RADIOBIOLOIGCALLY BASED TREATMENT PLANNING: THE NEXT FRONTIER. Teddy LaMaster, MS

Size: px
Start display at page:

Download "RADIOBIOLOIGCALLY BASED TREATMENT PLANNING: THE NEXT FRONTIER. Teddy LaMaster, MS"

Transcription

1 RADIOBIOLOIGCALLY BASED TREATMENT PLANNING: THE NEXT FRONTIER Teddy LaMaster, MS

2 RADIOBIOLOGY Radiobiology is the interaction between ionizing radiation and living things. Varies for different cells, organs, organisms. Two types of effects: Stochastic Effects Non-stochastic (deterministic) effects Two types of organ systems Parallel Serial 2

3 STOCHASTIC EFFECTS Thought to have no threshold Probability increases with increased dose If effect occurs the severity is not dependent on dose Example: Patient gets diagnostic x-ray Patient gets radiation induced cancer Severity of radiation induced cancer not correlated with radiation dose from diagnostic x-ray 3

4 DETERMINISTIC EFFECTS Threshold does exist The severity of the effect is dependent on dose Example: Skin Erythema Must meet a threshold dose to get skin erythema Patient s skin erythema will get progressively worse with increased radiation exposure 4

5 TWO TYPES OF ORGAN SYSTEMS Parallel Mean dose dependent Tissue-Volume relationships Serial Maximum dose dependent 5

6 PARALLEL ORGAN WITH A NUMBER OF SUBUNITS 6

7 PARTIAL FUNCTION PRESERVED WHEN THE MAJORITY OF SUBUNITS REMAIN 7

8 SERIAL ORGAN 8

9 FUNCTION DESTROYED BY THE LOSS OF A SINGLE SUBUNIT No Volume Effect Need only Enough Dose to Destroy ONE Functional Subunit 9

10 DOSE-RESPONSE MODELS Linear-Quadratic (LQ) Model TCP Models NTCP Models Generalized Equivalent Uniform Dose (geud) Others Disclosure: Many following slides pulled heavily from TG

11 LINEAR-QUADRATIC (LQ) MODEL Most commonly used to model cell survival Radiation-induced reproductive cell death conclusively linked to DNA damage Specifically double-strand breaks (DSB) 11

12 LINEAR-QUADRATIC FORMULA S represents the fraction of cells surviving irradiation to a dose D in n fractions. α and β proportionality coefficients for linear and quadratic components. 12

13 DIFFERENTIAL TISSUE RESPONSE Different tissues respond differently depending on α and β or their ratio α/β α/β = 10 Gy for Early Responding Tissue (e.g. skin & mucosa) and Many Tumors α/β = 2 to3 Gy for Late Responding Tissues 13

14 TUMOR CONTROL PROBABILITY A unicellular hypothesis: A single surviving cancer cell is sufficient to regrow the tumor if further invoked. Probability that no cancer cells survive 14

15 TUMOR WITH A NUMBER OF SUBUNITS 15

16 TUMORS ARE SUPER PARALLEL 16

17 REGENERATES FROM ONE SUBUNIT 17

18 TCP FORMULA Poisson distribution: S is the overall surviving fraction after a course of radiation therapy N is the initial number of cancer cells 18

19 NORMAL TISSUE COMPLICATION PROBABILITY (NTCP) We want this to be as low as possible! Many models exist If you love math and biological response models read TG-166 and learn more 19

20 Tumor Control Probability (TCP) curves The relationship between total dose and response (e.g. tumor control or normal tissue injury) is threshold-sigmoid. Above a certain threshold tumor control and complication rates increase steeply 20

21 Factors affecting shape and slope of TCP curves The fundamental goal in radiation oncology is to deliver a sufficiently high dose of radiation to sterilize the tumor cells with minimal damage to the surrounding normal tissues, with the ultimate result being complete eradication of the tumor with sufficient normal tissue remaining to ensure viability and function. Problems: interaction of radiation in matter, including cells, tissues and organs, is a nonspecific, random process, with no specificity to tumor cells; radiation delivered from the sources outside the body is absorbed by normal tissues in its path to the tumor, and the damage to the normal cells occurs. Tumor Control Probability (TCP) curves 21

22 Normal tissue complication probability (NTCP) curves 22

23 Influence of normal tissue regeneration on responses. Normal tissue tolerance. As in the tumor, more cells are killed in the normal tissue as the dose is increased and the probability of damage occurring increases. However, all normal tissues have a limit as to the amount of radiation they can receive and still remain functional; this is defined as Radiation tolerance The amount of radiation used to treat a specific malignant tumor is limited by the tolerance of the surrounding normal tissue, not by the tumor. 23

24 TCP: MODELING PROBLEMS TCP endpoint = local control but at what time? Where is the tumor? Tumor localization on planning images? Multi-modality imaging? Local failure or marginal miss? What was the delivered dose distribution? Role of setup errors, organ motion? Uncertainty in radiobiological parameters. 24

25 PROBLEMS WITH MODELING NTCP Reported clinical data mostly for low NTCP and low (<70 Gy) doses. If NTCP increases sigmoidally with dose, most data are on the early tail extrapolation is troublesome Several types of complications per organ Different onset times, dose-volume dependencies Non-radiation factors affect NTCP Most models quantize the complication Most complications show severity continuum 25

26 NORMAL TISSUE COMPLICATIONS SPINAL CORD Complications = Radiation myelitis Clinically-want NTCP << 5% 1991 (E&B) TD5 ~ Gy, TD50 ~ 70 Gy Updates TD5~57 Gy Weak volume dependence confirmed Small α/β (~2 Gy) Some occult injury recovery (~2 yrs) 26

27 NORMAL TISSUE COMPLICATIONS LUNG Complication=severe radiation pneumonitis Requiring serious medical care NTCP~20-25% (steroids) accepted Onset within 6 months of Tx TD50(1) ~28 Gy Good DVH correlates for treatment planning: D mean Volumes receiving >13 Gy, >20 Gy, >30 Gy Are some sub-volumes more sensitive than others?? 27

28 Bad news NTCP Models are much too simplistic to describe physiology of radiation damage. Maybe we shouldn t try! Good news-maybe we don t need very sophisticated models Crudely, there are 3 types of normal tissues: Max dose [serial?] tissues (cord, optic structures, bowel) Mean dose [parallel??] tissues (lung, liver, parotids) Mixed tissues (rectum) look at middle parts of DVH Such surrogates for NTCP are easily obtained from DVH They are used in clinical decisions and IMRT optimization (mean lung dose < 21 Gy, Max cord dose < 50 Gy) More good news: Lots of data from modern clinical studies! NTCP: SUMMARY 28

29 THERAPEUTIC RATIO The ideal situation is when the dose-response curve for damage in the critical normal tissue sits well to the right to higher total doses) than that for tumor control. In this case, the dose that gives a 90% probability of tumor cure may give less than 10% probability of normal tissue damage. Unfortunately, in most cases the two doseresponse curves lie close to each other. 29

30 GENERALIZED EQUIVALENT UNIFORM DOSE (GEUD) Defined as the uniform dose that, if delivered over the same number of fractions as the non-uniform dose distribution of interest, yields the same radiobiological effect. 30

31 GEUD FORMULA Fractional organ volume receiving dose Tissue specific parameter 31

32 GEUD FORMULA METAPHORICAL EXAMPLE General Effective Food Dose You eat a snack that consists of protein, carbohydrates, and fat. Want to know its caloric equivalent if your snack were just carbohydrates, or just protein, or just fat. 32

33 GEUD FORMULA METAPHORICAL EXAMPLE Understanding: Fractional organ volume receiving dose is the fraction of your snack that is carbohydrate, fat, or protein. would be the calories per gram for the respective nutrient (carbohydrate, fat, protein). 33

34 GEUD FORMULA METAPHORICAL EXAMPLE This snack will have a different Effective Food Dose depending on who is eating it. A professional athlete s body will need a different amount of calories than say... 34

35 GEUD FORMULA METAPHORICAL EXAMPLE 35

36 GEUD FORMULA METAPHORICAL EXAMPLE Understanding: Tissue specific parameter would represent their body s specific response to the snack 36

37 GEUD FORMULA METAPHORICAL EXAMPLE Understanding: The sum of the components to the 1/a is your Effective Food Dose 37

38 COMING BACK TO REALITY Now think of as a fraction of an organ Think of as a radiation dose rather than an amount of calories Associate with the radio-sensitivity of an organ 38

39 WHAT ARE TYPICAL TREATMENT GOALS? Goal I: achieve a sufficient target dose Goal II: do not exceed acceptable doses in normal organs Goal III: target dose should be conformal, spare generic normal tissue Goal IV: do not exceed target maximum dose (with some leeway) Goal III and IV follow from the paradigm of conformal radiotherapy, for which there are no biological models! Therefore: mix of biological and descriptive cost functions necessary 39

40 REAL WORLD RADIOBIOLOGICAL IMPLEMENTATION CMS Monaco Philips Pinnacle Varian Eclipse RaySearch RayStation 40

41 CMS MONACO Implements three biologically based cost functions Poisson statistics cell kill model Serial complication model Parallel complication model 41

42 CMS MONACO 42

43 PHILIPS PINNACLE Pinnacle 3 (V8.0h) incorporates biological optimization features into its P 3 IMRT inverse treatment planning module. Biological objective functions were developed by RaySearch Laboratories. Three biological cost functions Min EUD Target EUD Max EUD 43

44 EQUIVALENT UNIFORM DOSE The concept of EUD was designed to describe dose distributions with a higher clinical relevance Enter a prescription which applies to the structure as a volume rather than fixating on specific dose points Raise or lower equivalent dose to the entire structure as a whole 44

45 EQUIVALENT UNIFORM DOSE Target volumes EUD is the desired dose parameter Prescribed dose 45

46 EQUIVALENT UNIFORM DOSE Normal structures EUD is the maximum tolerable uniform dose May be D 5 or D 50 The uniform doses that lead to 5% or 50% complication probability respectively Typically falls somewhere between the minimum and mean dose 46

47 EQUIVALENT UNIFORM DOSE EUD based optimization can improve the sparing of critical structures while maintaining the same or better target coverage 47

48 EQUIVALENT UNIFORM DOSE EUD simplicity Same formalism is applied to both tumors and normal structures Less input required by user EUD mimics the biological response to dose more closely than do dose volume relationships Higher degeneracy of EUD enables EUD-based optimization to explore a large solution space compared with dose-volumebased objective functions Can find solutions that may otherwise not be apparent 48

49 EQUIVALENT UNIFORM DOSE In short, EUD prescription based planning is a viable and good option High doses may be given to the target while simultaneously maintaining low doses to normal structures in a way that may not be achievable with physical dose constraints 49

50 PHILIPS PINNACLE 50

51 PHILIPS PINNACLE Two plan evaluation tools: NTCP/TCP Editor Used to obtain NTCP and TCP estimates. Biological Response panel Calculation of NTCP and TCP Compare alternate treatment plans side-by-side Graphical representation of NTCP/TCP for each structure Composite estimates of NTCP, TCP, and probability of complication-free tumor control for the entire plan 51

52 PHILIPS PINNACLE 52

53 VARIAN ECLIPSE Eclipse (V10.0) and on provide biological optimization through the use of a plug-in to a RaySearch Laboratories application. All patient and plan information is sent to the the application for fluence optimization by a separate rapid calculation algorithm. Fluences then sent back to Eclipse dose engine for final calculation. 53

54 54

55 VARIAN ECLIPSE Biological plan evaluation: NTCP and TCP values for structures Evaluate NTCP and TCP value change due to: Fractionation schedules (e.g. twice vs. once per day) Changing number of fractions Scaling total dose Two additional graphs LQ-Scaled DVH (showing effective DVHs) Radiobiological Response graph (plotting NTCP and TCP values versus a scale factor for the total dose) 55

56 RAYSEARCH LABORATORIES RAYSTATION RayBiology: radiobiological evaluation, comparison, correction, and optimization of treatment plans. Not discussed in TG-166 Utilizes: geud TCP NTCP More RaySearch Laboratories designed radiobiological optimization and evaluation for Pinnacle and Eclipse. 56

57 THE NEXT FRONTIER 57

58 THE NEXT FRONTIER User should have multiple biological models for evaluation Integrate new evolving technologies as they emerge We want the capacity to compare models Allow the capacity to use a hybrid approach Combine physical dose constraint techniques with biologically based techniques Weight accordingly 58

59 THE NEXT FRONTIER User optimization User can REWARD Getting lower NTCP than Requested Maximizing the TCP for a given NTCP Define stop values for iteration during optimization User will define values below which further optimization is unnecessary improve optimization 59

60 THE NEXT FRONTIER User can input dose modifying factors Help Assess the variations in Outcome Dose Modifying Factors to Include: Chemotherapy Pre-Existing Conditions Dose Sensitivities of Organs Dose Resistance of Organs 60

61 Interaction of radiotherapy and chemotherapy - Decreased tumor cell repopulation following fractionated radiation due to effects of chemotherapy - Increased tumor cell recruitment from G0 into a therapyresponsive cell cycle phase - Increased tumor cell oxygenation following radiation with improved drug or radiation activity - Improved drug delivery with shrinkage of tumor - Early eradication of tumor cells preventing emergence of drug and/or radiation resistance - Eradication of cells resistant to one treatment modality by the other treatment - Cell cycle synchronization - Inhibition of repair of sublethal radiation damage or inhibition of recovery from potentially lethal radiation damage Adjuvant or combined treatments on therapeutic ratio 61

62 THE NEXT FRONTIER Accessible and Interactive with other Medical Information Systems Algorithms available to evaluate effect of other predictive models Patient Specific Probability Metric Ability to recognize non achievable plan requests Desire: Maximize TCP: Minimize NTCP 62

63 THE NEXT FRONTIER Models should address radiobiological variations of tumors Goal: Possibly to generate highly non-uniform dose distribution based on PET and MRI Variations Clonogenic cell density Radiosensitivity Hypoxia Link the Biology to functional images Painting by Number approach 63

64 64

65 RESULTS FDG uptake positively correlated with hypoxia FDG uptake negatively correlated with blood flow FDG uptake negatively correlated with cellular proliferation 65

66 66

67 CORRELATION CONFIRMED IN HUMAN CANCER CELLS Oxygenation of human cancer cells was controlled Decreasing the oxygenation of the cells increased its affinity to absorb FDG Patients had squamous cell carcinoma of the head and neck Cell lines (UT-SCC-5) and (UT-SCC-20) 67

68 WHY CARE ABOUT OXYGENATION? 68

69 HYPOXIC VS OXIC 69

70 HYPOXIC VS OXIC Increased resistance to radiation with decreased oxygenation (hypoxic) Non-uniform PET image means non-uniform levels of oxygenation Non-uniform oxygenation means nonuniform radio-sensitivity Why have uniform dose? 70

71 TG-166 RECOMMENDATION???????? TG-166 maintains that highly non-uniform dose distributions caused by the optimization technique (as opposed to deliberate and tested nonuniformity as seen in SRS, SIB techniques, and brachytherapy) should be avoided. This should be challenged on the merits of: SRS SIB Brachytherapy 71

72 BRACHYTHERAPY ISODOSE 72

73 BRACHYTHERAPY VS IMRT DVH 73

74 CYBERKNIFE ISODOSE (54 GY 3FX) 74

75 CYBERKNIFE DVH (54GY 3 FX) 75

76 GAMMAKNIFE ISODOSE 76

77 GAMMAKNIFE DVH 77

78 HETEROGENEOUS DOSE: SUPPORT Adds another degree of freedom to treatment planning More opportunity to modulate and spare critical structures Hot spots may located in GTV and not detrimental Tumors are Heterogeneous. Why should Dose be Heterogeneous? 78

79 INTEGRATING HETEROGENEOUS DOSE Using FDG PET scans to define where to escalate dose Integrated boost of areas with highest PET uptake 79

80 80

81 PET DEFINED INTEGRATED BOOST Blue PTV treated to 66 Gy Magenta PTV treated to 82 Gy 81

82 THE NEXT FRONTIER Ability to consider: Time effects Fractionation schema Treatment breaks Tumor growth Delivery time Recurrences Parameter sensitivity analysis How does one parameter affect another parameter 82

83 CONCLUSION Radiobiology is truly an uncharted frontier We have learned a lot, but have a lot more to discover A lot of great radiobiologically based models and tools exist We need to start using them We need to continue making what we have even better It is truly a great time to be in the field! 83

84 RESOURCES Zellmer, D. Comparison of Treatment Planning Systems for IMRT Using Biological Modeling [PDF document]. Retrieved from Ahmed, M. Lecture 19 [ppt]. Retrieved from The Use and QA of Biologically Related Models for Treatment Planning. Rep. no. TG-166. College Park, MD: American Association of Physicists in Medicine, Print. Hall, Eric J., and Amato J. Giaccia. Radiobiology for the Radiologist. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, Print. 84

Radiation Damage Comparison between Intensity Modulated Radiotherapy (IMRT) and Field-in-field (FIF) Technique In Breast Cancer Treatments

Radiation Damage Comparison between Intensity Modulated Radiotherapy (IMRT) and Field-in-field (FIF) Technique In Breast Cancer Treatments Radiation Damage Comparison between Intensity Modulated Radiotherapy () and Field-in-field (FIF) Technique In Breast Cancer Treatments Huisi Ai 1 and Hualin Zhang 2 1. Department of Radiation Oncology,

More information

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia

IMRT - the physician s eye-view. Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia IMRT - the physician s eye-view Cinzia Iotti Department of Radiation Oncology S.Maria Nuova Hospital Reggio Emilia The goals of cancer therapy Local control Survival Functional status Quality of life Causes

More information

Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO

Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO Investigations and research Efficient SIB-IMRT planning of head & neck patients with Pinnacle 3 -DMPO M. Kunze-Busch P. van Kollenburg Department of Radiation Oncology, Radboud University Nijmegen Medical

More information

Biological Indices for IMRT Evaluation and Optimization

Biological Indices for IMRT Evaluation and Optimization Biological Indices for IMRT Evaluation and Optimization Ellen D. Yorke Memorial Sloan-Kettering Cancer Center 1 9 8 7 6 5 4 3 2 1 Why biological indices? Dose distributions, DVHssurrogates for outcome

More information

Therapeutic ratio - An Overview. Past Present Future Prof Ramesh S Bilimaga

Therapeutic ratio - An Overview. Past Present Future Prof Ramesh S Bilimaga Therapeutic ratio - An Overview Past Present Future Prof Ramesh S Bilimaga Radiation Oncology Discipline of human medicine concerned with the generation, conservation and dissemination of knowledge concerning

More information

SBRT TREATMENT PLANNING: TIPS + TRICKS. Rachel A. Hackett CMD, RT(T)

SBRT TREATMENT PLANNING: TIPS + TRICKS. Rachel A. Hackett CMD, RT(T) SBRT TREATMENT PLANNING: TIPS + TRICKS Rachel A. Hackett CMD, RT(T) OUTLINE Brief radiobiology review 3D CRT Tx Planning VMAT Tx Planning Protocols Other Sites Oligomets Spine Liver Kidney Adrenal Gland

More information

Dosimetric Effects of Using Generalized Equivalent Uniform Dose (geud) in Plan Optimization

Dosimetric Effects of Using Generalized Equivalent Uniform Dose (geud) in Plan Optimization Dosimetric Effects of Using Generalized Equivalent Uniform Dose (geud) in Plan Optimization Ontida Apinorasethkul, MS, CMD AAMD Indianapolis June 14, 2017 Disclaimer This presentation is not sponsored

More information

Ranking radiotherapy treatment plans: physical or biological objectives?

Ranking radiotherapy treatment plans: physical or biological objectives? Ranking radiotherapy treatment plans: physical or biological objectives? Martin Ebert Department of Radiation Oncology, Sir Charles Gairdner Hospital, Western Australia, Australia Background. The ranking

More information

Dosimetric Uncertainties and Normal Tissue Tolerance. Ellen D Yorke Memorial Sloan Kettering Cancer Center New York City

Dosimetric Uncertainties and Normal Tissue Tolerance. Ellen D Yorke Memorial Sloan Kettering Cancer Center New York City Dosimetric Uncertainties and Normal Tissue Tolerance Ellen D Yorke Memorial Sloan Kettering Cancer Center New York City Traditional accuracy/precision goal is to deliver external beam radiation therapy

More information

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer

Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer 1 Charles Poole April Case Study April 30, 2012 Evaluation of Whole-Field and Split-Field Intensity Modulation Radiation Therapy (IMRT) Techniques in Head and Neck Cancer Abstract: Introduction: This study

More information

The Radiation Biology of Dose Fractionation: Determinants of Effect

The Radiation Biology of Dose Fractionation: Determinants of Effect The Radiation Biology of Dose Fractionation: Determinants of Effect E. Day Werts, Ph.D. Department of Radiation Oncology West Penn Allegheny Radiation Oncology Network Allegheny General Hospital Historical

More information

A new homogeneity index based on statistical analysis of the dose volume histogram

A new homogeneity index based on statistical analysis of the dose volume histogram JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 8, NUMBER 2, SPRING 2007 A new homogeneity index based on statistical analysis of the dose volume histogram Myonggeun Yoon, Sung Yong Park, a Dongho

More information

X. Allen Li BGRT. Biologically Based Treatment Planning. Biologically based treatment planning

X. Allen Li BGRT. Biologically Based Treatment Planning. Biologically based treatment planning Biologically Based Treatment Planning X. Allen Li AAPM Spring Clinical Meeting, March 20, 2012 Limitations of dose-volume based treatment planning DV metrics are merely surrogate measures of radiation

More information

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation.

Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation. Radiation Therapy Use of radiation to kill diseased cells. Cancer is the disease that is almost always treated when using radiation. One person in three will develop some form of cancer in their lifetime.

More information

The Four R s. Repair Reoxygenation Repopulation Redistribution. The Radiobiology of Small Fraction Numbers. The Radiobiology of Small Fraction Numbers

The Four R s. Repair Reoxygenation Repopulation Redistribution. The Radiobiology of Small Fraction Numbers. The Radiobiology of Small Fraction Numbers The Radiobiology of Small Fraction Numbers David J. Brenner, PhD, DSc Center for Radiological Research Columbia University Medical Center djb3@columbia.edu The Radiobiology of Small Fraction Numbers 1.

More information

4.1.1 Dose distributions LKB effective volume or mean liver dose? The critical volume model TUMOUR CONTROL...

4.1.1 Dose distributions LKB effective volume or mean liver dose? The critical volume model TUMOUR CONTROL... 1 CONTENTS 1 INTRODUCTION... 3 1.1 STEREOTACTIC BODY RADIATION THERAPY (SBRT)... 3 1.1.1 The development of SBRT... 3 1.1.2 The technique of SBRT... 4 1.1.3 Hypofractionation and inhomogeneous dose distribution...

More information

Biologically Based Treatment Planning X. Allen Li

Biologically Based Treatment Planning X. Allen Li Biologically Based Treatment Planning X. Allen Li AAPM Spring Clinical Meeting, March 20, 2012 Limitations of dose-volume based treatment planning DV metrics are merely surrogate measures of radiation

More information

HDR Applicators and Dosimetry*

HDR Applicators and Dosimetry* HDR Applicators and Dosimetry* Jason Rownd, MS Medical College of Wisconsin *with a too much radiobiology Objectives Review the radiobiology of brachytherapy-linear quadratic model. Understand how to convert

More information

UNC-Duke Biology Course for Residents Fall

UNC-Duke Biology Course for Residents Fall UNC-Duke Biology Course for Residents Fall 2018 1 UNC-Duke Biology Course for Residents Fall 2018 2 UNC-Duke Biology Course for Residents Fall 2018 3 UNC-Duke Biology Course for Residents Fall 2018 4 UNC-Duke

More information

A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse

A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse Peters et al. Radiation Oncology 2014, 9:153 RESEARCH Open Access A treatment planning study comparing Elekta VMAT and fixed field IMRT using the varian treatment planning system eclipse Samuel Peters

More information

Radiobiology of fractionated treatments: the classical approach and the 4 Rs. Vischioni Barbara MD, PhD Centro Nazionale Adroterapia Oncologica

Radiobiology of fractionated treatments: the classical approach and the 4 Rs. Vischioni Barbara MD, PhD Centro Nazionale Adroterapia Oncologica Radiobiology of fractionated treatments: the classical approach and the 4 Rs Vischioni Barbara MD, PhD Centro Nazionale Adroterapia Oncologica Radiobiology It is fundamental in radiation oncology Radiobiology

More information

First, how does radiation work?

First, how does radiation work? Hello, I am Prajnan Das, Faculty Member in the Department of Radiation Oncology at The University of Texas MD Anderson Cancer Center. We are going to talk today about some of the basic principles regarding

More information

Radiotherapy physics & Equipments

Radiotherapy physics & Equipments Radiotherapy physics & Equipments RAD 481 Lecture s Title: An Overview of Radiation Therapy for Health Care Professionals Dr. Mohammed Emam Vision :IMC aspires to be a leader in applied medical sciences,

More information

Dosimetry and radiobiology for Peptide Receptor Radionuclide Therapy

Dosimetry and radiobiology for Peptide Receptor Radionuclide Therapy Dosimetry and radiobiology for Peptide Receptor Radionuclide Therapy Short-ranged particle emitters for targeted radionuclide therapy require specific dosimetry and radiobiology Mark Konijnenberg Melodi

More information

Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida

Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida American Association of Medical Dosimetrists 2015 Silvia Pella, PhD, DABR Brian Doozan, MS South Florida Radiation Oncology Florida Atlantic University Advanced Radiation Physics Boca Raton, Florida Most

More information

Knowledge-Based IMRT Treatment Planning for Prostate Cancer: Experience with 101. Cases from Duke Clinic. Deon Martina Dick

Knowledge-Based IMRT Treatment Planning for Prostate Cancer: Experience with 101. Cases from Duke Clinic. Deon Martina Dick Knowledge-Based IMRT Treatment Planning for Prostate Cancer: Experience with 101 Cases from Duke Clinic by Deon Martina Dick Department of Medical Physics Duke University Date: Approved: Joseph Lo, Chair

More information

A guide to using multi-criteria optimization (MCO) for IMRT planning in RayStation

A guide to using multi-criteria optimization (MCO) for IMRT planning in RayStation A guide to using multi-criteria optimization (MCO) for IMRT planning in RayStation By David Craft Massachusetts General Hospital, Department of Radiation Oncology Revised: August 30, 2011 Single Page Summary

More information

Radiobiological modelling applied to Unsealed Source (radio) Therapy

Radiobiological modelling applied to Unsealed Source (radio) Therapy Radiobiological modelling applied to Unsealed Source (radio) Therapy Alan E. Nahum Physics Department Clatterbridge Cancer Centre NHS Foundation Trust Bebington, Wirral CH63 4JY UK alan.nahum@clatterbridgecc.nhs.uk

More information

Chapters from Clinical Oncology

Chapters from Clinical Oncology Chapters from Clinical Oncology Lecture notes University of Szeged Faculty of Medicine Department of Oncotherapy 2012. 1 RADIOTHERAPY Technical aspects Dr. Elemér Szil Introduction There are three possibilities

More information

Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report

Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report Report of ICRU Committee on Volume and Dose Specification for Prescribing, Reporting and Recording in Conformal and IMRT A Progress Report Paul M. DeLuca, Jr. 1, Ph.D., Vincent Gregoire 2, M.D., Ph.D.,

More information

IMRT Planning Basics AAMD Student Webinar

IMRT Planning Basics AAMD Student Webinar IMRT Planning Basics AAMD Student Webinar March 12, 2014 Karen Chin Snyder, MS Senior Associate Physicist Department of Radiation Oncology Disclosures The presenter has received speaker honoraria from

More information

Determination and Use of Radiobiological Response Parameters in Radiation Therapy Optimization. Panayiotis Mavroidis

Determination and Use of Radiobiological Response Parameters in Radiation Therapy Optimization. Panayiotis Mavroidis Determination and Use of Radiobiological Response Parameters in Radiation Therapy Optimization Panayiotis Mavroidis Division of Medical Radiation Physics Department of Oncology-Pathology Karolinska Institutet

More information

Beyond The Dvh - Spatial And Biological Radiotherapy Treatment Planning

Beyond The Dvh - Spatial And Biological Radiotherapy Treatment Planning Wayne State University Wayne State University Dissertations 1-1-2010 Beyond The Dvh - Spatial And Biological Radiotherapy Treatment Planning Bo Zhao Wayne State University Follow this and additional works

More information

Risk of secondary cancer induced by radiotherapy

Risk of secondary cancer induced by radiotherapy Risk of secondary cancer induced by radiotherapy Iuliana Toma-Dasu Medical Radiation Physics Stockholm University and Karolinska Institutet Radiation - the two-edged sword Risk of secondary cancer induced

More information

From position verification and correction to adaptive RT Adaptive RT and dose accumulation

From position verification and correction to adaptive RT Adaptive RT and dose accumulation From position verification and correction to adaptive RT Adaptive RT and dose accumulation Hans de Boer Move away from Single pre-treatment scan Single treatment plan Treatment corrections by couch shifts

More information

Changing Paradigms in Radiotherapy

Changing Paradigms in Radiotherapy Changing Paradigms in Radiotherapy Marco van Vulpen, MD, PhD Mouldroomdag-2015 Towards the elimination of invasion 1 NIH opinion on the future of oncology Twenty-five years from now,i hope that we won

More information

Radiation Oncology. Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology

Radiation Oncology. Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology Radiation Oncology Initial Certification Qualifying (Computer-based) Examination: Study Guide for Radiation and Cancer Biology This exam tests your knowledge of the principles of cancer and radiation biology

More information

Original Article. Teyyiba Kanwal, Muhammad Khalid, Syed Ijaz Hussain Shah, Khawar Nadeem

Original Article. Teyyiba Kanwal, Muhammad Khalid, Syed Ijaz Hussain Shah, Khawar Nadeem Original Article Treatment Planning Evaluation of Sliding Window and Multiple Static Segments Technique in Intensity Modulated Radiotherapy for Different Beam Directions Teyyiba Kanwal, Muhammad Khalid,

More information

Radiobiological principles of brachytherapy

Radiobiological principles of brachytherapy Radiobiological principles of brachytherapy Low dose rate (LDR) Medium dose rate (MDR) High dose rate (HDR) The effect of dose rate As the dose rate is decreased, there is more time during irradiation

More information

Questions may be submitted anytime during the presentation.

Questions may be submitted anytime during the presentation. Understanding Radiation Therapy and its Role in Treating Patients with Pancreatic Cancer Presented by Pancreatic Cancer Action Network www.pancan.org August 18, 2014 If you experience technical difficulty

More information

Research Article A Mathematical Model of Tumor Volume Changes during Radiotherapy

Research Article A Mathematical Model of Tumor Volume Changes during Radiotherapy The Scientific World Journal Volume 203, Article ID 8070, 5 pages http://dx.doi.org/0.55/203/8070 Research Article A Mathematical Model of Tumor Volume Changes during Radiotherapy Ping Wang and Yuanming

More information

Optimising Radiotherapy Using NTCP Models: 17 Years in Ann Arbor

Optimising Radiotherapy Using NTCP Models: 17 Years in Ann Arbor Individualizing Optimizing Optimising Radiotherapy Using NTCP Models: 17 Years in Ann Arbor Randall K. Ten Haken, Ph.D. University of Michigan Department of Radiation Oncology Ann Arbor, MI Introduction

More information

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer

Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Dosimetric Analysis of 3DCRT or IMRT with Vaginal-cuff Brachytherapy (VCB) for Gynaecological Cancer Tan Chek Wee 15 06 2016 National University Cancer Institute, Singapore Clinical Care Education Research

More information

Cell survival following high dose rate flattening filter free (FFF) and conventional dose rate irradiation

Cell survival following high dose rate flattening filter free (FFF) and conventional dose rate irradiation Cell survival following high dose rate flattening filter free (FFF) and conventional dose rate irradiation Peter Sminia p.sminia@vumc.nl Λαβορατοριυµβεσπρεκινγ 8 νοϖεµβερ 2005 Progress in Radiotherapy:

More information

Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning

Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 5, 2014 Comparing conformal, arc radiotherapy and helical tomotherapy in craniospinal irradiation planning Pamela A. Myers, 1 Panayiotis Mavroidis,

More information

Clinical Applications of Brachytherapy Radiobiology. Radiobiology is Essential

Clinical Applications of Brachytherapy Radiobiology. Radiobiology is Essential Clinical Applications of Brachytherapy Radiobiology Dr Alexandra Stewart University of Surrey St Luke s Cancer Centre Guildford, England Radiobiology is Essential Knowledge of radiobiological principles

More information

The TomoTherapy System as a Tool of Differentiation in Quality and Marketability

The TomoTherapy System as a Tool of Differentiation in Quality and Marketability The TomoTherapy System as a Tool of Differentiation in Quality and Marketability John J. Kresl, MD, PhD, FACRO, FACR Medical Director Phoenix CyberKnife & Radiation Oncology Center Managing Partner Phoenix,

More information

ICRU Report 91 Was ist neu, was ändert sich?

ICRU Report 91 Was ist neu, was ändert sich? DEGRO Stereotaxie Meeting 21.10.2017 ICRU Report 91 Was ist neu, was ändert sich? Lotte Wilke, Stephanie Tanadini-Lang, Matthias Guckenberger Klinik für Radio-Onkologie, Universitätsspital Zürich History

More information

Managing the imaging dose during image-guided radiation therapy

Managing the imaging dose during image-guided radiation therapy Managing the imaging dose during image-guided radiation therapy Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University Richmond VA Imaging during radiotherapy Radiographic

More information

HALF. Who gets radiotherapy? Who gets radiotherapy? Half of all cancer patients get radiotherapy. By 1899 X rays were being used for cancer therapy

HALF. Who gets radiotherapy? Who gets radiotherapy? Half of all cancer patients get radiotherapy. By 1899 X rays were being used for cancer therapy The Physical and Biological Basis of By 1899 X rays were being used for cancer therapy David J. Brenner, PhD, DSc Center for Radiological Research Department of Radiation Oncology Columbia University Medical

More information

The Promise and Pitfalls of Mechanistic Modeling in Radiation Oncology

The Promise and Pitfalls of Mechanistic Modeling in Radiation Oncology The Promise and Pitfalls of Mechanistic Modeling in Radiation Oncology Robert D. Stewart, Ph.D. Associate Professor of Radiation Oncology University of Washington School of Medicine Department of Radiation

More information

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer

A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer A Comparison of IMRT and VMAT Technique for the Treatment of Rectal Cancer Tony Kin Ming Lam Radiation Planner Dr Patricia Lindsay, Radiation Physicist Dr John Kim, Radiation Oncologist Dr Kim Ann Ung,

More information

The Physics of Oesophageal Cancer Radiotherapy

The Physics of Oesophageal Cancer Radiotherapy The Physics of Oesophageal Cancer Radiotherapy Dr. Philip Wai Radiotherapy Physics Royal Marsden Hospital 1 Contents Brief clinical introduction Imaging and Target definition Dose prescription & patient

More information

Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana

Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana University of Groningen Potential benefits of intensity-modulated proton therapy in head and neck cancer van de Water, Tara Arpana IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Comparison of high and low energy treatment plans by evaluating the dose on the surrounding normal structures in conventional radiotherapy

Comparison of high and low energy treatment plans by evaluating the dose on the surrounding normal structures in conventional radiotherapy Turkish Journal of Cancer Volume 37, No. 2, 2007 59 Comparison of high and low energy treatment plans by evaluating the dose on the surrounding normal structures in conventional radiotherapy MUHAMMAD BASIM

More information

Elekta - a partner and world-leading supplier

Elekta - a partner and world-leading supplier Experience Elekta Elekta - a partner and world-leading supplier of clinical solutions for image guided radiation therapy, stereotactic radiotherapy, radiosurgery and brachytherapy, as well as advanced

More information

Automated Plan Quality Check with Scripting. Rajesh Gutti, Ph.D. Clinical Medical Physicist

Automated Plan Quality Check with Scripting. Rajesh Gutti, Ph.D. Clinical Medical Physicist Automated Plan Quality Check with Scripting Rajesh Gutti, Ph.D. Clinical Medical Physicist Veera.Gutti@BSWHealth.org Outline Introduction - BSW Automation in Treatment planning Eclipse Scripting API Script

More information

BASIC CLINICAL RADIOBIOLOGY

BASIC CLINICAL RADIOBIOLOGY INT6062: Strengthening Capacity for Cervical Cancer Control through Improvement of Diagnosis and Treatment BASIC CLINICAL RADIOBIOLOGY Alfredo Polo MD, PhD Applied Radiation Biology and Radiotherapy Section

More information

Biological/Clinical Outcome Models in RT Planning

Biological/Clinical Outcome Models in RT Planning Biological/Clinical Outcome Models in RT Planning Randy Ten Haken Ken Jee University of Michigan Why consider use of models? Are there problems that use of outcomes models could help resolve? Would their

More information

New Thinking on Fractionation in Radiotherapy

New Thinking on Fractionation in Radiotherapy New Thinking on Fractionation in Radiotherapy Alan E. Nahum Visiting Professor, Physics dept., Liverpool university, UK alan_e_nahum@yahoo.co.uk 1 An honorarium is provided by Accuray for this presentation

More information

The Evolution of SBRT and Hypofractionation in Thoracic Radiation Oncology

The Evolution of SBRT and Hypofractionation in Thoracic Radiation Oncology The Evolution of SBRT and Hypofractionation in Thoracic Radiation Oncology (specifically, lung cancer) 2/10/18 Jeffrey Kittel, MD Radiation Oncology, Aurora St. Luke s Medical Center Outline The history

More information

Fractionation: why did we ever fractionate? The Multiple Fractions School won! Survival curves: normal vs cancer cells

Fractionation: why did we ever fractionate? The Multiple Fractions School won! Survival curves: normal vs cancer cells 1 Basic Radiobiology for the Radiotherapy Physicist Colin G. Orton, Ph.D. Professor Emeritus, Wayne State University, Detroit, Michigan, USA Fractionation: why did we ever fractionate? Actually, initially

More information

Evaluation of Normal Tissue Complication Probability and Risk of Second Primary Cancer in Prostate Radiotherapy

Evaluation of Normal Tissue Complication Probability and Risk of Second Primary Cancer in Prostate Radiotherapy Evaluation of Normal Tissue Complication Probability and Risk of Second Primary Cancer in Prostate Radiotherapy Rungdham Takam Thesis submitted for the degree of Doctor of Philosophy in The School of Chemistry

More information

BLADDER RADIOTHERAPY PLANNING DOCUMENT

BLADDER RADIOTHERAPY PLANNING DOCUMENT A 2X2 FACTORIAL RANDOMISED PHASE III STUDY COMPARING STANDARD VERSUS REDUCED VOLUME RADIOTHERAPY WITH AND WITHOUT SYNCHRONOUS CHEMOTHERAPY IN MUSCLE INVASIVE BLADDER CANCER (ISRCTN 68324339) BLADDER RADIOTHERAPY

More information

PRINCIPLES OF RADIATION ONCOLOGY

PRINCIPLES OF RADIATION ONCOLOGY PRINCIPLES OF RADIATION ONCOLOGY Ravi Pachigolla, MD Faculty Advisor: Anna Pou, MD The University of Texas Medical Branch Department of Otolaryngology Grand Rounds Presentation January 5, 2000 HISTORY

More information

La ricerca e la terapia in adroterapia-2. R.Orecchia / P. Fossati

La ricerca e la terapia in adroterapia-2. R.Orecchia / P. Fossati La ricerca e la terapia in adroterapia-2 R.Orecchia / P. Fossati Dose (Gy) = energy (joule) / mass (kg) One degree of fever (from 37.5 to 38.5 ) > 4000 Gy RT small dose big damage Photons : Dose Resposne

More information

Advances in external beam radiotherapy

Advances in external beam radiotherapy International Conference on Modern Radiotherapy: Advances and Challenges in Radiation Protection of Patients Advances in external beam radiotherapy New techniques, new benefits and new risks Michael Brada

More information

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM *

A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM * Romanian Reports in Physics, Vol. 66, No. 2, P. 401 410, 2014 A VMAT PLANNING SOLUTION FOR NECK CANCER PATIENTS USING THE PINNACLE 3 PLANNING SYSTEM * M. D. SUDITU 1,2, D. ADAM 1,2, R. POPA 1,2, V. CIOCALTEI

More information

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington

Sarcoma and Radiation Therapy. Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington Sarcoma and Radiation Therapy Gabrielle M Kane MB BCh EdD FRCPC Muir Professorship in Radiation Oncology University of Washington Objective: Helping you make informed decisions Introduction Process Radiation

More information

Page 1. Helical (Spiral) Tomotherapy. UW Helical Tomotherapy Unit. Helical (Spiral) Tomotherapy. MVCT of an Anesthetized Dog with a Sinus Tumor

Page 1. Helical (Spiral) Tomotherapy. UW Helical Tomotherapy Unit. Helical (Spiral) Tomotherapy. MVCT of an Anesthetized Dog with a Sinus Tumor Helical (Spiral) Tomotherapy Novel Clinical Applications of IMRT Linac Ring Gantry CT Detector X-Ray Fan Beam Binary Multileaf Collimator Binary MLC Leaves James S Welsh, MS, MD Department of Human Oncology

More information

CHAPTER TWO MECHANISMS OF RADIATION EFFECTS

CHAPTER TWO MECHANISMS OF RADIATION EFFECTS 10-2 densely ionizing radiation CHAPTER TWO MECHANISMS OF RADIATION EFFECTS 2.0 INTRODUCTION Cell survival curves describe the relationship between the fractional survival, S, of a population of radiated

More information

Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83

Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83 Special report Dose prescription, reporting and recording in intensity-modulated radiation therapy: a digest of the ICRU Report 83 Rapid development in imaging techniques, including functional imaging,

More information

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS

THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS THE TRANSITION FROM 2D TO 3D AND TO IMRT - RATIONALE AND CRITICAL ELEMENTS ICTP SCHOOL ON MEDICAL PHYSICS FOR RADIATION THERAPY DOSIMETRY AND TREATMENT PLANNING FOR BASIC AND ADVANCED APPLICATIONS March

More information

MEDICAL MANAGEMENT POLICY

MEDICAL MANAGEMENT POLICY PAGE: 1 of 8 This medical policy is not a guarantee of benefits or coverage, nor should it be deemed as medical advice. In the event of any conflict concerning benefit coverage, the employer/member summary

More information

Utility of 18 F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer

Utility of 18 F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer Utility of F-FDG PET/CT in metabolic response assessment after CyberKnife radiosurgery for early stage non-small cell lung cancer Ngoc Ha Le 1*, Hong Son Mai 1, Van Nguyen Le 2, Quang Bieu Bui 2 1 Department

More information

Isoeffective Dose Specification of Normal Liver in Yttrium-90 Microsphere Radioembolization*

Isoeffective Dose Specification of Normal Liver in Yttrium-90 Microsphere Radioembolization* Isoeffective Dose Specification of Normal Liver in Yttrium-90 Microsphere Radioembolization* Barry W. Wessels, Ph.D 1 ; Amilia G. Di Dia, PhD 2 ;Yiran Zheng, PhD 1 Marta Cremonesi, PhD 2 1 University Hospitals

More information

Treatment Planning for Lung. Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology

Treatment Planning for Lung. Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology Treatment Planning for Lung Kristi Hendrickson, PhD, DABR University of Washington Dept. of Radiation Oncology Outline of Presentation Dosimetric planning strategies for SBRT lung Delivery techniques Examples

More information

Chapter 14 Basic Radiobiology

Chapter 14 Basic Radiobiology Chapter 14 Basic Radiobiology This set of 88 slides is based on Chapter 14 authored by N. Suntharalingam, E.B. Podgorsak, J.H. Hendry of the IAEA publication (ISBN 92-0-107304-6): Radiation Oncology Physics:

More information

by Lingshu Yin B.Sc. Nanjing University 2006 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF Master of Science

by Lingshu Yin B.Sc. Nanjing University 2006 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF Master of Science Dose Painting to Combat Tumor Hypoxia While Sparing Urethra in Prostate IMRT: A Biologically- Based Adaptive Approach Accounting for Setup Uncertainties and Organ Motion by Lingshu Yin B.Sc. Nanjing University

More information

Managing the imaging dose during Image-guided Radiotherapy. Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University

Managing the imaging dose during Image-guided Radiotherapy. Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University Managing the imaging dose during Image-guided Radiotherapy Martin J Murphy PhD Department of Radiation Oncology Virginia Commonwealth University Radiographic image guidance has emerged as the new paradigm

More information

Clinical Implementation of patient-specific dosimetry, comparison with absorbed fraction-based method

Clinical Implementation of patient-specific dosimetry, comparison with absorbed fraction-based method Clinical Implementation of patient-specific dosimetry, comparison with absorbed fraction-based method George Sgouros, Ph.D. Russell H. Morgan Dept of Radiology & Radiological Science Johns Hopkins University,

More information

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria

REVISITING ICRU VOLUME DEFINITIONS. Eduardo Rosenblatt Vienna, Austria REVISITING ICRU VOLUME DEFINITIONS Eduardo Rosenblatt Vienna, Austria Objective: To introduce target volumes and organ at risk concepts as defined by ICRU. 3D-CRT is the standard There was a need for a

More information

The temporal pattern of dose delivery in external beam radiotherapy

The temporal pattern of dose delivery in external beam radiotherapy University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2012 The temporal pattern of dose delivery in external beam radiotherapy

More information

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical

The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical The objective of this lecture is to integrate our knowledge of the differences between 2D and 3D planning and apply the same to various clinical sites. The final aim will be to be able to make out these

More information

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional

Measurement of Dose to Critical Structures Surrounding the Prostate from. Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional Measurement of Dose to Critical Structures Surrounding the Prostate from Intensity-Modulated Radiation Therapy (IMRT) and Three Dimensional Conformal Radiation Therapy (3D-CRT); A Comparative Study Erik

More information

IMAT: intensity-modulated arc therapy

IMAT: intensity-modulated arc therapy : intensity-modulated arc therapy M. Iori S. Maria Nuova Hospital, Medical Physics Department Reggio Emilia, Italy 1 Topics of the talk Rotational IMRT techniques: modalities & dedicated inverse-planning

More information

Radiobiological Models in Brachytherapy Planning and Evaluation

Radiobiological Models in Brachytherapy Planning and Evaluation Therapy Educational Course (TH-C-108, 10:30-11:25 am): Radiobiological Models in Brachytherapy Planning and Evaluation Zhe (Jay) Chen, PhD & David J. Carlson, PhD Department of Therapeutic Radiology S

More information

8/2/2012. Transitioning from 3D IMRT to 4D IMRT and the Role of Image Guidance. Part II: Thoracic. Peter Balter, Ph.D.

8/2/2012. Transitioning from 3D IMRT to 4D IMRT and the Role of Image Guidance. Part II: Thoracic. Peter Balter, Ph.D. 8/2/2012 Transitioning from 3D IMRT to 4D IMRT and the Role of Image Guidance Part II: Thoracic Peter Balter, Ph.D. Disclosure Dr. Balter is Physics PI on a trial comparing Cyberknife based SBRT with surgery,

More information

biij Initial experience in treating lung cancer with helical tomotherapy

biij Initial experience in treating lung cancer with helical tomotherapy Available online at http://www.biij.org/2007/1/e2 doi: 10.2349/biij.3.1.e2 biij Biomedical Imaging and Intervention Journal CASE REPORT Initial experience in treating lung cancer with helical tomotherapy

More information

Overview of Advanced Techniques in Radiation Therapy

Overview of Advanced Techniques in Radiation Therapy Overview of Advanced Techniques in Radiation Therapy Jacob (Jake) Van Dyk Manager, Physics & Engineering, LRCP Professor, UWO University of Western Ontario Acknowledgements Glenn Bauman Jerry Battista

More information

Disclosures 5/13/2013. Principles and Practice of Radiation Oncology First Annual Cancer Rehabilitation Symposium May 31, 2013

Disclosures 5/13/2013. Principles and Practice of Radiation Oncology First Annual Cancer Rehabilitation Symposium May 31, 2013 Principles and Practice of Radiation Oncology First Annual Cancer Rehabilitation Symposium May 31, 2013 Josh Yamada MD FRCPC Department of Radiation Oncology Memorial Sloan Kettering Cancer Center Disclosures

More information

Radiation therapy treatment plan optimization accounting for random and systematic patient setup uncertainties

Radiation therapy treatment plan optimization accounting for random and systematic patient setup uncertainties Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 211 Radiation therapy treatment plan optimization accounting for random and systematic patient setup uncertainties

More information

7/16/2009. An overview of classical radiobiology. Radiobiology and the cell kill paradigm. 1. Repair: Radiation cell killing. Radiation cell killing

7/16/2009. An overview of classical radiobiology. Radiobiology and the cell kill paradigm. 1. Repair: Radiation cell killing. Radiation cell killing tcp 0.8 0.4 0.3 0.2 0.1 55 65 75 group 4 7/16/2009 An overview of classical radiobiology 5 or 6 R s of radiobiology and their impacts on treatments R Impact/exploitable effect 35 45 55 1. Repair Fractionation

More information

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI)

Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Treatment Planning Evaluation of Volumetric Modulated Arc Therapy (VMAT) for Craniospinal Irradiation (CSI) Tagreed AL-ALAWI Medical Physicist King Abdullah Medical City- Jeddah Aim 1. Simplify and standardize

More information

A STUDY OF PLANNING DOSE CONSTRAINTS FOR TREATMENT OF NASOPHARYNGEAL CARCINOMA USING A COMMERCIAL INVERSE TREATMENT PLANNING SYSTEM

A STUDY OF PLANNING DOSE CONSTRAINTS FOR TREATMENT OF NASOPHARYNGEAL CARCINOMA USING A COMMERCIAL INVERSE TREATMENT PLANNING SYSTEM doi:10.1016/j.ijrobp.2004.02.040 Int. J. Radiation Oncology Biol. Phys., Vol. 59, No. 3, pp. 886 896, 2004 Copyright 2004 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016/04/$ see front

More information

New Technologies for the Radiotherapy of Prostate Cancer

New Technologies for the Radiotherapy of Prostate Cancer Prostate Cancer Meyer JL (ed): IMRT, IGRT, SBRT Advances in the Treatment Planning and Delivery of Radiotherapy. Front Radiat Ther Oncol. Basel, Karger, 27, vol. 4, pp 315 337 New Technologies for the

More information

Hypofractionation and positioning in breast cancer radiation. John Hardie, M.D., Ph.D. November 2016

Hypofractionation and positioning in breast cancer radiation. John Hardie, M.D., Ph.D. November 2016 Hypofractionation and positioning in breast cancer radiation John Hardie, M.D., Ph.D. November 2016 At McFarland/MGMC we treat early stage breast cancer with 42.4 Gy in 16 fractions, in the prone position.

More information

Has radiotherapy the potential being focal?

Has radiotherapy the potential being focal? Has radiotherapy the potential being focal? György Kovács & Alexander Schlaefer* Interdisciplinary Brachytherapy Unit and *Institute of Robotics and Cognitive Systems, University of Lübeck / 1 100% 90%

More information

Clinical experience with TomoDirect System Tangential Mode

Clinical experience with TomoDirect System Tangential Mode Breast Cancer Clinical experience with TomoDirect System Tangential Mode European Institute of Oncology Milan, Italy Disclosure & Disclaimer An honorarium is provided by Accuray for this presentation The

More information

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT

CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT CURRICULUM OUTLINE FOR TRANSITIONING FROM 2-D RT TO 3-D CRT AND IMRT Purpose The purpose of this curriculum outline is to provide a framework for multidisciplinary training for radiation oncologists, medical

More information