Modulating STAT Signaling to Promote Engraftment of Allogeneic Bone Marrow Transplant

Size: px
Start display at page:

Download "Modulating STAT Signaling to Promote Engraftment of Allogeneic Bone Marrow Transplant"

Transcription

1 Modulating STAT Signaling to Promote Engraftment of Allogeneic Bone Marrow Transplant Jacopo Mariotti, M.D. Center for Cancer Research, NCI, NIH Istituto Nazionale Tumori, Milano Verona; May 22, 2009

2 Non-myeloablative vs Myeloablative HSCT Risk of Rejection Treatment Related Mortality (Giralt, Blood 1997) Risk of Graft Rejection for HLA-matched related transplants (McSweeney, Blood 2001) Immunosuppressive Treatment is necessary for achieving engraftment with non-myeloablative HCT Risk of Graft Rejection especially for related HLA-mismatched or MUD transplants and/or after T cell depletion (Maris, Blood 2003; O Donnell, BT 2002) Research Goal: Identify new strategies (immunomodulatory agents, functionally-defined T cell populations) that allow engraftment without significant GVHD and reduced immunosuppression

3 Role of STAT Signaling in Immunologic Response Laurence, Nat Immunol 2007

4 Role of STAT Signaling in allogeneic HSCT Graft Versus Host Disease Donor STAT4 -/- T cells ( Th1) Donor STAT6 -/- T cells ( Th2) Inhibition of STAT1 ( Th1) Graft Rejection Host Th1/Tc1 T cells Host Th2/Tc2 T cells Host STAT1 -/- T cells ( Th1) GVHD mortality (skin) GVHD mortality (GI, weight loss) Nikolic, JCI 2000 GVHD mortality Mapara, Exp Hematol 2006 Graft rejection Graft rejection Graft rejection Mariotti, Blood 2008

5 Graft rejection Model: TBI and Host T Cell Add-back (Reisner, Blood 2003; Mariotti, JI 2009) Gy TBI (BALB/c) 11 Gy TBI (B6) Purified Host T cells add-back (0.1x10^6) TCD (10x10^6) ± Th2R Day -2 Day -1 Day 0 Spleen Harvest Syngeneic DC Stim (HVG) Allogeneic DC Stim (GVH) Day 5-14 Day 90 Overall Survival Weight Change Long-term Engraftment Detection of Allospecific IFN-γ secretion Characterization of Cytokine Secretion (Th1 vs Th2)

6 Th1/Tc1 >> Th2/Tc2 for mediating Graft Rejection vs. P<0.0005, vs. P< B6 BALB/c Donor alone Host T Th1/Tc1 Th2/Tc2 Survival (%) Time after T (d) Percent Donor alone + Th2/Tc2

7 STAT1 signaling is Indispensable for Graft Rejection BALB/c B6 100 vs. P<.01 Donor only Host Stat1 -/- T WT T Survival (%) Chimerism-d Time after T (d) 100 Percent Donor Spleen Blood Spleen Blood only + Stat1 -/- T

8 Prevention of Graft rejection: role of STAT4 and STAT6 STAT4: STAT4-/- ( Th1) host T cells Graft Rejection IL-12 Infusion host Th1 Graft Rejection STAT6: STAT6-/- ( Th2) host T cells Graft Rejection WT host T cells + donor Th2R Graft Rejection STAT6-/- ( Th2) host T cells Graft Rejection with donor Th2R CD8 + INFγ + splenocytes(10 6 ) * * * * * * * * * * * * Syngeneic DC stimulation Allogeneic DC stimulation *** p<.001 Host inocula Donor inocula 0 _ T _ T STAT6 -/- T WT T /Th2R STAT6 -/- T /Th2R IL-4 -/- T /Th2R

9 Objectives of the Project Aim 1: Elucidate the kinetics of STAT activation and cross-talk in host T cells during graft rejection and tolerance Aim 2: Determine the cross-inhibition between different STAT molecules that dictate Th1- or Th2-type polarization of host T cells during graft rejection and tolerance Aim 3: Develop new strategies of blocking host Th1-type polarization in order to prevent graft rejection and reduce pre-transplant conditioning and post-transplant immunosuppressive treatment

10 Aim1: Validation In Vitro of the Methods Host Donor C57/BL6 C57/BL6 BALB/c BALB.B Spleen Harvest Mixed Lymphocyte Reaction (MLR) Different Host:Donor T Cell Ratio STAT signaling expression of STAT1/3/4/5/6 phosphorilation status of STAT1/3/4/5/6 Phospho Flow-Cytometry (Nolan, JI 2005) Methods Real Time PCR Western Blotting Validation of flow-cytometry findings

11 11 Gy TBI Aim1: In Vivo Analysis of STAT Signaling Lethal Body Radiation and Host T Cell Add-back Advantage: able to quantify the Host Immunologic Barrier for engraftment Purified Host T cells add-back (0.1x10^6) TCD (10x10^6) ± Donor Th2 Cells Day -2 Day -1 Day 0 Day Progressive Reduction of TBI Dose Advantage: able to consider Thymus reconstitution as a variable Characterization of Host T Cells and DC STAT Signaling by Flow-cytometry From 11 Gy to 2 Gy TBI TCD (10x10^6) ± Donor Th2 Cells Day -2 Day 0

12 Aim1: Role of STAT3 and STAT5 11 Gy TBI (B6) Purified Host T cells add-back STAT3 fl/fl Cre STAT5 fl/fl Cre TCD (10x10^6) Day -2 Day -1 Day 0 Spleen Harvest Day 7 Day 90 Detection of Allospecific IFN-γ secretion Characterization of Cytokine Secretion (Th1 vs Th2) Overall Survival Long-term Engraftment STAT3 fl/fl Cre and STAT5 fl/fl Cre will be provided from J. O Shea laboratory

13 Aim2: Cross Inhibition between STAT molecules Hypothesis: STAT6 and STAT1 cross-inhibition controls Th2 and Th1 differentiation In vivo 11 Gy TBI (B6) Purified Host T cells add-back STAT6-ER TCD (10x10^6) + 4-hydroxy-tamoxifen Day -2 Day -1 Day 0 Analysis of host T cells expression of STAT1 and STAT4 at different doses of 4-hydroxy-tamoxifen STAT6-ER: STAT6-estrogen receptor fusion protein (Kurata, Immunity 1999)

14 Aim2: Cross Inhibition between STAT molecules In vitro (MLR) Hypothesis 1: STAT6 dimerize with STAT1 when there is an excess of STAT6 signaling STAT6 Jak1 Tyk2 1 1 Method Isolate host T cells under condition of graft rejection (w/o Th2 cells) or tolerance (w Th2 cells). Immunoprecipitation of STAT1 and STAT6

15 Aim2: Cross Inhibition between STAT molecules In vitro (MLR) Hypothesis 2: STAT6 is erroneously recruited on the receptors binding sites of IFN-I and -II or IL-12 and inhibits the binding of STAT1 Method Isolate host T cells under condition of graft rejection (w/o Th2 cells) or tolerance (w Th2 cells). Immunoprecipitation of STAT6 and Type -I or -II IFN or IL-12 Receptors. Henninghausen, Gen & Dev, 2008

16 Aim3: New Strategies for Non-Myeloablative T Background Inhibition of STAT1 Histone Deacetylase Inhibitor (i.e. SAHA) abrogates STAT1 and STAT3 signaling and reduces GVHD (Mapara, 2006) Vorinostat has a proven anti-tumor activity(martinez-iglesias, 2008) Inhibition of JAK signaling CP-690,550 is a highly selective JAK3 inhibitor, with no effect outside the immune-system (similarly to JAK3-SCID patients) On the contrary calcineurin inhibitors, mtor inhibitors, steroids have systemic toxicity CP-690,550 prevents heart and kidney rejection(non-human models) CP-690,550 is effective in clinical trials for psoriasis, RA Approval from FDA is expected within 2009.

17 Aim3: New Strategies for Non-Myeloablative T Progressive Reduction of TBI Dose fully MHC mismatched T (BALB/c --> B6) minor Hag mismatched T (BALB.B --> B6) From 11 Gy to 0 Gy TBI TCD (10x10^6) ± Donor Th2 Cells Long-term Engraftment Day -2 Day 0 Day 90 % Donor SAHA or JAK3 Inhibitor Preliminary Data Day 7/15/21 Fate of Allospecific T cells - Vβ8+ T cells - CD8(+)H60(TCR+) T cells CP-690,550 is >10000 more potent than AG490 at inhibiting JAK3 0 XRT 900 cgy XRT 900cGy + AG490

18 Conclusions (Clinical Relevance) Aim 1: understand the biology of graft rejection and develop new target strategies (such as STAT molecule blockade) Aim 2: investigate the possible interaction of STAT6 and STAT1 in determining Th1 and Th2 polarization. Aim3: design new conditioning regimens for non-myeloablative transplants by including drugs that can both: facilitate engraftment (immunomodulatory activity), reduce side effects (specific immune-system activity), control tumor growth (SAHA inhibition of hystone deacetylases that are implicated in several tumors; CP-690,550 is also effective on JAK2 signaling that is implicated in MDS, PV, MF)

Transplantation. Immunology Unit College of Medicine King Saud University

Transplantation. Immunology Unit College of Medicine King Saud University Transplantation Immunology Unit College of Medicine King Saud University Objectives To understand the diversity among human leukocyte antigens (HLA) or major histocompatibility complex (MHC) To know the

More information

Supplementary Figure Legends. group) and analyzed for Siglec-G expression utilizing a monoclonal antibody to Siglec-G (clone SH2.1).

Supplementary Figure Legends. group) and analyzed for Siglec-G expression utilizing a monoclonal antibody to Siglec-G (clone SH2.1). Supplementary Figure Legends Supplemental Figure : Naïve T cells express Siglec-G. Splenocytes were isolated from WT B or Siglec-G -/- animals that have not been transplanted (n= per group) and analyzed

More information

Introduction to Clinical Hematopoietic Cell Transplantation (HCT) George Chen, MD Thursday, May 03, 2018

Introduction to Clinical Hematopoietic Cell Transplantation (HCT) George Chen, MD Thursday, May 03, 2018 Introduction to Clinical Hematopoietic Cell Transplantation (HCT) George Chen, MD Thursday, May 03, 2018 The transfer of hematopoietic progenitor and stem cells for therapeutic purposes Hematopoietic Cell

More information

What s a Transplant? What s not?

What s a Transplant? What s not? What s a Transplant? What s not? How to report the difference? Daniel Weisdorf MD University of Minnesota Anti-cancer effects of BMT or PBSCT [HSCT] Kill the cancer Save the patient Restore immunocompetence

More information

An Overview of Blood and Marrow Transplantation

An Overview of Blood and Marrow Transplantation An Overview of Blood and Marrow Transplantation October 24, 2009 Stephen Couban Department of Medicine Dalhousie University Objectives What are the types of blood and marrow transplantation? Who may benefit

More information

One Day BMT Course by Thai Society of Hematology. Management of Graft Failure and Relapsed Diseases

One Day BMT Course by Thai Society of Hematology. Management of Graft Failure and Relapsed Diseases One Day BMT Course by Thai Society of Hematology Management of Graft Failure and Relapsed Diseases Piya Rujkijyanont, MD Division of Hematology-Oncology Department of Pediatrics Phramongkutklao Hospital

More information

Rob Wynn RMCH & University of Manchester, UK. HCT in Children

Rob Wynn RMCH & University of Manchester, UK. HCT in Children Rob Wynn RMCH & University of Manchester, UK HCT in Children Summary Indications for HCT in children Donor selection for Paediatric HCT Using cords Achieving engraftment in HCT Conditioning Immune action

More information

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All

MATERIALS AND METHODS. Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All MATERIALS AND METHODS Antibodies (Abs), flow cytometry analysis and cell lines Neutralizing antibodies specific to mouse Dll1, Dll4, J1 and J2 were prepared as described. 1,2 All other antibodies used

More information

The Use of Allogeneic Leukocytes Infusion in Cancer Immunotherapy

The Use of Allogeneic Leukocytes Infusion in Cancer Immunotherapy Research Article The Use of Allogeneic Leukocytes Infusion in Cancer Immunotherapy Yishu Tang 1*, Chunxia Zhou 2, Wenbo Ma 2, Dongmei Wang 2, Shuren Zhang 2 1 Department of Laboratory Medicine, The First

More information

Neutrophil Recovery: The. Posttransplant Recovery. Bus11_1.ppt

Neutrophil Recovery: The. Posttransplant Recovery. Bus11_1.ppt Neutrophil Recovery: The First Step in Posttransplant Recovery No conflicts of interest to disclose Bus11_1.ppt Blood is Made in the Bone Marrow Blood Stem Cell Pre-B White cells B Lymphocyte T Lymphocyte

More information

- Transplantation: removing an organ from donor and gives it to a recipient. - Graft: transplanted organ.

- Transplantation: removing an organ from donor and gives it to a recipient. - Graft: transplanted organ. Immunology Lecture num. (21) Transplantation - Transplantation: removing an organ from donor and gives it to a recipient. - Graft: transplanted organ. Types of Graft (4 types): Auto Graft - From a person

More information

Bone Marrow Transplantation and the Potential Role of Iomab-B

Bone Marrow Transplantation and the Potential Role of Iomab-B Bone Marrow Transplantation and the Potential Role of Iomab-B Hillard M. Lazarus, MD, FACP Professor of Medicine, Director of Novel Cell Therapy Case Western Reserve University 1 Hematopoietic Cell Transplantation

More information

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland

PREPARED FOR: U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland AWARD NUMBER: W81XWH-11-1-0294 TITLE: Modulation of Memory T Cells to Control Acquired Bone Marrow Failure PRINCIPAL INVESTIGATOR: Yi Zhang RECIPIENT: Temple University Philadelphia, PA 19140 REPORT DATE:

More information

Reduced-intensity Conditioning Transplantation

Reduced-intensity Conditioning Transplantation Reduced-intensity Conditioning Transplantation Current Role and Future Prospect He Huang M.D., Ph.D. Bone Marrow Transplantation Center The First Affiliated Hospital Zhejiang University School of Medicine,

More information

A Tolerance Approach to the Transplantation of Vascularized Tissues

A Tolerance Approach to the Transplantation of Vascularized Tissues A Tolerance Approach to the Transplantation of Vascularized Tissues The 9th New Jersey Symposium on Biomaterials Science and Regenerative Medicine October 29-31, 2008 David H. Sachs, M.D. Harvard Medical

More information

Manipulation of T Cells in the Thnsplant Inoculum

Manipulation of T Cells in the Thnsplant Inoculum International Journal of Cell Cloning 4: 122-126 Suppl 1 (1986) Manipulation of T Cells in the Thnsplant Inoculum J. Kersey Bone Marrow Transplantation Program, University of Minnesota, Minneapolis, MN,

More information

Supplemental Figure 1. Protein L

Supplemental Figure 1. Protein L Supplemental Figure 1 Protein L m19delta T m1928z T Suppl. Fig 1. Expression of CAR: B6-derived T cells were transduced with m19delta (left) and m1928z (right) to generate CAR T cells and transduction

More information

Haploidentical Transplantation: The Answer to our Donor Problems? Mary M. Horowitz, MD, MS CIBMTR, Medical College of Wisconsin January 2017

Haploidentical Transplantation: The Answer to our Donor Problems? Mary M. Horowitz, MD, MS CIBMTR, Medical College of Wisconsin January 2017 Haploidentical Transplantation: The Answer to our Donor Problems? Mary M. Horowitz, MD, MS CIBMTR, Medical College of Wisconsin January 2017 Allogeneic Transplant Recipients in the US, by Donor Type 9000

More information

5/9/2018. Bone marrow failure diseases (aplastic anemia) can be cured by providing a source of new marrow

5/9/2018. Bone marrow failure diseases (aplastic anemia) can be cured by providing a source of new marrow 5/9/2018 or Stem Cell Harvest Where we are now, and What s Coming AA MDS International Foundation Indianapolis IN Luke Akard MD May 19, 2018 Infusion Transplant Conditioning Treatment 2-7 days STEM CELL

More information

The future of HSCT. John Barrett, MD, NHBLI, NIH Bethesda MD

The future of HSCT. John Barrett, MD, NHBLI, NIH Bethesda MD The future of HSCT John Barrett, MD, NHBLI, NIH Bethesda MD Transplants today Current approaches to improve SCT outcome Optimize stem cell dose and source BMT? PBSCT? Adjusting post transplant I/S to minimize

More information

UKALL14. Non-Myeloablative Conditioning Regimen (1/1) Date started (dd/mm/yyyy) (Day 7) Weight (kg) BSA (m 2 )

UKALL14. Non-Myeloablative Conditioning Regimen (1/1) Date started (dd/mm/yyyy) (Day 7) Weight (kg) BSA (m 2 ) Non-Myeloablative Conditioning Regimen (1/1) started (dd/mm/yyyy) (Day 7) BSA (m 2 ) Weight (kg) Please enter the daily dose given in the table below: Day Fludarabine (mg) Melphalan (mg) Alemtuzumab (mg)

More information

Histocompatibility Evaluations for HSCT at JHMI. M. Sue Leffell, PhD. Professor of Medicine Laboratory Director

Histocompatibility Evaluations for HSCT at JHMI. M. Sue Leffell, PhD. Professor of Medicine Laboratory Director Histocompatibility Evaluations for HSCT at JHMI M. Sue Leffell, PhD Professor of Medicine Laboratory Director JHMI Patient Population Adults Peds NMDP data >20,000 HSCT JHMI HSCT Protocols Bone marrow

More information

Stem Cell Transplantation with S-59 Photochemically Treated T-Cell Add-Backs to Establish Allochimerism in Murine Thalassemia

Stem Cell Transplantation with S-59 Photochemically Treated T-Cell Add-Backs to Establish Allochimerism in Murine Thalassemia Stem Cell Transplantation with S-59 Photochemically Treated T-Cell Add-Backs to Establish Allochimerism in Murine Thalassemia FRANS A. KUYPERS, a GORDON WATSON, a EZRA SAGE, a MARK C. WALTERS, a JAMES

More information

Transplant Booklet D Page 1

Transplant Booklet D Page 1 Booklet D Pretest Correct Answers 4. (A) is correct. Technically, performing a hematopoietic stem cell transplant is one of the simplest transplantation procedures. The hematopoietic stem cells are infused

More information

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION Benjamini. Ch. 19, Pgs 379-399 Page 1 of 10 TRANSPLANTATION I. KINDS OF GRAFTS II. RELATIONSHIPS BETWEEN DONOR AND RECIPIENT Benjamini. Ch. 19, Pgs 379-399 Page 2 of 10 II.GRAFT REJECTION IS IMMUNOLOGIC

More information

Carol Cantwell Blood Transfusion Laboratory Manager St Mary s Hospital, ICHNT

Carol Cantwell Blood Transfusion Laboratory Manager St Mary s Hospital, ICHNT Carol Cantwell Blood Transfusion Laboratory Manager St Mary s Hospital, ICHNT History Why is blood transfusion involved? What tests are performed in blood transfusion and why? What does a protocol look

More information

Haploidentical Donor Transplants: Outcomes and Comparison to Other. Paul V. O Donnell BSBMT Education Day London 12 October 2011

Haploidentical Donor Transplants: Outcomes and Comparison to Other. Paul V. O Donnell BSBMT Education Day London 12 October 2011 Haploidentical Donor Transplants: Outcomes and Comparison to Other Donor Types Paul V. O Donnell BSBMT Education Day London 12 October 2011 Clinical Problem: Identification of a Donor for Allogeneic Transplantation

More information

Ex Vivo Rapamycin Generates Apoptosis-Resistant Donor Th2 Cells That Persist In Vivo and Prevent Hemopoietic Stem Cell Graft Rejection

Ex Vivo Rapamycin Generates Apoptosis-Resistant Donor Th2 Cells That Persist In Vivo and Prevent Hemopoietic Stem Cell Graft Rejection This information is current as of October 21, 218. References Subscription Permissions Email Alerts Ex Vivo Rapamycin Generates Apoptosis-Resistant Donor Th2 Cells That Persist In Vivo and Prevent Hemopoietic

More information

Does NK cell alloreactivity prevent relapse? Yes!!! Andrea Velardi Bone Marrow Transplant Program University of Perugia

Does NK cell alloreactivity prevent relapse? Yes!!! Andrea Velardi Bone Marrow Transplant Program University of Perugia Does NK cell alloreactivity prevent relapse? Yes!!! Andrea Velardi Bone Marrow Transplant Program University of Perugia Recognition of missing self HLA triggers lysis NK Inhibitory receptor Activating

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Hematopoietic Cell Transplantation for CLL and SLL File Name: Origination: Last CAP Review: Next CAP Review: Last Review: hematopoietic_cell_transplantation_for_cll_and_sll 2/2001

More information

TRANSPLANT IMMUNOLOGY. Shiv Pillai Ragon Institute of MGH, MIT and Harvard

TRANSPLANT IMMUNOLOGY. Shiv Pillai Ragon Institute of MGH, MIT and Harvard TRANSPLANT IMMUNOLOGY Shiv Pillai Ragon Institute of MGH, MIT and Harvard Outline MHC / HLA Direct vs indirect allorecognition Alloreactive cells: where do they come from? Rejection and Immunosuppression

More information

Allogeneic bone marrow transplantation (BMT)

Allogeneic bone marrow transplantation (BMT) Photochemical Treatment with S-59 Psoralen and Ultraviolet A Light to Control the Fate of Naive or Primed T Lymphocytes In Vivo After Allogeneic Bone Marrow Transplantation 1 Robert L. Truitt, 2 * Bryon

More information

Alloreattività e Tolleranza nei Trapianti di Cellule Staminali Emopoietiche Allogeniche

Alloreattività e Tolleranza nei Trapianti di Cellule Staminali Emopoietiche Allogeniche Alloreattività e Tolleranza nei Trapianti di Cellule Staminali Emopoietiche Allogeniche Massimo Fabrizio Martelli Ematologia ed Immunologia Clinica Università degli Studi di Perugia 41 Congresso Nazionale

More information

Hematopoietic Stem Cell Transplant in Sickle Cell Disease- An update

Hematopoietic Stem Cell Transplant in Sickle Cell Disease- An update Hematopoietic Stem Cell Transplant in Sickle Cell Disease- An update Dr Chirag A Shah Diplomate American Board of Hematology and Medical Oncology Director, Dept of Hemato-Oncology and Stem Cell Transplant

More information

Tolerance Induction in Transplantation

Tolerance Induction in Transplantation Tolerance Induction in Transplantation Reza F. Saidi, MD, FACS, FICS Assistant Professor of Surgery Division of Organ Transplantation Department of Surgery University of Massachusetts Medical School Percent

More information

Umbilical Cord Blood Transplantation

Umbilical Cord Blood Transplantation Umbilical Cord Blood Transplantation Current Results John E. Wagner, M.D. Blood and Marrow Transplant Program and Stem Cell Institute University of Minnesota Donor Choices Unrelated Marrow/PBSC Results

More information

Acknowledgements. Department of Hematological Malignancy and Cellular Therapy, University of Kansas Medical Center

Acknowledgements. Department of Hematological Malignancy and Cellular Therapy, University of Kansas Medical Center The Addition of Extracorporeal Photopheresis (ECP) to Tacrolimus and Methotrexate to Prevent Acute and Chronic Graft- Versus Host Disease in Myeloablative Hematopoietic Cell Transplant (HCT) Anthony Accurso,

More information

Dedicated to Gordon. Stem Cell Transplantation: The Journey

Dedicated to Gordon. Stem Cell Transplantation: The Journey Dedicated to Gordon Stem Cell Transplantation: The Journey 1949 Jacobson et al: Radioprotection by lead shielding of the spleen of a lethally irradiated animal 1951 Lorenz et al: Radiation protection

More information

FIT Board Review Corner March 2016

FIT Board Review Corner March 2016 FIT Board Review Corner March 2016 Welcome to the FIT Board Review Corner, prepared by Sarah Spriet, DO, and Tammy Peng, MD, senior and junior representatives of ACAAI's Fellows-In-Training (FITs) to the

More information

Transplantation - Challenges for the future. Dr Gordon Cook S t James s Institute of Oncology, Leeds Teaching Hospitals Trust

Transplantation - Challenges for the future. Dr Gordon Cook S t James s Institute of Oncology, Leeds Teaching Hospitals Trust Transplantation - Challenges for the future Dr Gordon Cook S t James s Institute of Oncology, Leeds Teaching Hospitals Trust Bone Marrow Transplantation Timeline, 1957-2006 Appelbaum F. N Engl J Med 2007;357:1472-1475

More information

Natural Killer Cells: Development, Diversity, and Applications to Human Disease Dr. Michael A. Caligiuri

Natural Killer Cells: Development, Diversity, and Applications to Human Disease Dr. Michael A. Caligiuri Natural Killer Cells: Development, Diversity, November 26, 2008 The Ohio State University Comprehensive Cancer Center The James Cancer Hospital and Solove Research Institute Columbus, Ohio, USA 1 Human

More information

Umbilical Cord Blood-Derived T Regulatory Cells

Umbilical Cord Blood-Derived T Regulatory Cells Umbilical Cord Blood-Derived T Regulatory Cells David H. McKenna, M.D. PACT Workshop - University of Pittsburgh May 5, 2008 Slide 1 Outline Overview of T regulatory (T R ) cells Potential for clinical

More information

The role of HLA in Allogeneic Hematopoietic Stem Cell Transplantation and Platelet Refractoriness.

The role of HLA in Allogeneic Hematopoietic Stem Cell Transplantation and Platelet Refractoriness. The role of HLA in Allogeneic Hematopoietic Stem Cell Transplantation and Platelet Refractoriness. Robert Liwski, MD, PhD, FRCPC Medical Director HLA Typing Laboratory Department of Pathology Dalhousie

More information

Disclosures. Investigator-initiated study funded by Astellas

Disclosures. Investigator-initiated study funded by Astellas Disclosures Investigator-initiated study funded by Astellas 1 Background Widespread use of preemptive therapy strategies has decreased CMV end-organ disease to 5-8% after HCT. Implications for development

More information

Is in vitro T-cell depletion necessary for Haploidentical TransplantationTitle of Presentation. Disclosure of Interest: Nothing to Disclose

Is in vitro T-cell depletion necessary for Haploidentical TransplantationTitle of Presentation. Disclosure of Interest: Nothing to Disclose Rupert Handgretinger Children s University Hospital, Tübingen, Germany Is in vitro T-cell depletion necessary for Haploidentical TransplantationTitle of Presentation Disclosure of Interest: Nothing to

More information

General Terms: Appendix B. National Marrow Donor Program and The Medical College of Wisconsin

General Terms: Appendix B. National Marrow Donor Program and The Medical College of Wisconsin Glossary of Terms This appendix is divided into two sections. The first section, General Terms, defines terms used throughout the CIBMTR data collection forms. The second section, FormsNet TM 2 Terms,

More information

Hematopoietic Stem Cell Transplantation for Fanconi Anemia

Hematopoietic Stem Cell Transplantation for Fanconi Anemia Hematopoietic Stem Cell Transplantation for Fanconi Anemia John E. Wagner, M.D. Blood and Marrow Transplant Program University of Minnesota Cell Therapy for Pediatric Diseases NHLBI PACT Workshop 14 15

More information

Hematopoietic Cell Transplantation for Myelofibrosis. Outline

Hematopoietic Cell Transplantation for Myelofibrosis. Outline Hematopoietic Cell Transplantation for Myelofibrosis H.Joachim Deeg MD Fred Hutchinson Cancer Research Center & University of Washington, Seattle WA Great Debates, NY, 4/28/2012 Outline Rationale for hematopoietic

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy File Name: Origination: Last CAP Review: Next CAP Review: Last Review: hematopoietic_stem-cell_ transplantation_for_primary_amyloidosis 2/2001 11/2018 11/2019 11/2018 Description

More information

From Bench to Bedside Regulatory T Cells: Can We Make the Police Work for Us?

From Bench to Bedside Regulatory T Cells: Can We Make the Police Work for Us? From Bench to Bedside Regulatory T Cells: Can We Make the Police Work for Us? Sang Mo Kang, MD Qizhi Tang, PhD UCSF Division of Transplantation UCSF Transplant Conference 2012 The Reality of Immunosuppression

More information

High dose cyclophosphamide in HLAhaploidentical

High dose cyclophosphamide in HLAhaploidentical High dose cyclophosphamide in HLAhaploidentical stem cell transplantation Ephraim J. Fuchs, M.D., M.B.A. Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins fuchsep@jhmi.edu Alternative Donor Transplantation:

More information

Haplo vs Cord vs URD Debate

Haplo vs Cord vs URD Debate 3rd Annual ASBMT Regional Conference for NPs, PAs and Fellows Haplo vs Cord vs URD Debate Claudio G. Brunstein Associate Professor University of Minnesota Medical School Take home message Finding a donor

More information

Characteristics of CD34-Enriched Products Processed at Multiple Centers Using the CliniMACS System - BMT CTN 0303

Characteristics of CD34-Enriched Products Processed at Multiple Centers Using the CliniMACS System - BMT CTN 0303 Characteristics of CD34-Enriched Products Processed at Multiple Centers Using the CliniMACS System - BMT CTN 0303 Carolyn Keever-Taylor, Steven M Devine, Robert J Soiffer, Shelly L Carter, Marcelo Pasquini,

More information

An Introduction to Bone Marrow Transplant

An Introduction to Bone Marrow Transplant Introduction to Blood Cancers An Introduction to Bone Marrow Transplant Rushang Patel, MD, PhD, FACP Florida Hospital Medical Group S My RBC Plt Gran Polycythemia Vera Essential Thrombocythemia AML, CML,

More information

RIC in Allogeneic Stem Cell Transplantation

RIC in Allogeneic Stem Cell Transplantation RIC in Allogeneic Stem Cell Transplantation Rainer Storb, MD Fred Hutchinson Cancer Research Center and the University of Washington School of Medicine Seattle, WA Disclosure Grant Support: NIH grants

More information

IMMUNOBIOLOGY OF GRAFT VERSUS HOST DISEASE IN CHEMOTHERAPY BASED CONDITIONING NEW MOUSE MODEL

IMMUNOBIOLOGY OF GRAFT VERSUS HOST DISEASE IN CHEMOTHERAPY BASED CONDITIONING NEW MOUSE MODEL From Department of Laboratory Medicine Clinical Research Center- Experimental Cancer Medicine Karolinska Institutet, Stockholm, Sweden IMMUNOBIOLOGY OF GRAFT VERSUS HOST DISEASE IN CHEMOTHERAPY BASED CONDITIONING

More information

Low T-cell chimerism is not followed by graft rejection after nonmyeloablative stem cell transplantation (NMSCT) with CD34-selected PBSC

Low T-cell chimerism is not followed by graft rejection after nonmyeloablative stem cell transplantation (NMSCT) with CD34-selected PBSC (23) 32, 829 834 & 23 Nature Publishing Group All rights reserved 268-3369/3 $25. www.nature.com/bmt Low T-cell chimerism is not followed by graft rejection after nonmyeloablative stem cell transplantation

More information

STAT3 Transcription Factor Promotes Instability of ntreg Cells and Limits Generation of itreg Cells during Acute Murine Graft-versus-Host Disease

STAT3 Transcription Factor Promotes Instability of ntreg Cells and Limits Generation of itreg Cells during Acute Murine Graft-versus-Host Disease Article STAT3 Transcription Factor Promotes Instability of ntreg Cells and Limits Generation of itreg Cells during Acute Murine Graft-versus-Host Disease Arian Laurence, 1,5, Shoba Amarnath,,5 Jacopo Mariotti,

More information

Allogeneic Hematopoietic Stem Cell Transplantation: State of the Art in 2018 RICHARD W. CHILDS M.D. BETHESDA MD

Allogeneic Hematopoietic Stem Cell Transplantation: State of the Art in 2018 RICHARD W. CHILDS M.D. BETHESDA MD Allogeneic Hematopoietic Stem Cell Transplantation: State of the Art in 2018 RICHARD W. CHILDS M.D. BETHESDA MD Overview: Update on allogeneic transplantation for malignant and nonmalignant diseases: state

More information

Effect of Conditioning Regimen Intensity on CMV Infection in Allogeneic Hematopoietic Cell Transplantation

Effect of Conditioning Regimen Intensity on CMV Infection in Allogeneic Hematopoietic Cell Transplantation Version 3-30-2009 Effect of Conditioning Regimen Intensity on CMV Infection in Allogeneic Hematopoietic Cell Transplantation Authors: Hirohisa Nakamae, 1 Katharine A. Kirby, 1 Brenda M. Sandmaier, 1,2

More information

HAEMATOPOIETIC STEM CELL TRANSPLANTATION

HAEMATOPOIETIC STEM CELL TRANSPLANTATION PRIMARY IMMUNODEFICIENCIES HAEMATOPOIETIC STEM CELL TRANSPLANTATION HAEMATOPOIETIC STEM CELL TRANSPLANTATION 1 PRIMARY IMMUNODEFICIENCIES KEY ABBREVIATIONS CID GvHD HSCT IPOPI PID SCID BMT HSC Combined

More information

Trends in Hematopoietic Cell Transplantation. AAMAC Patient Education Day Oct 2014

Trends in Hematopoietic Cell Transplantation. AAMAC Patient Education Day Oct 2014 Trends in Hematopoietic Cell Transplantation AAMAC Patient Education Day Oct 2014 Objectives Review the principles behind allogeneic stem cell transplantation Outline the process of transplant, some of

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Hematopoietic Stem-Cell Transplantation for Autoimmune Diseases File Name: Origination: Last CAP Review: Next CAP Review: Last Review: hematopoietic_stem-cell_transplantation_for_autoimmune_diseases

More information

Acute Graft-versus-Host Disease (agvhd) Udomsak Bunworasate Chulalongkorn University

Acute Graft-versus-Host Disease (agvhd) Udomsak Bunworasate Chulalongkorn University Acute Graft-versus-Host Disease (agvhd) Udomsak Bunworasate Chulalongkorn University Graft-versus-Host Disease (GVHD) Background GVHD is an immunologic reaction of the donor immune cells (Graft) against

More information

Epigenetic approaches in stem cell transplantation

Epigenetic approaches in stem cell transplantation Clin Epigenet (2011) 2:411 416 DOI 10.1007/s13148-011-0048-0 REPORT Epigenetic approaches in stem cell transplantation Nicole Engel Received: 28 April 2011 /Accepted: 28 June 2011 /Published online: 16

More information

Transplantation Immunology

Transplantation Immunology Transplantation Immunology Mitchell S. Cairo, MD Professor of Pediatrics, Medicine and Pathology Chief, Division, Pediatric Hematology & Blood & Marrow Transplantation Children s Hospital New York Presbyterian

More information

Transplantation Immunology

Transplantation Immunology Transplantation Immunology MHC Restricted Allograft Rejection Mitchell S. Cairo, MD Professor of Pediatrics, Medicine and Pathology Chief, Division, Pediatric Hematology & Blood & Marrow Transplantation

More information

Disclosure. Objectives 1/22/2015

Disclosure. Objectives 1/22/2015 Evaluation of the Impact of Anti Thymocyte Globulin (ATG) on Post Hematopoietic Stem Cell Transplant (HCT) Outcomes in Patients Undergoing Allogeneic HCT Katie S. Kaminski, PharmD, CPP University of North

More information

IN UTERO HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CANINES: THE GESTATIONAL WINDOW OF OPPORTUNITY TO MAXIMIZE ENGRAFTMENT

IN UTERO HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CANINES: THE GESTATIONAL WINDOW OF OPPORTUNITY TO MAXIMIZE ENGRAFTMENT IN UTERO HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CANINES: THE GESTATIONAL WINDOW OF OPPORTUNITY TO MAXIMIZE ENGRAFTMENT Karin J. Blakemore, M.D. Division of Maternal-Fetal Medicine The Bone Marrow Transplant

More information

Costimulation blockade for prevention of

Costimulation blockade for prevention of Costimulation blockade for prevention of acute GVHD Amelia Langston, MD Professor of Hematology & Medical Oncology Medical Director, Emory University BM & Stem Cell Transplant Center Emory University School

More information

Are We There Yet? Gene Therapy and BMT as Curative Therapies in Sickle Cell. Ann Haight, MD 9 Sept 2017

Are We There Yet? Gene Therapy and BMT as Curative Therapies in Sickle Cell. Ann Haight, MD 9 Sept 2017 Are We There Yet? Gene Therapy and BMT as Curative Therapies in Sickle Cell Ann Haight, MD 9 Sept 2017 Spoiler alert Yes (we have a cure) And No Work to do! 2 Sickle Cell Treatment Options Supportive Care

More information

HLA-DR-matched Parental Donors for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with High-risk Acute Leukemia

HLA-DR-matched Parental Donors for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with High-risk Acute Leukemia BRIEF COMMUNICATION HLA-DR-matched Parental Donors for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with High-risk Acute Leukemia Shang-Ju Wu, Ming Yao,* Jih-Luh Tang, Bo-Sheng Ko, Hwei-Fang

More information

Allorecognition: Lessons from Corneal Transplantation

Allorecognition: Lessons from Corneal Transplantation This information is current as of June 14, 2018. Role of CD4 + and CD8 + T Cells in Allorecognition: Lessons from Corneal Transplantation Florence Boisgérault, Ying Liu, Natalie Anosova, Elana Ehrlich,

More information

Belatacept: An Opportunity to Personalize Immunosuppression? Andrew Adams MD/PhD Emory Transplant Center

Belatacept: An Opportunity to Personalize Immunosuppression? Andrew Adams MD/PhD Emory Transplant Center Belatacept: An Opportunity to Personalize Immunosuppression? Andrew Adams MD/PhD Emory Transplant Center Disclosure Research Funding from BMS. Learning Objectives -Define belatacept-resistant rejection

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Hematopoietic Stem-Cell Transplantation for Waldenstrom Macroglobulinemia File Name: Origination: Last CAP Review: Next CAP Review: Last Review: hematopoietic_stem_cell_transplantation_for_waldenstrom_macroglobulinemia

More information

Ron Shapiro, MD, Abdul S. Rao, MD, D. Phil., Paulo Fontes, MD, Adrianna Zeevi, Ph.D., Mark Jordan, MD, Velma P. Scantlebury, MD,

Ron Shapiro, MD, Abdul S. Rao, MD, D. Phil., Paulo Fontes, MD, Adrianna Zeevi, Ph.D., Mark Jordan, MD, Velma P. Scantlebury, MD, Kidney IBone Marrow Transplantation Ron Shapiro, MD, Abdul S. Rao, MD, D. Phil., Paulo Fontes, MD, Adrianna Zeevi, Ph.D., Mark Jordan, MD, Velma P. Scantlebury, MD, Carlos Vivas, MD, H. Albin Gritsch,

More information

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS

Antigen Presentation and T Lymphocyte Activation. Abul K. Abbas UCSF. FOCiS 1 Antigen Presentation and T Lymphocyte Activation Abul K. Abbas UCSF FOCiS 2 Lecture outline Dendritic cells and antigen presentation The role of the MHC T cell activation Costimulation, the B7:CD28 family

More information

Impatto clinico nel trapianto allogenico da donatori non familiari dei mismatch al locus HLA-DPB1

Impatto clinico nel trapianto allogenico da donatori non familiari dei mismatch al locus HLA-DPB1 Impatto clinico nel trapianto allogenico da donatori non familiari dei mismatch al locus HLA-DPB1 Gruppo Italiano Trapianto Midollo Osseo Italian Bone Marrow Donor Registry Immunogenetics and HSCT Units

More information

25/10/2017. Clinical Relevance of the HLA System in Blood Transfusion. Outline of talk. Major Histocompatibility Complex

25/10/2017. Clinical Relevance of the HLA System in Blood Transfusion. Outline of talk. Major Histocompatibility Complex Clinical Relevance of the HLA System in Blood Transfusion Dr Colin J Brown PhD FRCPath. October 2017 Outline of talk HLA genes, structure and function HLA and immune complications of transfusion TA-GVHD

More information

UMBILICAL CORD BLOOD STEM CELLS EXPANDED IN THE PRESENCE OF NICOTINAMIDE (NICORD) PROVIDE LONG TERM MULITI-LINEAGE ENGRAFTMENT

UMBILICAL CORD BLOOD STEM CELLS EXPANDED IN THE PRESENCE OF NICOTINAMIDE (NICORD) PROVIDE LONG TERM MULITI-LINEAGE ENGRAFTMENT UMBILICAL CORD BLOOD STEM CELLS EXPANDED IN THE PRESENCE OF NICOTINAMIDE (NICORD) PROVIDE LONG TERM MULITI-LINEAGE ENGRAFTMENT Mitchell E. Horwitz, MD Duke University Medical Center Duke Cancer Institute

More information

SUPPLEMENTARY FIGURE 1

SUPPLEMENTARY FIGURE 1 SUPPLEMENTARY FIGURE 1 A LN Cell count (1 ) 1 3 1 CD+ 1 1 CDL lo CD hi 1 CD+FoxP3+ 1 1 1 7 3 3 3 % of cells 9 7 7 % of cells CD+ 3 1 % of cells CDL lo CD hi 1 1 % of CD+ cells CD+FoxP3+ 3 1 % of CD+ T

More information

CHAPTER 3 LABORATORY PROCEDURES

CHAPTER 3 LABORATORY PROCEDURES CHAPTER 3 LABORATORY PROCEDURES CHAPTER 3 LABORATORY PROCEDURES 3.1 HLA TYPING Molecular HLA typing will be performed for all donor cord blood units and patients in the three reference laboratories identified

More information

Related haploidentical donors versus matched unrelated donors

Related haploidentical donors versus matched unrelated donors Related haploidentical donors versus matched unrelated donors Bronwen Shaw, MD PhD Professor of Medicine, MCW Senior Scientific Director, CIBMTR Definition Matched Unrelated donor Refers to HLA matching

More information

Supplementary Figure 1. Characterization of basophils after reconstitution of SCID mice

Supplementary Figure 1. Characterization of basophils after reconstitution of SCID mice Supplementary figure legends Supplementary Figure 1. Characterization of after reconstitution of SCID mice with CD4 + CD62L + T cells. (A-C) SCID mice (n = 6 / group) were reconstituted with 2 x 1 6 CD4

More information

The question is not whether or not to deplete T-cells, but how to deplete which T-cells

The question is not whether or not to deplete T-cells, but how to deplete which T-cells The question is not whether or not to deplete T-cells, but how to deplete which T-cells CD34+ positive selection Negative Depletion of: CD3/CD19 TcRαβ/CD19 T-cell depletion: positive selection versus negative

More information

Non-myeloablative allogeneic stem cell transplantation focusing on immunotherapy of life-threatening malignant and non-malignant diseases

Non-myeloablative allogeneic stem cell transplantation focusing on immunotherapy of life-threatening malignant and non-malignant diseases Critical Reviews in Oncology/Hematology 39 (2001) 25 29 www.elsevier.com/locate/critrevonc Non-myeloablative allogeneic stem cell transplantation focusing on immunotherapy of life-threatening malignant

More information

Haploidentical Transplantation today: and the alternatives

Haploidentical Transplantation today: and the alternatives Haploidentical Transplantation today: and the alternatives Daniel Weisdorf MD University of Minnesota February, 2013 No matched sib: where to look? URD donor requires close HLA matching and 3-12 weeks

More information

PAX5-JAK2 fusion in acute lymphoblastic leukaemia. Dr Andrew Baldi Royal Children s Hospital 24 February 2017 Melbourne

PAX5-JAK2 fusion in acute lymphoblastic leukaemia. Dr Andrew Baldi Royal Children s Hospital 24 February 2017 Melbourne PAX5-JAK2 fusion in acute lymphoblastic leukaemia Dr Andrew Baldi Royal Children s Hospital 24 February 2017 Melbourne Case 12-year-old girl Diagnosed with BCP ALL in November 2015 Presenting WCC 35x10

More information

EMERGING FUNGAL INFECTIONS IN IMMUNOCOMPROMISED PATIENTS

EMERGING FUNGAL INFECTIONS IN IMMUNOCOMPROMISED PATIENTS EMERGING FUNGAL INFECTIONS IN IMMUNOCOMPROMISED PATIENTS DR LOW CHIAN YONG MBBS, MRCP(UK), MMed(Int Med), FAMS Consultant, Dept of Infectious Diseases, SGH Introduction The incidence of invasive fungal

More information

Hematopoietic Stem Cells, Stem Cell Processing, and Transplantation

Hematopoietic Stem Cells, Stem Cell Processing, and Transplantation Hematopoietic Stem Cells, Stem Cell Processing, and Joseph (Yossi) Schwartz, M irector, Hemotherapy and Stem Cell Processing Facility Bone Marrow Can Cure: Leukemia Lymphoma Multiple Myeloma Genetic iseases:

More information

ASH 2011 aktualijos: MSC TPŠL gydyme. Mindaugas Stoškus VULSK HOTC MRMS

ASH 2011 aktualijos: MSC TPŠL gydyme. Mindaugas Stoškus VULSK HOTC MRMS ASH 2011 aktualijos: MSC TPŠL gydyme Mindaugas Stoškus VULSK HOTC MRMS #3042. Yukiyasu Ozawa et al. Mesenchymal Stem Cells As a Treatment for Steroid-Resistant Acute Graft Versus Host Disease (agvhd);

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Hematopoietic Cell Transplantation for Hodgkin Lymphoma File Name: Origination: Last CAP Review: Next CAP Review: Last Review: hematopoietic_cell_transplantation_for_hodgkin_lymphoma

More information

Complications after HSCT. ICU Fellowship Training Radboudumc

Complications after HSCT. ICU Fellowship Training Radboudumc Complications after HSCT ICU Fellowship Training Radboudumc Type of HSCT HSCT Improved outcome due to better HLA matching, conditioning regimens, post transplant supportive care Over one-third have pulmonary

More information

Immune Reconstitution Following Hematopoietic Cell Transplant

Immune Reconstitution Following Hematopoietic Cell Transplant Immune Reconstitution Following Hematopoietic Cell Transplant Patrick J. Kiel, PharmD, BCPS, BCOP Clinical Pharmacy Specialist Indiana University Simon Cancer Center Conflicts of Interest Speaker Bureau

More information

Rejuvenation of the ageing T cell compartment. Marcel R.M. van den Brink Departments of Medicine and Immunology

Rejuvenation of the ageing T cell compartment. Marcel R.M. van den Brink Departments of Medicine and Immunology Rejuvenation of the ageing T cell compartment Marcel R.M. van den Brink Departments of Medicine and Immunology Conclusions IL-7, KGF and Leuprolide show promise in early clinical trials to enhance post-transplant

More information

Experience of patients transplanted with naïve T cell depleted stem cell graft in CMUH

Experience of patients transplanted with naïve T cell depleted stem cell graft in CMUH Experience of patients transplanted with naïve T cell depleted stem cell graft in CMUH Tzu-Ting Chen, Wen-Jyi Lo, Chiao-Lin Lin, Ching-Chan Lin, Li-Yuan Bai, Supeng Yeh, Chang-Fang Chiu Hematology and

More information

Supplemental Table 1 Multivariate analysis of neutrophil and platelet

Supplemental Table 1 Multivariate analysis of neutrophil and platelet Transplant using vs. HLA 1-AG mismatched RD Supplemental Table 1 Multivariate analysis of neutrophil and platelet engraftment Variable Neutrophil engraftment* Platelet engraftment HR (95% CI) P value HR

More information

3.1 Clinical safety of chimeric or humanized anti-cd25 (ch/anti-cd25)

3.1 Clinical safety of chimeric or humanized anti-cd25 (ch/anti-cd25) 3 Results 3.1 Clinical safety of chimeric or humanized anti-cd25 (ch/anti-cd25) Five infusions of monoclonal IL-2 receptor antibody (anti-cd25) were planned according to protocol between day 0 and day

More information

Autoimmunity & Transplantation. Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel:

Autoimmunity & Transplantation. Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: Autoimmunity & Transplantation Dr. Aws Alshamsan Department of Pharmaceu5cs Office: AA87 Tel: 4677363 aalshamsan@ksu.edu.sa Learning Objectives By the end of this lecture you will be able to: 1 Recognize

More information

Achievement of Cellular Immunity and Discordant Xenogeneic Tolerance in Mice by Porcine Thymus Grafts

Achievement of Cellular Immunity and Discordant Xenogeneic Tolerance in Mice by Porcine Thymus Grafts Cellular & Molecular Immunology 173 Review Achievement of Cellular Immunity and Discordant Xenogeneic Tolerance in Mice by Porcine Thymus Grafts Yong Zhao 1, 2, 3, Zuyue Sun 1, Yimin Sun 2 and Alan N.

More information