS: Modeling of epidemic spreading with white Gaussian noise GU

More information

Mathematical approaches to infectious diseases control

Mathematical approaches to infectious diseases control SUSTAINABLE AGRO-PASTORAL SYSTEMS: CONCEPTS, APPROACHES AND TOOLS Milano, Italy, March 27, 212 Mathematical approaches to infectious diseases control Bruno Buonomo Department of Mathematics and Applications,

More information

Dynamics and Control of Infectious Diseases

Dynamics and Control of Infectious Diseases Dynamics and Control of Infectious Diseases Alexander Glaser WWS556d Princeton University April 9, 2007 Revision 3 1 Definitions Infectious Disease Disease caused by invasion of the body by an agent About

More information

Parasitism. Key concepts. Tasmanian devil facial tumor disease. Immunizing and non-immunizing pathogens. SI, SIS, and SIR epidemics

Parasitism. Key concepts. Tasmanian devil facial tumor disease. Immunizing and non-immunizing pathogens. SI, SIS, and SIR epidemics Parasitism Key concepts Immunizing and non-immunizing pathogens SI, SIS, and SIR epidemics Basic reproduction number, R 0 Tasmanian devil facial tumor disease The Tasmanian devil Sarcophilus harrisii is

More information

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain

Virus Basics. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities. Can infect organisms of every domain Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-forms Commonly referred to by organism they infect

More information

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS Acquired immunodeficiency syndrome (AIDS ) is an infectious disease caused by a retrovirus, the human immunodeficiency virus(hiv). AIDS is

More information

arxiv: v1 [q-bio.pe] 18 Jan 2017

arxiv: v1 [q-bio.pe] 18 Jan 2017 Intermittent Preventive Treatment (IPT: Its role in averting disease-induced mortalities in children and in promoting the spread of antimalarial drug resistance arxiv:1701.05210v1 [q-bio.pe] 18 Jan 2017

More information

Behavior-Disease Models with respect to HIV Dynamics

Behavior-Disease Models with respect to HIV Dynamics Behavior-Disease Models with respect to HIV Dynamics Aidan Grennell Western Carolina University 1 Abstract Expanding on the Susceptible-Infected-Recovered (SIR) epidemiological models, we review Towards

More information

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities

Virus Basics. General Characteristics of Viruses 5/9/2011. General Characteristics of Viruses. Chapter 13 & 14. Non-living entities Virus Basics Chapter 13 & 14 General Characteristics of Viruses Non-living entities Not considered organisms Can infect organisms of every domain All life-formsf Commonly referred to by organism they infect

More information

Computational Simulations of the Human Immunodeficiency Virus Rev-RRE RRE Complex

Computational Simulations of the Human Immunodeficiency Virus Rev-RRE RRE Complex Computational Simulations of the Human Immunodeficiency Virus Rev-RRE RRE Complex Peri Herman Mentor Dr. Nagan Truman State University Kirksville, MO People newly infected with HIV UNAIDS epidemic update,

More information