Helical tomotherapy for head and neck squamous cell carcinoma: Dosimetric comparison with linear accelerator-based step-and-shoot IMRT

Size: px
Start display at page:

Download "Helical tomotherapy for head and neck squamous cell carcinoma: Dosimetric comparison with linear accelerator-based step-and-shoot IMRT"

Transcription

1 Original Article Free full text available from Helical tomotherapy for head and neck squamous cell carcinoma: Dosimetric comparison with linear accelerator-based step-and-shoot IMRT ABSTRACT Background: Linear Accelerator-based Intensity Modulated Radiation Therapy (IMRT), either as step-and shoot (SS) or in dynamic mode, is now considered routine in the definitive management of head and neck squamous cell carcinoma (HNSCC). Helical TomoTherapy (HT) is a new platform to deliver IMRT. This study aims to compare step-and-shoot Intensity Modulated Radiation Therapy (SS IMRT) with dynamic Helical TomoTherapy (HT) dosimetrically in patients with head and neck squamous cell carcinoma (HNSCC). Materials and Methods: Twelve patients with HNSCC, previously treated with SS IMRT, were re-planned on HT using the same CT dataset. Plans were compared for target coverage and organs-at-risk (OARs) sparing. Sparing of parotids was assessed after stratifying for side (contralateral vs. ipsilateral) and site of disease (laryngopharynx vs. oropharynx). Normal tissue complication probabilities (NTCP) were also compared for the parotid glands. Results: All HT plans showed improvement in target coverage and homogeneity, and reduction in OAR doses as compared to SS IMRT plans. For PTV 66, the mean V 99 improved by 14.65% (P = 0.02). Dose Homogeneity (D ) was significantly better in the HT plans (mean 2.07Gy as compared to 4.5Gy in the SS IMRT plans, P = 0.02). HT resulted in an average reduction of mean parotid dose of 12.66Gy and 18.28Gy for the contralateral and ipsilateral glands (P = 0.003) respectively. This translated into a 24.09% and 35.22% reduction in Normal Tissue Complication Probability (NTCP) for the contralateral and ipsilateral parotids respectively (P < 0.01). Site of disease (laryngopharynx vs. oropharynx) did not have any significant impact on parotid sparing between SS IMRT and HT. The maximum dose to the spinal cord showed a mean reduction of 12.07Gy in HT plans (P = 0.02). Conclusion: Helical Tomotherapy achieved better target coverage with improved OAR sparing as compared to SS IMRT. The significant reduction in mean parotid doses translated into meaningful reduction in NTCP, with potential clinical implications in terms of reduction in Xerostomia and improved quality of life in patients with HNSCC. KEY WORDS: Dosimetric comparison, intensity modulated radiation therapy, normal tissue complication probabilities, tomotherapy Vedang Murthy, Zubin Master, Tejpal Gupta, Sarbani Ghosh-Laskar, Ashwini Budrukkar, Reenadevi Phurailatpam, Jaiprakash Agarwal Department of Radiation Oncology, Tata Memorial Hospital and Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India For correspondence: Dr. Vedang Murthy, Consultant Radiation Oncologist, Tata Memorial Hospital and Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India. vmurthy@actrec. gov.in INTRODUCTION The paradigm of conformal radiotherapy in contemporary radiotherapy practice has been ushered with widespread adoption of threedimensional conformal radiotherapy (3D-CRT) and intensity modulated radiation therapy (IMRT) with their promise to improve the therapeutic index by increasing target volume coverage while reducing doses to surrounding organs-at-risk (OARs). [1,2] IMRT has been credited with the ability to generate highly conformal including concave dose distributions, with particular relevance in head and neck squamous cell carcinoma (HNSCC) due to their complex target volumes, proximity to critical structures, and a well-defined doseresponse relationship. Parotid-sparing IMRT has shown promising results in prospective studies by reducing the severity of xerostomia and maintaining quality of life parameters. [2] Even though IMRT plans are dosimetrically superior to conventional techniques, comprehensive long-term efficacy and toxicity data are still awaited. [3] Helical TomoTherapy (HT) has emerged as a promising and innovative technology platform for achieving highly conformal dose distribution to large and complex target volumes. A 6 MV linear accelerator (linac) mounted on a slip-ring gantry continuously rotates around the patient to deliver radiation in helical mode as the patient translates through the ring. The fan beam is modulated as a function of the gantry angle via a binary multileaf collimator (MLC) with 64-leaves, each of which projects 0.625cm at the iso-center. Due to large number of beam angles per gantry rotation (51 DOI: / PMID: ***** 194 J Cancer Res Ther - April-June Volume 6 - Issue 2

2 projections) and ultra-fast MLCs (20ms to open or close), a very high level of intensity modulation can be achieved. Xenon detectors, fitted opposite the linac, are used to acquire megavoltage computed tomography (MVCT) images for patient set-up verification, giving the system image-guidance capabilities. At our center, IMRT for HNSCC is being performed in the form of an ongoing randomized trial comparing inversely planned step-and-shoot IMRT (SS IMRT) with forward planned 3D-CRT. We have also recently commissioned the HT unit, Hi- ART II (TomoTherapy Inc., Madison, WI). This is a dosimetric comparison between the clinically utilized SS IMRT plans and corresponding HT plans in 12 patients with HNSCC. The aim of this study was to assess the potential of HT to improve the therapeutic ratio over conventional SS IMRT in HNSCC and report the dosimetric parameters thus obtained. MATERIALS AND METHODS The CT datasets of 12 patients (six each with laryngopharyngeal and oropharyngeal primaries) previously treated with definitive SS IMRT on a prospective trial were selected for this dosimetric study. Patients had biopsy proven nonmetastatic HNSCC (stages T1-3, N0-2b). Our process of planning SS IMRT has been described recently. [4] Briefly, patients were immobilized in supine position in a customized thermoplastic mask and planning axial CT images acquired with intravenous contrast using a slice thickness of 3 mm. Contouring was done on a third party contouring workstation (Coherence Dosimetrist version 2.2, Siemens Medical Solutions, USA). Target volumes including primary tumor, involved lymph nodes, and lymph node regions at risk of occult metastases were delineated according to consensus guidelines. [5] All surrounding critical normal structures, including both parotid glands and spinal cord, were contoured as OARs. The same target volumes and OARs delineated for the original SS IMRT plans were also used for HT planning. Complementary HT plans were generated by a planner blinded to the dosimetric parameters achieved by the SS IMRT plans. Linac-based SS IMRT Linac IMRT plans were realized on the inverse treatment planning (ITP) module of Plato Sunrise (version 2.7.4, Nucletron BV, Veenendaal, Netherlands). Plato Sunrise ITP used for planning has been configured and commissioned for 6 MV photons from Siemens Primus Linac (Siemens Medical Solutions, USA). The linac is equipped with a multileaf collimator (MLC) with 29 pairs of leaves (27 pairs project 1 cm and the peripheral two pairs project 6 cm at isocenter). It uses a convolution algorithm for dose computation and gradientsearch algorithm for optimization. The chosen calculation grid size was 2 mm with inhomogeneity correction turned on. The primary aim during planning was to achieve clinically acceptable target volume coverage with optimal OAR sparing. The SS IMRT plans were generated with seven to nine equally spaced beams (angular spacing between beams was ). ICRU 50 guidelines for conformal radiotherapy were used to define our plan acceptance criteria for target coverage, viz. at least 95% of the PTV must be covered by 95% of the prescription iso-dose. The same acceptance criteria were used for HT planning as well. HT-based IMRT HT plans were generated on TomoTherapy treatment planning station (version 2.2.4, TomoTherapy Inc., USA), using identical CT dataset. The TomoTherapy planning system uses a convolution-superposition algorithm for dose calculation and a least squares minimization function for optimization during inverse planning. Treatment planning parameters unique to TomoTherapy are field width, pitch, and modulation factor. The field width is the thickness of the fan-beam selected for treatment. Most HT units are commissioned with three clinical field widths (1cm, 2.5cm and 5cm). The pitch is the distance traveled by the couch per gantry rotation as a fraction of the field-width. The modulation factor determines the speed of gantry rotation. For all 12 cases, a field width of 2.5 cm, pitch of 0.3, and maximum modulation factor of was used during optimization. The main focus during planning was achieving acceptable target coverage with optimal organ sparing. Dose prescription The simultaneous integrated boost (SIB) technique was used for planning and delivery. The gross disease (primary site and involved nodes) with margins (PTV66) was prescribed a dose of 66 Gy in 30 fractions, while the elective high-risk volume (PTV60) received 60 Gy in 30 fractions in both linac-based as well as HT-based techniques. Plan evaluation The dosimetric outcome of the SS IMRT and HT plans were compared quantitatively in terms of target coverage, dose homogeneity, and OAR sparing. For the primary target volume (PTV66), the dose coverage was assessed by comparing the volume of the PTV66 that received 95%, 99% and 107% of the prescription dose of 66Gy (V 95%, V 99% and V 107% ). To quantify hot and cold spots (of a significant volume within the target), the dose to 1% and 99% of the PTV66 (D 1 and D 99 ) was also compared. The homogeneity of the dose coverage of the target was quantified by calculating the difference between the dose received by 10% and 90% of the PTV66 (D ). Parotid sparing was compared using the mean dose and the dose to 33%, 66% and 100% of the parotid volume (D 33, and D 100 ). The parotids were grouped as ipsilateral and contralateral, to ascertain sparing by laterality. For the spinal cord, maximum dose was compared. Apart from the parotids and the spinal cord, the doses to proximal critical structures were well within tolerance (or within the target volume) for both modalities, and thus we have concentrated on only the parotids and the spinal cord. For each technique, dosimetric data is reported as mean of all 12 datasets along with the Standard Deviation J Cancer Res Ther - April-June Volume 6 - Issue 2 195

3 (Mean ± SD). Statistical significance testing was done using the Wilcoxon Signed rank test, considering the non parametric nature of the data. Overlap priority The target volumes were delineated such that PTV66 was completely contained within the PTV60 volume. This led to a situation wherein the PTV60 could not be compared for parameters related to quantifying homogeneity (D ) and hot-spots (D 1 and V 107% ). The two planning systems handle volume-within-volume differently and hence calculate such Dose-Volume Histogram (DVH) in a different manner. In TomoTherapy, one can assign priorities to overlapping volumes (PTV66 and PTV60) such that voxels contained in the overlap volume belong to the volume with higher priority. In Plato, voxels of the overlap volume are considered as part of both volumes, irrespective of overlap priority. Due to this fundamental difference in the way the planning systems consider overlapping volumes, it would be inappropriate to make a head-to-head comparison of several parameters of these overlapping structures. Normal tissue complication probability (NTCP) NTCP was calculated to assess the biological significance of parotid gland sparing. A DVH reduction scheme suggested by Niemierko [6] was used, where the DVH of a specific organ was reduced to a single dose, called Equivalent Uniform Dose (EUD). If the entire organ is irradiated uniformly to this EUD, it leads to the same NTCP as the actual non-uniform dose distribution and thus the EUD is representative of this non-uniform distribution. The dose-response of the parotids is considered to be sigmoidal and thus the Lyman-Kutcher-Burman (LKB) model was used to calculate NTCP. The parameters involved in NTCP calculations using the LKB model are TD 50, n and m, where TD 50 is that uniform dose which when given to an organ results in 50% complication risk, m is a measure of the slope of the sigmoid curve and n is a parameter which represents the magnitude of the volume effect. [7] Di and vi are quantized points (bins) of the differential DVH of the particular organ. According to the LKB model, [8] NTCP is calculated by the following three equations....(1)...(2)...(3) The NTCP parameters used in this study were m = 0.53, n = 1 and TD 50 = 31.4, which yield the NTCP for the specific endpoint of reduction in stimulated salivary flow below 25% within 6 months of RT. They have been selected from a meta-analysis of radiation-induced complications in HN cancers by Semenenko et al. [9] For parallel organs like the parotid glands which have a value of n = 1, the above equation (1) for EUD gets simplified into equation (4) for mean organ dose. RESULTS...(4) Quantitative dosimetric parameters related to target-coverage, homogeneity and organ sparing from the two techniques are presented in Tables 1 and 2. HT plans for all 12 patients showed equivalent or better target coverage and homogeneity, and a significant reduction in OAR doses as compared to SS IMRT plans [Figure 1]. For PTV66, target coverage achieved by HT Table 1: Parameters related to target coverage for HT and SS IMRT. V x (%) = Percentage volume receiving x% of the dose prescribed. D x (Gy) = Absolute dose received by x% of the structure volume. HT SS IMRT Mean P-value Mean SD Mean SD Difference PTV 66 V 95 (%) NS V 99 (%) V 107 (%) NS D 1 (Gy) NS D 99 (Gy) NS D (Gy) PTV 60 V 95 (%) NS V 99 (%) D 99 (Gy) NS Table 2: Parameters related to OAR sparing for HT and SS IMRT. D x (Gy) = Absolute dose received by x% of the structure volume Tomo SS IMRT Mean P-value Mean SD Mean SD Difference CL Parotid D 33 (Gy) (G y) D 100 (Gy) NS Mean (Gy) NTCP (%) <0.001 IL Parotid D 33 (Gy) (Gy) D 100 (Gy) NS Mean (Gy) NTCP (%) <0.001 Spinal Cord Max (Gy) NTCP (%) J Cancer Res Ther - April-June Volume 6 - Issue 2

4 30 fractions (1.8 Gy/fx) to the elective high-risk volume with SIB to gross disease with margins to 69 Gy in 30 fractions (2.3 Gy/#) using specified dose objective of minimizing doses to the parotids glands without compromising on PTV coverage. For all five patients, HT plans were also generated (field-width 2.5 cm, pitch 0.3, and modulation factor 3) applying the same dose-objectives. All HT plans realized sharper dose-gradients and compared favorably to SS IMRT plans in terms of OAR sparing keeping equivalent target coverage, homogeneity, and tumor control probability. The average reduction in mean parotid dose with HT was 6.5 Gy (range - 4 to 14 Gy, p = ). The reduction in NTCP in favor of HT was dependant on the parotid model used (-3 to 32%). Figure 1: Comparison of dose distribution and DVH between SS IMRT plan (top) and Tomotherapy plan for the same patient. The 95% (top left) and 100% isodose (top right) levels are displayed for both PTVs (66Gy and 60Gy) in the SS IMRT images. The dose wash is displayed for the Tomotherapy image was comparable to SS IMRT for most parameters, though HT plans did show significantly improved dose homogeneity (D 10- p = 0.002). Among the other parameters related to target 90, coverage, V 99 showed a statistically significant improvement of 13.21% and 10.41% in the HT plans for PTV66 and PTV60 respectively. Parotid sparing was substantially better in the HT plans, with an average reduction of mean parotid dose by Gy and Gy for the contralateral and ipsilateral glands (p = 0.003) respectively. D 33 and also showed a considerable and statistically significant reduction for both parotid glands. This translated into a 24.09% and 35.22% reduction in NTCP for the contralateral and ipsilateral parotid glands respectively (p < 0.01). The maximum dose to the spinal cord showed a mean reduction of 12.07Gy in HT plans (p = 0.02). Parotid sparing was also analyzed according to site of primary (oropharynx versus laryngopharynx). The benefit of HT over SS IMRT was similar for both subsites. DISCUSSION HT-generated plans showed superior target coverage, homogeneity and parotid sparing. Though both treatment modalities achieved clinically acceptable treatment plans, HT plans yielded significantly superior sparing for the parotids and the spinal cord. Some parameters were only marginally superior with HT (V 95, D 1, D 99 for the target and D 100 for the parotids). Three dosimetric comparisons of linac IMRT (using different treatment planning systems) and HT for HNSCC have been previously published in the indexed medical literature. [10-12] The first such comparison [12] was reported in five patients with oropharyngeal cancers previously planned with five-field SS IMRT (Plato version 2.6.2) and treated to a dose of 54 Gy in Sheng et al. [11] compared the two techniques in 10 patients with oropharyngeal carcinoma (five base of tongue and five tonsillar cancers). Each plan was independently optimized using CORVUS treatment planning system with seven-field coplanar arrangement to a dose of 50 Gy in 25 fractions with standard dose-constraints. HT plans were optimized using a field width of 2.5 cm, pitch of 0.3, and nominal modulation factor 2.5. The resulting treatment plans were evaluated by comparing the DVH, EUD, dose uniformity, and NTCP. HT plans showed improvement of critical structure avoidance and target dose uniformity for all patients. The average equivalent uniform dose (EUD) reduction for OARs surrounding base of tongue and tonsil was 17.4% and 27.14% respectively. HT plans achieved 80% reduction in normal tissue complication probability for the parotid glands relative to linac IMRT plans. In a recent report, Fiorino et al. compared linac IMRT technique (inversely optimized on Helios/Eclipse system) against two different HT planning approaches in five patients with advanced HNSCC (10). In the first HT approach (TOMO-a), the dose-constraints used for linac IMRT technique were applied for HT also; in the second approach (TOMO-b), sparing of parotids and mandible was attempted while keeping PTV coverage and spinal cord maximum dose similar to TOMO-a plan. Linac IMRT and HT plans were optimized to deliver 54 Gy in 30 fractions to PTV1 and 16.2 Gy in nine fractions to PTV3; in the case a PTV2 was defined, 15 Gy was concomitantly delivered while delivering 16.2 Gy to PTV3. Separate plans for the two phases (Phase 1 - first 30 fractions; Phase 2- last nine fractions) were compared in terms of DVH and dose statistics on PTVs and OARs. When considering Phase 1, HT improved the homogeneity of the dose distribution within PTV1 while delivering the same prescribed dose (assessed to be the median dose to PTV). The fraction of PTV1 receiving >95% of the prescribed dose (V95%) increased from 90% (linac IMRT) to 96 97% for HT. Maximum dose within PTV1 decreased from 60.3 Gy (Linac IMRT) to 57.4 Gy (TOMO-a) and 58.7 Gy (TOMO-b). Maximum spinal cord dose decreased from 31.6 Gy (linac IMRT) to 26.5 Gy (TOMO-a) and 24.6 Gy (TOMO-b). Mean dose to the parotids decreased from 26.1 Gy (linac IMRT) to 25.1 Gy (TOMO-a) and 20.8 Gy (TOMO-b). Mandible was also J Cancer Res Ther - April-June Volume 6 - Issue 2 197

5 significantly better spared with HT. When considering Phase 2, the average gains (TOMO-b vs. linac IMRT) were more modest and depended on the location of PTV2/PTV3. In the present study, a substantial improvement in parotid sparing was achieved, to some degree, at the cost of target coverage, though it was deemed clinically acceptable and the acceptance criteria for the HT plans was identical to that employed for the SS IMRT plans. Therefore, this improvement could be attributed to the fact that our planning objectives may have differed from other studies, as we put a much larger emphasis on parotid sparing. In our study, the ipsilateral and contralateral parotid glands were considered separately and not as one structure, and a conscious effort was made to spare the contralateral parotid to a greater extent. This was particularly true for SS IMRT planning as seen by the mean parotid doses of 28.8 Gy and 38.8 Gy for the contralateral and ipsilateral parotids respectively. Another area that was not addressed in previous studies was organ sparing according to laterality. We analyzed the parotids as ipsilateral and contralateral to quantify any difference in the degree of sparing between HT and SS IMRT, depending on the side of the disease. The ipsilateral side showed an average reduction in mean parotid dose, of Gy compared a mean reduction of Gy for the contralateral side. The D 33 and values showed a similar trend, with a higher magnitude of sparing for the parotid near the high dose region. This suggests that HT could achieve a higher degree of sparing for critical organs abutting the target, due to its capability of producing sharper dose gradients. The site of the disease could also play a role in the degree of parotid sparing. Data was analyzed by site to identify any differences in the degree of parotid sparing. The reduction in parotid dose for the contralateral parotids was similar, regardless of the site. An improvement in parotid sparing was seen for the ipsilateral parotid in the case of laryngopharyngeal tumors as compared to oropharyngeal tumors. The difference did not show statistical significance although it may be clinically relevant. The reduction in parotid gland dose, achieved by HT, was reflected in the significant reduction in NTCP. As a logical sequel to dosimetric promise, clinical outcome data of patients with HNSCC treated on HT has recently started to emerge. In a longitudinal assessment of parotid function using salivary scintigraphy in seven patients treated definitively on HT, Voordeckers et al. [13] observed a significant dose-response relationship between mean parotid dose (<31 Gy) and salivary function (> 75% recovery). The first single-institution clinical outcome data on 77 consecutive HNSCC patients treated on HT has recently been reported. The two-year estimates of loco-regional control and acute toxicity were very similar to previously published institutional IMRT series. We have also launched a prospective phase II study, which should help validate the results of previous dosimetric studies. This would also help provide baseline data for designing a phase III randomized controlled trial in the future to assess the real clinical benefit with HT. CONCLUSION Tomotherapy improves dose homogeneity and target coverage as compared to SS IMRT, while significantly improving organ sparing. The magnitude of sparing we could achieve reflected the emphasis put into reducing the dose to the OARs. Whether this translates into a clinical benefit remains to be seen. REFERENCES 1. Chao KS, Low DA, Perez CA, Purdy JA. Intensity-modulated radiation therapy in head and neck cancers: The Mallinckrodt experience. Int J Cancer 2000;90: Eisbruch A, Kim HM, Terrell JE, Marsh LH, Dawson LA, Ship JA. Xerostomia and its predictors following parotid-sparing irradiation of head-and-neck cancer. Int J Radiat Oncol Biol Phys 2001;50: Hunt MA, Zelefsky MJ, Wolden S, Chui CS, LoSasso T, Rosenzweig K, et al. Treatment planning and delivery of intensity-modulated radiation therapy for primary nasopharynx cancer. Int J Radiat Oncol Biol Phys 2001;49: Murthy V, Gupta T, Kadam A, Ghosh-Laskar S, Budrukkar A, Phurailatpam R, et al. Time trial: A prospective comparative study of the time-resource burden for three-dimensional conformal radiotherapy and intensity-modulated radiotherapy in head and neck cancers. J Cancer Res Ther 2009;5: Gregoire V, Levendag P, Ang KK, Bernier J, Braaksma M, Budach V, et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother Oncol 2003;69: Niemierko A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Med Phys 1997;24: Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method. Int J Radiat Oncol Biol Phys 1989;16: Kutcher GJ, Burman C, Brewster L, Goitein M, Mohan R. Histogram reduction method for calculating complication probabilities for threedimensional treatment planning evaluations. Int J Radiat Oncol Biol Phys 1991;21: Semenenko VA, Li XA. Lyman-Kutcher-Burman NTCP model parameters for radiation pneumonitis and xerostomia based on combined analysis of published clinical data. Phys Med Biol 2008;53: Fiorino C, Dell Oca I, Pierelli A, Broggi S, De Martin E, Di Muzio N, et al. Significant improvement in normal tissue sparing and target coverage for head and neck cancer by means of helical tomotherapy. Radiother Oncol 2006;78: Sheng K, Molloy JA, Read PW. Intensity-modulated radiation therapy (IMRT) dosimetry of the head and neck: A comparison of treatment plans using linear accelerator-based IMRT and helical tomotherapy. Int J Radiat Oncol Biol Phys 2006;65: van Vulpen M, Field C, Raaijmakers CP, Parliament MB, Terhaard CH, MacKenzie MA, et al. Comparing step-and-shoot IMRT with dynamic helical tomotherapy IMRT plans for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;62: Voordeckers M, Everaert H, Tournel K, Verellen D, Baron I, Van Esch G, et al. Longitudinal assessment of parotid function in patients receiving tomotherapy for head-and-neck cancer. Strahlenther Onkol 2008;184: Source of Support: Nil, Conflict of Interest: None declared. 198 J Cancer Res Ther - April-June Volume 6 - Issue 2

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer 1 Charles Poole April Case Study April 30, 2012 Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer Abstract: Introduction: This study

More information

Chapter 2. Level II lymph nodes and radiation-induced xerostomia

Chapter 2. Level II lymph nodes and radiation-induced xerostomia Chapter 2 Level II lymph nodes and radiation-induced xerostomia This chapter has been published as: E. Astreinidou, H. Dehnad, C.H. Terhaard, and C.P Raaijmakers. 2004. Level II lymph nodes and radiation-induced

More information

Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO

Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO Investigations and research Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO M. Kunze-Busch P. van Kollenburg Department of Radiation Oncology, Radboud University Nijmegen Medical

More information

Reena Phurailatpam. Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery

Reena Phurailatpam. Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery Intensity Modulated Radiation Therapy of Medulloblastoma using Helical TomoTherapy: Initial Experience from planning to delivery Reena Phurailatpam Tejpal Gupta, Rakesh Jalali, Zubin Master, Bhooshan Zade,

More information

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia IMRT - the physician s eye-view Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia The goals of cancer therapy Local control Survival Functional status Quality of life Causes

More information

Original Article. Teyyiba Kanwal, Muhammad Khalid, Syed Ijaz Hussain Shah, Khawar Nadeem

Original Article. Teyyiba Kanwal, Muhammad Khalid, Syed Ijaz Hussain Shah, Khawar Nadeem Original Article Treatment Planning Evaluation of Sliding Window and Multiple Static Segments Technique in Intensity Modulated Radiotherapy for Different Beam Directions Teyyiba Kanwal, Muhammad Khalid,

More information

Dosimetric Comparison of Intensity-Modulated Radiotherapy versus 3D Conformal Radiotherapy in Patients with Head and Neck Cancer

Dosimetric Comparison of Intensity-Modulated Radiotherapy versus 3D Conformal Radiotherapy in Patients with Head and Neck Cancer Dosimetric Comparison of Intensity-Modulated Radiotherapy versus 3D Conformal Radiotherapy in Patients with Head and Neck Cancer 1- Doaa M. AL Zayat. Ph.D of medical physics, Ayadi-Al Mostakbl Oncology

More information

Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana

Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana University of Groningen Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

A STUDY OF PLANNING DOSE CONSTRAINTS FOR TREATMENT OF NASOPHARYNGEAL CARCINOMA USING A COMMERCIAL INVERSE TREATMENT PLANNING SYSTEM

A STUDY OF PLANNING DOSE CONSTRAINTS FOR TREATMENT OF NASOPHARYNGEAL CARCINOMA USING A COMMERCIAL INVERSE TREATMENT PLANNING SYSTEM doi:10.1016/j.ijrobp.2004.02.040 Int. J. Radiation Oncology Biol. Phys., Vol. 59, No. 3, pp. 886 896, 2004 Copyright 2004 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/04/$ see front

More information

Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas

Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas 1 Carol Boyd Comprehensive Case Study July 11, 2013 Evaluation of Three-dimensional Conformal Radiotherapy and Intensity Modulated Radiotherapy Techniques in High-Grade Gliomas Abstract: Introduction:

More information

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI)

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Tagreed AL-ALAWI Medical Physicist King Abdullah Medical City- Jeddah Aim 1. Simplify and standardize

More information

A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse

A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse Peters et al. Radiation Oncology 2014, 9:153 RESEARCH Open Access A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse Samuel Peters

More information

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM *

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM * Romanian Reports in Physics, Vol. 66, No. 2, P. 401 410, 2014 A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM * M. D. SUDITU 1,2, D. ADAM 1,2, R. POPA 1,2, V. CIOCALTEI

More information

Helical Tomotherapy Experience. TomoTherapy Whole Brain Head & Neck Prostate Lung Summary. HI-ART TomoTherapy System. HI-ART TomoTherapy System

Helical Tomotherapy Experience. TomoTherapy Whole Brain Head & Neck Prostate Lung Summary. HI-ART TomoTherapy System. HI-ART TomoTherapy System The Challenges Associated with Differential Dose Delivery using IMRT Chester Ramsey, Ph.D. Director of Medical Physics Thompson Cancer Center Knoxville, Tennessee, U.S.A Collaborators Chester Ramsey, Ph.D.

More information

Long-term parotid gland function after radiotherapy

Long-term parotid gland function after radiotherapy Parotid gland sparing radiotherapy, P.M. Braam Chapter 2 Long-term parotid gland function after radiotherapy Pètra M. Braam 1, Judith M. Roesink 1, Marinus A. Moerland 1, Cornelis P.J. Raaijmakers 1, Maria

More information

WHOLE-BRAIN RADIOTHERAPY WITH SIMULTANEOUS INTEGRATED BOOST TO MULTIPLE BRAIN METASTASES USING VOLUMETRIC MODULATED ARC THERAPY

WHOLE-BRAIN RADIOTHERAPY WITH SIMULTANEOUS INTEGRATED BOOST TO MULTIPLE BRAIN METASTASES USING VOLUMETRIC MODULATED ARC THERAPY doi:10.1016/j.ijrobp.2009.03.029 Int. J. Radiation Oncology Biol. Phys., Vol. 75, No. 1, pp. 253 259, 2009 Copyright Ó 2009 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/09/$ see front

More information

Alexandria University Faculty of Medicine. Alexandria Journal of Medicine.

Alexandria University Faculty of Medicine. Alexandria Journal of Medicine. Alexandria Journal of Medicine (2013) 49, 379 384 Alexandria University Faculty of Medicine Alexandria Journal of Medicine www.sciencedirect.com ORIGINAL ARTICLE Three dimensional conformal postoperative

More information

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session

SBRT fundamentals. Outline 8/2/2012. Stereotactic Body Radiation Therapy Quality Assurance Educational Session Stereotactic Body Radiation Therapy Quality Assurance Educational Session J Perks PhD, UC Davis Medical Center, Sacramento CA SBRT fundamentals Extra-cranial treatments Single or small number (2-5) of

More information

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical sites. The final aim will be to be able to make out these

More information

IMRT IN HEAD NECK CANCER

IMRT IN HEAD NECK CANCER IMRT IN HEAD NECK CANCER THE SEARCH FOR CONFORMALITY CONVENTIONAL RT Simple field arrangements Uniformly radiate both the target and the surrounding normal tissues. Includes the use of rectangular blocks

More information

TOMOTERAPIA in Italia: Esperienze a confronto

TOMOTERAPIA in Italia: Esperienze a confronto TOMOTERAPIA in Italia: Esperienze a confronto BARD 20 novembre 2010 L esperienza di Reggio Emilia Testa collo Alessandro Muraglia Reasons for the use of tomotherapy: - Complex tumor geometry and proximity

More information

Direct machine parameter optimization for intensity modulated radiation therapy (IMRT) of oropharyngeal cancer a planning study

Direct machine parameter optimization for intensity modulated radiation therapy (IMRT) of oropharyngeal cancer a planning study JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 10, NUMBER 4, FALL 2009 Direct machine parameter optimization for intensity modulated radiation therapy (IMRT) of oropharyngeal cancer a planning study

More information

Chapters from Clinical Oncology

Chapters from Clinical Oncology Chapters from Clinical Oncology Lecture notes University of Szeged Faculty of Medicine Department of Oncotherapy 2012. 1 RADIOTHERAPY Technical aspects Dr. Elemér Szil Introduction There are three possibilities

More information

Optimising Radiotherapy Using NTCP Models: 17 Years in Ann Arbor

Optimising Radiotherapy Using NTCP Models: 17 Years in Ann Arbor Individualizing Optimizing Optimising Radiotherapy Using NTCP Models: 17 Years in Ann Arbor Randall K. Ten Haken, Ph.D. University of Michigan Department of Radiation Oncology Ann Arbor, MI Introduction

More information

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS ICTP SCHOOL ON MEDICAL PHYSICS FOR RADIATION THERAPY DOSIMETRY AND TREATMENT PLANNING FOR BASIC AND ADVANCED APPLICATIONS March

More information

Original Article ABSTRACT

Original Article ABSTRACT Kasr El-Aini J. Clin. Oncol. Nucl. Med. Vol.4, No. 3-4, July-Oct. 2008:42-50 NEMROCK Original Article A FORWARD PLANNING INTENSITY-MODULATED RADIATION THERAPY WITH SIMULTANEOUS INTEGRATED BOOST IN THE

More information

Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83

Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83 Special report Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83 Rapid development in imaging techniques, including functional imaging,

More information

Intensity Modulated Radiation Therapy (IMRT)

Intensity Modulated Radiation Therapy (IMRT) Intensity Modulated Radiation Therapy (IMRT) Policy Number: Original Effective Date: MM.05.006 03/09/2004 Line(s) of Business: Current Effective Date: HMO; PPO 06/24/2011 Section: Radiology Place(s) of

More information

TomoTherapy. Michelle Roach CNC Radiation Oncology Liverpool Hospital CNSA. May 2016

TomoTherapy. Michelle Roach CNC Radiation Oncology Liverpool Hospital CNSA. May 2016 TomoTherapy Michelle Roach CNC Radiation Oncology Liverpool Hospital CNSA May 2016 TomoTherapy The Facts Greek Tomo = slice Advanced form of IMRT 3D computerised tomography (CT) imaging immediately prior

More information

Protocol of Radiotherapy for Head and Neck Cancer

Protocol of Radiotherapy for Head and Neck Cancer 106 年 12 月修訂 Protocol of Radiotherapy for Head and Neck Cancer Indication of radiotherapy Indication of definitive radiotherapy with or without chemotherapy (1) Resectable, but medically unfit, or high

More information

A new homogeneity index based on statistical analysis of the dose volume histogram

A new homogeneity index based on statistical analysis of the dose volume histogram JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 8, NUMBER 2, SPRING 2007 A new homogeneity index based on statistical analysis of the dose volume histogram Myonggeun Yoon, Sung Yong Park, a Dongho

More information

Page 1. Helical (Spiral) Tomotherapy. UW Helical Tomotherapy Unit. Helical (Spiral) Tomotherapy. MVCT of an Anesthetized Dog with a Sinus Tumor

Page 1. Helical (Spiral) Tomotherapy. UW Helical Tomotherapy Unit. Helical (Spiral) Tomotherapy. MVCT of an Anesthetized Dog with a Sinus Tumor Helical (Spiral) Tomotherapy Novel Clinical Applications of IMRT Linac Ring Gantry CT Detector X-Ray Fan Beam Binary Multileaf Collimator Binary MLC Leaves James S Welsh, MS, MD Department of Human Oncology

More information

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer Tony Kin Ming Lam Radiation Planner Dr Patricia Lindsay, Radiation Physicist Dr John Kim, Radiation Oncologist Dr Kim Ann Ung,

More information

Defining Target Volumes and Organs at Risk: a common language

Defining Target Volumes and Organs at Risk: a common language Defining Target Volumes and Organs at Risk: a common language Eduardo Rosenblatt Section Head Applied Radiation Biology and Radiotherapy (ARBR) Section Division of Human Health IAEA Objective: To introduce

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Intensity Modulated Radiation Therapy (IMRT) of Head and Neck File Name: Origination: Last CAP Review: Next CAP Review: Last Review: intensity_modulated_radiation_therapy_imrt_of_head_and_neck

More information

Knowledge-Based IMRT Treatment Planning for Prostate Cancer: Experience with 101. Cases from Duke Clinic. Deon Martina Dick

Knowledge-Based IMRT Treatment Planning for Prostate Cancer: Experience with 101. Cases from Duke Clinic. Deon Martina Dick Knowledge-Based IMRT Treatment Planning for Prostate Cancer: Experience with 101 Cases from Duke Clinic by Deon Martina Dick Department of Medical Physics Duke University Date: Approved: Joseph Lo, Chair

More information

Utilizzo delle tecniche VMAT nei trattamenti del testa collo Marta Scorsetti M.D.

Utilizzo delle tecniche VMAT nei trattamenti del testa collo Marta Scorsetti M.D. Utilizzo delle tecniche VMAT nei trattamenti del testa collo Marta Scorsetti M.D. Radiotherapy and Radiosurgery Dpt. Istituto Clinico Humanitas, Milan, Italy. Higher doses to the tumor Better sparing of

More information

Address for Correspondence: Department of Medical Physics, Khwaja Yunus Ali University, Enayetpur, Sirajgonj ,

Address for Correspondence: Department of Medical Physics, Khwaja Yunus Ali University, Enayetpur, Sirajgonj , ORIGINAL ARTICLE Dosimetric Comparison of Different 3DCRT Techniques in Left Breast Cancer Radiotherapy Planning Abdus Sattar Mollah 1 and Meher Niger Sharmin 2 1 Department of Medical Physics, KhwajaYunus

More information

IMAT: intensity-modulated arc therapy

IMAT: intensity-modulated arc therapy : intensity-modulated arc therapy M. Iori S. Maria Nuova Hospital, Medical Physics Department Reggio Emilia, Italy 1 Topics of the talk Rotational IMRT techniques: modalities & dedicated inverse-planning

More information

Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation

Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 16, NUMBER 3, 2015 Tangent field technique of TomoDirect improves dose distribution for whole-breast irradiation Harumitsu Hashimoto, 1,3a Motoko Omura,

More information

Head and Neck Treatment Planning: A Comparative Review of Static Field IMRT RapidArc TomoTherapy HD. Barbara Agrimson, BS RT(T)(R), CMD

Head and Neck Treatment Planning: A Comparative Review of Static Field IMRT RapidArc TomoTherapy HD. Barbara Agrimson, BS RT(T)(R), CMD Head and Neck Treatment Planning: A Comparative Review of Static Field IMRT RapidArc TomoTherapy HD Barbara Agrimson, BS RT(T)(R), CMD Disclaimer This presentation will mention equipment by trade name.

More information

Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana

Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana University of Groningen Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report

Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report Paul M. DeLuca, Jr. 1, Ph.D., Vincent Gregoire 2, M.D., Ph.D.,

More information

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film

Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film Verification of treatment planning system parameters in tomotherapy using EBT Radiochromic Film E.B.Rajmohan¹, Pratik Kumar¹, Bhudatt Paliwal,² David Westerly², N.Gopishankar³, R.K.Bisht³, D.Tewatia²,

More information

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain

Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain 1 Carol Boyd March Case Study March 11, 2013 Intensity modulated radiotherapy (IMRT) for treatment of post-operative high grade glioma in the right parietal region of brain History of Present Illness:

More information

IMRT vs Tomoterapia - Le nuove sfide

IMRT vs Tomoterapia - Le nuove sfide IMRT vs Tomoterapia - Le nuove sfide Cinzia Iotti Radioterapia Oncologica Ospedale S. Maria Nuova - Reggio Emilia Nov 2007 Varian claims that RapidArc delivers uncompromised treatments in "two minutes

More information

Optimization of RapidArc for Head-and-Neck Radiotherapy. Jessica Emily Salazar. Department of Medical Physics Duke University.

Optimization of RapidArc for Head-and-Neck Radiotherapy. Jessica Emily Salazar. Department of Medical Physics Duke University. Optimization of RapidArc for Head-and-Neck Radiotherapy by Jessica Emily Salazar Department of Medical Physics Duke University Date: Approved: Shiva Das, Supervisor Ryan McMahon Robert Reiman Thesis submitted

More information

Guidelines for the use of inversely planned treatment techniques in Clinical Trials: IMRT, VMAT, TomoTherapy

Guidelines for the use of inversely planned treatment techniques in Clinical Trials: IMRT, VMAT, TomoTherapy Guidelines for the use of inversely planned treatment techniques in Clinical Trials: IMRT, VMAT, TomoTherapy VERSION 2.1 April 2015 Table of Contents Abbreviations & Glossary... 3 Executive Summary...

More information

IMRT Planning Basics AAMD Student Webinar

IMRT Planning Basics AAMD Student Webinar IMRT Planning Basics AAMD Student Webinar March 12, 2014 Karen Chin Snyder, MS Senior Associate Physicist Department of Radiation Oncology Disclosures The presenter has received speaker honoraria from

More information

3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis

3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis Iran. J. Radiat. Res., 2007; 5 (1): 1-8 3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis A.K. Bhardwaj 1*,T.S.

More information

Clinical experience with TomoDirect System Tangential Mode

Clinical experience with TomoDirect System Tangential Mode Breast Cancer Clinical experience with TomoDirect System Tangential Mode European Institute of Oncology Milan, Italy Disclosure & Disclaimer An honorarium is provided by Accuray for this presentation The

More information

To Reduce Hot Dose Spots in Craniospinal Irradiation: An IMRT Approach with Matching Beam Divergence

To Reduce Hot Dose Spots in Craniospinal Irradiation: An IMRT Approach with Matching Beam Divergence SCIENCE & TECHNOLOGY To Reduce Hot Dose Spots in Craniospinal Irradiation: An IMRT Approach with Matching Beam Divergence Alburuj R. Rahman*, Jian Z. Wang, Dr. Z. Huang, Dr. J. Montebello Department of

More information

DOSE AND VOLUME REDUCTION FOR NORMAL LUNG USING INTENSITY-MODULATED RADIOTHERAPY FOR ADVANCED-STAGE NON SMALL-CELL LUNG CANCER

DOSE AND VOLUME REDUCTION FOR NORMAL LUNG USING INTENSITY-MODULATED RADIOTHERAPY FOR ADVANCED-STAGE NON SMALL-CELL LUNG CANCER doi:10.1016/j.ijrobp.2003.09.086 Int. J. Radiation Oncology Biol. Phys., Vol. 58, No. 4, pp. 1258 1267, 2004 Copyright 2004 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/04/$ see front

More information

Geometric dose prediction model for hemithoracic intensity-modulated radiation therapy in mesothelioma patients with two intact lungs

Geometric dose prediction model for hemithoracic intensity-modulated radiation therapy in mesothelioma patients with two intact lungs JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 17, NUMBER 3, 2016 Geometric dose prediction model for hemithoracic intensity-modulated radiation therapy in mesothelioma patients with two intact lungs

More information

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Tan Chek Wee 15 06 2016 National University Cancer Institute, Singapore Clinical Care Education Research

More information

Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida

Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida American Association of Medical Dosimetrists 2015 Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida Most

More information

Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment

Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment Chinese Journal of Cancer Original Article Feasibility of the partial-single arc technique in RapidArc planning for prostate cancer treatment Suresh Rana 1 and ChihYao Cheng 2 Abstract The volumetric modulated

More information

Intensity Modulated Radiation Therapy (IMRT)

Intensity Modulated Radiation Therapy (IMRT) Intensity Modulated Radiation Therapy (IMRT) Policy Number: Original Effective Date: MM.05.006 03/09/2004 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 03/01/2015 Section: Radiology

More information

biij Initial experience in treating lung cancer with helical tomotherapy

biij Initial experience in treating lung cancer with helical tomotherapy Available online at http://www.biij.org/2007/1/e2 doi: 10.2349/biij.3.1.e2 biij Biomedical Imaging and Intervention Journal CASE REPORT Initial experience in treating lung cancer with helical tomotherapy

More information

Practice teaching course on head and neck cancer management

Practice teaching course on head and neck cancer management 28-29 October 2016 - Saint-Priest en Jarez, France Practice teaching course on head and neck cancer management IMPROVING THE PATIENT S LIFE LIFE THROUGH MEDICAL MEDICAL EDUCATION EDUCATION www.excemed.org

More information

RapidArc vs Conventional IMRT for Head and Neck Cancer Irradiation: Is Faster Necessary Better?

RapidArc vs Conventional IMRT for Head and Neck Cancer Irradiation: Is Faster Necessary Better? DOI:10.22034/APJCP.2018.19.1.207 RESEARCH ARTICLE Editorial Process: Submission:10/05/2017 Acceptance:12/13/2017 RapidArc vs Conventional IMRT for Head and Neck Cancer Irradiation: Is Faster Necessary

More information

Radiation Damage Comparison between Intensity Modulated Radiotherapy (IMRT) and Field-in-field (FIF) Technique In Breast Cancer Treatments

Radiation Damage Comparison between Intensity Modulated Radiotherapy (IMRT) and Field-in-field (FIF) Technique In Breast Cancer Treatments Radiation Damage Comparison between Intensity Modulated Radiotherapy () and Field-in-field (FIF) Technique In Breast Cancer Treatments Huisi Ai 1 and Hualin Zhang 2 1. Department of Radiation Oncology,

More information

Evaluation of Monaco treatment planning system for hypofractionated stereotactic volumetric arc radiotherapy of multiple brain metastases

Evaluation of Monaco treatment planning system for hypofractionated stereotactic volumetric arc radiotherapy of multiple brain metastases Evaluation of Monaco treatment planning system for hypofractionated stereotactic volumetric arc radiotherapy of multiple brain metastases CASE STUDY Institution: Odette Cancer Centre Location: Sunnybrook

More information

Many vendors are beginning to allow couch motion during radiation delivery.

Many vendors are beginning to allow couch motion during radiation delivery. Dynamic Couch Motion Many vendors are beginning to allow couch motion during radiation delivery. Varian developer mode allows institutions to perform research using these types of treatments. Tomotherapy

More information

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional Measurement of Dose to Critical Structures Surrounding the Prostate from Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional Conformal Radiation Therapy (3D-CRT); A Comparative Study Erik

More information

A Comparison of Treatment Plans for Recurrent Nasopharyngeal Carcinoma

A Comparison of Treatment Plans for Recurrent Nasopharyngeal Carcinoma Chin J Radiol 23; 28: 285-292 285 A Comparison of Treatment Plans for Recurrent Nasopharyngeal Carcinoma WEI-CHUNG HSU 1 SZU-JUNG CHEN 2 KUNG-SHIH YING 3 CHIN-JYH JANG 1 PO-MING WANG 1 GAU-DE LIN 4 Department

More information

International Multispecialty Journal of Health (IMJH) ISSN: [ ] [Vol-3, Issue-9, September- 2017]

International Multispecialty Journal of Health (IMJH) ISSN: [ ] [Vol-3, Issue-9, September- 2017] Dosimetric evaluation of carcinoma nasopharynx using Volumetric Modulated Arc Therapy (VMAT): An institutional experience from Western India Dr. Upendra Nandwana 1, Dr. Shuchita Pathak 2, Dr. TP Soni 3,

More information

Ritu Raj Upreti, S. Dayananda, R. L. Bhalawat*, Girish N. Bedre*, D. D. Deshpande

Ritu Raj Upreti, S. Dayananda, R. L. Bhalawat*, Girish N. Bedre*, D. D. Deshpande 60 Original Article Evaluation of radiograph-based interstitial implant dosimetry on computed tomography images using dose volume indices for head and neck cancer Ritu Raj Upreti, S. Dayananda, R. L. Bhalawat*,

More information

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington Sarcoma and Radiation Therapy Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington Objective: Helping you make informed decisions Introduction Process Radiation

More information

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria REVISITING ICRU VOLUME DEFINITIONS Eduardo Rosenblatt Vienna, Austria Objective: To introduce target volumes and organ at risk concepts as defined by ICRU. 3D-CRT is the standard There was a need for a

More information

Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons

Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 7, NUMBER 4, FALL 2006 Treatment of exceptionally large prostate cancer patients with low-energy intensity-modulated photons Mei Sun and Lijun Ma a University

More information

Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning

Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 5, 2014 Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning Pamela A. Myers, 1 Panayiotis Mavroidis,

More information

Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques

Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques TROG 08.03 RAVES Quality assurance and credentialing requirements for sites using inverse planned IMRT Techniques Introduction Commissioning and quality assurance of planning systems and treatment delivery

More information

The Impact of Image Guided Radiotherapy in Breast Boost Radiotherapy

The Impact of Image Guided Radiotherapy in Breast Boost Radiotherapy The Impact of Image Guided Radiotherapy in Breast Boost Radiotherapy 1 Donovan EM, 1 Brooks C, 1 Mitchell A, 2 Mukesh M, 2 Coles CE, 3 Evans PM, 1 Harris EJ 1 Joint Department of Physics, The Royal Marsden/Institute

More information

The Physics of Oesophageal Cancer Radiotherapy

The Physics of Oesophageal Cancer Radiotherapy The Physics of Oesophageal Cancer Radiotherapy Dr. Philip Wai Radiotherapy Physics Royal Marsden Hospital 1 Contents Brief clinical introduction Imaging and Target definition Dose prescription & patient

More information

Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries

Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 3, NUMBER 1, WINTER 2002 Dosimetric advantage of using 6 MV over 15 MV photons in conformal therapy of lung cancer: Monte Carlo studies in patient geometries

More information

Treatment Planning for Lung. Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology

Treatment Planning for Lung. Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology Treatment Planning for Lung Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology Outline of Presentation Dosimetric planning strategies for SBRT lung Delivery techniques Examples

More information

Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark*

Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark* Advanced Technology Consortium (ATC) Credentialing Procedures for 3D Conformal Therapy Protocols 3D CRT Benchmark* Purpose: To evaluate an institution s 3D treatment planning process and the institution

More information

Outline. Chapter 12 Treatment Planning Combination of Beams. Opposing pairs of beams. Combination of beams. Opposing pairs of beams

Outline. Chapter 12 Treatment Planning Combination of Beams. Opposing pairs of beams. Combination of beams. Opposing pairs of beams Chapter 12 Treatment Planning Combination of Beams Radiation Dosimetry I Text: H.E Johns and J.R. Cunningham, The physics of radiology, 4 th ed. http://www.utoledo.edu/med/depts/radther Outline Combination

More information

Intensity Modulated Radiation Therapy (IMRT)

Intensity Modulated Radiation Therapy (IMRT) Intensity Modulated Radiation Therapy (IMRT) Policy Number: Original Effective Date: MM.05.006 03/09/2004 Line(s) of Business: Current Effective Date: HMO; PPO; QUEST Integration 05/01/2017 Section: Radiology

More information

Research Article An IMRT/VMAT Technique for Nonsmall Cell Lung Cancer

Research Article An IMRT/VMAT Technique for Nonsmall Cell Lung Cancer Hindawi Publishing Corporation BioMed Research International Volume 2015, Article ID 613060, 7 pages http://dx.doi.org/10.1155/2015/613060 Research Article An IMRT/VMAT Technique for Nonsmall Cell Lung

More information

Int J Clin Exp Med 2015;8(9): /ISSN: /IJCEM Gang Zhou, Yanze Sun, Jianjun Qian, Ye Tian, Xueguan Lu

Int J Clin Exp Med 2015;8(9): /ISSN: /IJCEM Gang Zhou, Yanze Sun, Jianjun Qian, Ye Tian, Xueguan Lu Int J Clin Exp Med 2015;8(9):15975-15982 www.ijcem.com /ISSN:1940-5901/IJCEM0009616 Original Article The dosimetric comparison of the radiotherapeutic plans between composite and synchronous approaches

More information

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR

Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR Linac or Non-Linac Demystifying And Decoding The Physics Of SBRT/SABR PhD, FAAPM, FACR, FASTRO Department of Radiation Oncology Indiana University School of Medicine Indianapolis, IN, USA Indra J. Das,

More information

Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer. Shelby Mariah Grzetic. Graduate Program in Medical Physics Duke University

Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer. Shelby Mariah Grzetic. Graduate Program in Medical Physics Duke University Multi-Case Knowledge-Based IMRT Treatment Planning in Head and Neck Cancer by Shelby Mariah Grzetic Graduate Program in Medical Physics Duke University Date: Approved: Joseph Y. Lo, Co-Supervisor Shiva

More information

VOLUMETRIC-MODULATED ARC THERAPY VS. 3D-CONFORMAL RADIOTHERAPY FOR BREAST CANCER

VOLUMETRIC-MODULATED ARC THERAPY VS. 3D-CONFORMAL RADIOTHERAPY FOR BREAST CANCER Romanian Reports in Physics, Vol. 67, No. 3, P. 978 986, 2015 VOLUMETRIC-MODULATED ARC THERAPY VS. 3D-CONFORMAL RADIOTHERAPY FOR BREAST CANCER D. ADAM 1, 2, M.D. SUDITU 1, 2, R. POPA 1, 2, V. CIOCALTEI

More information

Chapter 7 General conclusions and suggestions for future work

Chapter 7 General conclusions and suggestions for future work Chapter 7 General conclusions and suggestions for future work Radiation therapy (RT) is one of the principle treatment modalities for the management of cancer. In recent decades, advances in the radiation

More information

Ranking radiotherapy treatment plans: physical or biological objectives?

Ranking radiotherapy treatment plans: physical or biological objectives? Ranking radiotherapy treatment plans: physical or biological objectives? Martin Ebert Department of Radiation Oncology, Sir Charles Gairdner Hospital, Western Australia, Australia Background. The ranking

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/36461 holds various files of this Leiden University dissertation Author: Wiggenraad, Ruud Title: Stereotactic radiotherapy of intracranial tumors : optimizing

More information

A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM *

A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM * Romanian Reports in Physics, Vol. 66, No. 2, P. 394 400, 2014 A TREATMENT PLANNING STUDY COMPARING VMAT WITH 3D CONFORMAL RADIOTHERAPY FOR PROSTATE CANCER USING PINNACLE PLANNING SYSTEM * D. ADAM 1,2,

More information

Elekta - a partner and world-leading supplier

Elekta - a partner and world-leading supplier Experience Elekta Elekta - a partner and world-leading supplier of clinical solutions for image guided radiation therapy, stereotactic radiotherapy, radiosurgery and brachytherapy, as well as advanced

More information

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT Purpose The purpose of this curriculum outline is to provide a framework for multidisciplinary training for radiation oncologists, medical

More information

Clinically Proven Metabolically-Guided TomoTherapy SM Treatments Advancing Cancer Care

Clinically Proven Metabolically-Guided TomoTherapy SM Treatments Advancing Cancer Care Clinically Proven Metabolically-Guided TomoTherapy SM Treatments Advancing Cancer Care Institution: San Raffaele Hospital Milan, Italy By Nadia Di Muzio, M.D., Radiotherapy Department (collaborators: Berardi

More information

IMRT QUESTIONNAIRE. Address: Physicist: Research Associate: Dosimetrist: Responsible Radiation Oncologist(s)

IMRT QUESTIONNAIRE. Address: Physicist:   Research Associate:   Dosimetrist:   Responsible Radiation Oncologist(s) IMRT QUESTIONNAIRE Institution: Date: / / Address: Physicist: e-mail: Telephone: Fax: Research Associate: email: Telephone: Fax: Dosimetrist: email: Telephone: Fax: Responsible Radiation Oncologist(s)

More information

IMRT - Intensity Modulated Radiotherapy

IMRT - Intensity Modulated Radiotherapy IMRT - Intensity Modulated Radiotherapy Advanced product in the RT technology Aims to deliver radiation more precisely to the tumor, while relatively limiting dose to the surrounding normal tissues 7 position

More information

IMRT FOR CRANIOSPINAL IRRADIATION: CHALLENGES AND RESULTS. A. Miller, L. Kasulaitytė Institute of Oncolygy, Vilnius University

IMRT FOR CRANIOSPINAL IRRADIATION: CHALLENGES AND RESULTS. A. Miller, L. Kasulaitytė Institute of Oncolygy, Vilnius University IMRT FOR CRANIOSPINAL IRRADIATION: CHALLENGES AND RESULTS A. Miller, L. Kasulaitytė Institute of Oncolygy, Vilnius University Content 1.Introduction 2.Methods and materials 3.Results and discussion 4.Conclusion

More information

Keywords: nasopharyngeal cancer, intensity modulated radiation therapy, volumetric modulated arc therapy, xerostomia

Keywords: nasopharyngeal cancer, intensity modulated radiation therapy, volumetric modulated arc therapy, xerostomia Comparative evaluation of the doses received by the parotid glands as predictors of xerostomia be 3D-CRT, IMRT and VMAT irradiation techniques in local advanced nasopharynx cancer Camil Mireștean 1, Călin

More information

Rectal dose and toxicity dosimetric evaluation for various beam arrangements using pencil beam scanning protons with and without rectal spacers

Rectal dose and toxicity dosimetric evaluation for various beam arrangements using pencil beam scanning protons with and without rectal spacers Rectal dose and toxicity dosimetric evaluation for various beam arrangements using pencil beam scanning protons with and without rectal spacers 2015 MAC-AAPM Annual Meeting, Baltimore, MD Heeteak Chung,

More information

Wen Chen 1, Xiaoyu Yang 1, Nian Jiang 2, Zijian Zhang 1, Jidong Hong 1, Yuxiang He 1, Junli Luo 1, Ying Liang 1, Rui Wei 1.

Wen Chen 1, Xiaoyu Yang 1, Nian Jiang 2, Zijian Zhang 1, Jidong Hong 1, Yuxiang He 1, Junli Luo 1, Ying Liang 1, Rui Wei 1. Original Article Intensity-modulated radiotherapy, volume-modulated arc therapy and helical tomotherapy for locally advanced nasopharyngeal carcinoma: a dosimetric comparison Wen Chen 1, Xiaoyu Yang 1,

More information

Dose escalation for NSCLC using conformal RT: 3D and IMRT. Hasan Murshed

Dose escalation for NSCLC using conformal RT: 3D and IMRT. Hasan Murshed Dose escalation for NSCLC using conformal RT: 3D and IMRT. Hasan Murshed Take home message Preliminary data shows CRT technique in NSCLC allows dose escalation to an unprecedented level maintaining cancer

More information

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014

Lung Spine Phantom. Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014 Lung Spine Phantom Guidelines for Planning and Irradiating the IROC Spine Phantom. MARCH 2014 The study groups are requesting that each institution keep the phantom for no more than 2 week. During this

More information