Ultrastructure of Human Immunodeficiency Virus Type 2

Size: px
Start display at page:

Download "Ultrastructure of Human Immunodeficiency Virus Type 2"

Transcription

1 J. gen. Virol. (1988), 69, Printed in Great Britain 1425 Key words: AlDS/HIV-2/electron microscopy Ultrastructure of Human Immunodeficiency Virus Type 2 By ERSKINE PALMER,* MARY LANE MARTIN, CYNTHIA GOLDSMITH AND WILLIAM SWITZER 1 Division of Viral Diseases and ~ AIDS Program, Center for Infectious Diseases, Centers for Disease Control, 1600 Clifton Road, Atlanta, Georgia 30333, U.S.A. (Accepted 29 February 1988) SUMMARY The ultrastructure of human immunodeficiency virus type 2 (HIV-2) was determined by negative stain and thin section electron microscopy (EM). Some virus particles had surface projections about 10 nm in length which were evenly spaced. Nonidet P40- treated particles which were penetrated by stain revealed a distinctive off-centre coneshaped core and, in addition, free-lying cores were also seen in detergent-treated preparations. The surface of the cores was composed of a layer of small subunits. The structure of HIV-2 determined by thin section EM was the same as that deduced by negative stain EM. Human immunodeficiency virus type 2 (HIV-2) is a retrovirus which was isolated in 1985 from two carriers living in West Africa who had the acquired immunodeficiency syndrome (AIDS) (Clavel et al., 1986). The virus which causes AIDS primarily in West Africa is being termed HIV-2 to distinguish it from HIV-1, which causes AIDS in countries outside West Africa (Barr6-Sinoussi et al., 1983; Gallo et al., 1984). The morphology of HIV-I in thin-sectioned cells has been well documented. Mature virus consists of an envelope with fuzzy surface projections surrounding an electron-dense eccentric core that is often bar- or cone-shaped (Munn et al., 1985; Palmer et al., 1985a; Gelderblom et al., 1987). It is similar to retroviruses of the subfamily Lentivirinae, which includes equine infectious anaemia virus (EIAV) and visna virus. The glycoprotein surface projections of HIV-1 are rapidly lost after particles bud from the plasma membrane (Gelderblom et al., 1985, 1987). HIV-1 and HIV-2 have common internal antigens but different envelope glycoprotein antigens. The external glycoprotein of HIV-2 is larger than that of HIV-I. This may account for the more prominent surface projections on HIV-2 when viewed by thin section electron microscopy (EM) (Clavel et al., 1986; Palmer & Goldsmith, 1988). Both viruses have the same type of electrondense core seen by thin section EM. To our knowledge, there has been only one report on the morphology of HIV-I discerned by negative staining EM, the technique most often used to define virus ultrastructure. Stannard et al. (1987) recently described the morphology of HIV-1 stained with phosphotungstic acid. Virions were roughly hexagonal with small ring-shaped surface projections. Virus treated with non-ionic detergent (mucasol) revealed internal components about 90 nm in diameter with some evidence of a central core. HIV-1 could not be differentiated from the oncovirus Friend murine leukaemia virus by negative stain EM. The ultrastructure of HIV-2, however, has not been described in detail. We report here the ultrastructure of HIV-2 as discerned by negative stain and thin section EM. The ROD2 strain of HIV-2 was obtained from Dr Luc Montagnier, Pasteur Institute, Paris, France. It was propagated in the continuous macrophage cell line U937 (Sundstrom & Nilsson, 1976) obtained from the American Type Culture Collection. Virus was maintained in the cell line by removing one-third of the cell mass and replacing one-third of the used RPMI 1640 medium containing 10% calf serum with fresh medium, every week. Ceils were propagated at SGM

2 1426 Short communication 37 C in a 5 7o CO2 incubator. Virus was obtained for negative stain EM by centrifuging 10 ml of clarified culture fluid at r.p.m, for 35 min at 5 C in a Beckman type 40 rotor. Virus was resuspended in 100 txl cold distilled water and inactivated by adding 100 Izl 2.5 7o glutaraldehyde. This suspension was stored at 4 C. Portions of the suspension were mixed with 1.0~ Nonidet P40 (NP40) and incubated at 4 C overnight. HIV-2 particles in culture fluid concentrates were prepared for negative stain by the pseudoreplica technique (Smith, 1967) and were stained with 0-5~ aqueous uranyl acetate. For thin section EM, cells were fixed with 2-5 7o glutaraldehyde in 0.2 M-phosphate buffer ph 7.4, post-fixed in 1.07o osmium tetroxide or in 1-07o osmium tetroxide containing 0.57o ruthenium red, dehydrated through a graded series of alcohols and propylene oxide, and embedded in Epon-Araldite. Sections were post-stained with lead citrate and uranyl acetate. Some samples were treated with 1.0~ tannic acid as described by Simionescu & Simionescu (1976). Most of the HIV-2 particles from culture fluid concentrates that were fixed with glutaraldehyde were generally round and devoid of surface projections. Occasionally we observed evenly spaced surface projections, which measured about 10 nm in length, around the periphery of negatively stained particles (Fig. 1 a). Particles averaged about 100 nm in diameter but were sometimes as large as 150 nm. Internal structures were not visible, even though some particles appeared to be partially penetrated by stain. Thin-sectioned particles were also generally round and some had distinct surface projections (Fig. 1 b). These projections were enhanced by treatment with tannic acid (Fig. 1 c). In addition, staining with ruthenium red emphasized the trilaminar structure of the viral membrane (Fig. 1 d). Glutaraldehyde-fixed culture fluid concentrates mixed with equal volumes of 1-0~ NP40 contained particles penetrated by stain, cores devoid of envelopes and partially disintegrated particles. Cores were clearly seen within penetrated particles. Most of these cores were coneshaped and eccentrically located (Fig. 2a, b, c) and amorphous material filling the remainder of the particle was in evidence. The cone-shaped cores measured about 100 nm in the longest dimension and 45 nm across the base. Cores always lay horizontally and were never seen positioned upright on the base. In thin-sectioned cells, the core of HIV-2 appeared in various forms depending upon the plane of section of the cone. These were always electron-dense and appeared conical when sectioned longitudinally and round when sectioned transversely (Fig. 2d). Preparations of NP40-treated HIV-2 culture fluids also contained free-lying cores. Some of these retained the cone shape, while others appeared to lose this structural integrity (Fig. 3a). The core itself appeared to be enclosed by a layer in which small subunits could be discerned (Fig. 3 b). Subunits were seen most clearly around the periphery of the core (Fig. 3 c), although a definite structure could not be determined. This layer of subunits is probably analogous to the single membrane around the core of EIAV described by Weiland et al. (1977). HIV-2 has an ultrastructure which is very similar to that reported for EIAV (Weiland et al., 1977; Gonda et al., 1978). The latter virus has an off-centre cone-shaped core similar to that of HIV-2. The characteristic conical shape of the core makes it easy to distinguish HIV-2 from the oncoviruses that have an electron-lucent central core. However, bar-shaped cores, often seen with EIAV (Weiland et al., 1977), were seldom apparent inside penetrated HIV-2 particles. HIV-2 was most often seen within cytoplasmic vacuoles in U937 macrophage cells (Fig. 4). In contrast, HIV-l-infected T4 lymphocytes show mostly extracellular particles or particles forming at the plasma membrane (Palmer et al., 1985a, b). Very few particles with surface projections were seen; apparently the projections of HIV-2 are easily lost when virus is manipulated in the laboratory or possibly shed as soon as particles bud from the cell as described for the projections of HIV-1 (Gelderblom et al., 1985, 1987). We and others (I. Chrystie, personal communication) have found that HIV-2 cannot be distinguished from HIV-1 by EM. Other types of particles seen by negative stain EM were degenerating particles which were smaller round forms of about 80 nm in diameter, with internal amorphous material but no conical nucleoid. These may be intermediate forms of the virus or unidentified viruses of cell culture origin, although no comparable viral structure could be seen in infected ceils by thin section EM.

3 Short communication (c) 2(a) 2(d), ~. ~ : ~., z, ~,_ Fig. 1. Negative stain and thin section EM of HIV-2. (a) Virus fixed with glutaraldehyde showing 10 nm surface projections (arrow). (b) Virus in an intracellular vacuole stained with lead citrate and uranyl acetate. Surface projections are clearly visible. (c) Virus was treated with tannic acid before staining, which enhanced visibility of the projections. (d) Virus in an intracellular vacuole stained with ruthenium red, which emphasizes the trilaminar structure of the viral membrane. Bar markers represent 100 nm. Fig. 2. (a to c) Negatively stained HIV-2 fixed with glutaraldehyde and treated with 1-0~ NP40. Particles are penetrated to reveal a cone-shaped core in a horizontal position. (d) Thin section of extracellular HIV-2 showing the electron-dense cone-shaped core in various planes of section. Bar markers represent 100 nm.

4 1428 Short communication I 3~ 1 S 7 ~; Fig. 3. Negative staining of free-lying HIV-2 cores after treatment with NP40. Some have retained the cone shape (arrow in a), while others have lost this cone formation. (b, c) The surface is composed of small subunits that can be more clearly seen around the periphery (arrow in c). Bar markers represent 100 nm. Fig. 4. Thin section of HIV-2 in cytoplasmic vacuoles of a U937 macrophage cell. Bar marker represents 100 nm.

5 Short communication 1429 REFERENCES BARRE-SINOUSSI, F., CHERMANN, J. C., REY, F., NUGEYRE, M. T., CHAMARET, S., GRUEST, J., DAUGUET, C., AXLER-BLIN, C., BRUN-VEZINET, F., ROUZIOUX, C., ROZENBAUM, W. & MONTAGNIER, L. (1983). Isolation of Tqymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, CLAVEL, F., GUETARD, D., BRUN-VEZINET, F., CHAMARET, S., REY, M.-A., SANTOS-FERREIRA, M. O., LAURENT, A. G., DAUGUET, C., KATLAMA, C., ROUZIOUX, C., KLATZMANN, D., CHAMPALIMAUD, J. L. & MONTAGN1ER, L. (1986). Isolation of a new human retrovirus from West African patients with AIDS. Science 233, GALLO, R. C., SALAHUDDIN, S. Z., POPO'qlC, M., SHEARER, G. M., KAPLAN, M., HAYNES, B. F., PALKER, T. J., REDFIELD, R., OLESKE, J., SAFAI, B., Vc'HITE, G., FOSTER, P. & MARKHAM, P. D. (1984). Frequent detection and isolation of cytopathic retroviruses (HTLV-III) from patients with AIDS and at risk for AIDS. Science 224, GELDERBLOM, H. R., REUPKE, H. & PAULI, G. (1985). Loss of envelope antigens ofhtlv-iii/lav, a factor in AIDS pathogenesis? Lancet ii, GELDERBLOM, H. R., HAUSMANN, E. H. S., OZEL, M., PAULI, G. & KOCH, M. A. (1987). Fine structure of human immunodeficiency virus (HIV) and immunolocalization of structural proteins. Virology 156, GONDA, M. A., CHARMAN, H. P., WALKER, J. L. & COGGINS, L. (1978). Scanning and transmission electron microscopic study of equine infectious anemia virus. American Journal of Veterinary Research 39, MUNN, R. J., MARX, P. A., YAMAMOTO, J. K. & GARDNER, M. B. (1985). Ultrastructural comparison of the retroviruses associated with human and simian acquired immunodeficiency syndromes. Laboratory Investigation 53, PALMER, E. & GOLDSMITH, C. (1987). Ultrastructure of human retroviruses. Journal of Electron Microscopy Techniques 8, PALMER, E. L., HARRISON, A. K., RAMSEY, R. B., FEORINO, P. M., FRANCIS, D. P., EVATT, B. L., KALYANARAMAN, V. S. & MARTIN, M. L. (1985 a). Detection of two human T-cell leukemia/lymphotropic viruses in cultured lymphocytes of a hemophiliac with acquired immunodeficiency syndrome. Journal of Infectious Diseases 151, PALMER, E., SFORBORG,., HARRISON, A., MARTIN, M. L. & FEOR]NO, P. (1985b). Morphology and immunoelectron microscopy of AIDS virus. Archives of Virology 85, SIMIONKSCU, N. & SlMIONESCU, U. (1976). Galloylglucoses of low molecular weight as mordant in electron microscopy. Journal of Cell Biology 70, smrn-l, K. O. (1967). Identification of viruses by electron microscopy. In Methods in Cancer Research, pp Edited by H. Busch. New York & London: Academic Press. STANNARD, L. M., VAN DER RIET, F. DE ST. J. & MOODIE, J. W. (1987). The morphology of human immunodeficiency virus particles by negative staining electron microscopy. Journal of General Virology 68, SUNI)STP.OM, C. & NILSSO~q, K. (1976). Establishment and characterization of a human histiocytic lymphoma cell line (U-937). International Journal of Cancer 17, WEILAND, F., MATHEKA, H. D., COGGINS, L. & HARTNER, D. (1977). Electron microscopic studies on equine infectious anemia virus (EIAV). Archives of Virology 55, (Received 3 November 1987)

The Morphology of Human Immunodeficiency Virus Particles by Negative Staining Electron Microscopy

The Morphology of Human Immunodeficiency Virus Particles by Negative Staining Electron Microscopy J. gen. Virol. (1987), 68, 919 923. Printed in Great Britain 919 Key words: HIV/electron microscopy~morphology The Morphology of Human Immunodeficiency Virus Particles by Negative Staining Electron Microscopy

More information

Budding Process and Fine Structure of Lymphadenopathy-associated Virus (LAV)

Budding Process and Fine Structure of Lymphadenopathy-associated Virus (LAV) Microbiol. Immunol. Vol. 30 (6), 545-552, 1986 Budding Process and Fine Structure of Lymphadenopathy-associated Virus (LAV) Hideaki TSUCHIE,1 Tetsuo KATSUMOTO,1 Naohiko HATTORI,1 Toshio KAWATANI,1 Takashi

More information

Ultrastructure of Mycoplasmatales Virus laidlawii x

Ultrastructure of Mycoplasmatales Virus laidlawii x J. gen. Virol. (1972), I6, 215-22I Printed in Great Britain 2I 5 Ultrastructure of Mycoplasmatales Virus laidlawii x By JUDY BRUCE, R. N. GOURLAY, AND D. J. GARWES R. HULL* Agricultural Research Council,

More information

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS

ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS Onderstepoort]. vet. Res. 40 (2), 53-58 (1973) ELECTRON MICROSCOPIC STUDIES ON EQUINE ENCEPHALOSIS VIRUS G. LECATSAS, B. J. ERASMUS and H. J. ELS, Veterinary Research Institute, Onderstepoort ABSTRACT

More information

Epstein-Barr Virus: Stimulation By 5 '-Iododeoxy uridine or 5 '-Brom odeoxy uridine in Human Lymphoblastoid Cells F ro m a Rhabdom yosarcom a*

Epstein-Barr Virus: Stimulation By 5 '-Iododeoxy uridine or 5 '-Brom odeoxy uridine in Human Lymphoblastoid Cells F ro m a Rhabdom yosarcom a* A n n a ls o f C l i n i c a l L a b o r a t o r y S c i e n c e, Vol. 3, No. 6 Copyright 1973, Institute for Clinical Science Epstein-Barr Virus: Stimulation By 5 '-Iododeoxy uridine or 5 '-Brom odeoxy

More information

Lymphadenopathy-Associated Virus: From Molecular Biology to Pathogenicity

Lymphadenopathy-Associated Virus: From Molecular Biology to Pathogenicity Lymphadenopathy-Associated Virus: From Molecular Biology to Pathogenicity LUC MONTAGNIER, M.D.; Paris, France Recent data indicate that the lymphadenopathyassociated virus (LAV) is morphologically similar

More information

Human Immunodeficiency Virus. Acquired Immune Deficiency Syndrome AIDS

Human Immunodeficiency Virus. Acquired Immune Deficiency Syndrome AIDS Human Immunodeficiency Virus Acquired Immune Deficiency Syndrome AIDS Sudden outbreak in USA of opportunistic infections and cancers in young men in 1981 Pneumocystis carinii pneumonia (PCP), Kaposi s

More information

THE MORPHOLOGY AND MORPHOGENESIS OF JAAGSIEKTE RETROVIRUS (JSRV)

THE MORPHOLOGY AND MORPHOGENESIS OF JAAGSIEKTE RETROVIRUS (JSRV) Orulerstepoort J. vet. Res., 50, 317-322 (1983) ANNA-LISE PAYNE(l), D. W. VERWOERD

More information

Acta Medica Okayama. Electron microscopic demonstration of a new virus isolated from a patient with SMON. Zensuke Ota DECEMBER 1970

Acta Medica Okayama. Electron microscopic demonstration of a new virus isolated from a patient with SMON. Zensuke Ota DECEMBER 1970 Acta Medica Okayama Volume 24, Issue 6 1970 Article 3 DECEMBER 1970 Electron microscopic demonstration of a new virus isolated from a patient with SMON Zensuke Ota Okayama University, Copyright c 1999

More information

Further Observations on the Structure of Influenza Viruses A and C

Further Observations on the Structure of Influenza Viruses A and C J. gen. ViroL (I969), 4, 365-370 With 2 plates Printed in Great Britain 365 Further Observations on the Structure of Influenza Viruses A and C By K. APOSTOLOV The Wellcome Research Laboratories, Beckenham,

More information

Title Immunological and Cytological Aspec. Issue Date Right.

Title Immunological and Cytological Aspec. Issue Date Right. NAOSITE: Nagasaki University's Ac Title Author(s) Infection of HTLV-III/LAV IN HTLV-I Immunological and Cytological Aspec Yamamoto, Naoki; Koyanagi, Yoshio; Citation 熱帯医学 Tropical medicine 28(Supplemen

More information

Ultrastructural Comparison of a Virus from a Rhesus-Monkey Mammary Carcinoma with Four Oncogenic RNA Viruses

Ultrastructural Comparison of a Virus from a Rhesus-Monkey Mammary Carcinoma with Four Oncogenic RNA Viruses Proc. Nat. Acad. Sci. USA Vol. 68, No. 7, pp. 1603-1607, July 1971 Ultrastructural Comparison of a Virus from a Rhesus-Monkey Mammary Carcinoma with Four Oncogenic RNA Viruses (primate cancer/murine mammary

More information

psittaci by Silver-Methenamine Staining and

psittaci by Silver-Methenamine Staining and JOURNAL OF BACTERIOLOGY, July 1972, p. 267-271 Copyright 1972 American Society for Microbiology Vol. 111, No. 1 Printed in U.S.A. Location of Polysaccharide on Chlamydia psittaci by Silver-Methenamine

More information

preceded virus budding. Free particles accumulated

preceded virus budding. Free particles accumulated JOURNAL OF VIROLOGY, Oct. 1968, p. 1223-1227 Copyright ( 1968 American Society for Microbiology Vol. 2, No. 10 Printed in U.S.A. Electron Microscopy of the Development of Rubella Virus in BHK-21 Cells

More information

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES

STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES STRUCTURE, GENERAL CHARACTERISTICS AND REPRODUCTION OF VIRUSES Introduction Viruses are noncellular genetic elements that use a living cell for their replication and have an extracellular state. Viruses

More information

Human Immunodeficiency Virus Type 1 gpl20 Envelope Glycoprotein Regions Important for Association with

Human Immunodeficiency Virus Type 1 gpl20 Envelope Glycoprotein Regions Important for Association with JOURNAL OF VIROLOGY, Apr. 1991, p. 2119-2123 0022-538X/91/042119-05$02.00/0 Copyright 1991, American Society for Microbiology Vol. 65, No. 4 Human Immunodeficiency Virus Type 1 gpl20 Envelope Glycoprotein

More information

Temperature-Sensitive Mutants Isolated from Hamster and

Temperature-Sensitive Mutants Isolated from Hamster and JOURNAL OF VIROLOGY, Nov. 1975, p. 1332-1336 Copyright i 1975 American Society for Microbiology Vol. 16, No. 5 Printed in U.S.A. Temperature-Sensitive Mutants Isolated from Hamster and Canine Cell Lines

More information

(From The Rockefeller Institute) Materials and Methods. Observations with the Electron Microscope

(From The Rockefeller Institute) Materials and Methods. Observations with the Electron Microscope ELECTRON MICROSCOPE STUDY OF THE DEVELOPMENT OF THE PAPILLOMA VIRUS IN THE SKIN OF THE RABBIT* BY ROBERT S. STONE,~ M.D., RICHARD E. SHOPE, M.D., DAN H. MOORE, P,~.D. (From The Rockefeller Institute) PLATES

More information

Packaging and Abnormal Particle Morphology

Packaging and Abnormal Particle Morphology JOURNAL OF VIROLOGY, OCt. 1990, p. 5230-5234 0022-538X/90/105230-05$02.00/0 Copyright 1990, American Society for Microbiology Vol. 64, No. 10 A Mutant of Human Immunodeficiency Virus with Reduced RNA Packaging

More information

Julianne Edwards. Retroviruses. Spring 2010

Julianne Edwards. Retroviruses. Spring 2010 Retroviruses Spring 2010 A retrovirus can simply be referred to as an infectious particle which replicates backwards even though there are many different types of retroviruses. More specifically, a retrovirus

More information

ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS*

ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS* Onderstepoort J. vet. Res. (1968), 35 (1), 139-150 Printed in the Repub. of S. Afr. by The Government Printer, Pretoria ELECTRON MICROSCOPIC STUDY OF THE FORMATION OF BLUETONGUE VIRUS* G. LECATSAS, Veterinary

More information

(1, 2, 8, 9). Here we describe the isolation of infectious virus from 47 AIDS patients, 35 AIDS-related-complex (ARC)

(1, 2, 8, 9). Here we describe the isolation of infectious virus from 47 AIDS patients, 35 AIDS-related-complex (ARC) Proc. Natl. Acad. Sci. USA Vol. 82, pp. 5530-5534, August 1985 Medical Sciences Isolation of infectious human T-cell leukemia/lymphotropic virus type III (HTLV-III) from patients with acquired immunodeficiency

More information

Intercellular Matrix in Colonies of Candida

Intercellular Matrix in Colonies of Candida JouRNAL OF BAcTEROLOGY, Sept. 1975, p. 1139-1143 Vol. 123, No. 3 Copyright 0 1975 American Society for Microbiology Printed in U.S.A. ntercellular Matrix in Colonies of Candida K. R. JOSH, J. B. GAVN,*

More information

EFFICIENT ISOLATION AND PROPAGATION OF HUMAN IMMUNODEFICIENCY VIRUS ON RECOMBINANT COLONY-STIMULATING FACTOR I-TREATED MONOCYTES

EFFICIENT ISOLATION AND PROPAGATION OF HUMAN IMMUNODEFICIENCY VIRUS ON RECOMBINANT COLONY-STIMULATING FACTOR I-TREATED MONOCYTES Published Online: 1 April, 1988 Supp Info: http://doi.org/10.1084/jem.167.4.1428 Downloaded from jem.rupress.org on November 7, 2018 EFFICIENT ISOLATION AND PROPAGATION OF HUMAN IMMUNODEFICIENCY VIRUS

More information

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment.

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment. DEVH Virology Introduction Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment. Definitions Virology: The science which study the

More information

Sensitive Microculture Method for Isolation of Human Immunodeficiency Virus Type 1 from Blood Leukocytes

Sensitive Microculture Method for Isolation of Human Immunodeficiency Virus Type 1 from Blood Leukocytes JOURNAL OF CLINICAL MICROBIOLOGY, Feb. 1992, p. 444 448 Vol. 30, No. 2 0095-1137/92/020444-05$02.00/0 Copyright D 1992, American Society for Microbiology Sensitive Microculture Method for Isolation of

More information

ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE

ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE ULTRASTRUCTURAL CHANGES IN THE INFECTIVE LARVAE OF NIPPOSTRONGYLUS BRASILIENSIS IN THE SKIN OF IMMUNE MICE by D. L. Lee ABSTRACT Infective stage larvae of Nippostrongylus brasiliensis are immobilized within

More information

AET-treated normal red cells (PNH-like cells)

AET-treated normal red cells (PNH-like cells) J. clin. Path., 1971, 24, 677-684 Electron microscope study of PNH red cells and AET-treated normal red cells (PNH-like cells) S. M. LEWIS, G. LAMBERTENGHI, S. FERRONE, AND G. SIRCHIA From the Department

More information

Nucleic acid: singled stranded, double stranded, RNA, or DNA, linear or circular. Capsid: protein coat that is most of the mass of the virus.

Nucleic acid: singled stranded, double stranded, RNA, or DNA, linear or circular. Capsid: protein coat that is most of the mass of the virus. Viruses General Characteristics of Viruses 1. Depending on view may be regarded as exceptionally complex aggregates of nonliving chemicals or as exceptionally simple living microbes. 2. Contain a single

More information

The Perth Group HIV-AIDS Debate Website

The Perth Group HIV-AIDS Debate Website The Perth Group HIV-AIDS Debate Website Val Turner BACK INTERVIEW LUC MONTAGNIER Did Luc Montagnier Discover HIV? By Djamel Tahi Continuum Winter 1997 Text of a videotape interview performed at the Pasteur

More information

Viral structure م.م رنا مشعل

Viral structure م.م رنا مشعل Viral structure م.م رنا مشعل Viruses must reproduce (replicate) within cells, because they cannot generate energy or synthesize proteins. Because they can reproduce only within cells, viruses are obligate

More information

Continuous Production of a Cytopathic Human T-Lymphotropic

Continuous Production of a Cytopathic Human T-Lymphotropic JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 1986, p. 737-742 95-1137/86/4737-6$2./ Vol. 23, No. 4 Continuous Production of a Cytopathic Human T-Lymphotropic Virus in a Permissive Neoplastic T-Cell Line JANE

More information

Astrovirus-associated gastroenteritis in children

Astrovirus-associated gastroenteritis in children Journal of Clinical Pathology, 1978, 31, 939-943 Astrovirus-associated gastroenteritis in children C. R. ASHLEY, E. 0. CAUL, AND W. K. PAVER1 From the Public Health Laboratory, Myrtle Road, Bristol BS2

More information

The Structure of the Rotavirus Inner Capsid Studied by Electron Microscopy of Chemically Disrupted Particles

The Structure of the Rotavirus Inner Capsid Studied by Electron Microscopy of Chemically Disrupted Particles J. gen. Virol. (1986), 67, 1721-1725. Printed in Great Britain 1721 Key words: rotavirus/capsid structure~chemical degradation The Structure of the Rotavirus Inner Capsid Studied by Electron Microscopy

More information

Genomic Alterations Associated with Persistent Infections by Equine Infectious Anaemia Virus, a Retrovirus

Genomic Alterations Associated with Persistent Infections by Equine Infectious Anaemia Virus, a Retrovirus J. gen. Virol. (1984), 65, 1395-1399. Printed in Great Britain 1395 Key words: EIA V/retrovirus persistence~antigenic variation/oligonucleotide mapping Genomic Alterations Associated with Persistent Infections

More information

Electron Microscope Studies of HeLa Cells Infected with Herpes Virus

Electron Microscope Studies of HeLa Cells Infected with Herpes Virus 244 STOKER, M. G. P., SMITH, K. M. & Ross, R. W. (1958). J. gen. Microbiol. 19,244-249 Electron Microscope Studies of HeLa Cells Infected with Herpes Virus BY M: G. P. STOKER, K. M. SMITH AND R. W. ROSS

More information

Chapter 6- An Introduction to Viruses*

Chapter 6- An Introduction to Viruses* Chapter 6- An Introduction to Viruses* *Lecture notes are to be used as a study guide only and do not represent the comprehensive information you will need to know for the exams. 6.1 Overview of Viruses

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES 1 of 7 I. Viral Origin. A. Retrovirus - animal lentiviruses. HIV - BASIC PROPERTIES 1. HIV is a member of the Retrovirus family and more specifically it is a member of the Lentivirus genus of this family.

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia 1 of 7 I. Diseases Caused by Retroviruses RETROVIRUSES A. Human retroviruses that cause cancers 1. HTLV-I causes adult T-cell leukemia and tropical spastic paraparesis 2. HTLV-II causes hairy T-cell leukemia

More information

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS Acquired immunodeficiency syndrome (AIDS ) is an infectious disease caused by a retrovirus, the human immunodeficiency virus(hiv). AIDS is

More information

Electron Microscopy of Small Cells: Mycoplasma hominis

Electron Microscopy of Small Cells: Mycoplasma hominis JOURNAL of BAcTRiowOY, Dc. 1969, p. 1402-1408 Copyright 0 1969 American Society for Microbiology Vol. 100, No. 3 Printed In U.S.A. NOTES Electron Microscopy of Small Cells: Mycoplasma hominis JACK MANILOFF

More information

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter. Virology We are going to start with general introduction about viruses, they are everywhere around us; in food; within the environment; in direct contact to etc.. They may cause viral infection by itself

More information

ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION

ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION ENHANCEMENT OF THE GRANULATION OF ADRFNERGIC STORAGE VESICLES IN DRUG-FREE SOLUTION TAKASHI IWAYAMA and J. B. FURNESS. From the Department of Zoology, University of Melbourne, Victoria, Australia. Dr.

More information

Ultrastructural Study of Human Natural Killer CNK) Cell*)

Ultrastructural Study of Human Natural Killer CNK) Cell*) Hiroshima Journal of Medical Sciences Vol. 31, No. 1, March, 1982 HJIM 31-6 31 Ultrastructural Study of Human Natural Killer CNK) Cell*) Yoshinori KAWAGUCHI, Eishi KITTAKA, Yoshito TANAKA, Takeo TANAKA

More information

the structure of their ducts has been

the structure of their ducts has been Tza JOURNAL 0? INVEa'riGATrVN DEBMATOLOOT Copyright t 1966 by The Williams & Wilkins Co. Vol. 46, No. I Printed in U.S.A. AN ELECTRON MICROSCOPIC STUDY OF THE ADULT HUMAN APOCRINE DUCT* KEN HASHIMOTO,

More information

Suppression of human immunodeficiency virus replication by ascorbate in chronically and acutely infected cells

Suppression of human immunodeficiency virus replication by ascorbate in chronically and acutely infected cells Proc. Nati. Acad. Sci. USA Vol. 87, pp. 7245-7249, September 1990 Medical Sciences Suppression of human immunodeficiency virus replication by ascorbate in chronically and acutely infected cells (human

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

Arrangement of Herpesvirus Deoxyribonucleic Acid

Arrangement of Herpesvirus Deoxyribonucleic Acid JOURNAL OF VIROLOGY, Nov. 1972, p. 1071-1074 Copyright 1972 American Society for Microbiology Vol. 10, No. 5 Printed in U.S.A. NOTES Arrangement of Herpesvirus Deoxyribonucleic Acid in the Core D. FURLONG,

More information

From the Bland-Sutton Institute of Pathology, Middlesex Hospital Medical School, London, England

From the Bland-Sutton Institute of Pathology, Middlesex Hospital Medical School, London, England Published Online: 1 March, 1962 Supp Info: http://doi.org/10.1083/jcb.12.3.589 Downloaded from jcb.rupress.org on July 15, 2018 OBSERVATIONS ON THE MODE OF RELEASE OF HERPES VIRUS FROM INFECTED H~LA CELLS

More information

Wellcome Research Laboratories, Beckenham, Kent, England. Royal Postgraduate Medical School, London, England. (Accepted 27 January I972)

Wellcome Research Laboratories, Beckenham, Kent, England. Royal Postgraduate Medical School, London, England. (Accepted 27 January I972) J. gen. ViroL (I972), I5, 227-234 22 7 Printed in Great Britain Interaction of Sendai (HVJ) Virus with Human Erythrocytes: a Morphological Study of Haemolysis Cell Fusion By K. APOSTOLOV Wellcome Research

More information

:1c.c :& Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* structure with rounded ends and a striated lamella

:1c.c :& Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* structure with rounded ends and a striated lamella THE JOURNAL OF INVESTIGATIVE DERMATOLOGY Copyright 1566 by The Williams & Wilkins Co. Vol. 7, No. 5 Printed in U.S.A. Preliminary and Short Report GRANULE FORMATION IN THE LANGERHANS CELL* ALVIN S. ZELICKSON,

More information

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses Medical Virology Lecture 2 Asst. Prof. Dr. Dalya Basil Herpesviruses, Orthomyxoviruses, and Retro virus - Herpesviruses Structure & Composition: Herpesviruses Enveloped DNA viruses. All herpesviruses have

More information

ISOLATION OF A SARCOMA VIRUS FROM A SPONTANEOUS CHICKEN TUMOR

ISOLATION OF A SARCOMA VIRUS FROM A SPONTANEOUS CHICKEN TUMOR ISOLATION OF A SARCOMA VIRUS FROM A SPONTANEOUS CHICKEN TUMOR Shigeyoshi ITOHARA, Kouichi HIRATA, Makoto INOUE, Masanori Veterinary Pathology, Faculty of Agriculture, Yamaguchi University* HATSUOKA, and

More information

Title. Author(s)SONODA, Mitsuo; KOBAYASHI, Kosaku. CitationJapanese Journal of Veterinary Research, 18(3): 125- Issue Date DOI. Doc URL.

Title. Author(s)SONODA, Mitsuo; KOBAYASHI, Kosaku. CitationJapanese Journal of Veterinary Research, 18(3): 125- Issue Date DOI. Doc URL. Title PLASMACYTOID CELLS OF CANINE PERIPHERAL BLOOD IN ELE Author(s)SONODA, Mitsuo; KOBAYASHI, Kosaku CitationJapanese Journal of Veterinary Research, 18(3): 125- Issue Date 1970-09 DOI 10.14943/jjvr.18.3.125

More information

Immunodeficiency. (2 of 2)

Immunodeficiency. (2 of 2) Immunodeficiency (2 of 2) Acquired (secondary) immunodeficiencies More common Many causes such as therapy, cancer, sarcoidosis, malnutrition, infection & renal disease The most common of which is therapy-related

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer INFECTION OF THE HUMAN MONOCYTIC CELL-LINE MONO MAC6 WITH HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 AND TYPE-2 RESULTS IN LONG-TERM PRODUCTION OF VIRUS VARIANTS WITH INCREASED CYTOPATHOGENICITY

More information

ULTRASTRUCTURE OF VEILLONELLA AND MORPHOLOGICAL CORRELATION OF AN OUTER MEMBRANE WITH PARTICLES ASSOCIATED WITH ENDOTOXIC ACTIVITY

ULTRASTRUCTURE OF VEILLONELLA AND MORPHOLOGICAL CORRELATION OF AN OUTER MEMBRANE WITH PARTICLES ASSOCIATED WITH ENDOTOXIC ACTIVITY JOURNAL OF BACTERIOLOGY Vol_88, No. 5, p. 1482-1492 November, 1964 Copyright 1964 American Society for Microbiology Printed in U.S.A. ULTRASTRUCTURE OF VEILLONELLA AND MORPHOLOGICAL CORRELATION OF AN OUTER

More information

19 2 Viruses Slide 1 of 34

19 2 Viruses Slide 1 of 34 1 of 34 What Is a Virus? What Is a Virus? Viruses are particles of nucleic acid, protein, and in some cases, lipids. Viruses can reproduce only by infecting living cells. 2 of 34 What Is a Virus? Viruses

More information

Human Immunodeficiency Virus

Human Immunodeficiency Virus Human Immunodeficiency Virus Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Viruses and hosts Lentivirus from Latin lentis (slow), for slow progression of disease

More information

Detection of Hepatitis A Antigen in Human Liver

Detection of Hepatitis A Antigen in Human Liver INFECTION AND IMMUNITY, Apr. 1982, p. 320-324 0019-9567/82/040320-05$02.00/0 Vol. 36, No. 1 Detection of Hepatitis A Antigen in Human Liver YOHKO K. SHIMIZU,'* TOSHIO SHIKATA,' PAUL R. BENINGER,2 MICHIO

More information

HIV transmission. Pathogenesis.

HIV transmission. Pathogenesis. HIV transmission. Pathogenesis. September 27-28, 2012 TUBIDU International training (WP 7), Riga Dr.Inga Upmace, NGO,,Baltic HIV Association Discovery of HIV virus First reported in 1981 Discovered in

More information

Title. Author(s)SUGIMURA, Makoto; YAMADA, Junzo. CitationJapanese Journal of Veterinary Research, 18(1): Issue Date DOI. Doc URL.

Title. Author(s)SUGIMURA, Makoto; YAMADA, Junzo. CitationJapanese Journal of Veterinary Research, 18(1): Issue Date DOI. Doc URL. Title BURSA OF FABRICIUS CONTAINING VIRUS-LIKE PARTICLES A OBSERVATION Author(s)SUGIMURA, Makoto; YAMADA, Junzo CitationJapanese Journal of Veterinary Research, 18(1): 31-3 Issue Date 1970-03 DOI 10.14943/jjvr.18.1.31

More information

NOTES. Miami, Florida pores. from William Rawls, Baylor College of Medicine, of penicillin per ml, and 100,g of streptomycin

NOTES. Miami, Florida pores. from William Rawls, Baylor College of Medicine, of penicillin per ml, and 100,g of streptomycin JOURNAL OF VIROLOGY. Mar. 1976. p. 1038-1042 Copyright i 1976 American Society for Microbiology NOTES Vol. 17, No. 3 Printed in U.S.A. Nuclear Membrane Changes in Herpes Simplex Virus-Infected BHK-21 Cells

More information

Coronaviruses cause acute, mild upper respiratory infection (common cold).

Coronaviruses cause acute, mild upper respiratory infection (common cold). Coronaviruses David A. J. Tyrrell Steven H. Myint GENERAL CONCEPTS Clinical Presentation Coronaviruses cause acute, mild upper respiratory infection (common cold). Structure Spherical or pleomorphic enveloped

More information

TRANSMISSION ELECTRON MICROSCOPY

TRANSMISSION ELECTRON MICROSCOPY TRANSMISSION ELECTRON MICROSCOPY NEGATIVE STAINS, IMMUNO-SPECIFIC LABELING (ISEM), THIN SECTIONING OF FIXED AND EMBEDDED MATERIAL PM 7/126 (1) ELECTRON MICROSCOPY IN DIAGNOSIS OF PLANT VIRUSES EPPO BULLETIN

More information

New aspect of hepatic nuclear glycogenosis

New aspect of hepatic nuclear glycogenosis J. clin. Path. (1968), 21, 19 New aspect of hepatic nuclear glycogenosis in diabetes1 F. CARAMIA, F. G. GHERGO, C. BRANCIARI, AND G. MENGHINI From the Institute of General Pathology, University of Rome,

More information

2.1.2 General Procedures for Electron Microscopy Applications in Diagnostic Virology

2.1.2 General Procedures for Electron Microscopy Applications in Diagnostic Virology 2.1.2 General Procedures for Electron Microscopy Applications in Diagnostic Virology Jan Lovy 1 and Dorota W. Wadowska 2 1 N.J. Division of Fish & Wildlife, Office of Fish & Wildlife Health & Forensics,

More information

and glycoprotein in human bronchial glands

and glycoprotein in human bronchial glands Thorax, 1981, 36, 108-115 Ultrastructural localisation of lactoferrin and glycoprotein in human bronchial glands DENISE BOWES, A E CLARK, AND B CORRIN From Midhurst Medical Research Institute, Midhurst,

More information

Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich)

Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich) Kasetsart J. (Nat. Sci.) 36 : 285-290 (2002) Ultrastructure of Connective Tissue Cells of Giant African Snails Achatina fulica (Bowdich) Viyada Seehabutr ABSTRACT The connective tissue sheath of cerebral

More information

FIRST DESCRIPTION OF AVIAN PAPILLOMAVIRUS INFECTION IN GYPS FULVUS, ITALY

FIRST DESCRIPTION OF AVIAN PAPILLOMAVIRUS INFECTION IN GYPS FULVUS, ITALY "Endangered large carnivores and scavenging raptors in Europe Faculty of Veterinary Medicine, Teramo 13-15 October2016 FIRST DESCRIPTION OF AVIAN PAPILLOMAVIRUS INFECTION IN GYPS FULVUS, ITALY Cristina

More information

Morphologic and immunoelectronmicroscopic identification of human T-cell lymphotropic virus type III (HTLV-III)

Morphologic and immunoelectronmicroscopic identification of human T-cell lymphotropic virus type III (HTLV-III) Histol Histopath ( 1986) 1 : 43-47 Histology and Histopathology Morphologic and immunoelectronmicroscopic identification of human T-cell lymphotropic virus type III (HTLV-III) J. Tirnár', K. Nagy 2 and

More information

Viruses defined acellular organisms genomes nucleic acid replicate inside host cells host metabolic machinery ribosomes

Viruses defined acellular organisms genomes nucleic acid replicate inside host cells host metabolic machinery ribosomes The Viruses Viruses Viruses may be defined as acellular organisms whose genomes consist of nucleic acid, obligately replicate inside host cells using host metabolic machinery and ribosomes to form a pool

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2.

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2. Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

Dr. Gary Mumaugh. Viruses

Dr. Gary Mumaugh. Viruses Dr. Gary Mumaugh Viruses Viruses in History In 1898, Friedrich Loeffler and Paul Frosch found evidence that the cause of foot-and-mouth disease in livestock was an infectious particle smaller than any

More information

Different Particle Types in Tissue Culture and Intestinal Epithelium Infected with Rotavirus

Different Particle Types in Tissue Culture and Intestinal Epithelium Infected with Rotavirus J. gen. ViroL 0977), 37, 443-45I Printed in Great Britain 443 Different Particle Types in Tissue Culture and Intestinal Epithelium Infected with Rotavirus By DAVID CHASEY Central Veterinary Laboratory,

More information

Study of the One-Step Growth Curve of Equine Infectious Anemia Virus by Immunofluorescence

Study of the One-Step Growth Curve of Equine Infectious Anemia Virus by Immunofluorescence INFECTION AND IMMUNITY, June 1972, p. 89-895 Copyright 1972 American Society for Microbiology Vol. 5, No. 6 Printed in U.S.A Study of the One-Step Growth Curve of Equine Infectious Anemia Virus by Immunofluorescence

More information

Virus Structure. Characteristics of capsids. Virus envelopes. Virion assembly John Wiley & Sons, Inc. All rights reserved.

Virus Structure. Characteristics of capsids. Virus envelopes. Virion assembly John Wiley & Sons, Inc. All rights reserved. Virus Structure Characteristics of capsids Virus envelopes Virion assembly Capsids package viral genomes and transmit them to a new host cell Capsid rigid, symmetrical container composed of viral protein

More information

Introduction to viruses. BIO 370 Ramos

Introduction to viruses. BIO 370 Ramos Introduction to viruses BIO 370 Ramos 1 2 General Structure of Viruses Size range most

More information

D. J. Dargan,* C. B. Gait and J. H. Subak-Sharpe

D. J. Dargan,* C. B. Gait and J. H. Subak-Sharpe Journal of General Virology (1992), 73, 407-411. Printed in Great Britain 407 The effect of cicloxolone sodium on the replication in cultured cells of adenovirus type 5, reovirus type 3, poliovirus type

More information

Characterization and Primary Structure Analysis of the Major Internal Protein, p24

Characterization and Primary Structure Analysis of the Major Internal Protein, p24 JOURNAL OF VIROLOGY, Aug. 1985, p. 417-423 22-538X/85/8417-7$2./ Copyright 1985, American Society for Microbiology Vol. 55, No. 2 Human T-Cell Lymphotropic Virus Type III: Immunologic Characteriation and

More information

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission Disease Diseases I. Bacteria II. Viruses including are disease-causing organisms Biol 105 Lecture 17 Chapter 13a Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

Continuous Cell Culture From a Patient With Chronic Myelogenous Leukemia. I. Propagation and Presence of Philadelphia Chromosome 1

Continuous Cell Culture From a Patient With Chronic Myelogenous Leukemia. I. Propagation and Presence of Philadelphia Chromosome 1 Continuous Cell Culture From a Patient With Chronic Myelogenous Leukemia. I. Propagation and Presence of Philadelphia Chromosome 1 LINDA S. LUCAS,2 JACQUELINE J. K..WHANG,3 J. H. TJIO,4 ROBERT A. MANAKER,2

More information

The Ultrastructure of Canine Cutaneous Papilloma1

The Ultrastructure of Canine Cutaneous Papilloma1 [CANCER RESEARCH 29, 2079-2084, November 1969] The Ultrastructure of Canine Cutaneous Papilloma1 A. M. Watrach College of Veterinary Medicine, University of Illinois, Urbana, Illinois 61801 SUMMARY The

More information

DEVELOPMENT AND DISPERSAL OF P-PROTEIN IN THE PHLOEM OF COLEUS BLUMEI BENTH.

DEVELOPMENT AND DISPERSAL OF P-PROTEIN IN THE PHLOEM OF COLEUS BLUMEI BENTH. J. Cell Sci. 4, 155-169 (1969) 155 Printed in Great Britain DEVELOPMENT AND DISPERSAL OF P-PROTEIN IN THE PHLOEM OF COLEUS BLUMEI BENTH. M. W. STEER AND E. H. NEWCOMB Department of Botany, University of

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Serological relationship between reverse transcriptases from human T-cell lymphotropic viruses defined by monoclonal antibodies

Serological relationship between reverse transcriptases from human T-cell lymphotropic viruses defined by monoclonal antibodies Volume 200, number 2 FBBS 3667 May 1986 Serological relationship between reverse transcriptases from human T-cell lymphotropic viruses defined by monoclonal antibodies Evidence for two forms of reverse

More information

that are prone to the development of AIDS. These antibodies have not been found thus far in individuals outside the known

that are prone to the development of AIDS. These antibodies have not been found thus far in individuals outside the known Proc. Nati. Acad. Sci. USA Vol. 82, pp. 5535-5539, August 1985 Medical Sciences High prevalence of antibodies to acquired immune deficiency syndrome (AIDS)-associated retrovirus (ARV) in AIDS and related

More information

Lentiviruses: HIV-1 Pathogenesis

Lentiviruses: HIV-1 Pathogenesis Lentiviruses: HIV-1 Pathogenesis Human Immunodeficiency Virus, HIV, computer graphic by Russell Kightley Tsafi Pe ery, Ph.D. Departments of Medicine and Biochemistry & Molecular Biology NJMS, UMDNJ. e-mail:

More information

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range

Lecture 5 (Ch6) - Viruses. Virus Characteristics. Viral Host Range Lecture 5 (Ch6) - Viruses Topics Characteristics Structure/Classification Multiplication Cultivation and replication Non-viral infectious agents Treatment 1 Virus Characteristics obligate intracellular

More information

R e s u l t s. I.F. Barinsky MD. D.Ivanovski Institute of Virology, Moscow, Russia

R e s u l t s. I.F. Barinsky MD. D.Ivanovski Institute of Virology, Moscow, Russia 2 LEUKOCYTIC CULTURES IN ISOLATION AND STUDY OF VIRUSES AT ACUTE LEUCOSIS AND CHRONIC MYELOLEUCOSIS IN HUMANS I.F. Barinsky MD D.Ivanovski Institute of Virology, Moscow, Russia I n t r o d u c t i o n

More information

Lab 3: Pathogenesis of Virus Infections & Pattern 450 MIC PRACTICAL PART SECTION (30397) MIC AMAL ALGHAMDI 1

Lab 3: Pathogenesis of Virus Infections & Pattern 450 MIC PRACTICAL PART SECTION (30397) MIC AMAL ALGHAMDI 1 Lab 3: Pathogenesis of Virus Infections & Pattern 450 MIC PRACTICAL PART SECTION (30397) 2018 450 MIC AMAL ALGHAMDI 1 Learning Outcomes The pathogenesis of viral infection The viral disease pattern Specific

More information

(Plates LXVIII-LXXI)

(Plates LXVIII-LXXI) [GANN, 54, 481-486; December, 1963] UDC 616.155.392-076.4:578.69 VIRUS-LIKE PARTICLES IN HUMAN CHLOROLEUKEMIA CELLS (Plates LXVIII-LXXI) Zensuke OTA, Shin-ya SUZUKI, and Satoru HIGASHI (Department of Internal

More information

The Structure of Viruses of the Newcastle Disease- Mumps-Influenza (Myxovirus) Group

The Structure of Viruses of the Newcastle Disease- Mumps-Influenza (Myxovirus) Group 680 * VALENTINE, R. C. & ISAACS, A. (1957). J. gen. Microbiol. 16, 680-685 The Structure of Viruses of the Newcastle Disease- Mumps-Influenza (Myxovirus) Group BY R. C. VALENTINE AND A. IsAAcS National

More information

Further Electron Microscope Characterization of Spore Appendages of Clostridium bifermentans

Further Electron Microscope Characterization of Spore Appendages of Clostridium bifermentans JOURNAL OF BACTERIOLOGY, Jan. 1968, p. 231-238 Copyright (e 1968 American Society for Microbiology Vol. 95, No. I Prinited in U.S.A. Further Electron Microscope Characterization of Spore Appendages of

More information

Mechanistic Studies of Pentamidine Analogs on Leishmania donovani Promastigotes

Mechanistic Studies of Pentamidine Analogs on Leishmania donovani Promastigotes Mechanistic Studies of Pentamidine Analogs on Leishmania donovani Promastigotes Undergraduate Honors Thesis The Ohio State University, College of Pharmacy Division of Medicinal Chemistry and Pharmacognosy

More information

Questions in Cell Biology

Questions in Cell Biology Name: Questions in Cell Biology Directions: The following questions are taken from previous IB Final Papers on the subject of cell biology. Answer all questions. This will serve as a study guide for the

More information

Productive, Persistent Infection of Human Colorectal Cell Lines with Human Immunodeficiency Virus

Productive, Persistent Infection of Human Colorectal Cell Lines with Human Immunodeficiency Virus JOURNAL OF VIROLOGY, Jan. 1987, p. 209-213 0022-538X/87/010209-05$02.00/0 Copyright 1987, American Society for Microbiology Vol. 61, No. 1 Productive, Persistent Infection of Human Colorectal Cell Lines

More information

Role of the C terminus Gag protein in human immunodefieieney virus type 1 virion assembly and maturation

Role of the C terminus Gag protein in human immunodefieieney virus type 1 virion assembly and maturation Journal of General Virology (1995), 76, 3171-3179. Printed in Great Britain 3171 Role of the C terminus Gag protein in human immunodefieieney virus type 1 virion assembly and maturation X.-F. Yu, ~ Z.

More information

Detection of Early Antibodies in Human Immunodeficiency Virus Infection by Enzyme-Linked Immunosorbent Assay, Western Blot,

Detection of Early Antibodies in Human Immunodeficiency Virus Infection by Enzyme-Linked Immunosorbent Assay, Western Blot, JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1987, p. 1605-1610 0095-1137/87/091605-06$02.00/0 Copyright C 1987, American Society for Microbiology Vol. 25, No. 9 Detection of Early Antibodies in Human Immunodeficiency

More information