Systemic lupus erythematosus (SLE) is the prototypic. The Genetic Contribution to Systemic Lupus Erythematosus. Lindsey A. Criswell, M.D., M.P.H.

Size: px
Start display at page:

Download "Systemic lupus erythematosus (SLE) is the prototypic. The Genetic Contribution to Systemic Lupus Erythematosus. Lindsey A. Criswell, M.D., M.P.H."

Transcription

1 176 Bulletin of the NYU Hospital for Joint Diseases 2008;66(3): The Genetic Contribution to Systemic Lupus Erythematosus Lindsey A. Criswell, M.D., M.P.H. Abstract We are currently witnessing an explosion of information about the genetic contribution to complex human diseases such as systemic lupus erythematosus (SLE). These genetic discoveries have profound implications for efforts to more fully characterize etiologic pathways and mechanisms. Further, these etiologic insights should lead to improved diagnostic and prognostic tools and inform the development of more specific therapies for SLE and related conditions. The article summarizes the evidence supporting a role for genetic factors in SLE, highlights the clinical and genetic complexity of the disease, reviews the genes that have established contributions to the risk of SLE and specific disease manifestations, and discusses the recent data emerging from genomewide association studies of SLE. Lindsey A. Criswell, M.D., M.P.H., is from the Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California, San Francisco, San Francisco, California. Correspondence: Lindsey A. Criswell, M.D., Division of Rheumatology, First Floor, 374 Parnassus Avenue, San Francisco, California lindsey.criswell@ucsf.edu. Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disease characterized by autoantibody production and involvement of multiple organ systems. A striking feature of the disease is the clinical heterogeneity, resulting in variable disease manifestations and outcome. Thus, individual patients vary in terms of the specific autoantibodies produced and the presence of skin, joint, hematologic, neurologic, renal, and other organ manifestations. Similar to other systemic rheumatic diseases, and in part due to this clinical heterogeneity, there is no single diagnostic test that can establish a diagnosis of SLE. Indeed, SLE shares features with other systemic autoimmune diseases, and classification of disease status is based on a set of defined classification criteria. 1,2 This clinical complexity likely reflects variation in underlying etiologic factors, and thus efforts to identify causative genes or other risk factors must account for this phenotypic heterogeneity. Etiologic Factors in SLE Although efforts to identify genetic risk factors have been hampered by these and other complexities, it has been clear for decades that genetic factors contribute importantly to disease risk. However, it is also clear that other factors are important. For example, several lines of evidence, including work in animal models of lupus, relatively lower rates of female predominance in childhood and late-onset human SLE, and disease flares during pregnancy highlight the importance of hormonal factors. 3 There is also growing evidence that drugs and specific factors in the environment, such as exposure to tobacco smoke 4 and infectious agents, such as the Epstein-Barr virus, 5 also contribute to SLE risk. Importance of Genetic Factors in SLE Several lines of evidence document the importance of genetic factors in SLE. For example, the disease exhibits familial clustering, with 10% to 12% of SLE patients having an affected first-degree relative. Differences in the concordance rate for disease among monozygotic (MZ) and dizygotic (DZ) twins also support an important role for genes. The available data indicate a concordance rate for SLE between 24% and 69% for MZ, compared to 2% to 9% concordance for DZ twins. 6,7 However, the lack of complete concordance for SLE among MZ twins also highlights the importance of nongenetic factors. More recently, assessment of the overall genetic contribution to complex human diseases such as SLE often is expressed in terms of a parameter known as λ s, where the s refers to sibling. This parameter is simply the ratio of Criswell LA. The genetic contribution to systemic lupus erythematosus. Bull NYU Hosp Jt Dis. 2008;66(3):

2 Bulletin of the NYU Hospital for Joint Diseases 2008;66(3): Table 1 Population Frequencies and Familial Clustering of Human Autoimmune Diseases* Autoimmune Disease Population Sibling Frequency (%) Risk (%) λ s Psoriasis Rheumatoid arthritis Type 1 diabetes Graves disease Multiple sclerosis Systemic lupus erythematosus * Adapted from Vyse and colleages 48 and Alarcon-Segovia and coworkers. 49 λs refers to the ratio of disease risk among siblings of an affected individual divided by the population frequency of the disease. 8 Higher values of λs indicate a greater total genetic contribution to disease risk. the risk to siblings of an affected individual divided by the background population prevalence of the disease. 8 Larger values of λ s are interpreted to indicate a greater genetic contribution to disease. Table 1 displays estimates of λ s for six autoimmune diseases, including SLE. These figures indicate that, overall, the genetic contribution to SLE is relatively large, at least compared to the other human autoimmune diseases listed. Presumably, this will translate into an increased ease in defining the specific genes that influence disease risk; however, that will depend in part on the total number of genes that contribute to λ s, as well as other considerations, such as genetic heterogeneity. Nonetheless, these data are encouraging in terms of the likely success of efforts to define the genetic contribution to SLE. SLE as a Genetically Complex Trait Last, before considering the specific genes that have been identified through prior and recent genetic linkage and association studies of SLE, it is important to understand the status of SLE as a genetically complex trait and the Figure 1 A simplified view of the distribution of susceptibility alleles among patients with genetically complex disease. 50 Lambda (λ) above refers to genetic risk ratio. 51 implications of that complexity for efforts to define the specific genetic determinants. Most human diseases are now recognized to be genetically complex. In brief, this means that there are at least several, and, possibly very many, disease predisposing genetic loci, as well as an important role for nongenetic factors. Further, genetically complex diseases do not exhibit straightforward Mendelian modes of inheritance (e.g., dominant, recessive, etc.). As well, there is a lack of correspondence between the inherited genotype(s) and the resultant phenotype(s), which may be due to incomplete penetrance of predisposing loci or to phenocopies, that is disease that develops in the absence of apparent genetic risk factors. Genetically complex diseases also typically exhibit genetic heterogeneity, which may relate to differences in clinical features (i.e., the specific phenotype) or ethnic background. There are a number of implications of this complexity for efforts to define the genetic contribution to SLE and other complex diseases. First, we must be prepared to search for multiple genetic risk factors for disease, each one of which may have only a modest impact on disease risk. We must also anticipate epistasis, that is, interactions between genes or between genes and environmental factors as potentially important determinants of disease risk. We must also pay close attention to the specific clinical features present, as well as ethnic background, in the design and interpretation of genetic studies. Indeed, the striking clinical heterogeneity and ethnic differences in SLE risk and severity suggest that these issues will be critically important in the design and interpretation of genetic studies. Together, these complexities translate into the need for extremely large sample sizes to ensure adequate power to overcome these obstacles to gene discovery efforts in SLE and related diseases. Figure 1 illustrates the challenges we face as a result of these genetic complexities. This hypothetical example shows three individual susceptibility genes, each one of which, on its own, increases the risk of disease only modestly (i.e., a one- to two-fold increase in risk, shown in Figure 1 as λ). Only when two or more of these genetic risk factors occur together in an individual is the risk of

3 178 Bulletin of the NYU Hospital for Joint Diseases 2008;66(3): disease increased more substantially. Contribution of HLA Region Genes to SLE Like most human autoimmune diseases, genes within the human leukocyte antigen (HLA) region on the short arm of chromosome 6 (6p21.3) exhibit strong association with the risk of SLE and production of specific autoantibodies that are commonly present in SLE. In spite of the strength of association observed for this genomic region, the challenge has been in determining which of the many genes within this region are primarily responsible for the disease associations. Not only are there literally hundreds of genes in this region, many of which have obvious or suggested immune-related functions, 9 but the region is also characterized by a high degree of linkage disequilibrium, which results in long stretches of DNA encompassing many genes that are inherited together as a unit (referred to as a haplotype). Determining which genes on such extended haplotypes are primarily responsible for the genetic association can be difficult or problematic. Historically, interest in this region for SLE has focused on the highly polymorphic HLA class I and II genes that encode membrane glycoproteins that present peptides for recognition by T lymphocytes, as well as genes within the HLA class III region, particularly tumor necrosis factor (TNF) and complement component C4 gene loci. Indeed, inherited deficiency of complement genes, particularly C4A (null) alleles, has long been recognized as a strong, albeit rare, genetic risk factor for SLE. 10 More recently, work by Graham and colleagues, 11,12 involving an analysis of approximately 50 microsatellite genetic markers across the HLA region among a set of 780 SLE families, highlighted the importance of HLA class II haplotypes involving the HLA-DRB1 and -DQB1 loci, particularly those corresponding to serologic types HLA-DR2 and DR3. A more recent analysis of 314 UK SLE families involving 68 single nucleotide polymorphisms (SNPs) across the region 13 demonstrated the presence of two distinct and independent association signals, one involving the class II HLA-DRB1, -DQA1, and -DQB1 loci (serologic type DR3) and another in the class III region. Of interest, the class III signal was strongest for a marker in the SKIV2L gene and appears to exclude the TNF-308 promoter polymorphism. Additional work will be required to more precisely define the gene or genes responsible for the complex HLA association with SLE. Progress Identifying Non-HLA Genetic Risk Factors for SLE Although we have not yet fully characterized the contribution of HLA region genes to SLE, it is clear that genes outside this region also contribute to disease risk. This may be particularly true for non-caucasian populations, given the overall weaker evidence of linkage and association to the HLA region among these populations. In spite of our incomplete understanding of underlying disease mechanisms in SLE, there has been no shortage of candidate genes hypothesized or implicated in the risk of disease or specific disease manifestations. However, with a few exceptions (reviewed below) past efforts to identify genetic risk factors through traditional genetic association or linkage studies have been relatively unsuccessful, likely due to false negative results from inadequately powered studies, false positive results due to population admixture (a form of confounding due to unaccounted for differences in ancestry between case and control study populations), variation in clinical and ethnic characteristics of patients within and between studies, and true negative results of studies focused on the wrong candidate genes. In these respects, the experience and results of genetic association studies in SLE, until very recently, have been similar to lack of progress in other genetically complex human diseases, including other autoimmune and rheumatic diseases. In spite of such disappointing results in previous studies, a handful of genes are now well established risk factors for SLE, based on extensive work over the past decade. Further, very recently, the culmination of tremendous advances in molecular genetic and statistical methodology now allow for the performance of much more comprehensive screens of the genome, in order to identify most of the common variants that predispose to complex diseases such as SLE. These studies, typically referred to as genomewide association studies, or scans (GWAS), are now being completed in SLE and other autoimmune diseases. And even at this very early stage, it is clear that we are on the brink of a much more complete delineation of the genes that contribute to SLE and related phenotypes. In the remainder of this article, genes that were established as risk factors for SLE prior to the recent GWAS are summarized, and findings from the first published GWAS in SLE are highlighted. FcγR 2A and 3A Genes in SLE Fc receptors for immunoglobulin G (FcγR) mediate clearance of immune complexes and have been strongly implicated in the pathogenesis of SLE and lupus nephritis. Thus, functional polymorphisms of the genes that encode these receptors, particularly FcγR 2A and 3A, have been the focus of many genetic studies in SLE. Substantial evidence, including several meta-analyses, confirms a role for these genes in disease risk although the magnitude of association is relatively modest, consistent with expectations for a genetically complex disease. For example, a meta-analysis of 17 studies, which included 3114 SLE patients and 2580 controls, indicated that the presence of two copies of the R131 variant of the FcγR2A gene is associated with a modest increase in risk of SLE [odds ratio (OR) = 1.3]. 14 Another meta-analysis, which included 481 SLE patients with the antiphospholipid antibody syndrome (APS), 1420 non-aps SLE patients, and 1665 healthy controls, suggests that the risk of APS among individuals with two copies of the R131

4 Bulletin of the NYU Hospital for Joint Diseases 2008;66(3): variant have an even higher risk for developing APS (OR = 1.65 for APS vs. healthy controls). 15 Last, a meta-analysis of the V/F158 polymorphism of the FcγR3A gene, which included a total of 1154 patients with lupus nephritis and 1261 SLE patients without nephritis, from 11 studies, suggests that the F158 variant is associated with an increased risk of lupus nephritis (OR = 1.47, p = 0.006, for individuals with 2 copies of the risk allele). 16 PTPN22 in SLE In 2004, Bottini and colleagues 17 first reported the association of a functional polymorphism (the missense SNP R620W) of the intracellular protein tyrosine phosphatase type N22 (PTPN22) with human autoimmune disease. The PTPN22 gene encodes the cytoplasmic lymphoid specific phosphatase Lyp, which is a powerful inhibitor of T-cell activation. That study, involving North American and Italian patients with type 1 diabetes, quickly led to replication of the association in other autoimmune diseases, including RA 18 and SLE. 19 The R620W polymorphism results in an arginine to tryptophan substitution at a key residue in the P1 proline-rich motif that binds Lyp to the SH3 domain in Csk. The R620W substitution disrupts binding of Lyp to Csk. 17 In addition to the functional nature of the polymorphism, the report of subtle autoimmune features in a PTPN22 knockout animal model 20 stimulated interest in PTPN22 among investigators of human autoimmune disease. This gene has now been examined in a number of SLE genetic studies and, although findings have been somewhat mixed, overall the evidence suggests that this variant, and particularly inheritance of a double dose of the 620W variant, contributes to the risk of SLE, with an odds ratio of association as high as 3 to 4 for the presence of two copies of the risk variant. 21 A meta-analysis of PTPN22 studies in SLE has recently been completed by Lee and coworkers. 22 Also of interest is the clear evidence of a lack of association with multiple sclerosis and certain other autoimmune diseases, which has led some to speculate that this gene plays a primary role in autoantibody production. PDCD1 (PD1) in SLE Prokunina and associates first reported an association of the programmed cell death 1 gene (PD1) with SLE 23 in a large collection of European and Mexican patients. Their interest in this gene related to work in animal models indicating that deletion of the gene resulted in an SLE-like phenotype, findings from a linkage study performed in Swedish and Icelandic families that highlighted the genomic region containing PD1 (2q37), and several functions of the gene that made it a good candidate for involvement in SLE pathogenesis. 23 Their initial work in SLE highlighted an SNP in the fourth intron of the gene due to evidence that the polymorphism altered the RUNX1 binding site, which is consistent with an important role for apoptosis in SLE. 24 Since the initial report, not all studies of PD1 in SLE have yielded consistent results, suggesting at least some population differences in the genetic association, 25,26 as well as the importance of specific disease features. 27,28 Consistent with findings in a PD1 knockout animal model, variation in PD1 appears to be associated with lupus nephritis, at least among Northern European populations It is also possible that additional variants in the region contribute to disease risk and may explain some of the discrepant findings. Multiple IRF5 Polymorphisms Contribute to SLE Risk Recent work by Graham and colleagues provides an elegant example of how multiple polymorphisms within a single genomic region may interact in complex ways to influence disease risk. Several lines of evidence implicate the interferon pathway in SLE pathogenesis, and thus the report in 2005 by Sigurdsson and coworkers 32 of genetic association with the interferon regulatory factor 5 (IRF5) gene among Swedish and Finnish SLE cases and controls quickly led to attempts at replication in other populations. Graham and associates 33 published the results of a meta-analysis involving a total of 2250 SLE cases and 2855 controls, yielding compelling statistical evidence of association with the same SNP highlighted in the original report (rs ), with p = 4.2 x and OR = Of interest is subsequent work by Graham and colleagues 34 indicating that three functional polymorphisms within the IRF5 genomic region interact in complex ways to influence SLE risk. For example, depending upon the specific alleles present on a 3-marker haplotype, the risk of SLE may be increased, decreased, or neutral. It is likely that future work involving resequencing and more detailed analysis of multiple variants across disease associated regions will yield similar complex genetic association signals for SLE and related diseases. STAT4 and the Risk of SLE As described above for PTPN22, in which a single missense SNP has now been established as a genetic risk factor for multiple autoimmune diseases, shared genetic risk factors between multiple autoimmune diseases has now emerged as an increasingly common phenomenon. Another example is provided by recent work demonstrating association between the signal transducer and activator of transcription 4 (STAT4) gene and both RA and SLE. In brief, as part of follow-up work to a genome wide linkage analysis performed in a large collection of multicase RA families, candidate genes located within a linkage peak on chromosome 2q were screened for association with RA. The strongest evidence of association was within the STAT1-STAT4 region. Subsequent fine mapping of the region in a large set of RA cases and controls from the U.S. and Sweden defined a SNP haplotype in the third intron of STAT4 with strong statistical evidence of association with RA (OR = 1.32, p = 2.81 x 10-7 ). 36 The same set of SNPs defining the RA-associated haplotype were then tested in several independent

5 180 Bulletin of the NYU Hospital for Joint Diseases 2008;66(3): SLE case series and healthy controls, yielding even stronger evidence of disease association (OR = 1.55, p = 1.87 x 10-9 ). Furthermore, homozygosity for the risk alleles was associated with more than doubling the risk for SLE and a 60% increased risk for RA. STAT4 encodes a transcription factor that transmits signals induced by several key cytokines, including IL-12 and IL-23, and differentiation of both the Th1 and Th17 proinflammatory T-cell lineages requires STAT4-dependent cytokine signaling. 37 Work in STAT4-deficient mice also implicates an important role for STAT4 in autoimmunity. 38 Thus, although additional work will be required to fully characterize the association of this gene with the spectrum of human autoimmune diseases, knowledge that genetic variation in the STAT4 gene contributes to the development of SLE and RA provides new targets for the development of treatment strategies for these chronic, debilitating diseases. Genomewide Association Studies (GWAS) in SLE During the past year, there has been an explosion of information about new genes or genomic regions that contribute to complex human diseases, including several autoimmune diseases This information has emerged largely from GWAS, investigations which have typically involved characterization of large samples of cases and controls (or families) with hundreds of thousands of SNP markers genomewide. In addition to the substantial clinical, informatics, and financial resources required for performance of these studies, sophisticated and complex statistical methods are also required in order to adequately account for problems related to multiple testing and population admixture. However, appropriate tools and methods are now available that allow for the generation of reliable and compelling data from these huge experiments. Two high-density 43,44 and one low-density GWAS 45 in SLE have recently been published, yielding definitive data about several new risk genes, as well as valuable confirmatory data related to several previously identified genes, including STAT4 and IRF5. Although results of GWAS in SLE and other human autoimmune diseases have significantly advanced our understanding of the genetic contribution to these diseases, it is also clear that even larger sample sizes and denser or different genetic marker sets will be required to allow us to fully benefit from this new and exciting methodology. All of the recently published SLE GWAS utilized case control study designs and subjects of European ancestry, although the study by Harley and colleagues 43 restricted the analysis to female cases from families with a history of SLE or related conditions in an attempt to decrease heterogeneity related to gender and select for individuals with a heavy burden of genetic risk factors. They utilized a genomewide set of ~300,000 SNP markers and analyzed 720 female SLE cases and 2337 female healthy controls in the initial phase of their experiment. The investigators then genotyped an additional set of 1846 SLE cases and 1825 controls (all female) for SNP, with strong evidence of association in the first stage. The replication of findings in a second set of cases and controls is a crucial element of the design to try to distinguish true from false positive findings. Their final analysis revealed three new genes or genomic regions with definitive evidence of association with SLE (p < 10-8 ) and several other loci associated with somewhat lower levels of statistical significance (10-8 < p < 10-6 ). Although these thresholds for statistical significance may appear to be excessively rigorous, they reflect the very large multiple testing burden inherent to such studies. The top four associated novel genetic loci in the study by Harley and coworkers were integrin- αm (ITGAM, 16p11.2), KIAA1542 (11p15.5), PXK (3p14.3) and 1q25.1. The HLA region revealed the strongest evidence of association overall (OR = 2.36, p = 1.7 x for marker rs313139). Work by Nath and colleagues published concurrently 46 demonstrates that the ITGAM association is present in patients of both European and African descent, and that the likely causal variant is a nonsynonymous SNP (rs ) that converts the normal arginine at amino acid position 77 to a histidine (R77H). The high-density GWAS study by Hom and associates 44 also employed a two-stage design, with 1311 SLE cases and 3340 controls characterized for over 500,000 SNP markers genomewide. They replicated their top two novel association results in a set of 793 Swedish SLE cases and 857 Swedish controls. Overall, the top three genetic loci in their study were the HLA region, and the recently identified STAT4 and IRF5 loci. In addition, two novel loci met genomewide levels of significance (p < 10-8 ), ITGAM and genetic variation in the region upstream from the gene encoding B lymphoid tyrosine kinase (BLK) and C8orf13 (chromosome 8p23.1). Functional studies suggested that genetic variation in the 8p23.1 region is associated with altered levels of messenger RNA in B-cell lines. Clearly, however, additional genetic and functional work will be required to clarify which variant(s) within each of the associated regions explains association with disease and to define the underlying molecular mechanisms. Last, the low-density GWAS recently published by Kozyrev and colleagues 45 suggest that functional variants in the B-cell gene BANK1 (B-cell scaffold protein with ankyrin repeats) are associated with SLE. Their study provides strong genetic association results for a non-synonymous SNP (rs , R61H, combined p = 3.7 x ; OR = 1.38) and evidence that several BANK1 variants affect regulatory sites and key functional domains. Thus, they hypothesize that BANK1 variants may contribute to the sustained B cell-receptor signaling and B-cell hyperactivity observed in SLE. Figure 2, from the recent Hom and coworker study, 44

6 Bulletin of the NYU Hospital for Joint Diseases 2008;66(3): Figure 2 Five major loci associated with SLE in a genomewide association study of 1,311 SLE cases and 3,340 controls of European ancestry characterized for 502,033 SNP variants. Results for all of the SNPs are shown along the x-axis and color coded according to chromosome number. The y-axis indicates the degree of statistical significance for the association result for each SNP based on a comparison of SLE cases versus controls. (Reproduced with permission from: Hom G, Graham RR, Modrek B, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9): Copyright 2008 Massachusetts Medical Society. All rights reserved.) nicely illustrates the data generated from the GWAS work. Results for all of the SNPs are shown along the x-axis and are color coded according to chromosome number. The y- axis indicates the degree of statistical significance (as represented by Log 10 p value) for the association result for each SNP, based on a comparison of SLE cases versus controls. Of not is that the large number of SNPs with association results in the range of p = 10-4 to Clearly, the top few hits highlighted in these initial GWAS in SLE represent just the tip of the iceberg, and it is very likely that many more Figure 3 A model of the pathogenesis of SLE that implicates the products of disease-associated polymorphic genes. This proposed model recognizes the essential roles of both the innate and adaptive immune responses as well as environmental triggers of SLE. (Reproduced with permission from: Crow MK. Collaboration, genetic associations, and lupus erythematosus. N Engl J Med. 2008;358(9): Copyright 2008 Massachusetts Medical Society. All rights reserved.)

7 182 Bulletin of the NYU Hospital for Joint Diseases 2008;66(3): genes will be identified among the hundreds of association signals that are strong but not definitive on the basis of these initial experiments. As a first step, a meta-analysis of these and other GWAS in SLE will help to distinguish the true from false association signals. It is also likely, however, that additional cases and controls will be required to complete this task, particularly for the genes associated with relatively smaller impacts on SLE risk. Further, stratification or reanalysis of these and future GWAS datasets according to more homogeneous phenotypes (e.g., SLE characterized by the presence of nephritis or specific autoantibodies) may also reveal new loci more strongly associated with these specific phenotypes, or variation in risk for certain loci according to specific SLE-related phenotypes. Progress in Defining a Comprehensive Model of SLE Pathogenesis Based on the Underlying Genetic Determinants A model of SLE pathogenesis is illustrated in Figure 3 that implicates the products of disease-associated polymorphic genes, including many of the genes highlighted in this review. This proposed model recognizes the essential roles of both the innate and adaptive immune responses, as well as endogenous or environmental triggers of SLE. Recent genetic discoveries significantly advance our understanding of disease mechanisms in SLE. Together, these findings support important roles for B-cell receptor signaling pathways and mechanisms that regulate the adhesion of inflammatory cells to the vasculature. During the coming years, as additional genetic and functional studies further define the genetic architecture of SLE and relevant underlying molecular mechanisms, additional targets for novel therapies and improved diagnostic and prognostic tests will be identified, substantially improving our ability to diagnose and treat this potentially devastating systemic autoimmune disease. Disclosure Statement The author has no financial or proprietary interest in the subject matter or materials discussed, including, but not limited to, employment, consultancies, stock ownership, honoraria, and paid expert testimony. References 1. Tan EM, Cohen AS, Fries JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982;25: Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum. 1997;40(9): Mason LJ, Isenberg D. The pathogenesis of systemic lupus erythematosus. In: Davidson AM, Cameron JS, Grunfeld JP, et al. (eds): Oxford Textbook of Clinical Nephrology, Oxford, England: Oxford University Press, 2005, pp Costenbader KH, Kim DJ, Peerzada J, et al. Cigarette smoking and the risk of systemic lupus erythematosus: a meta-analysis. Arthritis Rheum. 2004;50(3): James JA, Kaufman KM, Farris AD, et al. An increased prevalence of Epstein-Barr virus infection in young patients suggests a possible etiology for systemic lupus erythematosus. J Clin Invest. 1997;100(12): Block SR, Winfield JB, Lockshin MD, et al. Studies of twins with systemic lupus erythematosus. Am J Med. 1975;59: Deapen D, Escalante A, Weinrib L, et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis Rheum. 1992;35(3): Risch N. Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet. 1990;46(2): Horton R, Wilming L, Rand V, et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5(12): Walport MJ. Complement and systemic lupus erythematosus. Arthritis Res. 2002;4(Suppl 3):S Graham RR, Ortmann WA, Langefeld CD, et al. Visualizing human leukocyte antigen class II risk haplotypes in human systemic lupus erythematosus. Am J Hum Genet. 2002;71(3): Graham RR, Ortmann W, Rodine P, et al. Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur J Hum Genet. 2007;15(8): Fernando MM, Stevens CR, Sabeti PC, et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet. 2007;3(11):e Karassa FB, Trikalinos TA, Ioannidis JP. Role of the Fcgamma receptor IIa polymorphism in susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Arthritis Rheum. 2002;46(6): Karassa FB, Bijl M, Davies KA, et al. Role of the Fcgamma receptor IIA polymorphism in the antiphospholipid syndrome: an international meta-analysis. Arthritis Rheum. 2003;48(7): Karassa FB, Trikalinos TA, Ioannidis JP. The Fc gamma RIIIA-F158 allele is a risk factor for the development of lupus nephritis: a meta-analysis. Kidney Int. 2003;63(4): Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet. 2004;36(4): Begovich AB, Carlton VEH, Honinberg LA, et al. A missense SNP in the protein tyrosine phosphatase PTPN22 is associated with rheumatoid arthritis. Am J Hum Genet. 2004;75(2): Kyogoku C, Langefeld CD, Ortmann WA, et al. Genetic association of the R620W polymorphism of protein tyrosine phosphatase PTPN22 with human SLE. Am J Hum Genet. 2004;75(3): Hasegawa K, Martin F, Huang G, et al. PEST domain-enriched tyrosine phosphatase (PEP) regulation of effector/memory T cells. Science. 2004;303(5658): Chung SA, Criswell LA. PTPN22: its role in SLE and autoimmunity. Autoimmunity. 2007;40(8): Lee YH, Rho YH, Choi SJ, et al. The PTPN22 C1858T functional polymorphism and autoimmune diseases a metaanalysis. Rheumatology (Oxford). 2007;46(1): Prokunina L, Castillejo-Lopez C, Oberg F, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet. 2002;32(4):666-9.

8 Bulletin of the NYU Hospital for Joint Diseases 2008;66(3): Munoz LE, Gaipl US, Franz S, Sheriff A, et al. SLE a disease of clearance deficiency? Rheumatology (Oxford). 2005;44(9): Lin SC, Yen JH, Tsai JJ, et al. Association of a programmed death 1 gene polymorphism with the development of rheumatoid arthritis, but not systemic lupus erythematosus. Arthritis Rheum. 2004;50(3): Ferreiros-Vidal I, Gomez-Reino JJ, Barros F, et al. Association of PDCD1 with susceptibility to systemic lupus erythematosus: evidence of population-specific effects. Arthritis Rheum. 2004;50(8): Sanghera DK, Manzi S, Bontempo F, et al. Role of an intronic polymorphism in the PDCD1 gene with the risk of sporadic systemic lupus erythematosus and the occurrence of antiphospholipid antibodies. Hum Genet. 2004;115(5): Thorburn CM, Prokunina-Olsson L, Sterba KA, et al. Association of PDCD1 genetic variation with risk and clinical manifestations of systemic lupus erythematosus in a multiethnic cohort. Genes Immun. 2007;8(4): Prokunina L, Gunnarsson I, Sturfelt G, et al. The systemic lupus erythematosus-associated PDCD1 polymorphism PD1.3A in lupus nephritis. Arthritis Rheum. 2004;50(1): Johansson M, Arlestig L, Moller B, Rantapaa-Dahlqvist S. Association of a PDCD1 polymorphism with renal manifestations in systemic lupus erythematosus. Arthritis Rheum. 2005;52(6): Nielsen C, Laustrup H, Voss A, et al. A putative regulatory polymorphism in PD-1 is associated with nephropathy in a population-based cohort of systemic lupus erythematosus patients. Lupus. 2004;13(7): Sigurdsson S, Nordmark G, Goring HH, et al. Polymorphisms in the tyrosine kinase 2 and interferon regulatory factor 5 genes are associated with systemic lupus erythematosus. Am J Hum Genet. 2005;76(3): Graham RR, Kozyrev SV, Baechler EC, et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet. 2006;38(5): Graham RR, Kyogoku C, Sigurdsson S, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A. 2007;104(16): Amos CI, Chen WV, Lee A, et al. High-density SNP analysis of 642 Caucasian families with rheumatoid arthritis identifies two new linkage regions on 11p12 and 2q33. Genes Immun. 2006;7(4): Remmers EF, Plenge RM, Lee AT, et al. STAT4 and the risk of rheumatoid arthritis and systemic lupus erythematosus. N Engl J Med. 2007;357(10): Watford WT, Hissong BD, Bream JH, et al. Signaling by IL-12 and IL-23 and the immunoregulatory roles of STAT4. Immunol Rev. 2004;202: Finnegan A, Grusby MJ, Kaplan CD, et al. IL-4 and IL-12 regulate proteoglycan-induced arthritis through Stat-dependent mechanisms. J Immunol. 2002;169(6): Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145): Hafler DA, Compston A, Sawcer S, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007;357(9): Plenge RM, Seielstad M, Padyukov L, et al. TRAF1-C5 as a risk locus for rheumatoid arthritis a genomewide study. N Engl J Med. 2007;357(12): Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39(5): Harley JB, Alarcon-Riquelme ME, Criswell LA, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 2008;40(2): Hom G, Graham RR, Modrek B, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-IT- GAX. N Engl J Med. 2008;358(9): Kozyrev SV, Abelson AK, Wojcik J, et al. Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet. 2008;40(2): Nath SK, Han S, Kim-Howard X, et al. A nonsynonymous functional variant in integrin-alpha(m) (encoded by ITGAM) is associated with systemic lupus erythematosus. Nat Genet. 2008;40(2): Crow MK. Collaboration, genetic associations, and lupus erythematosus. N Engl J Med. 2008;358(9): Vyse TJ, Todd JA. Genetic analysis of autoimmune disease. Cell 1996;85(3): Alarcon-Segovia D, Alarcon-Riquelme ME, Cardiel MH, et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 2005;52(4): Seldin MF, Amos CI, Ward R, Gregersen PK. The genetics revolution and the assault on rheumatoid arthritis. Arthritis Rheum. 1999;42(6): Hasstedt SJ, Clegg DO, Ingles L, Ward RH. HLA-linked rheumatoid arthritis. Am J Hum Genet. 1994;55:

Genetics and the Path Towards Targeted Therapies in Systemic Lupus

Genetics and the Path Towards Targeted Therapies in Systemic Lupus Genetics and the Path Towards Targeted Therapies in Systemic Lupus Emily Baechler Gillespie, Ph.D. University of Minnesota Department of Medicine Division of Rheumatic and Autoimmune Diseases Disclosures

More information

Citation for published version (APA): Martens, H. A. (2009). Genetic and prognostic factors in lupus Groningen: s.n.

Citation for published version (APA): Martens, H. A. (2009). Genetic and prognostic factors in lupus Groningen: s.n. University of Groningen Genetic and prognostic factors in lupus Martens, Henk Allard IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

ARD Online First, published on September 8, 2005 as /ard

ARD Online First, published on September 8, 2005 as /ard ARD Online First, published on September 8, 2005 as 10.1136/ard.2005.046094 Lack of association between ankylosing spondylitis and a functional polymorphism of PTPN22 proposed as a general susceptibility

More information

Genetics and Genomics in Medicine Chapter 8 Questions

Genetics and Genomics in Medicine Chapter 8 Questions Genetics and Genomics in Medicine Chapter 8 Questions Linkage Analysis Question Question 8.1 Affected members of the pedigree above have an autosomal dominant disorder, and cytogenetic analyses using conventional

More information

Genetics of systemic lupus erythematosus

Genetics of systemic lupus erythematosus For reprint orders, please contact: reprints@futuremedicine.com REVIEW Genetics of systemic lupus erythematosus Andrea L Sestak Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104,

More information

The Genetic Epidemiology of Rheumatoid Arthritis. Lindsey A. Criswell AURA meeting, 2016

The Genetic Epidemiology of Rheumatoid Arthritis. Lindsey A. Criswell AURA meeting, 2016 The Genetic Epidemiology of Rheumatoid Arthritis Lindsey A. Criswell AURA meeting, 2016 Overview Recent successes in gene identification genome wide association studies (GWAS) clues to etiologic pathways

More information

Introduction to the Genetics of Complex Disease

Introduction to the Genetics of Complex Disease Introduction to the Genetics of Complex Disease Jeremiah M. Scharf, MD, PhD Departments of Neurology, Psychiatry and Center for Human Genetic Research Massachusetts General Hospital Breakthroughs in Genome

More information

Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn s disease and multiple sclerosis

Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn s disease and multiple sclerosis (2006) 14, 317 321 & 2006 Nature Publishing Group All rights reserved 1018-4813/06 $30.00 www.nature.com/ejhg ARTICLE Evaluating the role of the 620W allele of protein tyrosine phosphatase PTPN22 in Crohn

More information

Dan Koller, Ph.D. Medical and Molecular Genetics

Dan Koller, Ph.D. Medical and Molecular Genetics Design of Genetic Studies Dan Koller, Ph.D. Research Assistant Professor Medical and Molecular Genetics Genetics and Medicine Over the past decade, advances from genetics have permeated medicine Identification

More information

Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II

Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II Topic (Final-03): Immunologic Tolerance and Autoimmunity-Part II MECHANISMS OF AUTOIMMUNITY The possibility that an individual s immune system may react against autologous antigens and cause tissue injury

More information

Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis

Overlap of disease susceptibility loci for rheumatoid arthritis and juvenile idiopathic arthritis Additional data are published online only. To view these fi les please visit the journal online (http://ard.bmj.com) 1 arc-eu, Stopford Building, The University of Manchester, Manchester, UK 2 Haywood

More information

Whole-genome detection of disease-associated deletions or excess homozygosity in a case control study of rheumatoid arthritis

Whole-genome detection of disease-associated deletions or excess homozygosity in a case control study of rheumatoid arthritis HMG Advance Access published December 21, 2012 Human Molecular Genetics, 2012 1 13 doi:10.1093/hmg/dds512 Whole-genome detection of disease-associated deletions or excess homozygosity in a case control

More information

Lack of association of IL-2RA and IL-2RB polymorphisms with rheumatoid arthritis in a Han Chinese population

Lack of association of IL-2RA and IL-2RB polymorphisms with rheumatoid arthritis in a Han Chinese population Lack of association of IL-2RA and IL-2RB polymorphisms with rheumatoid arthritis in a Han Chinese population J. Zhu 1 *, F. He 2 *, D.D. Zhang 2 *, J.Y. Yang 2, J. Cheng 1, R. Wu 1, B. Gong 2, X.Q. Liu

More information

MOLECULAR EPIDEMIOLOGY Afiono Agung Prasetyo Faculty of Medicine Sebelas Maret University Indonesia

MOLECULAR EPIDEMIOLOGY Afiono Agung Prasetyo Faculty of Medicine Sebelas Maret University Indonesia MOLECULAR EPIDEMIOLOGY GENERAL EPIDEMIOLOGY General epidemiology is the scientific basis of public health Descriptive epidemiology: distribution of disease in populations Incidence and prevalence rates

More information

Supplementary Figure 1 Dosage correlation between imputed and genotyped alleles Imputed dosages (0 to 2) of 2-digit alleles (red) and 4-digit alleles

Supplementary Figure 1 Dosage correlation between imputed and genotyped alleles Imputed dosages (0 to 2) of 2-digit alleles (red) and 4-digit alleles Supplementary Figure 1 Dosage correlation between imputed and genotyped alleles Imputed dosages (0 to 2) of 2-digit alleles (red) and 4-digit alleles (green) of (A) HLA-A, HLA-B, (C) HLA-C, (D) HLA-DQA1,

More information

Introduction to Genetics and Genomics

Introduction to Genetics and Genomics 2016 Introduction to enetics and enomics 3. ssociation Studies ggibson.gt@gmail.com http://www.cig.gatech.edu Outline eneral overview of association studies Sample results hree steps to WS: primary scan,

More information

CS2220 Introduction to Computational Biology

CS2220 Introduction to Computational Biology CS2220 Introduction to Computational Biology WEEK 8: GENOME-WIDE ASSOCIATION STUDIES (GWAS) 1 Dr. Mengling FENG Institute for Infocomm Research Massachusetts Institute of Technology mfeng@mit.edu PLANS

More information

genetic susceptibility to systemic lupus erythematosus in the genomic era

genetic susceptibility to systemic lupus erythematosus in the genomic era REVIEwS genetic susceptibility to systemic lupus erythematosus in the genomic era Yun Deng and Betty P. Tsao abstract Our understanding of the genetic basis of systemic lupus erythematosus (SLE) has been

More information

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder Introduction to linkage and family based designs to study the genetic epidemiology of complex traits Harold Snieder Overview of presentation Designs: population vs. family based Mendelian vs. complex diseases/traits

More information

During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin,

During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin, ESM Methods Hyperinsulinemic-euglycemic clamp procedure During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin, Clayton, NC) was followed by a constant rate (60 mu m

More information

Specificity of the STAT4 Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus

Specificity of the STAT4 Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus Specificity of the STAT4 Genetic Association for Severe Disease Manifestations of Systemic Lupus Erythematosus Kimberly E. Taylor 1, Elaine F. Remmers 2, Annette T. Lee 3, Ward A. Ortmann 4, Robert M.

More information

Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes

Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes Kimberly E. Taylor 1, Sharon A. Chung 1, Robert R. Graham 2, Ward A. Ortmann

More information

Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder)

Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder) Genetics and Pharmacogenetics in Human Complex Disorders (Example of Bipolar Disorder) September 14, 2012 Chun Xu M.D, M.Sc, Ph.D. Assistant professor Texas Tech University Health Sciences Center Paul

More information

Autoimmunity. Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens

Autoimmunity. Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens Autoimmunity Autoimmunity arises because of defects in central or peripheral tolerance of lymphocytes to selfantigens Autoimmune disease can be caused to primary defects in B cells, T cells and possibly

More information

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018 An Introduction to Quantitative Genetics I Heather A Lawson Advanced Genetics Spring2018 Outline What is Quantitative Genetics? Genotypic Values and Genetic Effects Heritability Linkage Disequilibrium

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Hartwig FP, Borges MC, Lessa Horta B, Bowden J, Davey Smith G. Inflammatory biomarkers and risk of schizophrenia: a 2-sample mendelian randomization study. JAMA Psychiatry.

More information

Autoimmune diseases. Autoimmune diseases. Autoantibodies. Autoimmune diseases relatively common

Autoimmune diseases. Autoimmune diseases. Autoantibodies. Autoimmune diseases relatively common Autoimmune diseases Fundamental abnormality: the adaptive immune system is triggered by self antigens to initiate a sustained immune response against self molecules that results in tissue injury Specificity

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/38506 holds various files of this Leiden University dissertation. Author: Nies, Jessica Annemarie Bernadette van Title: Early identification of rheumatoid

More information

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol HLA and antigen presentation Department of Immunology Charles University, 2nd Medical School University Hospital Motol MHC in adaptive immunity Characteristics Specificity Innate For structures shared

More information

Association-heterogeneity mapping identifies an Asian-specific association of the GTF2I locus with rheumatoid arthritis

Association-heterogeneity mapping identifies an Asian-specific association of the GTF2I locus with rheumatoid arthritis Supplementary Material Association-heterogeneity mapping identifies an Asian-specific association of the GTF2I locus with rheumatoid arthritis Kwangwoo Kim 1,, So-Young Bang 1,, Katsunori Ikari 2,3, Dae

More information

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK

DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK CHAPTER 6 DOES THE BRCAX GENE EXIST? FUTURE OUTLOOK Genetic research aimed at the identification of new breast cancer susceptibility genes is at an interesting crossroad. On the one hand, the existence

More information

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014 MULTIFACTORIAL DISEASES MG L-10 July 7 th 2014 Genetic Diseases Unifactorial Chromosomal Multifactorial AD Numerical AR Structural X-linked Microdeletions Mitochondrial Spectrum of Alterations in DNA Sequence

More information

Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD

Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Genetics of common disorders with complex inheritance Bettina Blaumeiser MD PhD Medical Genetics University Hospital & University of Antwerp Programme Day 6: Genetics of common disorders with complex inheritance

More information

Genetics of Pediatric Inflammatory Bowel Disease

Genetics of Pediatric Inflammatory Bowel Disease Genetics of Pediatric Inflammatory Bowel Disease Judith Kelsen MD Assistant Professor of Pediatrics Division of Gastroenterology, Hepatology, and Nutrition IBD Education Day 2/9/2014 Objectives Brief overview

More information

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol HLA and antigen presentation Department of Immunology Charles University, 2nd Medical School University Hospital Motol MHC in adaptive immunity Characteristics Specificity Innate For structures shared

More information

Special Report. Genome-wide association studies and musculoskeletal diseases. Future Rheumatology

Special Report. Genome-wide association studies and musculoskeletal diseases. Future Rheumatology Genome-wide association studies and musculoskeletal diseases Patrick Danoy & Matthew A Brown Author for correspondence: Diamantina Institute of Cancer, Immunology and Metabolic Medicine, The University

More information

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci Multifactorial Inheritance Prof. Dr. Nedime Serakinci GENETICS I. Importance of genetics. Genetic terminology. I. Mendelian Genetics, Mendel s Laws (Law of Segregation, Law of Independent Assortment).

More information

Effects of Stratification in the Analysis of Affected-Sib-Pair Data: Benefits and Costs

Effects of Stratification in the Analysis of Affected-Sib-Pair Data: Benefits and Costs Am. J. Hum. Genet. 66:567 575, 2000 Effects of Stratification in the Analysis of Affected-Sib-Pair Data: Benefits and Costs Suzanne M. Leal and Jurg Ott Laboratory of Statistical Genetics, The Rockefeller

More information

Identification of Novel Genetic Susceptibility Loci in African American Lupus Patients in a Candidate Gene Association Study

Identification of Novel Genetic Susceptibility Loci in African American Lupus Patients in a Candidate Gene Association Study ARTHRITIS & RHEUMATISM Vol. 63, No. 11, November 2011, pp 3493 3501 DOI 10.1002/art.30563 2011, American College of Rheumatology Identification of Novel Genetic Susceptibility Loci in African American

More information

TCR-p-MHC 10/28/2013. Disclosures. Rheumatoid Arthritis, Psoriatic Arthritis and Autoimmunity: good genes, elegant mechanisms, bad results

TCR-p-MHC 10/28/2013. Disclosures. Rheumatoid Arthritis, Psoriatic Arthritis and Autoimmunity: good genes, elegant mechanisms, bad results Rheumatoid Arthritis, Psoriatic Arthritis and Autoimmunity: good genes, elegant mechanisms, bad results The meaning and significance of HLA associations Disclosures No relevant commercial relationships

More information

Lecture 20. Disease Genetics

Lecture 20. Disease Genetics Lecture 20. Disease Genetics Michael Schatz April 12 2018 JHU 600.749: Applied Comparative Genomics Part 1: Pre-genome Era Sickle Cell Anaemia Sickle-cell anaemia (SCA) is an abnormality in the oxygen-carrying

More information

J Jpn Coll Angiol, 2009, 49: collagen disease, genetic polymorphism, MRL mice, recombinant inbred strains, Cd72. MRL/Mp-lpr/lpr MRL/ lpr

J Jpn Coll Angiol, 2009, 49: collagen disease, genetic polymorphism, MRL mice, recombinant inbred strains, Cd72. MRL/Mp-lpr/lpr MRL/ lpr Online publication June 24, 2009 1, 2 1 J Jpn Coll Angiol, 2009, 49: 11 16 collagen disease, genetic polymorphism, MRL mice, recombinant inbred strains, Cd72 SNPs case-control study MHC Fcγ NO MRL/Mp-lpr/lpr

More information

The inflammatory disease-associated variants in IL12B and IL23R are not associated with rheumatoid arthritis

The inflammatory disease-associated variants in IL12B and IL23R are not associated with rheumatoid arthritis Marshfield Clinic Research Foundation / University of Wisconsin-Madison From the SelectedWorks of Steven J Schrodi 2008 The inflammatory disease-associated variants in IL12B and IL23R are not associated

More information

Association of Single Nucleotide Polymorphisms (SNPs) in CCR6, TAGAP and TNFAIP3 with Rheumatoid Arthritis in African Americans

Association of Single Nucleotide Polymorphisms (SNPs) in CCR6, TAGAP and TNFAIP3 with Rheumatoid Arthritis in African Americans Association of Single Nucleotide Polymorphisms (SNPs) in CCR6, TAGAP and TNFAIP3 with Rheumatoid Arthritis in African Americans Elizabeth A. Perkins, University of Alabama at Birmingham Dawn Landis, University

More information

Results. Introduction

Results. Introduction (2009) 10, S95 S120 & 2009 Macmillan Publishers Limited All rights reserved 1466-4879/09 $32.00 www.nature.com/gene ORIGINAL ARTICLE Analysis of 55 autoimmune disease and type II diabetes loci: further

More information

AUTOIMMUNITY CLINICAL CORRELATES

AUTOIMMUNITY CLINICAL CORRELATES AUTOIMMUNITY CLINICAL CORRELATES Pamela E. Prete, MD, FACP, FACR Section Chief, Rheumatology VA Healthcare System, Long Beach, CA Professor of Medicine, Emeritus University of California, Irvine Colonel

More information

AUTOIMMUNITY TOLERANCE TO SELF

AUTOIMMUNITY TOLERANCE TO SELF AUTOIMMUNITY CLINICAL CORRELATES Pamela E. Prete, MD, FACP, FACR Section Chief, Rheumatology VA Healthcare System, Long Beach, CA Professor of Medicine, Emeritus University of California, Irvine Colonel

More information

Self-tolerance. Lack of immune responsiveness to an individual s own tissue antigens. Central Tolerance. Peripheral tolerance

Self-tolerance. Lack of immune responsiveness to an individual s own tissue antigens. Central Tolerance. Peripheral tolerance Autoimmunity Self-tolerance Lack of immune responsiveness to an individual s own tissue antigens Central Tolerance Peripheral tolerance Factors Regulating Immune Response Antigen availability Properties

More information

Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Beijing, , People's Republic of China

Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Beijing, , People's Republic of China Concise Communication DOI 10.1002/art.39268 Variants in CCR6 are associated with susceptibility to lupus nephritis in Chinese Authors: Xu-jie Zhou 1, MD & PhD;Rong Mu 2, MD & PhD;Chun Li 2, MD;Swapan K

More information

Human Genetics of Tuberculosis. Laurent Abel Laboratory of Human Genetics of Infectious Diseases University Paris Descartes/INSERM U980

Human Genetics of Tuberculosis. Laurent Abel Laboratory of Human Genetics of Infectious Diseases University Paris Descartes/INSERM U980 Human Genetics of Tuberculosis Laurent Abel Laboratory of Human Genetics of Infectious Diseases University Paris Descartes/INSERM U980 Human genetics in tuberculosis? Concept Epidemiological/familial

More information

ANALYSIS OF IL17 AND IL17RA POLYMORPHISMS IN SPANISH PSORIASIS PATIENTS: ASSOCIATION WITH RISK FOR DISEASE.

ANALYSIS OF IL17 AND IL17RA POLYMORPHISMS IN SPANISH PSORIASIS PATIENTS: ASSOCIATION WITH RISK FOR DISEASE. ANALYSIS OF IL17 AND IL17RA POLYMORPHISMS IN SPANISH PSORIASIS PATIENTS: ASSOCIATION WITH RISK FOR DISEASE. Batalla A, Coto E*, González-Lara L, González- Fernández D, Maldonado-Seral C, García-García

More information

Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients

Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients ARD Online First, published on June 1, 2012 as 10.1136/annrheumdis-2011-201225 Additional tables are published online only. To view these fi les please visit the journal online (http://ard.bmj.com/content/

More information

Quantitative genetics: traits controlled by alleles at many loci

Quantitative genetics: traits controlled by alleles at many loci Quantitative genetics: traits controlled by alleles at many loci Human phenotypic adaptations and diseases commonly involve the effects of many genes, each will small effect Quantitative genetics allows

More information

HLA AND DISEASE. M. Toungouz Nevessignsky. Erasme Hospital Brussels, Belgium EFI - ULM 2009

HLA AND DISEASE. M. Toungouz Nevessignsky. Erasme Hospital Brussels, Belgium EFI - ULM 2009 HLA AND DISEASE M. Toungouz Nevessignsky Université Libre de Bruxelles (ULB) Erasme Hospital Brussels, Belgium HLA and disease: pioneer studies 1972: Falcuk et al HLA B8 and coeliac disease 1972: Russell

More information

Host Genomics of HIV-1

Host Genomics of HIV-1 4 th International Workshop on HIV & Aging Host Genomics of HIV-1 Paul McLaren École Polytechnique Fédérale de Lausanne - EPFL Lausanne, Switzerland paul.mclaren@epfl.ch Complex trait genetics Phenotypic

More information

What is Autoimmunity?

What is Autoimmunity? Autoimmunity What is Autoimmunity? Robert Beatty MCB150 Autoimmunity is an immune response to self antigens that results in disease. The immune response to self is a result of a breakdown in immune tolerance.

More information

What is Autoimmunity?

What is Autoimmunity? Autoimmunity What is Autoimmunity? Robert Beatty MCB150 Autoimmunity is an immune response to self antigens that results in disease. The immune response to self is a result of a breakdown in immune tolerance.

More information

A genome-wide association study identifies vitiligo

A genome-wide association study identifies vitiligo A genome-wide association study identifies vitiligo susceptibility loci at MHC and 6q27 Supplementary Materials Index Supplementary Figure 1 The principal components analysis (PCA) of 2,546 GWAS samples

More information

Retrospective Genetic Analysis of Efficacy and Adverse Events in a Rheumatoid Arthritis Population Treated with Methotrexate and Anti-TNF-α

Retrospective Genetic Analysis of Efficacy and Adverse Events in a Rheumatoid Arthritis Population Treated with Methotrexate and Anti-TNF-α Retrospective Genetic Analysis of Efficacy and Adverse Events in a Rheumatoid Arthritis Population Treated with Methotrexate and Anti-TNF-α Foti A 1, Lichter D 1, Shadick NA 2, Maher NE 2, Ginsburg GS

More information

Efficacy and Safety of Belimumab in the treatment of Systemic Lupus Erythematosus: a Prospective Multicenter Study.

Efficacy and Safety of Belimumab in the treatment of Systemic Lupus Erythematosus: a Prospective Multicenter Study. 1. Title Efficacy and Safety of Belimumab in the treatment of Systemic Lupus Erythematosus: a Prospective Multicenter Study. 2. Background Systemic Lupus Erythematosus (SLE) is a chronic, autoimmune and

More information

Key words: antiphospholipid syndrome, trombosis, pathogenesis

Key words: antiphospholipid syndrome, trombosis, pathogenesis 26. XI,. 4/2011,.,..,..,., -..,,. 2GPI. -,.,,., -,, -, -,,,,, IL-1, IL-2, IL-6, IL-8, IL-12, IL-10, TNF, INF-. :,, N. Stoilov, R. Rashkov and R. Stoilov. ANTIPHOSPHOLIPID SYNDROME HISTORICAL DATA, ETI-

More information

Genetics of B27-associated diseases 1

Genetics of B27-associated diseases 1 Ann. rheum. Dis. (1979), 38, Supplement p. 135 Genetics of B27-associated diseases 1 J. C. WOODROW From the Department of Medicine, University of Liverpool, Liverpool The genetic analysis of those conditions

More information

Association between IRF5 polymorphisms and autoimmune diseases: a meta-analysis

Association between IRF5 polymorphisms and autoimmune diseases: a meta-analysis Association between IRF5 polymorphisms and autoimmune diseases: a meta-analysis L. Tang 1 *, B. Chen 2 *, B. Ma 3 and S. Nie 4 1 School of Basic Medical Sciences, Changsha Medical University, Changsha,

More information

Fetal-Maternal HLA Relationships and Autoimmune Disease. Giovanna Ibeth Cruz. A dissertation submitted in partial satisfaction of the

Fetal-Maternal HLA Relationships and Autoimmune Disease. Giovanna Ibeth Cruz. A dissertation submitted in partial satisfaction of the Fetal-Maternal HLA Relationships and Autoimmune Disease By Giovanna Ibeth Cruz A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Epidemiology

More information

Significance of the MHC

Significance of the MHC CHAPTER 7 Major Histocompatibility Complex (MHC) What is is MHC? HLA H-2 Minor histocompatibility antigens Peter Gorer & George Sneell (1940) Significance of the MHC role in immune response role in organ

More information

GENETIC STUDIES OF THE HLA LOCUS IN RHEUMATIC DISEASES

GENETIC STUDIES OF THE HLA LOCUS IN RHEUMATIC DISEASES From THE DEPARTMENT OF MEDICINE Karolinska Institutet, Stockholm, Sweden GENETIC STUDIES OF THE HLA LOCUS IN RHEUMATIC DISEASES Emeli Lundström Stockholm 2010 All previously published papers were reproduced

More information

UNIVERSITY OF CALIFORNIA, LOS ANGELES

UNIVERSITY OF CALIFORNIA, LOS ANGELES UNIVERSITY OF CALIFORNIA, LOS ANGELES BERKELEY DAVIS IRVINE LOS ANGELES MERCED RIVERSIDE SAN DIEGO SAN FRANCISCO UCLA SANTA BARBARA SANTA CRUZ DEPARTMENT OF EPIDEMIOLOGY SCHOOL OF PUBLIC HEALTH CAMPUS

More information

Autoimmune Diseases. Betsy Kirchner CNP The Cleveland Clinic

Autoimmune Diseases. Betsy Kirchner CNP The Cleveland Clinic Autoimmune Diseases Betsy Kirchner CNP The Cleveland Clinic Disclosures (financial) No relevant disclosures Learning Objectives Explain the pathophysiology of autoimmune disease Discuss safe administration

More information

Rare Variant Burden Tests. Biostatistics 666

Rare Variant Burden Tests. Biostatistics 666 Rare Variant Burden Tests Biostatistics 666 Last Lecture Analysis of Short Read Sequence Data Low pass sequencing approaches Modeling haplotype sharing between individuals allows accurate variant calls

More information

2) Cases and controls were genotyped on different platforms. The comparability of the platforms should be discussed.

2) Cases and controls were genotyped on different platforms. The comparability of the platforms should be discussed. Reviewers' Comments: Reviewer #1 (Remarks to the Author) The manuscript titled 'Association of variations in HLA-class II and other loci with susceptibility to lung adenocarcinoma with EGFR mutation' evaluated

More information

The major histocompatibility complex (MHC) is a group of genes that governs tumor and tissue transplantation between individuals of a species.

The major histocompatibility complex (MHC) is a group of genes that governs tumor and tissue transplantation between individuals of a species. Immunology Dr. John J. Haddad Chapter 7 Major Histocompatibility Complex The major histocompatibility complex (MHC) is a group of genes that governs tumor and tissue transplantation between individuals

More information

Immunogenetics of juvenile idiopathic arthritis: A comprehensive review

Immunogenetics of juvenile idiopathic arthritis: A comprehensive review Immunogenetics of juvenile idiopathic arthritis: A comprehensive review Aimee O. Hersh, University of Utah School of Medicine Sampath Prahalad, Emory University Journal Title: Journal of Autoimmunity Volume:

More information

The role of CXORF21 in systemic lupus erythematosus

The role of CXORF21 in systemic lupus erythematosus Sonja Lindinger; Martina Fondi The role of CXORF21 in systemic lupus erythematosus 14 Biomedizin Innovativ patientinnenfokussierte, anwendungsorientierte sowie interdisziplinäre Forschung am Puls der Zeit

More information

New Enhancements: GWAS Workflows with SVS

New Enhancements: GWAS Workflows with SVS New Enhancements: GWAS Workflows with SVS August 9 th, 2017 Gabe Rudy VP Product & Engineering 20 most promising Biotech Technology Providers Top 10 Analytics Solution Providers Hype Cycle for Life sciences

More information

The Inheritance of Complex Traits

The Inheritance of Complex Traits The Inheritance of Complex Traits Differences Among Siblings Is due to both Genetic and Environmental Factors VIDEO: Designer Babies Traits Controlled by Two or More Genes Many phenotypes are influenced

More information

Doing more with genetics: Gene-environment interactions

Doing more with genetics: Gene-environment interactions 2016 Alzheimer Disease Centers Clinical Core Leaders Meeting Doing more with genetics: Gene-environment interactions Haydeh Payami, PhD On behalf of NeuroGenetics Research Consortium (NGRC) From: Joseph

More information

Human leukocyte antigen (HLA) system

Human leukocyte antigen (HLA) system Is HLA a determinant of prognosis or therapeutic response to cytokines, IFN and anti-ctla4 blocking antibodies in melanoma? Helen Gogas, M.D. Ass. Professor in Medical Oncology 1st Department of Medicine,

More information

Willcocks et al.,

Willcocks et al., ONLINE SUPPLEMENTAL MATERIAL Willcocks et al., http://www.jem.org/cgi/content/full/jem.20072413/dc1 Supplemental materials and methods SLE and AASV cohorts The UK SLE cohort (n = 171) was obtained from

More information

Human population sub-structure and genetic association studies

Human population sub-structure and genetic association studies Human population sub-structure and genetic association studies Stephanie A. Santorico, Ph.D. Department of Mathematical & Statistical Sciences Stephanie.Santorico@ucdenver.edu Global Similarity Map from

More information

Human Genetics 542 Winter 2018 Syllabus

Human Genetics 542 Winter 2018 Syllabus Human Genetics 542 Winter 2018 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Jan 3 rd Wed Mapping disease genes I: inheritance patterns and linkage analysis

More information

National Disease Research Interchange Annual Progress Report: 2010 Formula Grant

National Disease Research Interchange Annual Progress Report: 2010 Formula Grant National Disease Research Interchange Annual Progress Report: 2010 Formula Grant Reporting Period July 1, 2011 June 30, 2012 Formula Grant Overview The National Disease Research Interchange received $62,393

More information

Jay M. Baraban MD, PhD January 2007 GENES AND BEHAVIOR

Jay M. Baraban MD, PhD January 2007 GENES AND BEHAVIOR Jay M. Baraban MD, PhD jay.baraban@gmail.com January 2007 GENES AND BEHAVIOR Overview One of the most fascinating topics in neuroscience is the role that inheritance plays in determining one s behavior.

More information

HLA Complex Genetics & Biology

HLA Complex Genetics & Biology HLA Complex Genetics & Biology M. Tevfik DORAK Environmental & Occupational Health College of Public Health Florida International University Miami, USA http://www.dorak.info Mount Sinai Medical Center

More information

Rosacea Update: Rosacea pathogenesis. Rosacea genetics. Disclosures. Rosacea: Etiology? Th1/Th17 is activated in rosacea skin

Rosacea Update: Rosacea pathogenesis. Rosacea genetics. Disclosures. Rosacea: Etiology? Th1/Th17 is activated in rosacea skin Winter Clinical Big Island 20 min Rosacea Update: 2017 Diane M. Thiboutot, M.D. Professor of Dermatology The Pennsylvania State University College of Medicine Hershey, PA Disclosures Investigator or consultant

More information

White Paper Guidelines on Vetting Genetic Associations

White Paper Guidelines on Vetting Genetic Associations White Paper 23-03 Guidelines on Vetting Genetic Associations Authors: Andro Hsu Brian Naughton Shirley Wu Created: November 14, 2007 Revised: February 14, 2008 Revised: June 10, 2010 (see end of document

More information

SNPrints: Defining SNP signatures for prediction of onset in complex diseases

SNPrints: Defining SNP signatures for prediction of onset in complex diseases SNPrints: Defining SNP signatures for prediction of onset in complex diseases Linda Liu, Biomedical Informatics, Stanford University Daniel Newburger, Biomedical Informatics, Stanford University Grace

More information

Human Genetics 542 Winter 2017 Syllabus

Human Genetics 542 Winter 2017 Syllabus Human Genetics 542 Winter 2017 Syllabus Monday, Wednesday, and Friday 9 10 a.m. 5915 Buhl Course Director: Tony Antonellis Module I: Mapping and characterizing simple genetic diseases Jan 4 th Wed Mapping

More information

Association of forkhead box J3 (FOXJ3) polymorphisms with rheumatoid arthritis

Association of forkhead box J3 (FOXJ3) polymorphisms with rheumatoid arthritis MOLECULAR MEDICINE REPORTS 8: 1235-1241, 2013 Association of forkhead box J3 (FOXJ3) polymorphisms with rheumatoid arthritis JU YEON BAN 1*, HAE JEONG PARK 2*, SU KANG KIM 2, JONG WOO KIM 2, YEON AH LEE

More information

Addressing Healthcare Disparities in Autoimmune Disease: A Focus On Systemic Lupus Erythematosus in the USA

Addressing Healthcare Disparities in Autoimmune Disease: A Focus On Systemic Lupus Erythematosus in the USA Addressing Healthcare Disparities in Autoimmune Disease: A Focus On Systemic Lupus Erythematosus in the USA by Halima Moncrieffe, PhD halima.moncrieffe@cchmc.org Center for Autoimmune Genomics & Etiology,

More information

Principles of Adaptive Immunity

Principles of Adaptive Immunity Principles of Adaptive Immunity Chapter 3 Parham Hans de Haard 17 th of May 2010 Agenda Recognition molecules of adaptive immune system Features adaptive immune system Immunoglobulins and T-cell receptors

More information

Association mapping (qualitative) Association scan, quantitative. Office hours Wednesday 3-4pm 304A Stanley Hall. Association scan, qualitative

Association mapping (qualitative) Association scan, quantitative. Office hours Wednesday 3-4pm 304A Stanley Hall. Association scan, qualitative Association mapping (qualitative) Office hours Wednesday 3-4pm 304A Stanley Hall Fig. 11.26 Association scan, qualitative Association scan, quantitative osteoarthritis controls χ 2 test C s G s 141 47

More information

Association of anti-mcv autoantibodies with SLE (Systemic Lupus Erythematosus) overlapping with various syndromes

Association of anti-mcv autoantibodies with SLE (Systemic Lupus Erythematosus) overlapping with various syndromes International Journal of Medicine and Medical Sciences Vol. () pp. 21-214, June 211 Available online http://www.academicjournals.org/ijmms ISSN 2-972 211 Academic Journals Full Length Research Paper Association

More information

Investigation of Candidate Genes and HLA-Related Risk Factors in a Genetic Study of Autoimmune Disease. Paola Grasso Bronson

Investigation of Candidate Genes and HLA-Related Risk Factors in a Genetic Study of Autoimmune Disease. Paola Grasso Bronson Investigation of Candidate Genes and HLA-Related Risk Factors in a Genetic Study of Autoimmune Disease By Paola Grasso Bronson A dissertation submitted in partial satisfaction of the requirements for the

More information

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF

Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases. Abul K. Abbas UCSF Tolerance, autoimmunity and the pathogenesis of immunemediated inflammatory diseases Abul K. Abbas UCSF Balancing lymphocyte activation and control Activation Effector T cells Tolerance Regulatory T cells

More information

The Major Histocompatibility Complex

The Major Histocompatibility Complex The Major Histocompatibility Complex Today we will discuss the MHC The study of MHC is necessary to understand how an immune response is generated. And these are the extra notes with respect to slides

More information

Novel Targets of disease modifying therapy for Parkinson disease. David G. Standaert, MD, PhD John N. Whitaker Professor and Chair of Neurology

Novel Targets of disease modifying therapy for Parkinson disease. David G. Standaert, MD, PhD John N. Whitaker Professor and Chair of Neurology Novel Targets of disease modifying therapy for Parkinson disease David G. Standaert, MD, PhD John N. Whitaker Professor and Chair of Neurology Disclosures Dr. Standaert has served as a paid consultant

More information

CANCER GENETICS PROVIDER SURVEY

CANCER GENETICS PROVIDER SURVEY Dear Participant, Previously you agreed to participate in an evaluation of an education program we developed for primary care providers on the topic of cancer genetics. This is an IRB-approved, CDCfunded

More information

Letter: Genetic Variation in the Inflammasome and Atopic Dermatitis Susceptibility

Letter: Genetic Variation in the Inflammasome and Atopic Dermatitis Susceptibility Letter: Genetic Variation in the Inflammasome and Atopic Dermatitis Susceptibility Cecilia Bivik, Deepti Verma, Marten C. Winge, Agne Lieden, Maria Bradley, Inger Rosdahl and Peter Söderkvist Linköping

More information

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence?

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence? 1 IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence? Single-gene (monogenic) traits Phenotypic variation is typically discrete (often comparing

More information

Tolerance 2. Regulatory T cells; why tolerance fails. FOCiS. Lecture outline. Regulatory T cells. Regulatory T cells: functions and clinical relevance

Tolerance 2. Regulatory T cells; why tolerance fails. FOCiS. Lecture outline. Regulatory T cells. Regulatory T cells: functions and clinical relevance 1 Tolerance 2. Regulatory T cells; why tolerance fails Abul K. Abbas UCSF FOCiS 2 Lecture outline Regulatory T cells: functions and clinical relevance Pathogenesis of autoimmunity: why selftolerance fails

More information