Mixed-Phenotype Acute Leukemia

Size: px
Start display at page:

Download "Mixed-Phenotype Acute Leukemia"

Transcription

1 Special Section 2016 New Frontiers in Pathology, Part II Mixed-Phenotype Acute Leukemia Mixed-phenotype acute leukemia (MPAL) is a heterogeneous category in the World Health Organization classification that comprises acute leukemias with discrete admixed populations of myeloid and lymphoid blasts ( bilineal ) or with extensive coexpression of lymphoid and myeloid markers in a single blast population ( biphenotypic ). Flow cytometric findings suggestive of MPAL are often met with consternation by pathologists and oncologists alike, owing to unfamiliarity with the disease and uncertainty about how MPAL fits into established paradigms for treatment of acute leukemia. The purpose of this review is to explain the diagnostic criteria for MPAL, summarize its biological and clinical features, and address common diagnostic pitfalls of these unusual leukemias. (Arch Pathol Lab Med. 2017;141: ; doi: /arpa RA) CLASSIFICATION OF ACUTE LEUKEMIA BASED ON LINEAGE The first step in classification of acute leukemia is to assign lineage by resemblance to normal progenitor cells. This approach provides descriptive information about the blast cells that is useful for disease monitoring, provides clues to molecular pathways involved in pathogenesis, and can help to select effective chemotherapeutic regimens. The 3 main lineages of acute leukemia are myeloid (AML), B- lymphoblastic (B-ALL), and T-lymphoblastic (T-ALL). However, it is common for acute leukemias to aberrantly express protein markers more typically associated with other lineages, for example, expression of the myeloid markers CD13 and CD33 in B-ALL or T-ALL and expression of the T/NK-cell markers CD7 and CD56 in AML. The aberrant and complex patterns of marker expression in acute leukemia created a need for consensus criteria for lineage assignment. 1 Furthermore, leukemias with multilineage Accepted for publication May 18, From the Department of Pathology, The University of Michigan, Ann Arbor. The authors have no relevant financial interest in the products or companies described in this article. Presented in part at the New Frontiers in Pathology meeting; October 13 15, 2016; Ann Arbor, Michigan. Reprints: Daniel F. Boyer, MD, PhD, Department of Pathology, The University of Michigan, 5242A Medical Science Building I, 1301 Catherine St, Ann Arbor, MI ( dfboyer@med. umich.edu). Diagnostic Criteria and Pitfalls Nathan J. Charles, MD, PhD; Daniel F. Boyer, MD, PhD protein expression often respond poorly to chemotherapy, suggesting that some types of multilineage expression may define a high-risk subgroup. 2 Proposed reasons that mixed phenotype may portend a worse prognosis include the following: (1) mixed phenotype may indicate that the leukemic stem cells are primitive multipotent progenitors that are chemoresistent owing to slow replication, (2) mixed-phenotype blasts can adapt to therapy by switching phenotype, and (3) some mixed-phenotype acute leukemias (MPALs) express high levels of multidrug resistance proteins. 2 Archetypal cases of MPAL, especially those with KMT2A (MLL) translocations, show a dramatic ability to switch lineage between myeloid and lymphoid blast proliferation, 3,4 and this lineage plasticity is thought to be a key feature underlying the unusual phenotypes and aggressive behavior of MPAL. Lineage plasticity of leukemic stem cells can be demonstrated in cell culture, but currently there is no method for directly testing lineage plasticity in clinical practice. Instead, the primary clinical tool for predicting the multilineage potential of leukemic blasts is characterization of protein expression by immunophenotyping. This approach requires the elucidation of immunophenotypes that discriminate MPAL from unilineage acute leukemias. IMMUNOPHENOTYPING of MPAL Flow cytometry (FCM) is the primary method for blast immunophenotyping in clinical practice, and immunohistochemistry (IHC) and enzyme cytochemistry (EC) also contribute in some cases. The first consensus method for identifying MPAL was the algorithm proposed by the European Group for Immunological Characterization of Acute Leukemias (EGIL) in The EGIL strategy uses FCM to characterize blasts with a broad panel of markers associated with B-cell, T-cell, and myeloid lineages, and assigns a weighted score to each marker depending on how strongly it is associated with a specific lineage (Table 1). Using this algorithm, biphenotypic (or triphenotypic) leukemia is diagnosed when a score greater than 2 is calculated for more than 1 lineage. The EGIL authors defined positivity by FCM as a positive signal on at least 20% of blasts for surface markers and at least 10% for cytoplasmic markers compared to an isotype control. New consensus criteria for MPAL were published in the 4th edition of the World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues 6 (Table 2) and remain essentially unchanged in the 2016 update to the classification. 7 In contrast to the EGIL approach of scoring a 1462 Arch Pathol Lab Med Vol 141, November 2017 Mixed-Phenotype Acute Leukemia Charles & Boyer

2 Table 1. European Group for Immunological Characterization of Acute Leukemias (EGIL) Algorithm for Biphenotypic Blasts a,b Points B T Myeloid 2 cycd79a CD3 (sm or cy) MPO cycd22 TCR-ab cyigm TCR-cd 1 CD19 CD2 CD117 CD20 CD5 CD13 CD10 CD8 CD33 CD10 CDw TdT TdT CD14 CD24 CD7 CD15 CD1a CD64 Abbreviations: cy, cytoplasmic; IgM, immunoglobulin M; MPO, myeloperoxidase; sm, surface membrane; TCR, T-cell receptor; TdT, terminal deoxynucleotidyl transferase. a Biphenotypic leukemia is diagnosed when scores are greater than 2 in 2 lineage columns. b Data derived from Bene et al. 5 detailed blast immunophenotype with numerous markers, the World Health Organization (WHO) criteria emphasize a few key lineage-defining markers with particular emphasis on CD19 for B lineage, CD3 for T lineage, and myeloperoxidase (MPO) for myeloid lineage. The WHO approach is simpler but relies heavily on the sensitivity and specificity of a few markers. Also, the WHO classification does not specify thresholds for positivity of these key markers, leaving it up to individual laboratories to decide on the definition of significant expression. In practice, the most frequent challenge in applying the WHO criteria for MPAL is interpretation of MPO expression in cases that are otherwise consistent with B-ALL or T-ALL. TESTING FOR MPO EXPRESSION The WHO classification stipulates that detection of MPO by FCM, IHC, or EC is sufficient for the diagnosis of MPAL when the blasts also meet criteria for B- or T-cell lineage. However, the sensitivity of these methods for detecting MPO differs greatly. The presence of MPO mrna in otherwise typical ALL blasts is well documented, 8 10 and a strong correlation between MPO mrna and positivity for MPO by IHC was demonstrated in a series of 57 infant ALL cases. 9 In another series of 57 patients with ALL, representing a broad age range (18 months 72 years), MPO mrna was detected in 43.8% of patients, including 83% of ALL with BCR-ABL1 fusion (Phþ) and 33% of Ph ALL. 10 In both of these studies, all cases were negative for MPO by EC. Myeloperoxidase can also be detected by FCM in ALL, especially in Phþ cases, even when EC is negative. 11 The most sensitive method for detection of MPO is reverse transcription polymerase chain reaction, followed closely by IHC with modern signal amplification techniques. Flow cytometry is slightly less sensitive than amplified IHC, and EC is the least sensitive. In studies of AML blasts, it has been shown that cases with much stronger positivity by FCM than by EC produce relatively more of the MPO proenzyme than active enzyme. 12 Decreased production of mature MPO might also be a factor in the low sensitivity of EC for MPOþ ALL, and the lower total quantity of MPO mrna and protein in ALL compared to AML also contributes. For these reasons, the number of acute leukemias diagnosed as MPAL can vary significantly Table 2. World Health Organization 2008/2016 Criteria for Mixed-Phenotype Blasts a Lineage Markers Myeloid MPO (flow cytometry, immunohistochemistry, or enzyme cytochemistry) -OR- Monocytic differentiation (at least 2 of the following: NSE cytochemistry, CD11c, CD14, CD64, lysozyme) T lineage Strong b cytoplasmic CD3 -OR- Surface CD3 B lineage Strong b CD19 with at least 1 of the following strongly expressed: CD79a, cytoplasmic CD22, or CD10 -OR- Weak CD19 with at least 2 of the following strongly expressed: CD79a, cytoplasmic CD22, or CD10 Abbreviations: MPO, myeloperoxidase, NSE, nonspecific esterase. a Data derived from Borowitz et al 6 and Arber et al. 7 b Strong ¼ at least as intense as in normal B or T cells. depending on whether FCM, IHC, or EC is used to detect MPO. To address this problem, efforts have been made to standardize thresholds for MPO positivity. Detection of MPO by EC in 3% or more of blasts excludes most unilineage ALL cases and has been used as a threshold to define myeloid lineage since the inception of the French- American-British (FAB) classification of acute leukemia in the 1970s. 13 A recent study 14 used receiver-operator curve (ROC) analysis to define an FCM threshold for MPO positivity with optimal correlation with the 3% threshold by EC. This analysis identified 13% MPOþ blasts (by FCM) as the best threshold when using isotype control to define the negative control population. This result is fairly close to the 10% threshold for MPO by FCM used by the EGIL algorithm. Other investigators 15 have also shown a good correlation between a 10% threshold by FCM (using isotype control) and a 3% threshold by EC. Importantly, Guy et al 14 repeated the ROC calculation by using normal lymphocytes as an internal negative control instead of using an isotype control, and found a significantly higher threshold of 28%. The main reason for the difference is that most blasts have greater autofluorescence than mature lymphocytes, and therefore a negative blast population will have a higher median fluorescence intensity than a negative lymphocyte population. Because of this difference, it is important to know what negative control was used when interpreting partial positivity for MPO by FCM. Owing to uncertainty about the significance of weak or partial MPO expression by FCM when the question of ALL versus MPAL arises, the current practice at our institution is to perform MPO EC in cases where the FCM signal for MPO is very weakly positive or only present on a minor subset of the blasts. If MPO EC stains fewer than 3% of the blasts, then we do not consider the findings definitive for MPAL. This practice may change as more data become available, but at present we are more concerned about overdiagnosing MPAL by FCM. Of note, the WHO classification intentionally omits thresholds for significant expression of MPO or other markers by FCM. 16 The thresholds proposed by the EGIL authors, and even the 3% MPO threshold from the FAB Arch Pathol Lab Med Vol 141, November 2017 Mixed-Phenotype Acute Leukemia Charles & Boyer 1463

3 Figure 1. Mixed-phenotype acute leukemia, B/myeloid, with biphenotypic blasts. A, Peripheral blood smear containing numerous large blasts with irregular nuclear contours and occasional cytoplasmic vacuoles. B through F, Flow cytometric evaluation of the peripheral blood shows a dominant population of CD34 þ, CD45-dim blasts (blue) and a smaller population of mature lymphocytes (red). The blasts are strongly positive for the B-cell markers CD19 and cytoplasmic CD79a (ccd79a), and uniformly coexpress the myeloid markers CD15 and cytoplasmic myeloperoxidase (cmpo) (Wright-Giemsa, original magnification [A]). Abbreviations: ECD, electron-coupled dye; FITC, fluorescein isothiocyanate; PC5, phycoerythrin cyanine 5; PE, phycoerythrin; SS, side scatter. classification, were not defined from experimental biology but rather from expert opinion of a safe threshold to exclude nonspecific staining based on the techniques used at the time. Current multiparameter FCM techniques allow for more precise identification of blast populations, which enables more specific detection of dim or subset marker positivity. Because the sensitivity and specificity of detection methods may vary among flow cytometry laboratories, it is important that individual laboratories develop experience interpreting true positive expression based on their selected reagents and control populations. Keeping this interlaboratory variation in mind, the preceding discussion of MPO thresholds is intended to provide a starting rule-of-thumb based on published data and personal experience. BILINEAL ACUTE LEUKEMIA The discussion up to this point has focused on diagnostic criteria for the subtype of MPAL known as biphenotypic acute leukemia. Biphenotypic blasts comprise a single population that coexpresses key markers of more than 1 lineage (Figure 1, A through F). The other major subtype of MPAL is bilineal acute leukemia. A bilineal blast population comprises 2 groups of blasts that each fulfills diagnostic criteria for different lineages of acute leukemia (Figure 2, A through F). The WHO criteria for bilineal MPAL require that the sum of the 2 blast populations is at least 20% of nucleated cells. 6 In some cases, one of the blast populations is much smaller than the other, but no minimum count is mandated for the minor population as long as the sum is 20% or greater. In practice, the accurate identification of minor blast populations of divergent lineage is the biggest challenge for diagnosing bilineal acute leukemia. Identification of immunophenotypic aberrancies can be essential to differentiate a small bilineal blast population from residual normal myeloid blasts or hematogones (physiological B-cell precursors). For example, in the case illustrated in Figure 2, the myeloid blasts were aberrantly positive for CD56 (not shown). It is especially important to consider the possibility of a monocytic blast population coexisting with ALL, which most often occurs in the context of KMT2A translocations, because monocytic blasts often resemble normal monocytes in FCM analysis. Furthermore, it is essential that a sufficient number of events is analyzed by FCM (1000 blasts and total events per tube), so that a minor secondary blast population is not overlooked Arch Pathol Lab Med Vol 141, November 2017 Mixed-Phenotype Acute Leukemia Charles & Boyer

4 Figure 2. Mixed-phenotype acute leukemia, T/myeloid, with bilineal blasts. A, Touch imprint of bone marrow core biopsy including a few large blasts (black arrows) with coarse cytoplasmic granules and several small blasts (yellow arrows) with scant cytoplasm. B, Bone marrow aspirate smear from the same biopsy also shows a large blast with coarse granules (black arrow) and a small blast with fine granules (yellow arrow). C, The coarse granules (black arrow) are positive for myeloperoxidase (MPO), while the small blast (yellow arrow) is negative for MPO. D, Flow cytometry of the hemodilute bone marrow aspirate shows a dominant population of mature lymphocytes (red) and an expanded population of CD45-dim blasts (orange and purple). E, Flow cytometric characterization of the blast population shows 2 distinct subpopulations, as based on differential expression of CD7 (orange) and CD117 (purple). F, The CD7 þ blast population (orange) is strongly positive for cytoplasmic CD3 (ccd3) with c-expression of TdT. The CD117 þ blasts (purple) are negative for ccd3 and TdT. Additional testing (not shown) demonstrated that the CD7 þ blasts were also positive for CD5 and negative for surface CD3, CD1a, CD2, CD4, and CD8. Both populations of blasts were positive for CD11b, CD33, CD34, CD38, and CD56 (Wright-Giemsa, original magnification [A and B]; MPO stain [3,3-diaminobenzidine], original magnification [C]). Abbreviations: ECD, electron-coupled dye; FITC, fluorescein isothiocyanate; PC7, phycoerythrin cyanine 7; PE, phycoerythrin; SS, side scatter; TdT, terminal deoxynucleotidyl transferase. In the current WHO classification, biphenotypic acute leukemia and bilineal acute leukemia are both classified as MPAL, because the clinical presentation and genetic characteristics of the 2 subtypes are similar. 2,6 However, the pathology report should note whether the blasts are biphenotypic or bilineal, because this information is helpful when testing for residual or recurrent disease. Furthermore, bilineal acute leukemias portend a somewhat poorer prognosis than biphenotypic MPAL 17,18 and have a higher risk of induction failure due to lineage switch. 3,4,17 GENETICS OF MPAL The WHO classification recognizes 2 genetically defined subclassifications of MPAL and also excludes some acute leukemias from the MPAL classification on the basis of genetics. 6 The 2 genetically defined categories are MPAL with BCR-ABL1 fusion and MPAL with KMT2A translocation. KMT2A translocation is the genetic abnormality most frequently associated with lineage switch after chemotherapy. 3,4,19 Rare cases of lineage switch in acute leukemia with BCR-ABL1 have also been reported. 20 Interestingly, some of the reported cases of lineage switch associated with BCR- ABL1 or KMT2A did not show evidence of biphenotypic or bilineal blasts at the time of diagnosis, indicating that these genetic lesions confer the potential for lineage plasticity regardless of the initial blast phenotype. KMT2A translocations are more common in pediatric MPAL (especially infants), and BCR-ABL1 is more common in adults. 21 The blast immunophenotypes are very similar to cases of B-ALL with these gene rearrangements, except that a distinct myeloid or monocytic clone is also present in bilineal cases and significant coexpression of MPO is present in biphenotypic cases. Considering that MPO mrna is present in most B-ALLs with BCR-ABL1 or Arch Pathol Lab Med Vol 141, November 2017 Mixed-Phenotype Acute Leukemia Charles & Boyer 1465

5 KMT2A, 9,10 the difference between B-ALL with BCR-ABL1 or KMT2A and biphenotypic MPAL with BCR-ABL1 or KMT2A is probably more a matter of degree than a fundamental biological difference. The WHO classification of MPAL specifically excludes leukemias with t(8;21), t(15;17), inv(16), FGFR1 mutations/ translocations, blast phase of chronic myelogenous leukemia, AML with myelodysplasia-related changes (AML-MRC), and therapy-related AML. 6 It is recommended to make a secondary notation of mixed phenotype in these cases, for example, AML-MRC with blasts of mixed B/myeloid lineage. The excluded categories that represent significant diagnostic pitfalls are AML with t(8;21)(q22;q22);runx1-runx1t1 and AML-MRC. Acute myeloid leukemia with t(8;21) often expresses the B-cell markers CD19, CD79a, and PAX5, which is associated with transcriptional upregulation of the PAX5 gene. 22 Although some cases of AML with t(8;21) meet immunophenotypic criteria for biphenotypic MPAL, coexpression of CD19 seems to correlate with good prognosis in AML with t(8;21) and response to AML-directed chemotherapy is generally very good. 23 To avoid misdiagnosis of AML with t(8;21) as MPAL, it is important to consider whether the leukemia has morphologic features of AML with t(8;21), for example, prominent granulocytic maturation in the bone marrow (FAB M2), whentheimmunophenotypeshowsamixtureofmyeloid and B-lineage markers. Furthermore, AML with t(8;21) often shows expression of CD56 on the blasts, which is uncommon in biphenotypic B/myeloid MPAL. In difficult cases, rapid cytogenetic evaluation may be required, because B/myeloid MPAL is usually treated with ALLdirected induction regimens and AML with t(8;21) is treated with AML-directed induction. Overlapping features between MPAL and genetically defined AML-MRC creates a diagnostic challenge. The 2 largest case series of MPAL identified complex karyotype as the most common genetic abnormality 24,25 ; however, the WHO classification specifies that AML with complex karyotype should be classified as AML-MRC. A case series of MPAL from Stanford University (Palo Alto, California) excluded acute leukemias with complex karyotype for this reason. 26 The use of complex karyotype and other myelodysplasia-related cytogenetic abnormalities to distinguish between MPAL and AML-MRC is problematic because these abnormalities also occur in unilineage ALL, and therefore cannot be taken as definitive evidence of myeloid lineage. In fact, a study of pediatric MPAL (an age group in which AML-MRC is rare) included several cases with complex karyotype, and most responded well to ALLdirected chemotherapy. 27 In our opinion, karyotype should not be the sole deciding factor to distinguish MPAL from AML-MRC. If the leukemic blasts meet criteria for MPAL and the karyotype includes myelodysplasia-related abnormalities, the patient s clinical history (eg, age and antecedent signs and symptoms), the extent of hematopoietic dysplasia, the blast morphology and immunophenotype, and the presence of somatic mutations associated with lymphoid or myeloid neoplasia should be considered to decide whether the findings are more consistent with MPAL or AML-MRC. Characterization of the somatic mutational landscape of MPAL is limited. Eckstein et al 28 performed whole exome sequencing on 23 cases of MPAL and found frequent NOTCH mutations in cases with a T-lineage component, confirming genetic overlap with unilineage T-ALL. Several RAS and TP53 mutations were detected, consistent with the aggressive behavior typical of MPAL. DNMT3A mutations were also common, especially in older patients. Yan et al 25 performed targeted sequencing of 18 genes in 31 cases of MPAL, and found frequent IKZF1 mutations in Phþ MPAL, similar to Phþ B-ALL. They also identified mutations in the epigenetic regulators TET2, EZH2, and ASXL1 in a handful of cases. The 54 cases examined by these 2 groups were negative for NPM1 mutations. Kotrova et al 29 performed whole exome sequencing on sorted T-lymphoblast and myeloid blast populations from 2 cases of bilineal acute leukemia and found no difference in mutational profile between the immunophenotypically distinct blast populations. In both cases, the mutational profiles were dominated by mutations typical of T-ALL. CLINICAL CHARACTERISTICS AND OUTCOMES OF MPAL Several single- and multi-institution studies 24 27,30 34 describe retrospective review of acute leukemia records to identify cases of MPAL and/or biphenotypic acute leukemia by EGIL criteria, WHO criteria, or both. These studies found that MPAL accounts for approximately 2% of acute leukemias when using WHO criteria, and biphenotypic acute leukemia accounts for 3% to 5% of acute leukemias when using EGIL criteria. Studies that compared the 2 classification schemes found that fewer leukemias were classified as MPAL by WHO criteria, mostly owing to cases of ALL with expression of multiple myeloid surface markers but negative for MPO. 26,32,33 In addition, the WHO classification excludes cases of AML with t(8;21) and AML-MRC, which were considered biphenotypic by some studies that used the EGIL criteria. Shi and Munker 35 performed a search of the US National Cancer Institute s Surveillance, Epidemiology and End Results (SEER) database for reported leukemia cases categorized as MPAL or acute biphenotypic leukemia, and found that these represented 0.6% of acute leukemias in the database. The lower percentage in the SEER database compared to institutional retrospective reviews is likely due to failure to correctly identify MPAL in reporting to the SEER database compared to the retrospective reviews performed at academic institutions, where multiyear records of immunophenotyping data were reviewed for the purpose of consistently applying the EGIL and/or WHO criteria. These studies showed a broad age range for MPAL with a slight male predominance, approximately 1.5:1 in most series. Outcomes for MPAL were generally worse than for comparison cohorts of patients with AML and ALL. The poor outcomes mostly correlated with enrichment for highrisk genetics in the MPAL cohorts, including BCR-ABL1 fusion, KMT2A rearrangements, and complex karyotype. In most reports, the patients were initially treated with the local standard of care for B-ALL, T-ALL, or AML, based on which lineage appeared dominant by immunophenotype and morphologic evaluation. Most reports showed better initial response to ALL-directed chemotherapy than AMLdirected therapies. In some cases, poor responders were switched from AML-directed to ALL-directed therapies (or vice versa), and more than half of the patients achieved complete remission with the second regimen. 18,27 A recent review of stem cell transplant experience in MPAL suggests that allogeneic stem cell transplant in first complete remission is beneficial Arch Pathol Lab Med Vol 141, November 2017 Mixed-Phenotype Acute Leukemia Charles & Boyer

6 DIAGNOSTIC PITFALLS OF MPAL The most pressing concern for the diagnostic pathologist approaching a new acute leukemia is to quickly provide necessary and sufficient information for initial treatment. Currently, the most common clinical practice is to initially treat MPAL patients with ALL-directed chemotherapy. 2 This approach is supported by the retrospective studies described in the previous section and also makes pathophysiological sense because most acute leukemias that fit the current WHO classification of MPAL more closely resemble ALL than AML in terms of genetics and immunophenotype (as reviewed above). Furthermore, the types of AML that most frequently show significant coexpression of lymphoid markers are AML with t(8;21) and AML-MRC, both of which are explicitly excluded from the MPAL category in the WHO classification. Based on current practices, the diagnostic error most likely to trigger inappropriate treatment is making a diagnosis of MPAL based on FCM when subsequent cytogenetic analysis changes the diagnosis to AML with t(8;21) or AML-MRC. Avoiding this pitfall requires careful correlation with the blood and bone marrow morphology and patient history (for AML-MRC). Most MPALs have numerous primitive blasts and/or partial monocytic differentiation, in contrast to AML with t(8;21) and AML-MRC, which usually have prominent granulocytic maturation in the bone marrow and may have prominent dysplastic features. Interpretation of MPO expression can be a pitfall for distinguishing between ALL and MPAL, owing to the lack of precise guidelines and varying techniques for MPO detection. Fortunately, evidence that most MPALs respond to ALL-directed induction therapy relieves some of the pressure on interpreting MPO expression in blasts with predominantly lymphoid features. When evaluating an acute leukemia that seems most consistent with ALL but expresses significant MPO, it can be helpful to discuss the findings with the treating physician to ensure that he or she is aware of evidence that these leukemias usually respond best to ALL-directed therapy despite the presence of MPO. Another common pitfall is to overlook minor populations of monocytic blasts, lymphoid blasts, or myeloid blasts that are diagnostic of bilineal acute leukemia. This error usually does not change the initial treatment; however, correctly diagnosing bilineal acute leukemia provides an early warning of high-risk disease and of the potential for sudden proliferation of a minor clone during induction therapy. We have noticed occasional misapplication of the WHO criteria for assigning mixed lineage to a single blast population (Table 2) to decide whether an acute leukemia can be assigned to a specific lineage or is undifferentiated/ unclassifiable. These criteria are only intended to be used for the diagnosis of biphenotypic MPAL 6. For example, AML with minimal differentiation (FAB M0) is negative for MPO by EC by definition but it is still classified as myeloid lineage. Also, the lack of strong CD3 or CD19 expression does not exclude the diagnosis of ALL, so long as the blasts lack definitive features of myeloid or monocytic differentiation. In contrast, acute undifferentiated leukemia lacks any expression of lineage markers, typically only expressing CD34, CD38, and/or HLA-DR. 6 OUTSTANDING QUESTIONS More than 40 years after the FAB classification of acute leukemias was proposed, the role of MPO in defining myeloid lineage or mixed lineage is still a topic of discussion and investigation. As described above, it is well documented that MPO mrna and protein can be detected in blasts with lymphoid phenotype that are negative for MPO by EC. A recent study 37 examined a cohort of 293 patients with B-ALL excluding leukemias with BCR-ABL1 fusion or KMT2A rearrangement, and it identified 29 cases that were positive for MPO by FCM and negative for other myeloid markers. Only 1 case was positive for MPO by EC. Compared to the rest of the B-ALL cohort, MPOþ B-ALL was associated with a higher rate of relapse and shorter event-free survival. These findings suggest that detection of MPO by FCM is a prognostically significant biomarker, even when MPO enzymatic activity is undetectable. However, it is unclear whether isolated expression of MPO in B-ALL is evidence of the lineage plasticity characteristic of MPAL. The significance of MPO expression in T-ALL is also uncertain. Studies of FLT3 mutations in T-ALL found that these mutations correlate with an early T-precursor (ETP) like immunophenotype, and most cases expressed MPO. 38,39 FLT3 mutations have also been detected in several cases of bona fide ETP-ALL. 40 Based on 2016 WHO criteria, 7 the presence or absence of MPO is a discriminating factor between the diagnosis of ETP-ALL and MPAL, T/myeloid. It would be interesting to know if cases of MPAL, T/myeloid, with FLT3 mutation have a gene expression profile that matches the previously defined profile for ETP-ALL, 41 because it seems likely that these leukemias are closely related. Exclusion of AML-MRC from the MPAL category in the WHO classification has helped to restrict the MPAL designation to a group of acute leukemias that are more closely related to ALL than to AML. However, the significance of mixed phenotype within the context of AML-MRC is uncertain. Studies of the prognostic impact of immunophenotype in AML suggest that aberrant expression of lymphoid markers has minimal prognostic significance when cytogenetic risk groups are included in the analysis. 42 To the best of our knowledge, the impact of MPAL immunophenotype on outcomes in AML-MRC has not been specifically addressed. A recent submission to the American Society of Hematology s Image Bank described a bilineal acute leukemia comprising B lymphoblasts and myeloid blasts. 43 Owing to a complex karyotype including monosomy 7, the leukemia was classified as AML-MRC by WHO criteria, and significant dysgranulopoiesis was also present. Details of therapy and outcome were not provided; however, it seems unlikely that an acute leukemia with a prominent B-lymphoblast population would behave as a typical AML-MRC. Further investigation is needed to evaluate the overlap between AML-MRC and MPAL to ensure optimal classification and treatment decisions. CONCLUSIONS Mixed-phenotype acute leukemia is a diagnostic and therapeutic challenge owing to its heterogeneity, overlapping features with other types of ALL and AML, and lineage plasticity. Multiparameter FCM can detect immunophenotypic profiles typical of MPAL, and international consensus guidelines have contributed greatly to the standardization of diagnosis and clinical investigation of these unusual leukemias. There are several unresolved questions about the diagnostic criteria for MPAL that will require further Arch Pathol Lab Med Vol 141, November 2017 Mixed-Phenotype Acute Leukemia Charles & Boyer 1467

7 studies of the correlation between immunophenotype, genotype, lineage plasticity, and therapeutic response. References 1. Weinberg OK, Arber DA. Mixed-phenotype acute leukemia: historical overview and a new definition. Leukemia. 2010;24(11): Wolach O, Stone RM. How I treat mixed-phenotype acute leukemia. Blood. 2015;125(16): Sakaki H, Kanegane H, Nomura K, et al. Early lineage switch in an infant acute lymphoblastic leukemia. Int J Hematol. 2009;90(5): Rossi JG, Bernasconi AR, Alonso CN, et al. Lineage switch in childhood acute leukemia: an unusual event with poor outcome. Am J Hematol. 2012;87(9): Bene MC, Castoldi G, Knapp W, et al. Proposals for the immunological classification of acute leukemias: European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia. 1995;9(10): Borowitz MJ, Bene MC, Harris NL, Porwit A, Matutes E. Acute leukemias of ambiguous lineage. In: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon, France: IARC Press; World Healh Organization Classification of Tumours; vol Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20): Zhou M, Findley HW, Zaki SR, Little F, Coffield LM, Ragab AH. Expression of myeloperoxidase mrna by leukemic cells from childhood acute lymphoblastic leukemia. Leukemia. 1993;7(8): Austin GE, Alvarado CS, Austin ED, et al. Prevalence of myeloperoxidase gene expression in infant acute lymphocytic leukemia. Am J Clin Pathol. 1998; 110(5): Serrano J, Roman J, Jimenez A, et al. Genetic, phenotypic and clinical features of acute lymphoblastic leukemias expressing myeloperoxidase mrna detected by RT-PCR. Leukemia. 1999;13(2): Sanchez J, Serrano J, Garcia-Castellano JM, Madrigal E, Torres A. Detection of myeloperoxidase by flow cytometry in acute lymphoblastic leukaemias with BCR-ABL gene rearrangement. Leukemia. 2001;15(10): van der Schoot CE, Daams GM, Pinkster J, Vet R, von dem Borne AE. Monoclonal antibodies against myeloperoxidase are valuable immunological reagents for the diagnosis of acute myeloid leukaemia. Br J Haematol. 1990; 74(2): Bennett JM, Catovsky D, Daniel MT, et al. Proposals for the classification of the acute leukaemias: French-American-British (FAB) Co-operative Group. Br J Haematol. 1976;33(4): Guy J, Antony-Debre I, Benayoun E, et al. Flow cytometry thresholds of myeloperoxidase detection to discriminate between acute lymphoblastic or myeloblastic leukaemia. Br J Haematol. 2013;161(4): van den Ancker W, Westers TM, de Leeuw DC, et al. A threshold of 10% for myeloperoxidase by flow cytometry is valid to classify acute leukemia of ambiguous and myeloid origin. Cytometry B Clin Cytom. 2013;84(2): Borowitz MJ. Mixed phenotype acute leukemia. Cytometry B Clin Cytom. 2014;86(3): Weir EG, Ali Ansari-Lari M, Batista DA, et al. Acute bilineal leukemia: a rare disease with poor outcome. Leukemia. 2007;21(11): Gerr H, Zimmermann M, Schrappe M, et al. Acute leukaemias of ambiguous lineage in children: characterization, prognosis and therapy recommendations. Br J Haematol. 2010;149(1): Rayes A, McMasters RL, O Brien MM. Lineage switch in MLL-rearranged infant leukemia following CD19-directed therapy. Pediatr Blood Cancer. 2016; 63(6): Pane F, Frigeri F, Camera A, et al. Complete phenotypic and genotypic lineage switch in a Philadelphia chromosome-positive acute lymphoblastic leukemia. Leukemia. 1996;10(4): Manola KN. Cytogenetic abnormalities in acute leukaemia of ambiguous lineage: an overview. Br J Haematol. 2013;163(1): Tiacci E, Pileri S, Orleth A, et al. PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)- acute myelogenous leukemia. Cancer Res. 2004;64(20): Iriyama N, Hatta Y, Takeuchi J, et al. CD56 expression is an independent prognostic factor for relapse in acute myeloid leukemia with t(8;21). Leuk Res. 2013;37(9): Matutes E, Pickl WF, Van t Veer M, et al. Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification. Blood. 2011;117(11): Yan L, Ping N, Zhu M, et al. Clinical, immunophenotypic, cytogenetic, and molecular genetic features in 117 adult patients with mixed-phenotype acute leukemia defined by WHO-2008 classification. Haematologica. 2012;97(11): Weinberg OK, Seetharam M, Ren L, Alizadeh A, Arber DA. Mixed phenotype acute leukemia: a study of 61 cases using World Health Organization and European Group for the Immunological Classification of Leukaemias criteria. Am J Clin Pathol. 2014;142(6): Rubnitz JE, Onciu M, Pounds S, et al. Acute mixed lineage leukemia in children: the experience of St Jude Children s Research Hospital. Blood. 2009; 113(21): Eckstein OS, Wang L, Punia JN, et al. Mixed-phenotype acute leukemia (MPAL) exhibits frequent mutations in DNMT3A and activated signaling genes. Exp Hematol. 2016;44(8): Kotrova M, Musilova A, Stuchly J, et al. Distinct bilineal leukemia immunophenotypes are not genetically determined. Blood. 2016;128(18): Killick S, Matutes E, Powles RL, et al. Outcome of biphenotypic acute leukemia. Haematologica. 1999;84(8): Owaidah TM, Al Beihany A, Iqbal MA, Elkum N, Roberts GT. Cytogenetics, molecular and ultrastructural characteristics of biphenotypic acute leukemia identified by the EGIL scoring system. Leukemia. 2006;20(4): Al-Seraihy AS, Owaidah TM, Ayas M, et al. Clinical characteristics and outcome of children with biphenotypic acute leukemia. Haematologica. 2009; 94(12): van den Ancker W, Terwijn M, Westers TM, et al. Acute leukemias of ambiguous lineage: diagnostic consequences of the WHO 2008 classification. Leukemia. 2010;24(7): Mejstrikova E, Volejnikova J, Fronkova E, et al. Prognosis of children with mixed phenotype acute leukemia treated on the basis of consistent immunophenotypic criteria. Haematologica. 2010;95(6): Shi R, Munker R. Survival of patients with mixed phenotype acute leukemias: a large population-based study. Leuk Res. 2015;39(6): Wolach O, Stone RM. Mixed-phenotype acute leukemia: current challenges in diagnosis and therapy. Curr Opin Hematol. 2017;24(2): Oberley MJ, Li S, Orgel E, Phei Wee C, Hagiya A, O Gorman MR. Clinical significance of isolated myeloperoxidase expression in pediatric B-lymphoblastic leukemia. Am J Clin Pathol. 2017;147(4): Hoehn D, Medeiros LJ, Chen SS, et al. CD117 expression is a sensitive but nonspecific predictor of FLT3 mutation in T acute lymphoblastic leukemia and T/ myeloid acute leukemia. Am J Clin Pathol. 2012;137(2): Zaremba CM, Oliver D, Cavalier M, Fuda F, Karandikar NJ, Chen W. Distinct immunophenotype of early T-cell progenitors in T lymphoblastic leukemia/lymphoma may predict FMS-like tyrosine kinase 3 mutations. Ann Diagn Pathol. 2012;16(1): Zhang J, Ding L, Holmfeldt L et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature. 2012;481(7380): Coustan-Smith E, Mullighan CG, Onciu M, et al. Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol. 2009;10(2): Chang H, Salma F, Yi QL, Patterson B, Brien B, Minden MD. Prognostic relevance of immunophenotyping in 379 patients with acute myeloid leukemia. Leuk Res. 2004;28(1): Kajal B, Chang H. Acute myeloid leukemia with myelodysplasia-related changes demonstrating mixed-lineage phenotype. Blood. 2016;128(12): Arch Pathol Lab Med Vol 141, November 2017 Mixed-Phenotype Acute Leukemia Charles & Boyer

CME/SAM. Mixed Phenotype Acute Leukemia

CME/SAM. Mixed Phenotype Acute Leukemia AJCP / Original Article Mixed Phenotype Acute Leukemia A Study of 61 Cases Using World Health Organization and European Group for the Immunological Classification of Leukaemias Criteria Olga K. Weinberg,

More information

Mixed Phenotype Acute Leukemias

Mixed Phenotype Acute Leukemias Mixed Phenotype Acute Leukemias CHEN GAO; AMY M. SANDS; JIANLAN SUN NORTH AMERICAN JOURNAL OF MEDICINE AND SCIENCE APR 2012 VOL 5 NO.2 INTRODUCTION Most cases of acute leukemia can be classified based

More information

CASE REPORT. Abstract. Introduction. Case Reports

CASE REPORT. Abstract. Introduction. Case Reports CASE REPORT Two Elderly Patients with Philadelphia Chromosome Positive Mixed Phenotype Acute Leukemia Who Were Successfully Treated with Dasatinib and Prednisolone Hiroyuki Takata 1, Taichi Ikebe 1, Hitohiro

More information

Diagnostic challenge: Acute leukemia with biphenotypic blasts and BCR-ABL1 translocation

Diagnostic challenge: Acute leukemia with biphenotypic blasts and BCR-ABL1 translocation Case Study Diagnostic challenge: Acute leukemia with biphenotypic blasts and BCR-ABL1 translocation Ling Wang 1 and Xiangdong Xu 1,2,* 1 Department of Pathology, University of California, San Diego; 2

More information

Acute myeloid leukemia. M. Kaźmierczak 2016

Acute myeloid leukemia. M. Kaźmierczak 2016 Acute myeloid leukemia M. Kaźmierczak 2016 Acute myeloid leukemia Malignant clonal disorder of immature hematopoietic cells characterized by clonal proliferation of abnormal blast cells and impaired production

More information

Chapter. Both authors contributed equally to this paper. Department of Hematology, CCA-V-ICI, VU University Medical Center, Amsterdam, The Netherlands

Chapter. Both authors contributed equally to this paper. Department of Hematology, CCA-V-ICI, VU University Medical Center, Amsterdam, The Netherlands Chapter CHALLENGING DIAGNOSIS IN A PATIENT WITH CLEAR LYMPHOID IMMUNOHISTOCHEMICAL FEATURES AND MYELOID MORPHOLOGY: MIXED PHENOTYPE ACUTE LEUKEMIA WITH ERYTHROPHAGOCYTOSIS 2 David C. de Leeuw a, *, Willemijn

More information

NUP214-ABL1 Fusion: A Novel Discovery in Acute Myelomonocytic Leukemia

NUP214-ABL1 Fusion: A Novel Discovery in Acute Myelomonocytic Leukemia Case 0094 NUP214-ABL1 Fusion: A Novel Discovery in Acute Myelomonocytic Leukemia Jessica Snider, MD Medical University of South Carolina Case Report - 64 year old Caucasian Male Past Medical History Osteoarthritis

More information

AML: WHO classification, biology and prognosis. Dimitri Breems, MD, PhD Internist-Hematoloog Ziekenhuis Netwerk Antwerpen

AML: WHO classification, biology and prognosis. Dimitri Breems, MD, PhD Internist-Hematoloog Ziekenhuis Netwerk Antwerpen AML: WHO classification, biology and prognosis Dimitri Breems, MD, PhD Internist-Hematoloog Ziekenhuis Netwerk Antwerpen Acute myeloid leukemia Clonal expansion of undifferentiated myeloid precursors Impaired

More information

HEMATOLOGIC MALIGNANCIES BIOLOGY

HEMATOLOGIC MALIGNANCIES BIOLOGY HEMATOLOGIC MALIGNANCIES BIOLOGY Failure of terminal differentiation Failure of differentiated cells to undergo apoptosis Failure to control growth Neoplastic stem cell FAILURE OF TERMINAL DIFFERENTIATION

More information

Hematology Unit Lab 2 Review Material

Hematology Unit Lab 2 Review Material Objectives Hematology Unit Lab 2 Review Material - 2018 Laboratory Instructors: 1. Assist students during lab session Students: 1. Review the introductory material 2. Study the case histories provided

More information

Differential diagnosis of hematolymphoid tumors composed of medium-sized cells. Brian Skinnider B.C. Cancer Agency, Vancouver General Hospital

Differential diagnosis of hematolymphoid tumors composed of medium-sized cells. Brian Skinnider B.C. Cancer Agency, Vancouver General Hospital Differential diagnosis of hematolymphoid tumors composed of medium-sized cells Brian Skinnider B.C. Cancer Agency, Vancouver General Hospital Lymphoma classification Lymphoma diagnosis starts with morphologic

More information

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL LEUKEMIA FORMS CHAPTER 16A REVISED: DECEMBER 2017

SWOG ONCOLOGY RESEARCH PROFESSIONAL (ORP) MANUAL LEUKEMIA FORMS CHAPTER 16A REVISED: DECEMBER 2017 LEUKEMIA FORMS The guidelines and figures below are specific to Leukemia studies. The information in this manual does NOT represent a complete set of required forms for any leukemia study. Please refer

More information

Case Report Mixed phenotype acute leukemia, B/myeloid, NOS with near-tetraploidy: a case report

Case Report Mixed phenotype acute leukemia, B/myeloid, NOS with near-tetraploidy: a case report Int J Clin Exp Pathol 2017;10(11):11206-11210 www.ijcep.com /ISSN:1936-2625/IJCEP0054881 Case Report Mixed phenotype acute leukemia, B/myeloid, NOS with near-tetraploidy: a case report Kimberley M Nix

More information

Mast Cell Disease Case 054 Session 7

Mast Cell Disease Case 054 Session 7 Mast Cell Disease Case 054 Session 7 Rodney R. Miles, M.D., Ph.D. Lauren B. Smith, M.D. Cem Akin, M.D. Diane Roulston,, Ph.D. Charles W. Ross, M.D. Departments of Pathology and Internal Medicine University

More information

Molecular Markers in Acute Leukemia. Dr Muhd Zanapiah Zakaria Hospital Ampang

Molecular Markers in Acute Leukemia. Dr Muhd Zanapiah Zakaria Hospital Ampang Molecular Markers in Acute Leukemia Dr Muhd Zanapiah Zakaria Hospital Ampang Molecular Markers Useful at diagnosis Classify groups and prognosis Development of more specific therapies Application of risk-adjusted

More information

Case 3. Ann T. Moriarty,MD

Case 3. Ann T. Moriarty,MD Case 3 Ann T. Moriarty,MD Case 3 59 year old male with asymptomatic cervical lymphadenopathy. These images are from a fine needle biopsy of a left cervical lymph node. Image 1 Papanicolaou Stained smear,100x.

More information

Aberrant Expression of CD7 in Myeloblasts Is Highly Associated With De Novo Acute Myeloid Leukemias With FLT3/ITD Mutation

Aberrant Expression of CD7 in Myeloblasts Is Highly Associated With De Novo Acute Myeloid Leukemias With FLT3/ITD Mutation Hematopathology / CD7 Expression and FLT3/ITD Mutation in AML Aberrant Expression of CD7 in Myeloblasts Is Highly Associated With De Novo Acute Myeloid Leukemias With FLT3/ITD Mutation Veronica Rausei-Mills,

More information

Molecular Advances in Hematopathology

Molecular Advances in Hematopathology Molecular Advances in Hematopathology HOW MOLECULAR METHODS HAVE CHANGED MY PRACTICE Objectives Understand the importance of cytogenetic/molecular studies in hematolymphoid diseases Know some of the important

More information

Hematology Case Studies: MPAL & JMML. Nicholas Brehl, M.Ed., MLS (ASCP) CM

Hematology Case Studies: MPAL & JMML. Nicholas Brehl, M.Ed., MLS (ASCP) CM Hematology Case Studies: MPAL & JMML Nicholas Brehl, M.Ed., MLS (ASCP) CM 36 year old female Case 1 Symptoms: non-productive cough, fatigue, fever, chills, night sweats Physical Exam: Painful cervical

More information

Objectives. Morphology and IHC. Flow and Cyto FISH. Testing for Heme Malignancies 3/20/2013

Objectives. Morphology and IHC. Flow and Cyto FISH. Testing for Heme Malignancies 3/20/2013 Molecular Markers in Hematologic Malignancy: Ways to locate the needle in the haystack. Objectives Review the types of testing for hematologic malignancies Understand rationale for molecular testing Marcie

More information

Standard immunophenotyping of leukemia cells in acute myeloid leukemia (AML)

Standard immunophenotyping of leukemia cells in acute myeloid leukemia (AML) Clinical immunology Standard immunophenotyping of leukemia cells in acute myeloid leukemia (AML) ` JOLANTA WOZNIAK, JOANNA KOPEÆ-SZLÊZAK Department of Haematological Cytobiology, Institut of Haematology

More information

Supplemental Material. The new provisional WHO entity RUNX1 mutated AML shows specific genetics without prognostic influence of dysplasia

Supplemental Material. The new provisional WHO entity RUNX1 mutated AML shows specific genetics without prognostic influence of dysplasia Supplemental Material The new provisional WHO entity RUNX1 mutated AML shows specific genetics without prognostic influence of dysplasia Torsten Haferlach, 1 Anna Stengel, 1 Sandra Eckstein, 1 Karolína

More information

Extramedullary precursor T-lymphoblastic transformation of CML at presentation

Extramedullary precursor T-lymphoblastic transformation of CML at presentation Extramedullary precursor T-lymphoblastic transformation of CML at presentation Neerja Vajpayee, Constance Stein, Bernard Poeisz & Robert E. Hutchison Clinical History 30 year old man presented to the emergency

More information

ADx Bone Marrow Report. Patient Information Referring Physician Specimen Information

ADx Bone Marrow Report. Patient Information Referring Physician Specimen Information ADx Bone Marrow Report Patient Information Referring Physician Specimen Information Patient Name: Specimen: Bone Marrow Site: Left iliac Physician: Accession #: ID#: Reported: 08/19/2014 - CHRONIC MYELOGENOUS

More information

Acute Myeloid Leukemia with Recurrent Cytogenetic Abnormalities

Acute Myeloid Leukemia with Recurrent Cytogenetic Abnormalities Acute Myeloid Leukemia with Recurrent Cytogenetic Abnormalities Acute Myeloid Leukemia with recurrent cytogenetic Abnormalities -t(8;21)(q22;q22)(aml/eto) -inv(16) or t(16;16) -t(15;17) -11q23 Acute Myeloid

More information

Update on the WHO Classification of Acute Myeloid Leukemia. Kaaren K. Reichard, MD Mayo Clinic Rochester

Update on the WHO Classification of Acute Myeloid Leukemia. Kaaren K. Reichard, MD Mayo Clinic Rochester Update on the WHO Classification of Acute Myeloid Leukemia Kaaren K. Reichard, MD Mayo Clinic Rochester reichard.kaaren@mayo.edu Nothing to disclose Conflict of Interest Objectives Present a practical

More information

Clinical Study of Acute Mixed-lineage Leukemia in 14 Children

Clinical Study of Acute Mixed-lineage Leukemia in 14 Children Original Article Iran J Pediatr Dec 2011; Vol 21 (No 4), Pp: 521-525 Clinical Study of Acute Mixed-lineage Leukemia in 14 Children Yaodong Zhang 1, MD; Lina Tan 1 ; Xiaoling Zhang 2, PhD; Haiyan Wei 1,

More information

Hematology Measure #1: Myelodysplastic Syndrome (MDS) and Acute Leukemias: Baseline Cytogenetic Testing Performed on Bone Marrow

Hematology Measure #1: Myelodysplastic Syndrome (MDS) and Acute Leukemias: Baseline Cytogenetic Testing Performed on Bone Marrow Hematology Measure #1: Myelodysplastic Syndrome (MDS) and Acute Leukemias: Baseline Cytogenetic Testing Performed on Bone Marrow This measure may be used as an Accountability measure Clinical Performance

More information

VUmc Basispresentatie

VUmc Basispresentatie Clinical diagnostic cytometry Gerrit J Schuurhuis Dept of Hematology VU University Medical Center Amsterdam, Netherlands Use of immunophenotyping at diagnosis to trace residual disease after therapy 1.

More information

The spectrum of flow cytometry of the bone marrow

The spectrum of flow cytometry of the bone marrow The spectrum of flow cytometry of the bone marrow Anna Porwit Lund University Faculty of Medicine Dept. of Clinical Sciences Div. Oncology and Pathology anna.porwit@med.lu.se Disclosure of speaker s interests

More information

BCR-ABL1 positive Myeloid Sarcoma Nicola Austin

BCR-ABL1 positive Myeloid Sarcoma Nicola Austin BCR-ABL1 positive Myeloid Sarcoma Nicola Austin Cytocell UK & Ireland User Group Meeting Jesus College, Cambridge 4 th - 5 th April 2017 Myeloid Sarcoma WHO Classification Tumours of Haematopoietic and

More information

Myelodysplasia/Myeloproliferative Neoplasms (MDS/MPN) Post-HCT Data

Myelodysplasia/Myeloproliferative Neoplasms (MDS/MPN) Post-HCT Data Instructions for Myelodysplasia/Myeloproliferative Neoplasms (MDS/MPN) Post-HCT Data (Form 2114) This section of the CIBMTR Forms Instruction Manual is intended to be a resource for completing the Myelodysplasia/Myeloproliferative

More information

Case 1. Sa A.Wang, MD UT MD Anderson Cancer Center Houston, TX

Case 1. Sa A.Wang, MD UT MD Anderson Cancer Center Houston, TX Case 1 Sa A.Wang, MD UT MD Anderson Cancer Center Houston, TX Disclosure of Relevant Financial Relationships The USCAP requires that anyone in a position to influence or control the content of all CME

More information

Initial Diagnostic Workup of Acute Leukemia

Initial Diagnostic Workup of Acute Leukemia Initial Diagnostic Workup of Acute Leukemia Guideline from the College of American Pathologists (CAP) and the American Society of Hematology (ASH) Publication: Archives of Pathology and Laboratory Medicine

More information

Corporate Medical Policy. Policy Effective February 23, 2018

Corporate Medical Policy. Policy Effective February 23, 2018 Corporate Medical Policy Genetic Testing for FLT3, NPM1 and CEBPA Mutations in Acute File Name: Origination: Last CAP Review: Next CAP Review: Last Review: genetic_testing_for_flt3_npm1_and_cebpa_mutations_in_acute_myeloid_leukemia

More information

Template for Reporting Results of Biomarker Testing for Myeloproliferative Neoplasms

Template for Reporting Results of Biomarker Testing for Myeloproliferative Neoplasms Template for Reporting Results of Biomarker Testing for Myeloproliferative Neoplasms Version: MPNBiomarkers 1.0.0.2 Protocol Posting Date: June 2017 This biomarker template is NOT required for accreditation

More information

Original Article Mixed Phenotype Acute Leukaemias Pak Armed Forces Med J 2017; 67 (6): ORIGINAL ARTICLES

Original Article Mixed Phenotype Acute Leukaemias Pak Armed Forces Med J 2017; 67 (6): ORIGINAL ARTICLES Open Access Original Article Mixed Phenotype Acute Leukaemias Pak Armed Forces Med J 2017; 67 (6): 883-89 ORIGINAL ARTICLES IMMUNOPHENOTYPING PATTERN IN MIXED PHENOTYPE ACUTE LEUKAEMIAS Ayesha Khurshid,

More information

Johann Hitzler, MD, FRCPC, FAAP Jacqueline Halton, MD, FRCPC Jason D. Pole, PhD

Johann Hitzler, MD, FRCPC, FAAP Jacqueline Halton, MD, FRCPC Jason D. Pole, PhD Photo by Tynan Studio Johann Hitzler, MD, FRCPC, FAAP Jacqueline Halton, MD, FRCPC Jason D. Pole, PhD 96 Atlas of Childhood Cancer in Ontario (1985-2004) Chapter 6: Leukemia 6 Leukemia Atlas of Childhood

More information

Jordi Esteve Hospital Clínic (Barcelona) Acute Leukemia Working Party. The European Group for Blood and Marrow Transplantation

Jordi Esteve Hospital Clínic (Barcelona) Acute Leukemia Working Party. The European Group for Blood and Marrow Transplantation 36th EBMT & 9th Data Management Group Annual Meeting Vienna, 23 March 2010 Jordi Esteve Hospital Clínic (Barcelona) Acute Leukemia Working Party The European Group for Blood and Marrow Transplantation

More information

JAK2 V617F analysis. Indication: monitoring of therapy

JAK2 V617F analysis. Indication: monitoring of therapy JAK2 V617F analysis BCR-ABL genotyping The exact chromosomal defect in Philadelphia chromosome is a translocation. Parts of two chromosomes, 9 and 22, switch places. The result is a fusion gene, created

More information

Participants Identification No. % Evaluation. Mitotic figure Educational Erythrocyte precursor, abnormal 1 0.

Participants Identification No. % Evaluation. Mitotic figure Educational Erythrocyte precursor, abnormal 1 0. Cell Identification Mitotic figure 212 99.5 Educational Erythrocyte precursor, abnormal BMD-02 The arrowed cell is a mitotic figure. It was correctly identified by 99.5% of the participants. A cell containing

More information

Original Article Acute Leukemias And Aberrant Markers Expression Pak Armed Forces Med J 2018; 68 (3):

Original Article Acute Leukemias And Aberrant Markers Expression Pak Armed Forces Med J 2018; 68 (3): Open Access Original Article Acute Leukemias And Aberrant Markers Expression Pak Armed Forces Med J 2018; 68 (3): 450-54 SPECTRUM OF ACUTE LEUKEMIAS AND ABERRANT MARKERS EXPRESSION BASED ON FLOWCYTOMETRY

More information

Pathology. #11 Acute Leukemias. Farah Banyhany. Dr. Sohaib Al- Khatib 23/2/16

Pathology. #11 Acute Leukemias. Farah Banyhany. Dr. Sohaib Al- Khatib 23/2/16 35 Pathology #11 Acute Leukemias Farah Banyhany Dr. Sohaib Al- Khatib 23/2/16 1 Salam First of all, this tafreegh is NOT as long as you may think. If you just focus while studying this, everything will

More information

Immunophenotypic study of acute leukemia by flow cytometry at BPKMCH.

Immunophenotypic study of acute leukemia by flow cytometry at BPKMCH. Nepal Medical Association Building Exhibition Road, Kathmandu Journal of Pathology of Nepal (2013) Vol. 3, 345-350 Association of Clinical Pathologist of Nepal-2010 Journal of PATHOLOGY of Nepal www.acpnepal.com

More information

MPL W515L K mutation

MPL W515L K mutation MPL W515L K mutation BCR-ABL genotyping The exact chromosomal defect in Philadelphia chromosome is a translocation. Parts of two chromosomes, 9 and 22, switch places. The result is a fusion gene, created

More information

Group of malignant disorders of the hematopoietic tissues characteristically associated with increased numbers of white cells in the bone marrow and

Group of malignant disorders of the hematopoietic tissues characteristically associated with increased numbers of white cells in the bone marrow and Group of malignant disorders of the hematopoietic tissues characteristically associated with increased numbers of white cells in the bone marrow and / or peripheral blood Classified based on cell type

More information

N Engl J Med Volume 373(12): September 17, 2015

N Engl J Med Volume 373(12): September 17, 2015 Review Article Acute Myeloid Leukemia Hartmut Döhner, M.D., Daniel J. Weisdorf, M.D., and Clara D. Bloomfield, M.D. N Engl J Med Volume 373(12):1136-1152 September 17, 2015 Acute Myeloid Leukemia Most

More information

The Revised 2016 WHO Classification of Acute Leukemias

The Revised 2016 WHO Classification of Acute Leukemias The Revised 2016 WHO Classification of Acute Leukemias Robert P Hasserjian, MD Associate Professor Massachusetts General Hospital and Harvard Medical School Acute leukemias Aggressive hematopoietic neoplasms

More information

Myelodysplastic Syndromes: Everyday Challenges and Pitfalls

Myelodysplastic Syndromes: Everyday Challenges and Pitfalls Myelodysplastic Syndromes: Everyday Challenges and Pitfalls Kathryn Foucar, MD kfoucar@salud.unm.edu Henry Moon lecture May 2007 Outline Definition Conceptual overview; pathophysiologic mechanisms Incidence,

More information

WBCs Disorders 1. Dr. Nabila Hamdi MD, PhD

WBCs Disorders 1. Dr. Nabila Hamdi MD, PhD WBCs Disorders 1 Dr. Nabila Hamdi MD, PhD ILOs Compare and contrast ALL, AML, CLL, CML in terms of age distribution, cytogenetics, morphology, immunophenotyping, laboratory diagnosis clinical features

More information

Risk Stratification in Childhood Leukemia

Risk Stratification in Childhood Leukemia Risk Stratification in Childhood Leukemia Why is risk stratification important? Toxicities Deepa Bhojwani, MD May 11, 2018 To determine intensity of therapy - When to intensify therapy - When to de-intensify

More information

Blastic Plasmacytoid Dendritic Cell Neoplasm with DNMT3A and TET2 mutations (SH )

Blastic Plasmacytoid Dendritic Cell Neoplasm with DNMT3A and TET2 mutations (SH ) Blastic Plasmacytoid Dendritic Cell Neoplasm with DNMT3A and TET2 mutations (SH2017-0314) Habibe Kurt, Joseph D. Khoury, Carlos E. Bueso-Ramos, Jeffrey L. Jorgensen, Guilin Tang, L. Jeffrey Medeiros, and

More information

Comparison of myeloperoxidase detection by flow cytometry using two different clones of monoclonal antibodies

Comparison of myeloperoxidase detection by flow cytometry using two different clones of monoclonal antibodies Malaysian J Pathol 2004; 26(2) : 111 116FLOW CYTOMETRY MYELOPEROXIDASE DETECTION Comparison of myeloperoxidase detection by flow cytometry using two different clones of monoclonal antibodies CF Leong MPath,

More information

Sebastian Fernandez-Pol, Lisa Ma, Robert S Ohgami and Daniel A Arber

Sebastian Fernandez-Pol, Lisa Ma, Robert S Ohgami and Daniel A Arber 382 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Immunohistochemistry for p53 is a useful tool to identify cases of acute myeloid leukemia with myelodysplasia-related changes that are TP53 mutated,

More information

Relapsed acute lymphoblastic leukemia. Lymphoma Tumor Board. July 21, 2017

Relapsed acute lymphoblastic leukemia. Lymphoma Tumor Board. July 21, 2017 Relapsed acute lymphoblastic leukemia Lymphoma Tumor Board July 21, 2017 Diagnosis - Adult Acute Lymphoblastic Leukemia (ALL) Symptoms/signs include: Fever Increased risk of infection (especially bacterial

More information

NUMERATOR: Patients who had baseline cytogenetic testing performed on bone marrow

NUMERATOR: Patients who had baseline cytogenetic testing performed on bone marrow Quality ID #67 (NQF 0377): Hematology: Myelodysplastic Syndrome (MDS) and Acute Leukemias: Baseline Cytogenetic Testing Performed on Bone Marrow National Quality Strategy Domain: Effective Clinical Care

More information

PRECURSOR LYMHPOID NEOPLASMS. B lymphoblastic leukaemia/lymphoma T lymphoblastic leukaemia/lymphoma

PRECURSOR LYMHPOID NEOPLASMS. B lymphoblastic leukaemia/lymphoma T lymphoblastic leukaemia/lymphoma PRECURSOR LYMHPOID NEOPLASMS B lymphoblastic leukaemia/lymphoma T lymphoblastic leukaemia/lymphoma B lymphoblastic leukaemia/lymphoma Definition: B lymphoblastic leukaemia/lymphoma is a neoplasm of precursor

More information

Hematopathology Case Study

Hematopathology Case Study www.medfusionservices.com Hematopathology Case Study CV3515-14 JUNE Clinical Presentation: Clinical Information: A 42 year old male with history of chronic myelogenous leukemia (CML) presents with an elevated

More information

Acute leukemia and myelodysplastic syndromes

Acute leukemia and myelodysplastic syndromes 11/01/2012 Post-ASH meeting 1 Acute leukemia and myelodysplastic syndromes Peter Vandenberghe Centrum Menselijke Erfelijkheid & Afdeling Hematologie, UZ Leuven 11/01/2012 Post-ASH meeting 2 1. Acute myeloid

More information

A pediatric patient with acute leukemia of ambiguous lineage with a NUP98-NSD1 rearrangement SH

A pediatric patient with acute leukemia of ambiguous lineage with a NUP98-NSD1 rearrangement SH A pediatric patient with acute leukemia of ambiguous lineage with a NUP98NSD1 rearrangement SH20170203 Rebecca LeemanNeill, Ronald Rice, Anita Malek, Patricia Raciti, Susan Hsiao, Mahesh Mansukhani, Bachir

More information

New treatment strategies in myelodysplastic syndromes and acute myeloid leukemia van der Helm, Lidia Henrieke

New treatment strategies in myelodysplastic syndromes and acute myeloid leukemia van der Helm, Lidia Henrieke University of Groningen New treatment strategies in myelodysplastic syndromes and acute myeloid leukemia van der Helm, Lidia Henrieke IMPORTANT NOTE: You are advised to consult the publisher's version

More information

Case #16: Diagnosis. T-Lymphoblastic lymphoma. But wait, there s more... A few weeks later the cytogenetics came back...

Case #16: Diagnosis. T-Lymphoblastic lymphoma. But wait, there s more... A few weeks later the cytogenetics came back... Case #16: Diagnosis T-Lymphoblastic lymphoma But wait, there s more... A few weeks later the cytogenetics came back... 46,XY t(8;13)(p12;q12)[12] Image courtesy of Dr. Xinyan Lu Further Studies RT-PCR

More information

Minimal residual disease (MRD) in AML; coming of age. Dr. Mehmet Yılmaz Gaziantep University Medical School Sahinbey Education and Research hospital

Minimal residual disease (MRD) in AML; coming of age. Dr. Mehmet Yılmaz Gaziantep University Medical School Sahinbey Education and Research hospital Minimal residual disease (MRD) in AML; coming of age Dr. Mehmet Yılmaz Gaziantep University Medical School Sahinbey Education and Research hospital 1. The logistics of MRD assessment in AML 2. The clinical

More information

Corrigenda. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run

Corrigenda. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run Corrigenda WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (revised 4th edition): corrections made in second print run In addition to corrections of minor typographical errors, corrections

More information

Acute Myeloid Leukemia with RUNX1 and Several Co-mutations

Acute Myeloid Leukemia with RUNX1 and Several Co-mutations Case SH2017-0281 Acute Myeloid Leukemia with RUNX1 and Several Co-mutations James Bauer, MD, PhD David Yang, MD Erik Ranheim, MD, PhD Catherine Leith, MB, Bchir Clinical History Chief Complaint: 72 year

More information

Beyond the CBC Report: Extended Laboratory Testing in the Evaluation for Hematologic Neoplasia Disclosure

Beyond the CBC Report: Extended Laboratory Testing in the Evaluation for Hematologic Neoplasia Disclosure Beyond the CBC Report: Extended Laboratory Testing in the Evaluation for Hematologic Neoplasia Disclosure I am receiving an honorarium from Sysmex for today s presentation. 1 Determining the Etiology for

More information

Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED

Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED Done By : WESSEN ADNAN BUTHAINAH AL-MASAEED Acute Myeloid Leukemia Firstly we ll start with this introduction then enter the title of the lecture, so be ready and let s begin by the name of Allah : We

More information

Test Name Results Units Bio. Ref. Interval. Positive

Test Name Results Units Bio. Ref. Interval. Positive LL - LL-ROHINI (NATIONAL REFERENCE 135091533 Age 28 Years Gender Male 1/9/2017 120000AM 1/9/2017 105415AM 4/9/2017 23858M Ref By Final LEUKEMIA DIAGNOSTIC COMREHENSIVE ROFILE, ANY 6 MARKERS t (1;19) (q23

More information

Myelodysplastic Syndrome Case 158

Myelodysplastic Syndrome Case 158 Myelodysplastic Syndrome Case 158 Dong Chen MD PhD Division of Hematopathology Mayo Clinic Clinical History 86 year old man Persistent borderline anemia and thrombocytopenia. His past medical history was

More information

Case Report Blasts-more than meets the eye: evaluation of post-induction day 21 bone marrow in CBFB rearranged acute leukemia

Case Report Blasts-more than meets the eye: evaluation of post-induction day 21 bone marrow in CBFB rearranged acute leukemia Int J Clin Exp Pathol 2014;7(7):4498-4502 www.ijcep.com /ISSN:1936-2625/IJCEP0000851 Case Report Blasts-more than meets the eye: evaluation of post-induction day 21 bone marrow in CBFB rearranged acute

More information

Cost-Effective Strategies in the Workup of Hematologic Neoplasm. Karl S. Theil, Claudiu V. Cotta Cleveland Clinic

Cost-Effective Strategies in the Workup of Hematologic Neoplasm. Karl S. Theil, Claudiu V. Cotta Cleveland Clinic Cost-Effective Strategies in the Workup of Hematologic Neoplasm Karl S. Theil, Claudiu V. Cotta Cleveland Clinic In the past 12 months, we have not had a significant financial interest or other relationship

More information

HEMATOPATHOLOGY SUMMARY REPORT RL;MMR;

HEMATOPATHOLOGY SUMMARY REPORT RL;MMR; HEMATOPATHOLOGY SUMMARY REPORT RL;MMR; Page 1 of 1 05/15/20XX HP000000-20XX 05/21/20XX (212) 123-457 (51) 32-3455 (51) 123-457 Age: 78 DOB: 0/05/19XX SS#: 45-45-45 Clinical Information: 78 y/o female with

More information

Acute Lymphoblastic and Myeloid Leukemia

Acute Lymphoblastic and Myeloid Leukemia Acute Lymphoblastic and Myeloid Leukemia Pre- and Post-Disease Form Acute Lympoblastic Leukemia Mary Eapen MD, MS Acute Lymphoblastic Leukemia SEER Age-adjusted incidence rate 1.6 per 100,000 men and women

More information

Integrated Diagnostic Approach to the Classification of Myeloid Neoplasms. Daniel A. Arber, MD Stanford University

Integrated Diagnostic Approach to the Classification of Myeloid Neoplasms. Daniel A. Arber, MD Stanford University Integrated Diagnostic Approach to the Classification of Myeloid Neoplasms Daniel A. Arber, MD Stanford University What is an integrated approach? What is an integrated approach? Incorporating all diagnostic

More information

Myeloid neoplasms. Early arrest in the blast cell or immature cell "we call it acute leukemia" Myoid neoplasm divided in to 3 major categories:

Myeloid neoplasms. Early arrest in the blast cell or immature cell we call it acute leukemia Myoid neoplasm divided in to 3 major categories: Myeloid neoplasms Note: Early arrest in the blast cell or immature cell "we call it acute leukemia" Myoid neoplasm divided in to 3 major categories: 1. AML : Acute myeloid leukemia(stem cell with myeloid

More information

Participants Identification No. % Evaluation. Mitotic figure Educational Erythrocyte precursor, abnormal/

Participants Identification No. % Evaluation. Mitotic figure Educational Erythrocyte precursor, abnormal/ Cell Identification BMD-09 Participants Identification No. % Evaluation Mitotic figure 233 96.7 Educational Erythrocyte precursor, abnormal/ 4 1.7 Educational dysplastic nuclear features Erythrocyte precursor

More information

Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification

Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification MYELOID NEOPLASIA Mixed-phenotype acute leukemia: clinical and laboratory features and outcome in 100 patients defined according to the WHO 2008 classification Estella Matutes, 1 Winfried F. Pickl, 2 Mars

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information S1 Frequency of DNMT3A mutations in hematologic disorders and their associated clinical phenotypes. Disease Patient population Frequency (%) Associated Clinical Characteristics

More information

MYELODYSPLASTIC SYNDROMES: A diagnosis often missed

MYELODYSPLASTIC SYNDROMES: A diagnosis often missed MYELODYSPLASTIC SYNDROMES: A diagnosis often missed D R. EMMA W YPKEMA C O N S U LTA N T H A E M AT O L O G I S T L A N C E T L A B O R AT O R I E S THE MYELODYSPLASTIC SYNDROMES DEFINITION The Myelodysplastic

More information

Case Report. Introduction. Mastocytosis associated with CML Hematopathology - March K. David Li 1,*, Xinjie Xu 1, and Anna P.

Case Report. Introduction. Mastocytosis associated with CML Hematopathology - March K. David Li 1,*, Xinjie Xu 1, and Anna P. Mastocytosis associated with CML Hematopathology - March 2016 Case Report Systemic mastocytosis with associated clonal hematologic non-mast cell lineage disease (SM-AHNMD) involving chronic myelogenous

More information

FLOW CYTOMETRIC ANALYSIS OF NORMAL BONE MARROW

FLOW CYTOMETRIC ANALYSIS OF NORMAL BONE MARROW XI International Conference Hematopoiesis Immunology Budapest, June 6-7, 2014 FLO CYTOMETRIC ANALYSIS OF NORMAL BONE MARRO Bruno Brando and Arianna Gatti Hematology Laboratory and Transfusion Center Legnano

More information

Bumps on the Neck and Groin of a 2-Year-Old Male. Laboratory Findings: Table 1, Table 2; Figure 1; Image 1, Image 2, Image 3

Bumps on the Neck and Groin of a 2-Year-Old Male. Laboratory Findings: Table 1, Table 2; Figure 1; Image 1, Image 2, Image 3 Bumps on the Neck and Groin of a 2-Year-Old Male 1 Erikakelly Strand, BS* Clinical History Patient: 2-year-old white male. Chief Complaint: Bumps on neck and groin. History of Present Illness: A 2-year-old

More information

Diagnostic Criteria for Minimally Differentiated Acute Myeloid Leukemia (AML-M0) Evaluation and a Proposal

Diagnostic Criteria for Minimally Differentiated Acute Myeloid Leukemia (AML-M0) Evaluation and a Proposal Hematopathology / MINIMALLY DIFFERENTIATED ACUTE MYELOID LEUKEMIA (AML-M0) Diagnostic Criteria for Minimally Differentiated Acute Myeloid Leukemia (AML-M0) Evaluation and a Proposal Zahid Kaleem, MD, and

More information

Case Presentation No. 075

Case Presentation No. 075 Case Presentation No. 075 Session 4. Myelodysplastic Syndrome Cristina Montalvo, MD Baylor College of Medicine Houston, Texas 2007 Workshop of Society for Hematopathology and European Association for Haematopathology

More information

RAEB-2 2 Transforming to Acute Erythroleukemia Case # 165

RAEB-2 2 Transforming to Acute Erythroleukemia Case # 165 RAEB-2 2 Transforming to Acute Erythroleukemia Case # 165 Sebastian J. Sasu, M.D. UCLA Medical Center, Hematopathology Los Angeles, CA and Saint John s s Health Center Santa Monica, CA Clinical History

More information

Evolving Targeted Management of Acute Myeloid Leukemia

Evolving Targeted Management of Acute Myeloid Leukemia Evolving Targeted Management of Acute Myeloid Leukemia Jessica Altman, MD Robert H. Lurie Comprehensive Cancer Center of Northwestern University Learning Objectives Identify which mutations should be assessed

More information

Bone Marrow. Procedures Blood Film Aspirate, Cell Block Trephine Biopsy, Touch Imprint

Bone Marrow. Procedures Blood Film Aspirate, Cell Block Trephine Biopsy, Touch Imprint Bone Marrow Protocol applies to acute leukemias, myelodysplastic syndromes, myeloproliferative disorders, chronic lymphoproliferative disorders, malignant lymphomas, plasma cell dyscrasias, histiocytic

More information

Original Article. Clinical features and outcome of acute myeloid leukemia, a single institution experience in Saudi Arabia INTRODUCTION

Original Article. Clinical features and outcome of acute myeloid leukemia, a single institution experience in Saudi Arabia INTRODUCTION Original Article Clinical features and outcome of acute myeloid leukemia, a single institution experience in Saudi Arabia Ahmed Al Faleh 4, Abdullah Al-Quozi 2,3,4, Ahmed Alaskar 1,3,4, Mohsen Al Zahrani

More information

Classification of Hematologic Malignancies. Patricia Aoun MD MPH

Classification of Hematologic Malignancies. Patricia Aoun MD MPH Classification of Hematologic Malignancies Patricia Aoun MD MPH Objectives Know the basic principles of the current classification system for hematopoietic and lymphoid malignancies Understand the differences

More information

When Cancer Looks Like Something Else: How Does Mutational Profiling Inform the Diagnosis of Myelodysplasia?

When Cancer Looks Like Something Else: How Does Mutational Profiling Inform the Diagnosis of Myelodysplasia? Transcript Details This is a transcript of a continuing medical education (CME) activity accessible on the ReachMD network. Additional media formats for the activity and full activity details (including

More information

Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression

Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression Myelodysplastic Syndromes: Hematopathology. Analysis of SHIP1 as a potential biomarker of Disease Progression Carlos E. Bueso-Ramos, M.D., Ph.D Department of Hematopathology The University of Texas M.

More information

Corporate Medical Policy

Corporate Medical Policy Corporate Medical Policy Hematopoietic Stem-Cell Transplantation for Acute Myeloid File Name: Origination: Last CAP Review: Next CAP Review: Last Review: hematopoietic_stem-cell_transplant_for_acute_myeloid_leukemia

More information

Bone marrow aspiration as the initial diagnostic tool in the diagnosis of leukemia - A case study

Bone marrow aspiration as the initial diagnostic tool in the diagnosis of leukemia - A case study Original Research Article Bone marrow aspiration as the initial diagnostic tool in the diagnosis of leukemia - A case study Priyanka Poonam 1*, N.K. Bariar 2 1 Tutor, Department of Pathology, Patna Medical

More information

Lymphoblastic Leukemia / Lymphoma

Lymphoblastic Leukemia / Lymphoma 1 5014 - Topics in Pediatric Hematopathology: Acute Lymphoblastic Leukemia, Including Changes in the Revised WHO Classification, and Unusual Pediatric Myeloid Neoplasms Robert W. McKenna, MD MASCP * Elizabeth

More information

CME/SAM. Olga Pozdnyakova, MD, PhD, 1 Svetlana Kondtratiev, MD, 1,2 Betty Li, MS, 1 Karry Charest, 1 and David M. Dorfman, MD, PhD 1.

CME/SAM. Olga Pozdnyakova, MD, PhD, 1 Svetlana Kondtratiev, MD, 1,2 Betty Li, MS, 1 Karry Charest, 1 and David M. Dorfman, MD, PhD 1. Hematopathology / New Mastocytosis Flow Cytometry Approach High-Sensitivity Flow Cytometric Analysis for the Evaluation of Systemic Mastocytosis Including the Identification of a New Flow Cytometric Criterion

More information

Laboratory Correlates and Prognostic Significance of Granular Acute Lymphoblastic Leukemia in Children A Pediatric Oncology Group Study

Laboratory Correlates and Prognostic Significance of Granular Acute Lymphoblastic Leukemia in Children A Pediatric Oncology Group Study HEMATOPATHQLOGY AND LABORATORY HEMATOLOGY Original Article Laboratory Correlates and Prognostic Significance of Granular Acute Lymphoblastic Leukemia in Children A Pediatric Oncology Group Study LIZARDO

More information

Multiparameter flow cytometry can be used to

Multiparameter flow cytometry can be used to Minimal residual disease testing in Acute Leukemia Anjum Hassan MD Assistant Professor of Pathology and Immunology, Director FISH laboratory in Anatomic Pathology, Washington University in St Louis, School

More information

Use of Sorafenib for relapse posttransplant in FLT3/ITD+ acute myelogenous leukemia: maturation induction and cytotoxic effect

Use of Sorafenib for relapse posttransplant in FLT3/ITD+ acute myelogenous leukemia: maturation induction and cytotoxic effect Published Ahead of Print on July 11, 2014, as doi:10.3324/haematol.2014.109975. Copyright 2014 Ferrata Storti Foundation. Use of Sorafenib for relapse posttransplant in FLT3/ITD+ acute myelogenous leukemia:

More information