BMBF Forsys Partner Project: A Systems Biology Approach towards Predictive Cancer Therapy

Size: px
Start display at page:

Download "BMBF Forsys Partner Project: A Systems Biology Approach towards Predictive Cancer Therapy"

Transcription

1 ling and ling and BMBF Forsys Partner Project: A Systems Biology Approach towards Predictive Cancer Therapy H. Perfahl, A. Lapin, M. Reuss Germany holger.perfahl@ibvt.uni-stuttgart.de 1

2 ling and Cooperation with H.M. Byrne, M. Owen; Nottingham, UK P.K. Maini; Universtiy of Oxford, UK T. Alarcon; Imperial College London, UK 2

3 Outline ling and

4 ling and Aim of the project: Analyse convection, diffusion and adsorption of drug molecules within tumours Resolve a small tumour section with the following details: 1 Cells / Receptors 2 Extracellular matrix 3 Vascular system / Blood flow 4

5 Modules ling and The different modules are applied to simulate the movement of drugs in the body: Diffusion and convection in the vascular system Extravasation from vascular system Diffusion in the tissue (reflection on ECM) Reaction with receptors 5

6 Tumour subdomain ling and 6

7 Approaches to include a vascular network ling and Real vasculature Virtual vasculature Hybrid vasculature 7

8 - Drug movement ling and Scale Extravasation from vascular system Movement in tissue Receptor-ligand-reaction 8

9 ling and to 9

10 ling and Secretion of VEGF (vascular endothelial growth factor) New vessels emerge Further growth of the tumour 10

11 Work done: Reimplementation from 2D to 3D New random-walk model for vessels and cells Improved vessel adaptation model New anastomosis algorithms FDM and boundary conditions implemented for 3D Application of sparse matrix algorithms Implementation of efficient iterative solvers New modules for analysis and visualisation Interface to include real vascular networks ling and Numerical analysis Long-time runs and stability checks M R Owen, T Alarcon, P K Maini and H M Byrne: and vascular remodelling in normal and cancerous tissues. J. Math. Biol., 58(4-5): (2009) 11

12 ling and 12

13 ling and A multi-scale model is applied to describe angiogenesis: Subcellular level (ODE-model) e.g. cell cycle, protein production (VEGF, p53) Cellular level (CA-model, random walks) Cell-cell interaction, cell movement Biased random walk of new vessels Tissue level Oxygen, VEGF,... (PDE-model) Blood flow Vascular remodelling Mathematical/numerical/computational challenge 13

14 ling and Vessel pruning Haemodynamics Radius Haematocrit New vessels Oxygen VEGF Normal cells - Cell cycle proteins - p53 - VEGF Cancer cells - Cell cycle proteins - p53 - VEGF Endothelial sprouts 14

15 Subcellular model The subcellular model is influenced by the local oxygen concentration, VEGF concentration and cell type. Equations are based on the Thyson-Novak cell-cycle model. We consider the following cell-internal concentrations: p53 p27 cyccdk VEGF Cdh1 nprb ling and Coupled system of nonlinear ordinary differential equations. Cell states: Neutral, proliferating, quiescent, apoptotic 15

16 Cellular automaton model ling and Vessel Normal cell Tumour cell 16

17 Cellular model Probability of sprouting at site i: P s (i) =g(c VEGF ) (1) ling and Random walk of new blood vessels from i to j: P(i j) =f (R ij, c VEGF ), (2) with the resistance R ij and the VEGF concentration c VEGF. Cell movement: Cells move in the direction of high oxygen concentrations ( Grow or go -hypothesis) Normal cell degradation: Cancer cells degrade their environment by decreasing ph Normal cell death 17

18 Tissue layer ling and Diffusive transport of oxygen, c O2 : DΔc O2 = P(c blood O 2 c O2 ) k(φ T,φ H, c O2 ), (3) with the blood oxygen concentration co blood 2, the vessel permeability P and the consumption by cells k(φ T,φ H, c O2 ). φ T is the local volume fraction occupied by tumour cells. φ H is the local volume fraction occupied by normal cells. Diffusive transport of VEGF, c VEGF : DΔc VEGF = Rc VEGF + k VEGF (φ T,φ H ) δc VEGF, (4) with the consumption rate of the vascular system R, VEGF production k VEGF (x) and decay rate δ. 18

19 Vascular system ling and Network analysis: Creation of new vessels by connected sprouts Calculation of pressures and flows Kirchhoff s law Calculation of haematocrit distribution Viscosity Wall-shear stress 19

20 Tissue layer ling and Vessel radius adaptation for i-th vessel: dr i =(S m + S h + S s )R i, (5) dt with S m : Metabolic stimulus (c VEGF, Q, H) S h : Haemodynamic stimulus (WSS, Pressure) S s : Shrinking stimulus Q is the blood flow, H the haematocrit value and the wall-shear stress WSS. 20

21 ling and 21

22 ling and Tumour cells Quiescent tumour cells Vessels Initial tumour nested in initial vessel network Healthy cells are faded out 22

23 ling and Tumour cells Quiescent tumour cells Vessels Tumour degrade environment and spreads Most tumour cells enter quiescence 23

24 ling and Tumour cells Quiescent tumour cells Vessels First tumour cells die Remaining tumour is vascularised and tumour cells 24

25 ling and Tumour cells Quiescent tumour cells Vessels Tumour grows along upper vessel First angio-vessels emerge in lower vessel 25

26 ling and Tumour cells Quiescent tumour cells Vessels First bridging between upper and lower vessel Upper vessel is totally nested in tumour 26

27 ling and Tumour cells Quiescent tumour cells Vessels Tumour invades lower part Tumour is adequately vascularised 27

28 Vascular adaptation ling and 28

29 in real vascular system ling and Tumour cells Quiescent tumour cells Vessel 29

30 in hybrid vascular system ling and Tumour cells Quiescent tumour cells Vessel 30

31 in hybrid vascular system ling and Tumour cells Quiescent tumour cells Vessel 31

32 in hybrid vascular system ling and Tumour cells Quiescent tumour cells Vessel 32

33 Stochastic results ling and Number of tumour cells[ ] Time [h] Number of normal cells [ ] Time [h] Number of vessel cells [ ] Time [h] Mean VEGF [ ] Time [h] 33

34 Averaged results ling and 12 x 104 a) 12 x 104 b) Number of tumour cells [ ] Number of normal cells [ ] Time [h] Time [h] 2 x 104 c) d) Number of vessel cells [ ] Time [h] Mean VEGF [ ] Time [h] 34

35 Targeting strategy (Outlook) ling and Numerical studies: Distribution of drug in the tumour Survivability of tumour cells Drug-receptor kinetics Change of tumour structure Strategies of drug administration 35

36 ling and 36

37 and topics of further research ling and s: Reimplementation of total algorithm from 2D to 3D Improvement of random-walk model Improvement of vessel adaptation model Implementation of hybrid model by including real vasculature Further research: targeting strategies 37

38 ling and End 38

Angiogenesis and vascular remodelling in normal and cancerous tissues

Angiogenesis and vascular remodelling in normal and cancerous tissues J. Math. Biol. (29) 58:689 721 DOI 1.17/s285-8-213-z Mathematical Biology Angiogenesis and vascular remodelling in and cancerous tissues Markus R. Owen Tomás Alarcón Philip K. Maini Helen M. Byrne Received:

More information

c 2005 Society for Industrial and Applied Mathematics

c 2005 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMUL. Vol. 3, No. 2, pp. 4 475 c 05 Society for Industrial and Applied Mathematics A MULTIPLE SCALE MODEL FOR TUMOR GROWTH T. ALARCÓN, H. M. BYRNE, AND P. K. MAINI Abstract. We present

More information

20 Mathematical modelling of angiogenesis and vascular adaptation 1

20 Mathematical modelling of angiogenesis and vascular adaptation 1 Studies in Multidisciplinarity, Volume 3 Editors: Ray Paton y and Laura McNamara ß 2006 Elsevier B.V. All rights reserved. 20 Mathematical modelling of angiogenesis and vascular adaptation 1 Tomas Alarcon

More information

Multiscale modelling and nonlinear simulation of vascular tumour growth

Multiscale modelling and nonlinear simulation of vascular tumour growth J. Math. Biol. (2009) 58:765 798 DOI 10.1007/s00285-008-0216-9 Mathematical Biology Multiscale modelling and nonlinear simulation of vascular tumour growth Paul Macklin Steven McDougall Alexander R. A.

More information

Citation: Chen, Wei (2015) Modelling of Tumour-induced Angiogenesis. Doctoral thesis, Northumbria University.

Citation: Chen, Wei (2015) Modelling of Tumour-induced Angiogenesis. Doctoral thesis, Northumbria University. Citation: Chen, Wei (2015) Modelling of Tumour-induced Angiogenesis. Doctoral thesis, Northumbria University. This version was downloaded from Northumbria Research Link: http://nrl.northumbria.ac.uk/30235/

More information

Multiscale Modelling and Nonlinear Simulation of Vascular Tumour Growth

Multiscale Modelling and Nonlinear Simulation of Vascular Tumour Growth Journal of Mathematical Biology manuscript No. (will be inserted by the editor) Multiscale Modelling and Nonlinear Simulation of Vascular Tumour Growth Paul Macklin Steven McDougall Alexander R. A. Anderson

More information

Simulating the Tumor Growth with Cellular Automata Models

Simulating the Tumor Growth with Cellular Automata Models Simulating the Tumor Growth with Cellular Automata Models S. Zouhri Université Hassan II- Mohammédia, Faculté des Sciences Ben M'sik Département de Mathématiques, B.7955, Sidi Othmane, Casablanca, Maroc

More information

arxiv: v1 [q-bio.cb] 10 Feb 2016

arxiv: v1 [q-bio.cb] 10 Feb 2016 Development of a Computationally Optimized Model of Cancer-induced Angiogenesis through Specialized Cellular Mechanics arxiv:1602.03244v1 [q-bio.cb] 10 Feb 2016 Abstract Dibya Jyoti Ghosh California, United

More information

SENSITIVE DEPENDENCE ON THE THRESHOLD FOR TAF SIGNALING IN SOLID TUMORS

SENSITIVE DEPENDENCE ON THE THRESHOLD FOR TAF SIGNALING IN SOLID TUMORS SENSITIVE DEPENDENCE ON THE THRESHOLD FOR TAF SIGNALING IN SOLID TUMORS D. I. WALLACE AND P. WINSOR A model of tumor vascularization introduced by Stamper et al 8 is further investigated to study the role

More information

Personalized medicine by the use of mathematical models for angiogenesis: validation in a Mesenchymal Chondrosarcoma patient

Personalized medicine by the use of mathematical models for angiogenesis: validation in a Mesenchymal Chondrosarcoma patient Personalized medicine by the use of mathematical models for angiogenesis: validation in a Mesenchymal Chondrosarcoma patient Agur Zvia Institute for Medical BioMathematics, IMBM Agenda Medical problem:

More information

Towards whole-organ modelling of tumour growth

Towards whole-organ modelling of tumour growth Progress in Biophysics & Molecular Biology 85 (2004) 451 472 Towards whole-organ modelling of tumour growth T. Alarc!on a, *,1, H.M. Byrne b, P.K. Maini a a Centre for Mathematical Biology, Mathematical

More information

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System

Contents 1 Computational Haemodynamics An Introduction 2 The Human Cardiovascular System Contents 1 Computational Haemodynamics An Introduction... 1 1.1 What is Computational Haemodynamics (CHD)... 1 1.2 Advantages of CHD... 3 1.3 Applications in the Cardiovascular System... 4 1.3.1 CHD as

More information

Mathematical modelling of spatio-temporal glioma evolution

Mathematical modelling of spatio-temporal glioma evolution Papadogiorgaki et al. Theoretical Biology and Medical Modelling 213, 1:47 RESEARCH Open Access Mathematical modelling of spatio-temporal glioma evolution Maria Papadogiorgaki 1*, Panagiotis Koliou 2, Xenofon

More information

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico

Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico Simulation of Chemotractant Gradients in Microfluidic Channels to Study Cell Migration Mechanism in silico P. Wallin 1*, E. Bernson 1, and J. Gold 1 1 Chalmers University of Technology, Applied Physics,

More information

Modeling Vascular Tumor Growth

Modeling Vascular Tumor Growth Mathematics Clinic Final Report for Los Alamos National Laboratory Modeling Vascular Tumor Growth May 1, 2006 Team Members Cris Cecka Alan Davidson Tiffany Head Dana Mohamed (Project Manager) Liam Robinson

More information

Date: Thursday, 1 May :00AM

Date: Thursday, 1 May :00AM Cancer can give you Maths! Transcript Date: Thursday, 1 May 2008-12:00AM CANCER CAN GIVE YOU MATHS! Professor Philip Maini I would like to start off by thanking Gresham College for this invitation. I am

More information

By: Zarna.A.Bhavsar 11/25/2008

By: Zarna.A.Bhavsar 11/25/2008 Transport of Molecules, Particles, and Cells in Solid Tumors A Model for Temporal heterogeneities of tumor blood flow By: Zarna.A.Bhavsar 11/25/2008 Contents Background Approaches Specific aims Developments

More information

Research Article A Computational Model for Investigating Tumor Apoptosis Induced by Mesenchymal Stem Cell-Derived Secretome

Research Article A Computational Model for Investigating Tumor Apoptosis Induced by Mesenchymal Stem Cell-Derived Secretome Computational and Mathematical Methods in Medicine Volume 26, Article ID 4963, 7 pages http://dx.doi.org/55/26/4963 Research Article A Computational Model for Investigating Tumor Apoptosis Induced by Mesenchymal

More information

IN vitro studies have shown that cancer cells in low oxygen

IN vitro studies have shown that cancer cells in low oxygen 504 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 64, NO. 3, MARCH 2017 Predicting the Influence of Microvascular Structure On Tumor Response to Radiotherapy James A. Grogan, Bostjan Markelc, Anthony

More information

UWA Research Publication

UWA Research Publication UWA Research Publication Shrestha S. M. B. Joldes G. R. Wittek A. and Miller K. (2013) Cellular automata coupled with steady-state nutrient solution permit simulation of large-scale growth of tumours.

More information

Mathematics Meets Oncology

Mathematics Meets Oncology .. Mathematics Meets Oncology Mathematical Oncology Philippe B. Laval Kennesaw State University November 12, 2011 Philippe B. Laval (Kennesaw State University)Mathematics Meets Oncology November 12, 2011

More information

Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle

Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle Interactions of VEGF isoforms with VEGFR-1, VEGFR-2, and neuropilin in vivo: a computational model of human skeletal muscle Feilim Mac Gabhann and Aleksander S. Popel Am J Physiol Heart Circ Physiol 292:459-474,

More information

MOSAIC: A Multiscale Model of Osteogenesis and Sprouting Angiogenesis with Lateral Inhibition of Endothelial Cells

MOSAIC: A Multiscale Model of Osteogenesis and Sprouting Angiogenesis with Lateral Inhibition of Endothelial Cells MOSAIC: A Multiscale Model of Osteogenesis and Sprouting Angiogenesis with Lateral Inhibition of Endothelial Cells Aurélie Carlier 1,2,3, Liesbet Geris 2,3, Katie Bentley 4, Geert Carmeliet 5, Peter Carmeliet

More information

Culturing embryonic tissues in the computer

Culturing embryonic tissues in the computer Culturing embryonic tissues in the computer Blood vessel development Roeland Merks Biomodeling & Biosystems Analysis CWI, Life Sciences and Netherlands Institute for Systems Biology Biological development

More information

Angiostasis and Angiogenesis Regulated by Angiopoietin1-Tie2 Receptor System

Angiostasis and Angiogenesis Regulated by Angiopoietin1-Tie2 Receptor System Japan-Mexico Workshop on Pharmacology and Nanobiology Feb. 25, 2009; Universidad Nacional Autönoma de Mëxico, Mexico City Angiostasis and Angiogenesis Regulated by Angiopoietin1-Tie2 Receptor System Shigetomo

More information

The Angiopoietin Axis in Cancer

The Angiopoietin Axis in Cancer Ang2 Ang1 The Angiopoietin Axis in Cancer Tie2 An Overview: The Angiopoietin Axis Plays an Essential Role in the Regulation of Tumor Angiogenesis Growth of a tumor beyond a limiting size is dependent upon

More information

arxiv: v1 [q-bio.cb] 7 Jun 2016

arxiv: v1 [q-bio.cb] 7 Jun 2016 1 arxiv:1606.02167v1 [q-bio.cb] 7 Jun 2016 Integrative modeling of sprout formation in angiogenesis: coupling the VEGFA-Notch signaling in a dynamic stalk-tip cell selection Sotiris A.Prokopiou 1, Markus

More information

In vitro scratch assay: method for analysis of cell migration in vitro labeled fluorodeoxyglucose (FDG)

In vitro scratch assay: method for analysis of cell migration in vitro labeled fluorodeoxyglucose (FDG) In vitro scratch assay: method for analysis of cell migration in vitro labeled fluorodeoxyglucose (FDG) 1 Dr Saeb Aliwaini 13/11/2015 Migration in vivo Primary tumors are responsible for only about 10%

More information

A Coupled Finite Element Model of Tumor Growth and Vascularization

A Coupled Finite Element Model of Tumor Growth and Vascularization A Coupled Finite Element Model of Tumor Growth and Vascularization Bryn A. Lloyd, Dominik Szczerba, and Gábor Székely Computer Vision Laboratory, ETH Zürich, Switzerland {blloyd, domi, szekely}@vision.ee.ethz.ch

More information

Modeling Three-dimensional Invasive Solid Tumor Growth in Heterogeneous Microenvironment under Chemotherapy

Modeling Three-dimensional Invasive Solid Tumor Growth in Heterogeneous Microenvironment under Chemotherapy Modeling Three-dimensional Invasive Solid Tumor Growth in Heterogeneous Microenvironment under Chemotherapy Hang Xie 1, Yang Jiao 2, Qihui Fan 3, Miaomiao Hai 1, Jiaen Yang 1, Zhijian Hu 1, Yue Yang 4,

More information

Journal of Theoretical Biology

Journal of Theoretical Biology Journal of Theoretical Biology 320 (2013) 131 151 Contents lists available at SciVerse ScienceDirect Journal of Theoretical Biology journal homepage: www.elsevier.com/locate/yjtbi The effect of interstitial

More information

Limiting the Development of Anti-Cancer Drug Resistance in a Spatial Model of Micrometastases

Limiting the Development of Anti-Cancer Drug Resistance in a Spatial Model of Micrometastases Limiting the Development of Anti-Cancer Drug Resistance in a Spatial Model of Micrometastases arxiv:1601.03412v2 [q-bio.to] 2 Mar 2016 September 1, 2018 Ami B. Shah Department of Biology The College of

More information

Targeting Neuropilin-1 to Inhibit VEGF Signaling in Cancer: Comparison of Therapeutic Approaches

Targeting Neuropilin-1 to Inhibit VEGF Signaling in Cancer: Comparison of Therapeutic Approaches Targeting Neuropilin-1 to Inhibit VEGF Signaling in Cancer: Comparison of Therapeutic Approaches Feilim Mac Gabhann *, Aleksander S. Popel Department of Biomedical Engineering, Johns Hopkins University

More information

Menachem Elimelech. Science and Technology for Sustainable Water Supply

Menachem Elimelech. Science and Technology for Sustainable Water Supply Menachem Elimelech Science and Technology for Sustainable Water Supply Traditional methods for water purification are chemical and energy intensive. Highly effective, low-cost, robust technologies for

More information

Signaling Vascular Morphogenesis and Maintenance

Signaling Vascular Morphogenesis and Maintenance Signaling Vascular Morphogenesis and Maintenance Douglas Hanahan Science 277: 48-50, in Perspectives (1997) Blood vessels are constructed by two processes: vasculogenesis, whereby a primitive vascular

More information

Chapter 6. Villous Growth

Chapter 6. Villous Growth Core Curriculum in Perinatal Pathology Chapter 6 Villous Growth Overview of vasculogenesis and angiogenesis Vasculogenesis Extraembryonic Vasculogenesis Angiogenesis Branching angiogenesis Sprouting angiogenesis

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/28967 holds various files of this Leiden University dissertation. Author: Palm, Margaretha Maria (Margriet) Title: High-throughput simulation studies of

More information

Mathematical Model Solid Tumor at the Stage of Angiogenesis with Immune Response

Mathematical Model Solid Tumor at the Stage of Angiogenesis with Immune Response Mathematical Model Solid Tumor at the Stage of Angiogenesis with Immune esponse Deep Shikha Dixit, Deepak Kumar, Sanjeev Kr,ajesh Johri. Department of Mathematics, CET IILM, Gr. Noida.. Department of Mathematics,

More information

3D Modeling of Plaque Progression in the Human Coronary Artery

3D Modeling of Plaque Progression in the Human Coronary Artery Proceedings 3D Modeling of Plaque Progression in the Human Coronary Artery Igor Saveljic 1,2, *, Dalibor Nikolic 1,2, Zarko Milosevic 1,2, Velibor Isailovic 1,2, Milica Nikolic 1,2, Oberdan Parodi 3 and

More information

Daphne Manoussaki 1. Introduction

Daphne Manoussaki 1. Introduction ESAIM: PROCEEDINGS, November 2002, Vol.12, 108-114 M.Thiriet, Editor MODELING AND SIMULATION OF THE FORMATION OF VASCULAR NETWORKS Daphne Manoussaki 1 Abstract. The formation of blood vessels is driven

More information

E. Sassaroli and B. E. O Neill. The Methodist Hospital Research Institute Houston TX

E. Sassaroli and B. E. O Neill. The Methodist Hospital Research Institute Houston TX Lowering of the Interstitial Fluid Pressure as a Result of Tissue Compliance Changes during High Intensity Focused Ultrasound Exposure: Insights from a Numerical Model E. Sassaroli and B. E. O Neill The

More information

Modeling Tumor-Induced Angiogenesis in the Cornea. An Honors Thesis. Presented by Heather Harrington. Group members Marc Maier Lé Santha Naidoo

Modeling Tumor-Induced Angiogenesis in the Cornea. An Honors Thesis. Presented by Heather Harrington. Group members Marc Maier Lé Santha Naidoo Modeling Tumor-Induced Angiogenesis in the Cornea An Honors Thesis Presented by Heather Harrington Group members Marc Maier Lé Santha Naidoo Submitted May 2005 Guidance Committee Approval: Professor Nathaniel

More information

A Review of Cellular Automata Models. of Tumor Growth

A Review of Cellular Automata Models. of Tumor Growth International Mathematical Forum, 5, 2010, no. 61, 3023-3029 A Review of Cellular Automata Models of Tumor Growth Ankana Boondirek Department of Mathematics, Faculty of Science Burapha University, Chonburi

More information

Tissue renewal and Repair. Nisamanee Charoenchon, PhD Department of Pathobiology, Faculty of Science

Tissue renewal and Repair. Nisamanee Charoenchon, PhD   Department of Pathobiology, Faculty of Science Tissue renewal and Repair Nisamanee Charoenchon, PhD Email: nisamanee.cha@mahidol.ac.th Department of Pathobiology, Faculty of Science Topic Objectives 1. Describe processes of tissue repair, regeneration

More information

Cellular Automaton Model of a Tumor Tissue Consisting of Tumor Cells, Cytotoxic T Lymphocytes (CTLs), and Cytokine Produced by CTLs

Cellular Automaton Model of a Tumor Tissue Consisting of Tumor Cells, Cytotoxic T Lymphocytes (CTLs), and Cytokine Produced by CTLs Regular Paper Cellular Automaton Model of a Tumor Tissue Consisting of Tumor Cells, Cytotoxic T Lymphocytes (CTLs), and Cytokine Produced by CTLs Toshiaki Takayanagi,, Hidenori Kawamura and Azuma Ohuchi

More information

Modelling multiscale aspects of colorectal cancer

Modelling multiscale aspects of colorectal cancer Modelling multiscale aspects of colorectal cancer Ingeborg M.M. van Leeuwen*, Helen M. Byrne*, Matthew D. Johnston''', Carina M. Edwards''', S. Jonathan Chapman**, Waher F. Bodmer^ and Philip K. Maini

More information

Study of Early Tumour Development and its Glycolytic Properties

Study of Early Tumour Development and its Glycolytic Properties Study of Early Tumour Development and its Glycolytic Properties Ariosto Siqueira Silva, Jose Andres Yunes Centro Infantil Boldrini Contacts: ariostosilva@i-genics.com,andres@boldrini.org.br It is believed

More information

Healing & Repair. Tissue Regeneration

Healing & Repair. Tissue Regeneration Healing & Repair Dr. Srikumar Chakravarthi Repair & Healing: Are they same? Repair :Regeneration of injured cells by cells of same type, as with regeneration of skin/oral mucosa (requires basement membrane)

More information

A METAPOPULATION MODEL OF GRANULOMA FORMATION IN THE LUNG DURING INFECTION WITH MYCOBACTERIUM TUBERCULOSIS. Suman Ganguli.

A METAPOPULATION MODEL OF GRANULOMA FORMATION IN THE LUNG DURING INFECTION WITH MYCOBACTERIUM TUBERCULOSIS. Suman Ganguli. MATHEMATICAL BIOSCIENCES http://www.mbejournal.org/ AND ENGINEERING Volume, Number 3, August 5 pp. 535 56 A METAPOPULATION MODEL OF GRANULOMA FORMATION IN THE LUNG DURING INFECTION WITH MYCOBACTERIUM TUBERCULOSIS

More information

Combination of The Cellular Potts Model and Lattice Gas Cellular Automata For Simulating The Avascular Cancer Growth

Combination of The Cellular Potts Model and Lattice Gas Cellular Automata For Simulating The Avascular Cancer Growth Combination of The Cellular Potts Model and Lattice Gas Cellular Automata For Simulating The Avascular Cancer Growth Mehrdad Ghaemi 1, Amene Shahrokhi 2 1 Department of Chemistry, Teacher Training University,

More information

Volume Effects in Chemotaxis

Volume Effects in Chemotaxis Volume Effects in Chemotaxis Thomas Hillen University of Alberta supported by NSERC with Kevin Painter (Edinburgh), Volume Effects in Chemotaxis p.1/48 Eschirichia coli Berg - Lab (Harvard) Volume Effects

More information

A Hybrid Mathematical Model of Tumor-Induced Angiogenesis with Blood Perfusion

A Hybrid Mathematical Model of Tumor-Induced Angiogenesis with Blood Perfusion TSINGHUA SCIENCE AND TECHNOLOGY ISSNll1007-0214ll09/10llpp648-657 Volume 19, Number 6, December 2014 A Hybrid Mathematical Model of Tumor-Induced Angiogenesis with Blood Perfusion Junping Meng, Shoubin

More information

PATHOBIOLOGY OF NEOPLASIA

PATHOBIOLOGY OF NEOPLASIA PATHOBIOLOGY OF NEOPLASIA Department of Pathology Gadjah Mada University School of Medicine dr. Harijadi Blok Biomedis, 6 Maret 2009 [12] 3/17/2009 1 The pathobiology of neoplasia Normal cells Malignant

More information

A Mathematical Model for Capillary Network Formation in the Absence of Endothelial Cell Proliferation

A Mathematical Model for Capillary Network Formation in the Absence of Endothelial Cell Proliferation Pergamon Appl. Math. Lett. Vol. 11, No. 3, pp. 109-114, 1998 Copyright(~)1998 Elsevier Science Ltd Printed in Great Britain. All rights reserved 0893-9659/98 $19.00 + 0.00 PII: S0893-9659(98)00041-X A

More information

Computational Fluid Dynamics Analysis of Blalock-Taussig Shunt

Computational Fluid Dynamics Analysis of Blalock-Taussig Shunt Washington University in St. Louis Washington University Open Scholarship Mechanical Engineering and Materials Science Independent Study Mechanical Engineering & Materials Science 12-23-2017 Computational

More information

Tissue repair. (3&4 of 4)

Tissue repair. (3&4 of 4) Tissue repair (3&4 of 4) What will we discuss today: Regeneration in tissue repair Scar formation Cutaneous wound healing Pathologic aspects of repair Regeneration in tissue repair Labile tissues rapid

More information

A Cell-Based Model Exhibiting Branching and Anastomosis during Tumor-Induced Angiogenesis

A Cell-Based Model Exhibiting Branching and Anastomosis during Tumor-Induced Angiogenesis Biophysical Journal Volume 92 May 2007 3105 3121 3105 A Cell-Based Model Exhibiting Branching and Anastomosis during Tumor-Induced Angiogenesis Amy L. Bauer,* Trachette L. Jackson,* and Yi Jiang y *Department

More information

Statistical modelling of primary Ewing tumours of the bone

Statistical modelling of primary Ewing tumours of the bone Statistical modelling of primary Ewing tumours of the bone Sreepurna Malakar Department of Chemistry and Biochemistry University of Alaska, U.S.A. Florentin Smarandache Department of Mathematics and Statistics

More information

Mathematical models for angiogenic, metabolic and apoptotic processes in tumours. Colin Phipps

Mathematical models for angiogenic, metabolic and apoptotic processes in tumours. Colin Phipps Mathematical models for angiogenic, metabolic and apoptotic processes in tumours by Colin Phipps A thesis presented to the University of Waterloo in fulfillment of the thesis requirements for the degree

More information

Integrative models of vascular remodeling during tumor growth Heiko Rieger and Michael Welter

Integrative models of vascular remodeling during tumor growth Heiko Rieger and Michael Welter Advanced Review Integrative models of vascular remodeling during tumor growth Heiko Rieger and Michael Welter Malignant solid tumors recruit the blood vessel network of the host tissue for nutrient supply,

More information

arxiv: v3 [q-bio.to] 9 Apr 2009

arxiv: v3 [q-bio.to] 9 Apr 2009 MATHEMATICAL BIOSCIENCES AND ENGINEERING Volume xx, Number 0xx, xx 20xx http://www.mbejournal.org/ pp. 1 xx A SPATIAL MODEL OF TUMOR-HOST INTERACTION: APPLICATION OF CHEMOTHERAPY arxiv:0810.1024v3 [q-bio.to]

More information

Overview of primary HHV-8 infection

Overview of primary HHV-8 infection Overview of primary HHV-8 infection HHV-8, also known as Kaposi sarcoma-associated herpesvirus (KSHV), is a gamma herpesvirus primarily transmitted through saliva. The virus initially replicates in epithelial

More information

Virtual Melanoma: When, Where and How Much to Cut Yang Kuang, Arizona State University

Virtual Melanoma: When, Where and How Much to Cut Yang Kuang, Arizona State University Virtual Melanoma: When, Where and How Much to Cut Yang Kuang, Arizona State University Based on: Eikenberry S, Thalhauser C, Kuang Y. PLoS Comput Biol. 2009, 5:e1000362. Mathematical Modeling of Melanoma

More information

CA 2 : Cellular Automata Models and Self-Organized Chaos in Cancer Growth

CA 2 : Cellular Automata Models and Self-Organized Chaos in Cancer Growth CA 2 : Cellular Automata Models and Self-Organized Chaos in Cancer Growth ADAM V. ADAMOPOULOS Medical Physics Laboratory, Department of Medicine Democritus University of Thrace GR-681 00, Alexandroupolis

More information

Mathematically Modeling Spatial Tumor Growth in Parallel

Mathematically Modeling Spatial Tumor Growth in Parallel Mathematically Modeling Spatial Tumor Growth in Parallel Eric Harley Lisette de Pillis, Advisor Jon Jacobsen, Reader May, 2004 Department of Mathematics Abstract Significant work has been done modeling

More information

Macrophage Dynamics in Diabetic Wound Healing

Macrophage Dynamics in Diabetic Wound Healing Bulletin of Mathematical Biology (26) 68: 197 27 DOI 1.17/s11538-5-922-3 ORIGINAL ARTICLE Macrophage Dynamics in Diabetic Wound Healing Helen V. Waugh, Jonathan A. Sherratt School of Mathematics and Computing,

More information

APPLICATION OF MATHEMATICAL MODELING TO IMMUNOLOGICAL PROBLEMS

APPLICATION OF MATHEMATICAL MODELING TO IMMUNOLOGICAL PROBLEMS Trakia Journal of Sciences, Vol. 8, Suppl. 2, pp 49-55, 2 Copyright 29 Trakia University Available online at: http://www.uni-sz.bg ISSN 33-75 (print) ISSN 33-355 (online) APPLICATION OF MATHEMATICAL MODELING

More information

NANO 243/CENG 207 Course Use Only

NANO 243/CENG 207 Course Use Only L9. Drug Permeation Through Biological Barriers May 3, 2018 Lipids Lipid Self-Assemblies 1. Lipid and Lipid Membrane Phospholipid: an amphiphilic molecule with a hydrophilic head and 1~2 hydrophobic tails.

More information

Growing heterogeneous tumors in silico

Growing heterogeneous tumors in silico Growing heterogeneous tumors in silico Jana Gevertz 1, * and S. Torquato 1,2,3,4,5, 1 Program in Applied and Computational Mathematics, Princeton University, Princeton, New Jersey 08544, USA 2 Department

More information

UMBC REU Site: Computational Simulations of Pancreatic Beta Cells

UMBC REU Site: Computational Simulations of Pancreatic Beta Cells UMBC REU Site: Computational Simulations of Pancreatic Beta Cells Sidafa Conde 1, Teresa Lebair 2, Christopher Raastad 3, Virginia Smith 4 Kyle Stern, 5 David Trott 5 Dr. Matthias Gobbert 5, Dr. Bradford

More information

CANCER is to be the leading cause of death throughout the

CANCER is to be the leading cause of death throughout the IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 9, NO. 1, JANUARY/FEBRUARY 2012 169 Multiobjective Optimization Based-Approach for Discovering Novel Cancer Therapies Arthur W. Mahoney,

More information

Agent-Based Simulations of In Vitro Multicellular Tumor Spheroid Growth

Agent-Based Simulations of In Vitro Multicellular Tumor Spheroid Growth Agent-Based Simulations of In Vitro Multicellular Tumor Spheroid Growth Jesse Engelberg 1,2, Suman Ganguli 2, and C. Anthony Hunt 1,2 1 Joint Graduate Group in Bioengineering, University of California,

More information

Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation

Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation J. Math. Biol. () 6:4 7 DOI.7/s85--69- Mathematical Biology Mathematical modeling of cancer cell invasion of tissue: biological insight from mathematical analysis and computational simulation Vivi Andasari

More information

Weather Cancer. Problem: Wanted: prediction But: difficult Why? Complex systems, i.e. many agents agents, feedback dynamics.

Weather Cancer. Problem: Wanted: prediction But: difficult Why? Complex systems, i.e. many agents agents, feedback dynamics. Weather Cancer Financial markets Problem: Wanted: prediction But: difficult Why? Complex systems, i.e. many agents agents, feedback dynamics ? Analyzing emergent behaviour in cellular automaton models

More information

Multiscale Cancer Modeling

Multiscale Cancer Modeling Preprint notes: This is a preprint of an article in review by Annual Review of Biomedical Engineering. The preprint is posted in full accordance of the journal s copyright policies. Please note that this

More information

Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue

Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue 214. 6 4. 58564 : 517.958:57; MSC 21: 92D2.. 1,,.. 1,.. 2, 1 -,,, 61499,.,.,. 24 2,,, 32,. E-mail: dmitribratsun@rambler.ru, pismen@technion.ac.il 23 214... -., - -, - -, -., - -. -, - -. :,,,,, Multiscale

More information

A Multi-cellular Model of the Pancreatic Cancer Microenvironment

A Multi-cellular Model of the Pancreatic Cancer Microenvironment A Multi-cellular Model of the Pancreatic Cancer Microenvironment Qinsi Wang 1 Joint work with Edmund M. Clarke 1, James R. Faeder 2, Michael Lotze 3, Paolo Zuliani 1, Haijun Gong 1, Natasa Miskov-Zivanov

More information

A model mechanism for the chemotactic response of endotheliai cells to tumour angiogenesis factor

A model mechanism for the chemotactic response of endotheliai cells to tumour angiogenesis factor IMA Journal of Mathematics Applied in Medicine & Biology (1993) 10, 149-168 A model mechanism for the chemotactic response of endotheliai cells to tumour angiogenesis factor M. A. J. CHAPLAIN AND A. M.

More information

Cell-based modeling of angiogenic blood vessel sprouting

Cell-based modeling of angiogenic blood vessel sprouting Cell-based modeling of angiogenic blood vessel sprouting Roeland Merks Biomodeling & Biosystems Analysis Centrum Wiskunde & Informatica - Life Sciences Netherlands Institute for Systems Biology Netherlands

More information

Multiscale Modeling and Mathematical Problems Related to Tumor Evolution and Medical Therapy*

Multiscale Modeling and Mathematical Problems Related to Tumor Evolution and Medical Therapy* Journal of Theoretical Medicine, June 2003 Vol. 5 (2), pp. 111 136 Review Article Multiscale Modeling and Mathematical Problems Related to Tumor Evolution and Medical Therapy* NICOLA BELLOMO, ELENA DE

More information

Edinburgh Imaging Academy online distance learning courses

Edinburgh Imaging Academy online distance learning courses Course: Biomechanics Semester 1 / Autumn 10 Credits Each Course is composed of Modules & Activities. Modules: Biomechanics basics Ultrasound advanced Cardiovascular IMSc IMSc IMSc Each Module is composed

More information

3D-Tissue Microsystems for Tumor Microenvironments Designs for Basic and Translational Research

3D-Tissue Microsystems for Tumor Microenvironments Designs for Basic and Translational Research 3D-Tissue Microsystems for Tumor Microenvironments Designs for Basic and Translational Research Michael Phelan Biostatistics Shared Resource Chao Family Comprehensive Cancer Center UC, Irvine School of

More information

Multiscale Models of Solid Tumor Growth and Angiogenesis: The effect of the microenvironment

Multiscale Models of Solid Tumor Growth and Angiogenesis: The effect of the microenvironment Multiscale Models of Solid Tumor Growth and Angiogenesis: The effect of the microenvironment John Lowengrub Dept Math and Biomed Eng., UCI P. Macklin, Ph.D. 2007 (expected); Vittorio Cristini (UCI/UT Health

More information

Cancer Treatment Using Multiple Chemotheraputic Agents Subject to Drug Resistance

Cancer Treatment Using Multiple Chemotheraputic Agents Subject to Drug Resistance Cancer Treatment Using Multiple Chemotheraputic Agents Subject to Drug Resistance J. J. Westman Department of Mathematics University of California Box 951555 Los Angeles, CA 90095-1555 B. R. Fabijonas

More information

Multiscale Models of Solid Tumor Growth and Angiogenesis: The effect of the microenvironment

Multiscale Models of Solid Tumor Growth and Angiogenesis: The effect of the microenvironment Multiscale Models of Solid Tumor Growth and Angiogenesis: The effect of the microenvironment John Lowengrub Dept Math and Biomed Eng., UCI P. Macklin, Ph.D. 2007 (expected); Vittorio Cristini (UCI/UT Health

More information

Mathematical biology From individual cell behavior to biological growth and form

Mathematical biology From individual cell behavior to biological growth and form Mathematical biology From individual cell behavior to biological growth and form Lecture 8: Multiscale models Roeland Merks (1,2) (1) Centrum Wiskunde & Informatica, Amsterdam (2) Mathematical Institute,

More information

A virtual pharmacokinetic model of human eye

A virtual pharmacokinetic model of human eye A virtual pharmacokinetic model of human eye Sreevani Kotha 1, Lasse Murtomäki 1,2 1 University of Helsinki, Centre for Drug Research 2 Aalto University, School of Chemical Technology, Department of Chemistry

More information

1.The metastatic cascade. 2.Pathologic features of metastasis. 3.Therapeutic ramifications

1.The metastatic cascade. 2.Pathologic features of metastasis. 3.Therapeutic ramifications Metastasis 1.The metastatic cascade 2.Pathologic features of metastasis 3.Therapeutic ramifications Sir James Paget (1814-1899) British Surgeon/ Pathologist Paget s disease of bone Paget s disease of the

More information

I TESSUTI: Dott.ssa Liliana Belgioia Università degli Studi di Genova

I TESSUTI: Dott.ssa Liliana Belgioia Università degli Studi di Genova I TESSUTI: 1. Repair, Radiosensitivity, Recruitment, Repopulation, Reoxygenation 2. Acute and chronic hypoxia 3. Tissue microenvironment and tissue organization Dott.ssa Liliana Belgioia Università degli

More information

Study of Cancer Hallmarks Relevance Using a Cellular Automaton Tumor Growth Model

Study of Cancer Hallmarks Relevance Using a Cellular Automaton Tumor Growth Model Study of Cancer Hallmarks Relevance Using a Cellular Automaton Tumor Growth Model José SantosandÁngel Monteagudo Computer Science Department, University of A Coruña, Spain jose.santos@udc.es Abstract.

More information

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz

Cancer and Oncogenes Bioscience in the 21 st Century. Linda Lowe-Krentz Cancer and Oncogenes Bioscience in the 21 st Century Linda Lowe-Krentz December 1, 2010 Just a Few Numbers Becoming Cancer Genetic Defects Drugs Our friends and family 25 More mutations as 20 you get older

More information

URL: <

URL:   < Citation: Al-Mamun, Mohammad, Farid, Dewan, Ravenhil, Lorna, Hossain, Alamgir, Fall, Charles and Bass, Rosemary (2016) An in silico model to demonstrate the effects of Maspin on cancer cell dynamics. Journal

More information

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure Chapter 7: Membrane Structure & Function 1. Membrane Structure 2. Transport Across Membranes 1. Membrane Structure Chapter Reading pp. 125-129 What are Biological Membranes? Hydrophilic head WATER They

More information

Evolution of cell motility in an. individual-based model of tumour growth

Evolution of cell motility in an. individual-based model of tumour growth Evolution of cell motility in an individual-based model of tumour growth P. Gerlee a,, A.R.A. Anderson b a Niels Bohr Institute, Center for Models of Life, Blegdamsvej 17, 2100 Copenhagen Ø, Denmark b

More information

Incorporating energy metabolism into a growth model of multicellular tumor spheroids

Incorporating energy metabolism into a growth model of multicellular tumor spheroids Journal of Theoretical Biology 242 (26) 44 453 www.elsevier.com/locate/yjtbi Incorporating energy metabolism into a growth model of multicellular tumor spheroids Raja Venkatasubramanian, Michael A. Henson,

More information

Mathematical Methods for Cancer Invasion

Mathematical Methods for Cancer Invasion Mathematical Methods for Cancer Invasion Takashi Suzuki Osaka University Cell Movement Physiological morphogenesis wound healing cellular immunity Pathological inflammation arteriosclerosis cancer invasion,

More information

Neoplasia 18 lecture 8. Dr Heyam Awad MD, FRCPath

Neoplasia 18 lecture 8. Dr Heyam Awad MD, FRCPath Neoplasia 18 lecture 8 Dr Heyam Awad MD, FRCPath ILOS 1. understand the angiogenic switch in tumors and factors that stimulate and inhibit angiogenesis. 2. list the steps important for tumor metastasis

More information

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL. PhD THESIS

UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL. PhD THESIS UNIVERSITY OF MEDICINE AND PHARMACY CRAIOVA PhD SCHOOL PhD THESIS THE IMPORTANCE OF TUMOR ANGIOGENESIS IN CEREBRAL TUMOR DIAGNOSIS AND THERAPY ABSTRACT PhD COORDINATOR: Prof. univ. dr. DRICU Anica PhD

More information

MEMBRANE STRUCTURE AND FUNCTION

MEMBRANE STRUCTURE AND FUNCTION MEMBRANE STRUCTURE AND FUNCTION selective permeability permits some substances to cross it more easily than others Figure 7.1 Scientists studying the plasma Reasoned that it must be a phospholipid bilayer

More information