Supporting Information

Size: px
Start display at page:

Download "Supporting Information"

Transcription

1 Supporting Information P-Chirogenic Xantphos Ligands and Related Ether iphosphines Synthesis and Application in the Rhodium Catalyzed Asymmetric Hydrogenation Jens Holz,* a Katharina Rumpel, a Anke Spannenberg, a Rocco Paciello, b Haijun Jiao, a Armin Börner* a,c a Leibniz-Institut für Katalyse e.v., A.-Einstein-Str. 29a, Rostock (Germany), b BASF SE; GCB/H - M313, Ludwigshafen (Germany), c Institut für Chemie, Universität Rostock A.-Einstein-Str. 3a, Rostock (Germany). jens.holz@catalysis.de; armin.boerner@catalysis.de Content 1. General information 2. Preliminary trials to use Jugé s methodology for the construction of the title compounds 3. Synthesis of (1R,2S)-2-{[(S)-(aryl)(phenyl)phosphinyl]methylamino}-1-phenylpropan-1-ol P- borane complexes 3a-t 4. Synthesis of (S)-(aryl)(methoxy)(phenyl)phosphine P-borane complexes 4a-t 5. Synthesis (1S,1'S)-(9,9-dimethyl-9H-xanthene-4,5-diyl)bis(aryl)(phenyl)phosphines 5a-t 6. Synthesis of 4,6-bis((S)-(aryl)(phenyl)phosphinyl)dibenzo[b,d]furans 6a,g,h 7. Synthesis of (1S,1'S)-(oxybis(2,1-phenylene))bis(aryl(phenyl)phosphines) 7a-t 8. Miscellaneous 9. Calculation of least-squares planes by SHELXL-2014 for 5j, 6g, and 7j General information All solvents were dried and freshly distilled under argon before use. All reactions were performed under an argon atmosphere by using standard Schlenk techniques. Thin-layer chromatography was performed on precoated TLC plates (silica gel). Flash chromatography was carried out with silica gel 60 (particle size mm) with a CombiFlash R F system (Teledyne ISCO). NMR spectra were recorded generally at Bruker AV 400 spectrometer at the following frequencies: MHz (1H), MHz ( 13 C), MHz ( 31 P) or at Bruker AV 300 ( MHz (1H), MHz ( 13 C), MHz ( 31 P)). Chemical shifts of 1 H and 13 C NMR spectra are reported in ppm downfield from used solvent CCl 3 as internal standard (7.25 ppm / ppm). Chemical shifts of 31 P NMR spectra are referred to H 3 PO 4 as external standard. Signals are quoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Mass spectra were recorded on a Thermo Electron MAT 95-XP or an Agilent 1200/6210 Time-of-flight LC-MS. For chiral HPLC-analysis a device Agilent 1100 Series was used. The X-ray diffraction data were collected on a Bruker Kappa APEX II uo diffractometer with Cu-Kα radiation. The structures were solved by direct methods (SHELXS

2 97) 1 and refined by full-matrix least-squares techniques on F 2 (SHELXL-2014) 2. XP (Bruker AXS) was used for graphical representations. The (2R,4S,5R)-2,3,4,5-Tetrahydro-3,4-dimethyl-2,5-diphenyl-1,3,2-oxazaphosphole P-borane complex 2 was prepared by the procedure of Hansen et al Preliminary trials to use Jugé s methodology for the construction of the title compounds Preliminary trials for diphosphorylation of 9,9-dimethylxanthene according to Jugé methodology 4 were carried out in the following manner: 1.) Attempts for dilithiation: 2eq. of n-buli in the presence of 2 eq. of TMEA, -40 C to r.t., 20 hours, diethyl ether; 2.) After addition of the mixture to a solution of 4a (-20 C to r.t., 1.5 hours, thf) and work up the yielded raw product showed in the NMR spectra besides 38 mol-% of 4a ( P = ppm) and 5 mol-% of BH 3 -unprotected 4a ( P = ppm) only 55 mol-% of the monophosphorylated xanthene ( P = ppm). The borane group was probably removed by the effect of TMEA (figure S1). When this reaction was carried out in the absence of TMEA a mixture yielded consisting of 35 mol-% of 4a, 9 mol-% of monophosphorylated xanthene and 56 mol-% of (2-anisyl)(n-butyl)(phenyl)phosphine borane complex ( P = ppm). Obviously the complete lithiation of xanthene was hindered by the absence of TMEA and the remained n-buli reacted with 4a. In another trial it could be shown that the borane protected derivative 4a reacts readily with n- butyllithium. To simulate the introduction of an aromatic group the reaction was repeated with phenyllithium as nucleophile. A similar reaction of 4a with 4-lithio-1,2-dimethoxybenzene was also published by Hansen et al. 3 Apparently, the close proximity of the both reactive centers as found in xanthene in 4,5-position inhibits the simultaneous incorporation of two bulky phosphine-borane units. This assumption is supported by our observation that treatment of Xantphos with two equivalents of BH 3 *MS in toluene afforded 87 mol-% of the mono-protected compound ( P = +22.6/-21.8 ppm), but only 13 mol-% of the expected bis-borane adduct ( = ppm) (figure S2)

3 Figure S1. 31 P NMR spectrum after reaction of 9,9-dimethyl-9H-xanthene with 4a without in situ removing of borane group; raw mixture after working up; NMR signals of (S)-(2-anisyl)(n-butyl)(phenyl)phosphine P-borane complex and (2- anisyl)(diphenyl)phosphine P-borane complex These two derivatives were synthesized by addition of 1 equivalent of n-butyllithium solution or phenyllithium solution to methylphosphinite 4a (tetrahydrofuran, -40 C to r.t, 20 h). Working up was carried out in similar manner as described before. (S)-Butyl(2-methoxyphenyl)(phenyl)phosphine P-borane complex 1 H-NMR: 7.92 (1H, ddd, J 13.5, 7.6, 1.7 Hz, arom. H), (2H, m, arom. H), 7.48 (1H, m, arom. H), (3H, m, arom. H), 7.04 (1H, m, arom. H), 6.88 (1H, ddd, J 8.4, 3.3, 0.7 Hz, arom. H), 3.67 (3H, s, OCH 3 ), 2.57 (1H, m, H a -CH 2 ), 2.23 (1H, m, H b -CH 2 ), (4H, m, 2xCH 2 ), 0.88 (3H, t, J 7.1 Hz, CH 3 ), (3H, br q, BH 3 ); - 3 -

4 13 C-NMR: (d, J 2.0 Hz, C-OMe), (d, J 13.7 Hz, CH), (d, J 2.0 Hz, CH), (d, J 9.1 Hz, 2xCH), (d, J 57.4 Hz, C-P), (d, J 2.1 Hz, CH), (d, J 10.1 Hz, 2xCH), (d, J 12.2 Hz, CH), (d, J 52.0 Hz, C-P), (d, J 3.5 Hz, CH), 55.2 (OCH 3 ), 25.2 (CH 2 ), 24.1 (d, J 15.4 Hz, CH 2 ), 23.6 (d, J 39.2 Hz, CH 2 ), 13.4 (CH 3 ); 31 P-NMR: +16.2; (2-methoxyphenyl)diphenylphosphine P-borane complex 1 H-NMR: (5H, m, arom. H), (7H, m, arom. H), 6.95 (1H, m, arom. H), 6.83 (2H, dd, J 8.4, 3.8, Hz, arom. H), 3.42 (3H, s, OCH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (C-OMe), (d, J 12.1 Hz, CH), (d, J 2.3 Hz, CH), (d, J 10.2 Hz, 4xCH), (d, J 2.6 Hz, CH), (d, J 60.4 Hz, C-P), (d, J 10.2 Hz, 4xCH), (d, J 11.6 Hz, CH), (d, J 56.7 Hz, C-P), (d, J 4.7 Hz, CH), 55.1 (OCH 3 ); 31 P-NMR: +18.9; Figure S2. 31 P NMR spectrum after reaction of Xantphos with 2 eq. of BH 3 *MS 31 P NMR: ppm (2x P*BH 3 of Xantphos*2 BH 3 ) [13 mol-%] and ppm (1x P*BH 3, Xantphos*1 BH 3 ), ppm (1x P, Xantphos*1 BH 3 ) [87 mol-%]; - 4 -

5 3. Synthesis of (1R,2S)-2-{[(S)-(aryl)(phenyl)phosphinyl]methylamino}-1-phenylpropan-1-ol P- borane complexes 3a-t General Procedure for the Preparation If not other remarked the synthesis followed the established procedure of Jugé et al mmol of sec- Butyllithium (14.3 ml, 1.4 M solution) were placed in a Schlenk-tube at 0 C. 20 mmol of the corresponding arylbromide was slowly added. After one hour tetrahydrofuran was slowly added to the resulted suspension until the precipitate has been dissolved. This reagent was slowly added to a solution of phosphole 2 (10 mmol, 2.85 g) in THF (10 ml) at -78 C. After stirring for 1 hour at 0 C the mixture was quenched by addition of water (5 ml). After removing the volatile solvents under vacuum the residue was extracted with dichloromethane (3x25 ml). The combined organic phases were dried (Na 2 SO 4 ) and after evaporation of CM the residue was purified either by chromatography or crystallization. (1R,2S)-2-{[(S)-(2-Methoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane-complex (3a) Yield 91%; white solid, m.p. = 120 C (from i-proh/hexane); ( ] 25 [ 21 = (c 1.0, CH 2 Cl 2 ), = (c 0.36, CH 2 Cl 2 ) 6 25, other enantiomer ] = (c 1.0, CH 2 Cl 2 ) 5 ); 1 H-NMR: 7.56 (1H, ddd, J 12.6, 7.6, 1.7 Hz, arom. H), (3H, m, arom. H), (8H, m, arom. H), 7.01 (1H, m, arom. H), 6.90 (1H, ddd, J 8.3, 4.2, 0.8 Hz, arom. H), 4.89 (1H, d, J 5.3 Hz, CH-O), 4.32 (1H, m, CH-N), 3.57 (3H, s, OCH 3 ), 2.54 (3H, d, J 8.1 Hz, CH 3 -N), 1.89 (1H, br s, OH), 1.21 (3H, d, J 6.8 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 2.5 Hz, C-O), (C-C), (d, J 10.7 Hz, CH), (d, J 10.7 Hz, CH), (d, J 70.9 Hz, C-P), (d, J 10.2 Hz, 2xCH), (d, J 2.2 Hz, CH), (2xCH), (d, J 11.0 Hz, 2xCH), (CH), (2xCH), (d, J 10.3 Hz, CH), (d, J 57.4 Hz, C-P), (d, J 4.6 Hz, CH), 78.5 (d, J 5.6 Hz, CH-O), 58.1 (d, J 10.6 Hz, CH-N), 55.1 (OCH 3 ), 31.0 (d, J 3.9 Hz, CH 3 N), 12.9 (d, J 2.2 Hz, CH 3 ); 31 P-NMR: +69.1; MS (EI, 70 ev) m/z: 392 (2%, [M-H] +, 362 (2%, [M-OH-BH 3 ] +, 286 (71%, [M-C 7 H 7 O] + ), 272 (100%, [M-C 7 H 7 O-BH 3 ] + ), 215 (98%, [PPh(o-An)] + ; HRMS (ESI) [M-BH 3 +H] + : m/z calcd. for C 23 H 27 NO 2 P , found , [M-BH 3 +Na] + : m/z calcd. for C 23 H 26 NNaOP , found ; [ - 5 -

6 (1R,2S)-2-{[(S)-(3-Methoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3b) Yield 92%; thick syrup (column chromatography cyclohexane/acoet 9/1 to 4/1); 23 [ ] 25 = (c 1.0, CHCl 3 ), (other enantiomer ] = (c 1.2, CHCl 3 ) 7 ) [ 1 H-NMR: 7.44 (2H, m, arom. H), (7H, m, arom. H), (4H, m, arom. H), 7.00 (1H, m, arom. H), 4.82 (1H, d, J 6.2 Hz, CH-O), 4.30 (1H, m, CH-N), 3.78 (1H, m, OCH 3 ), 2.48 (3H, d, J 7.6 Hz, CH 3 -N), 1.82 (1H, br s, OH), 1.25 (3H, d, J 6.8 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 12.5 Hz, C-O), (C-C), (d, J 59.5 Hz, C-P), (d, J 10.4 Hz, 2xCH), (d, J 2.6 Hz, CH), (d, J 68.4 Hz, C-P), (d, J 11.6 Hz, CH), (2xCH), (d, J 10.4 Hz, 2xCH), (CH), (2xCH), (d, J 9.8 Hz, CH), (d, J 12.5 Hz, CH), (d, J 2.1 Hz, CH), 78.7 (d, J 5.9 Hz, CH-O), 58.1 (d, J 10.6 Hz, CH-N), 55.3 (OCH 3 ), 30.5 (d, J 4.8 Hz, CH 3 N), 13.4 (d, J 2.0 Hz, CH 3 ); 31 P-NMR: +71.6; MS (EI, 70 ev) m/z: 392 (1, [M-H] + ), 378 (2, [M-H-BH 3 ] + ), 286 (92 M-PhCHOH] + ), 272 (100, [M- BH 3 -PhCHOH] + ), 215 (99, [(3-MeO-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 23 H 29 BNNaO 2 P , found ; [M-BH 3 +H] + : m/z calcd. for C 23 H 27 NO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 23 H 26 NNaO 2 P , found ; (1R,2S)-2-{[(S)-(4-Methoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3c) Yield 90%; white solid, m.p. = C (column chromatography cyclohexane/acoet 9/1); 24 [ ] 25 = (c 1.0, CHCl 3 ), (other enantiomer ] = (c 1.6, CHCl 3 ) 7 ) [ 1 H-NMR: (10H, m, arom. H), (2H, m, arom. H), 6.96 (2H, m, arom. H), 4.81 (1H, d, J 6.2 Hz, CH-O), 4.31 (1H, m, CH-N), 3.85 (3H, s, OCH 3 ), 2.47 (3H, d, J 7.9 Hz, CH 3 -N), 2.09 (1H, br s, OH), 1.25 (3H, d, J 6.7 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 1.9 Hz, C-O), (C-C), (d, J 11.6 Hz, 2xCH), (d, J 10.3 Hz, 2xCH), (d, J 69.5 Hz, C-P), (d, J 1.9 Hz, CH), (2xCH), (d, J 10.3 Hz, 2xCH), (CH), (2xCH), (d, J 64.4 Hz, C-P), (d, J 11.6 Hz, 2xCH), 78.5 (d, J 6.4 Hz, CH-O), 57.9 (d, J 10.3 Hz, CH-N), 55.2 (OCH 3 ), 30.1 (d, J 4.5 Hz, CH 3 N), 13.5 (d, J 1.9 Hz, CH 3 ); 31 P-NMR: +69.5; - 6 -

7 MS (EI, 70 ev) m/z: 392 (2%, [M-H] + ), 286 (77, [M-PhCHOH] + ), 282 (100, [M-BH 3 -PhCHOH] + ), 215 (95, [(4-MeO-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 23 H 29 BNNaO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 23 H 26 NNaO 2 P found ; [M-BH 3 +H] + : m/z calcd. for C 23 H 27 NO 2 P found ; (1R,2S)-2-{[(S)-(2-Methylphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3d) Yield 89%; white solid, m.p. = C (column chromatography cyclohexane/acoet 19/1 to 9/1); 25 [ ] 25 = (c 1.0, CHCl 3 ); (other enantiomer ] = (c 2.0, CH 2 Cl 2 ) 5 ) [ 1 H-NMR: (2H, m, arom. H), (12H, m, arom. H), 4.93 (1H, d, J 4.0 Hz, CH-O), 4.35 (1H, m, CH-N), 2.63 (3H, d, J 4.4 Hz, CH 3 -N), 2.31 (3H, s, CH 3 ), 1.76 (1H, br s, OH), 1.24 (3H, d, J 6.8 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (C-C), (d, J 12.5 Hz, C-C), (d, J 8.5 Hz, CH), (d, J 9.6 Hz, CH), (d, J 60.5 Hz, C-P), (d, J 10.4 Hz, 2xCH), (d, J 2.3 Hz, CH), (d, J 2.2 Hz, CH), (d, J 63.9 Hz, C-P), (d, J 10.1 Hz, 2xCH), (2xCH), (CH), (2xCH), (d, J 9.4 Hz, CH), 79.0 (d, J 2.2 Hz, CH-O), 58.0 (d, J 10.3 Hz, CH-N), 31.3 (d, J 3.6 Hz, CH 3 N), 22.0 (d, J 3.9 Hz, CH 3 ), 11.4 (d, J 4.7 Hz, CH 3 ); 31 P-NMR: +70.6; MS (EI, 70 ev) m/z: 376 (3%, [M-H] +, 256 (100%, [M-C 7 H 7 O-BH 3 ] + ), 199 (98%, [PPh(o-Tol)] + ; HRMS (ESI) [M+Na] + : m/z calcd. for C 23 H 29 BNNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 23 H 27 NOP , found , [M-BH 3 +Na] + : m/z calcd. for C 23 H 26 NNaOP , found ; (1R,2S)-2-{[(S)-(3-Methylphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane-complex (3e) Yield 87%; white solid; m.p. = C (column chromatography cyclohexane/acoet 19/1); 23 =+45.6 (c 1.0, CHCl 3 ); 1 H-NMR: (12H, m, arom. H), (2H, m, arom. H), 4.81 (1H, d, J 6.3 Hz, CH-O), 4.29 (1H, m, CH-N), 2.48 (3H, d, J 7.8 Hz, CH 3 -N), 2.35 (3H, s, PhCH 3 ), 1.85 (1H, br s, OH), 1.25 (3H, d, J 6.7 Hz, CH 3 ), (3H, br q, BH 3 ); - 7 -

8 13 C-NMR: (C-C), (d, J 10.3 Hz, C-Me), (d, J 11.1 Hz, CH), (d, J 10.4 Hz, 2xCH), (d, J 2.6 Hz, CH), (d, J 59.0 Hz, C-P), (d, J 67.9 Hz, C-P), (d, J 2.6 Hz, CH), (d, J 9.7 Hz, CH), (2xCH), (d, J 10.3 Hz, CH), (d, J 10.3 Hz, 2xCH), (CH), (2xCH), 78.6 (d, J 5.8 Hz, CH-O), 58.1 (d, J 10.2 Hz, CH-N), 30.4 (d, J 3.8 Hz, CH 3 N), 21.5 (PhCH 3 ), 13.4 (d, J 2.0 Hz, CH 3 ); 31 P-NMR: +71.0; MS (EI, 70 ev) m/z: 376 (1, [M-H] + ), 362 (1, [m-h-bh 3 ] + ), 270 (74, [M-PhCHOH] + ), 256 (100, [M- PhCHOH-BH 3 ] + ), 228 (17, [M-BH 3 -PhCHOH] + ), 199 (90, [(3-Me-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 23 H 29 BNNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 23 H 27 NOP , found ; [M-BH 3 +Na] + : m/z calcd. for C 23 H 26 NNaOP , found ; (1R,2S)-2-{[(S)-(4-Methylphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3f) Yield 42%; white solid, m.p. = C (column chromatography cyclohexane/acoet 19/1 to 9/1); 22 = (c 1.0, CHCl 3 ); 1 H-NMR: (12H, m, arom. H), (2H, m, arom. H), 4.80 (1H, d, J 6.9 Hz, CH-O), 4.29 (1H, m, CH-N), 2.46 (3H, d, J 8.0 Hz, CH 3 -N), 2.39 (3H, s, CH 3 ), 1.93 (1H, br s, OH), 1.23 (3H, d, J 6.8 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (C-C), (d, J 2.6 Hz, C-C), (d, J 10.3 Hz, 2xCH), (d, J 10.3 Hz, 2xCH), (d, J 68.2 Hz, C-P), (d, J 2.6 Hz, CH), (d, J 10.3 Hz, 2xCH), (2xCH), (d, J 10.9 Hz, 2xCH), (CH), (d, J 61.2 Hz, C-P), (2xCH), 78.6 (d, J 5.7 Hz, CH-O), 58.0 (d, J 10.3 Hz, CH-N), 30.3 (d, J 3.9 Hz, CH 3 N), 21.4 (CH 3 ), 13.5 (d, J 1.9 Hz, CH 3 ); 31 P-NMR: +70.5; MS (EI, 70 ev) m/z: 376 (3, [M-H] + ), 286 (31, [M-H-BH 3 -Ph] + ), 270 (83, [M-BH 3 -Ph-OH] + ), 256 (100, [M-BH 3 -PhCHOH] + ), 199 (98, [(4-Me-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 23 H 29 BNNaOP , found ; [M-BH 3 +Na] + : m/z calcd. for C 23 H 26 NNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 23 H 27 NOP , found ; - 8 -

9 (1R,2S)-2-{[(S)-(2-Ethoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3g) Yield 88%; white solid, m.p. = C (column chromatography cyclohexane/acoet 19/1 to 9/1); 23 = (c 1.0, CHCl 3 ); 1 H-NMR: 7.72 (1H, ddd, J 13.0 Hz, 7.7, 1.7, arom. H), (3H, m, arom. H), (8H, m, arom. H), 7.03 (1H, m, arom. H), 6.85 (1H, dd, J 8.3, 4.3 Hz, arom. H), 4.88 (1H, d, J 5.6 Hz, CH-O), 4.34 (1H, m, CH-N), 3.78 (1H, m, CH 2 -O), 2.58 (3H, d, J 8.2 Hz, CH 3 -N), 1.89 (1H, br s, OH), 1.22 (3H, d, J 6.8 Hz, CH 3 ), 0.91 (3H, t, J 7.0 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 2.1 Hz, C-O), (C-C), (d, J 11.7 Hz, CH), (d, J 1.8 Hz, CH), (d, J 72.1 Hz, C-P), (d, J 10.9 Hz, 2xCH), (d, J 2.4 Hz, CH), (2xCH), (d, J 10.7 Hz, 2xCH), (CH), (2xCH), (d, J 11.1 Hz, CH), (d, J 56.9 Hz, C-P), (d, J 4.7 Hz, CH), 78.8 (d, J 5.9 Hz, CH-O), 63.4 (C-O), 58.1 (d, J 10.6 Hz, CH-N), 30.8 (d, J 4.0 Hz, CH 3 N), 13.7 (CH 3 ), 12.8 (d, J 2.0 Hz, CH 3 ); 31 P-NMR: +68.5; MS (EI, 70 ev) m/z: 406 (3, [M-H] + ), 286 (100, [M-BH 3 -PhCHOH] + ), 229 (85, [(2-EtO-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 24 H 31 BNNaO 2 P , found ; [M-BH 3 +H] + : m/z calcd. for C 24 H 29 NO 2 P found ; [M-BH 3 +Na] + : m/z calcd. for C 24 H 38 NNaO 2 P found ; (1R,2S)-2-{[(S)-(3-Ethoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3h) Yield 90%; white solid, m.p. = 95 C (column chromatography cyclohexane/acoet 9/1); 23 = (c 1.0, CHCl 3 ); 1 H-NMR: (9H, m, arom. H), (4H, m, arom. H), 6.99 (1H, m, arom. H), 4.80 (1H, d, J 6.4 Hz, CH-O), 4.30 (1H, m, CH-N), 4.00 (2H, q, J 6.9 Hz, OCH 2 ), 2.48 (3H, d, J 7.7 Hz, CH 3 -N), 1.96 (1H, br s, OH), 1.39 (3H, t, J 6.9 Hz, CH 3 ), 1.26 (3H, d, J 6.8 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 12.8 Hz, C-O), (C-C), (d, J 59.7 Hz, C-P), (d, J 10.3 Hz, 2xCH), (d, J 2.6 Hz, CH), (d, J 68.1 Hz, C-P), (d, J 11.6 Hz, CH), (2xCH), (d, J 10.4 Hz, 2xCH), (CH), (2xCH), (d, J 9.7 Hz, CH), (d, J 11.8 Hz, CH), (d, J 1.9 Hz, CH), 78.5 (d, J 5.9 Hz, CH-O), 63.5 (OCH 2 ), 58.0 (d, J 10.3 Hz, CH-N), 30.4 (d, J 3.9 Hz, CH 3 N), 14.6 (CH 3 ), 13.4 (d, J 1.9 Hz, CH 3 ); 31 P-NMR: +71.5; - 9 -

10 MS (EI, 70 ev) m/z: 392 (1, [M-H-BH 3 ] + ), 376 (1, [M-OH-BH 3 ] + ), 300 (32, [M-H-BH 3 -Ph-CH 3 ] + ), 286 (100, M-BH 3 -PhCHOH] + ), 229 (97, [(3-EtO-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 24 H 31 BNNaO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 24 H 28 NNaO 2 P found , [M-BH 3 +H] + : m/z calcd. for C 24 H 29 NO 2 P found ; (1R,2S)-2-{[(S)-(4-Ethoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P-boran complex (3i) Yield 71%; white solid, m.p = C (column chromatography cyclohexane/acoet 9/1); 22 = (c 1.0, CHCl 3 ); 1 H-NMR: (10H, m, arom. H), 7.10 (2H, m, arom. H), 6.91 (2H, m, arom. H), 4.79 (1H, d, J 6.5 Hz, CH-O), 4.28 (1H, m, CH-N), 4.05 (2H, q, J 7.0 Hz, OCH 2 ), 2.44 (3H, d, J 7.8 Hz, CH 3 - N), 1.91 (1H, br s, OH), 1.42 (3H, t, J 7.0 Hz, CH 3 ), 1.22 (3H, d, J 6.7 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 2.7 Hz, C-O), (C-C), (d, J 11.7 Hz, 2xCH), (d, J 10.1 Hz, 2xCH), (d, J 69.7 Hz, C-P), (d, J 2.3 Hz, CH), (2xCH), (d, J 10.4 Hz, 2xCH), (CH), (2xCH), (d, J 64.5 Hz, C-P), (d, J 10.9 Hz, 2xCH), 78.6 (d, J 6.3 Hz, CH-O), 63.5 (OCH 2 ), 57.9 (d, J 10.4 Hz, CH-N), 30.1 (d, J 3.9 Hz, CH 3 N), 14.7 (CH 3 ), 13.5 (d, J 1.7 Hz, CH 3 ); 31 P-NMR: +69.6; MS (EI, 70 ev) m/z: 392 (1, [M-H-BH 3 ] + ), 300 (23, [M-H-BH 3 -Ph-CH 3 ] + ), 286 (100, M-BH 3 - PhCHOH] + ), 229 (97, [(4-EtO-Ph)PhP] +, 201 (84, [(4-HO-Ph)PhP] + ; HRMS (ESI) [M+Na] + : m/z calcd. for C 24 H 31 BNNaO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 24 H 28 NNaO 2 P found , [M-BH 3 +H] + : m/z calcd. for C 24 H 29 NO 2 P , found ; (1R,2S)-2-{[(S)-(2-Ethylphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P-borane complex (3j) Yield 79%; white solid, m.p. = C (column chromatography cyclohexane/acoet 19/1 to 9/1); 23 = (c 1.0, CHCl 3 ); 1 H-NMR: 7.53 (2H, m, arom. H), (12H, m, arom. H), 4.95 (1H, d, J 3.9 Hz, CH-O), 4.35 (1H, m, CH-N), 2.67 (2H, t, J 7.5 Hz, CH 2 ), 2.61 (3H, d, J 7.4 Hz, CH 3 -N), 1.84 (1H, br s, OH), 1.24 (3H, d, J 6.8 Hz, CH 3 ), 1.14 (3H, t, J 7.5 Hz, CH 3 ), (3H, br q, BH 3 );

11 13 C-NMR: (d, J 12.9 Hz, C-Et), (C-C), (d, J 62.0 Hz, C-P), (d, J 8.1 Hz, CH), (d, J 9.7 Hz, 2xCH), (d, J 2.1 Hz, CH), (d, J 2.0 Hz, CH), (d, J 9.6 Hz, CH), (d, J 10.5 Hz, 2xCH), (2xCH), (d, J 63.0 Hz, C-P), (CH), (2xCH), (d, J 9.0 Hz, CH), 79.0 (d, J 2.4 Hz, CH-O), 58.0 (d, J 10.1 Hz, CH-N), 31.5 (d, J 3.6 Hz, CH 3 N), 26.6 (d, J 4.4 Hz, CH 2 ) 15.3 (CH 3 ), 11.5 (d, J 4.4 Hz, CH 3 ); 31 P-NMR: +70.9; MS (EI, 70 ev) m/z: 390 (1, [M-H] + ), 377 (1, [M-BH 3 ] + ), 270 (100, [M-BH 3 -PhCHOH] + ), 229 (85, [(2-Et-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 24 H 31 BNNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 24 H 29 NOP found ; (1R,2S)-2-{[(S)-(3-Ethylphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P-borane complex (3k) Yield 92%; thick syrup (column chromatography cyclohexane/acoet 19/1); 23 = (c 1.0, CHCl 3 ); 1 H-NMR: (12H, m, arom. H), (2H, m, arom. H), 4.81 (1H, d, J 6.2 Hz, CH-O), 4.29 (1H, m, CH-N), 2.65 (2H, q, J 7.6 Hz, CH 2 ), 2.47 (3H, d, J 7.7 Hz, CH 3 -N), 1.91 (1H, br s, OH), 1.25 (3H, d, J 6.9 Hz, CH 3 ), 1.21 (3H, t, J 7.6 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 9.7 Hz, C-Et), (C-C), (d, J 10.9 Hz, CH), (d, J 10.3 Hz, 2xCH), (d, J 67.6 Hz, C-P), (d, J 2.3 Hz, CH), (d, J 60.3 Hz, C-P), (d, J 2.5 Hz, CH), (d, J 9.8 Hz, CH), (2xCH), (d, J 10.3 Hz, CH), (d, J 10.2 Hz, 2xCH), (CH), (2xCH), 78.6 (d, J 5.8 Hz, CH-O), 58.1 (d, J 10.2 Hz, CH-N), 30.4 (d, J 3.9 Hz, CH 3 N), 18.8 (CH 2 ), 15.5 (CH 3 ), 13.4 (d, J 1.9 Hz, CH 3 ); 31 P-NMR: +71.2; MS (EI, 70 ev) m/z: 390 (1, [M-H] + ), 360 (2, [M-BH 3 -OH] + ),284 (49, [M-PhCHOH] + ), 270 (100, [M-BH 3 -PhCHOH] + ), 213 (95, [(3-Et-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 24 H 31 BNNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 24 H 29 NOP found ;

12 (1R,2S)-2-{[(S)-(2-Isopropoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3l) Yield 80%; white solid, m.p. = C (column chromatography cyclohexane/acoet 4/1); 22 = (c 1.0, CHCl 3 ); 1 H-NMR: 7.74 (1H, ddd, J 13.3, 7.7, 1.7 Hz, arom. H), (3H, m, arom. H), (8H, m, arom. H), 6.99 (1H, m, arom. H), 6.80 (1H, dd, J 8.4, 4.2 Hz, arom. H), 4.87 (1H, d, J 5.5 Hz, CH-O), 4.41 (1H, m, CH-O), 4.32 (1H, m, CH-N), 2.60 (3H, d, J 8.4 Hz, CH 3 -N), 1.87 (1H, br s, OH), 1.22 (3H, d, J 6.8 Hz, CH 3 ), 0.92 (3H, d, J 6.1 Hz, CH 3 ), 0.89 (3H, d, J 6.1 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 1.8 Hz, C-O), (C-C), (d, J 12.1 Hz, CH), (d, J 1.9 Hz, CH), (d, J 71.6 Hz, C-P), (d, J 10.3 Hz, 2xCH), (d, J 2.3 Hz, CH), (2xCH), (d, J 10.9 Hz, 2xCH), (CH), (2xCH), (d, J 11.1 Hz, CH), (d, J 57.8 Hz, C-P), (d, J 4.5 Hz, CH), 78.8 (d, J 5.6 Hz, CH-O), 69.1 (C-O), 58.1 (d, J 10.3 Hz, CH-N), 30.9 (d, J 3.8 Hz, CH 3 N), 21.0 (CH 3 ), 20.9 (CH 3 ), 12.9 (d, J 1.6 Hz, CH 3 ); 31 P-NMR: +68.4; MS (EI, 70 ev) m/z: 420 (4%, [M-H] + ), 300 (15, [M-BH 3 -PhCHOH] + ), 243 (22, [(2-iPrO-Ph)PhP] + ), 58 (100, [C 3 H 6 O] + ); HRMS (ESI) [M+H] + : m/z calcd. for C 25 H 34 BNO 2 P , found ; [M+Na] + : m/z calcd. for C 25 H 33 BNNaO 2 P , found ; [M-BH 3 +H] + : m/z calcd. for C 25 H 31 NO 2 P found ; [M-BH 3 +Na] + : m/z calcd. for C 25 H 30 NNaO 2 P found ; (1R,2S)-2-{[(S)-(3-Isopropoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3m) Yield 88%; white solid, m.p. = C (column chromatography cyclohexane/acoet 19/1); 23 = (c 1.0, CHCl 3 ); 1 H-NMR: (9H, m, arom. H), (4H, m, arom. H), 6.98 (1H, m, arom. H), 4.81 (1H, d, J 6.1 Hz, CH-O), 4.50 (1H, sept, J 6.0 Hz, CH-O), 4.30 (1H, m, CH-N), 2.48 (3H, d, J 7.7 Hz, CH 3 -N), 1.93 (1H, br s, OH), 1.31 (3H, d, J 6.0 Hz, CH 3 ), 1.31 (3H, d, J 6.0 Hz, CH 3 ), 1.25 (3H, d, J 6.8 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 12.5 Hz, C-O), (C-C), (d, J 59.0 Hz, C-P), (d, J 10.2 Hz, 2xCH), (d, J 2.5 Hz, CH), (d, J 68.5 Hz, C-P), (d, J 11.6 Hz, CH), (2xCH), (d, J 10.6 Hz, 2xCH), (CH), (2xCH), (d, J 9.8 Hz, CH), (d, J 12.1 Hz,

13 CH), (d, J 1.8 Hz, CH), 78.6 (d, J 5.8 Hz, CH-O), 70.0 (C-O), 58.1 (d, J 10.5 Hz, CH-N), 30.4 (d, J 4.1 Hz, CH 3 N), 21.9 (CH 3 ), 21.8 (CH 3 ), 13.4 (d, J 2.0 Hz, CH 3 ); 31 P-NMR: +71.5; MS (EI, 70 ev) m/z: 420 (8, [M-H] + ), 406 (3, [M-H-BH 3 ] + ), 300 (5, [M-BH 3 -PhCHOH] + ), 243 (23, [(2-iPrO-Ph)PhP] + ), 58 (100, [C 3 H 6 O] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 25 H 33 BNNaO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 25 H 30 NNaO 2 P found ; (1R,2S)-2-{[(S)-(2-Isopropylphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- Borane complex (3n) Yield 72%; white solid, m.p. = C (column chromatography cyclohexane/acoet 9/1); 22 = (c 1.0, CHCl 3 ); 1 H-NMR: (2H, m, arom. H), (7H, m, arom. H), (5H, m, arom. H), 5.00 (1H, m, CH-O), 4.37 (1H, m, CH-N),.3.28 (1H, m, CH), 2.64 (3H, d, J 7.2 Hz, CH 3 -N), 1.81 (1H, br s, OH), 1.24 (3H, d, J 6.9 Hz, CH 3 ), 1.17 (3H, d, J 6.7 Hz, CH 3 ), 1.06 (3H, d, J 6.7 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 12.6 Hz, C-C), (C-C), (d, J 70.0 Hz, C-P), (d, J 8.4 Hz, CH), (d, J 10.4 Hz, 2xCH), (d, J 2.0 Hz, CH), (d, J 2.1 Hz, CH), (d, J 10.9 Hz, 2xCH), (2xCH), (d, J 9.1 Hz, CH), (d, J 63.8 Hz, C-P), (CH), (2xCH), (d, J 8.9 Hz, CH), 79.2 (d, J 2.1 Hz, CH-O), 58.0 (d, J 10.9 Hz, CH-N), 31.7 (d, J 3.8 Hz, CH), 30.8 (d, J 5.5 Hz, CH 3 N), 24.9 (CH 3 ), 23.8 (CH 3 ), 11.4 (d, J 4.7 Hz, CH 3 ); 31 P-NMR: +70.8; MS (EI, 70 ev) m/z: 404 (4, [M-H] + ), 391 (1, [M-BH 3 ] + ), 284 (100, [M-BH 3 -PhCHOH] + ), 227 (100, [(2-iPr-Ph)PhP] + ), 109 (100, [C 6 H 6 P] + ); HRMS (ESI) [M+H] + : m/z calcd. for C 25 H 34 BNOP , found ; [M+Na] + : m/z calcd. for C 25 H 33 BNNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 25 H 31 NOP found ; [M-BH 3 +Na] + : m/z calcd. for C 25 H 30 NNaOP found ; (1R,2S)-2-{[(S)-(3-Isopropylphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- borane complex (3o) Yield 88%; pale syrup (column chromatography cyclohexane/acoet 19/1 to 4/1); 23 = (c 1.0, CHCl 3 );

14 1 H-NMR: (3H, m, arom. H), (9H, m, arom. H), (2H, m, arom. H), 4.82 (1H, d, J 6.4 Hz, CH-O), 4.31 (1H, m, CH-N), 2.91 (1H, sept, J 6.9 Hz, CHMe 2 ), 2.46 (3H, d, J 7.8 Hz, CH 3 -N), 1.87 (1H, br s, OH), 1.25 (3H, d, J 6.6 Hz, CH 3 ), 1.23 (6H, d, J 7.0 Hz, 2xCH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 9.7 Hz, C-iPr), (C-C), (d, J 10.4 Hz, 2xCH), (d, J 68.1 Hz, C-P), (d, J 58.0 Hz, C-P), (d, J 2.5 Hz, CH), (d, J 10.8 Hz, CH), (d, J 9.9 Hz, CH), (d, J 2.6 Hz, CH), (2xCH), (d, J 10.2 Hz, CH), (d, J 10.4 Hz, 2xCH), (CH), (2xCH), 78.6 (d, J 5.7 Hz, CH-O), 58.1 (d, J 10.4 Hz, CH-N), 34.0 (CHMe 2 ), 30.4 (d, J 3.9 Hz, CH 3 N), 23.9 (CH 3 ), 23.8 (CH 3 ), 13.4 (d, J 1.9 Hz, CH 3 ); 31 P-NMR: +71.4; MS (EI, 70 ev) m/z: 404 (1, [M-H] + ), 390 (1, [M-H-BH 3 ] + ), 298 (59), 284 (100, [M-BH 3 - PhCHOH] + ), 227 (23, [(3-iPr-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 25 H 33 BNNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 25 H 31 NOP found ; [M-BH 3 +Na] + : m/z calcd. for C 25 H 30 NNaOP found ; (1R,2S)-2-{[(S)-(3,5-imethoxyphenyl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P- Borane-Komplex (3p) Yield 87%; white solid, m.p. = C (column chromatography cyclohexane/acoet 9/1 to 4/1); 23 [ ] 25 = (c 1.0, CHCl 3 ); (other enantiomer ] = (c 1.0, CHCl 3 ) 7 ) [ 1 H-NMR: (8H, m, arom. H), 7.15 (2H, m, arom. H), 6.70 (2H, dd, J 11.5, 2.3 Hz, arom. H), 6.53 (1H, d, J 2.3 Hz, arom. H), 4.81 (1H, d, J 6.3 Hz, CH-O), 4.29 (1H, m, CH-N), 3.75 (6H, s, 2xOCH 3 ), 2.49 (3H, d, J 7.7 Hz, CH 3 -N), 1.93 (1H, br s, OH), 1.27 (3H, d, J 6.7 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 14.5 Hz, 2xC-O), (C-C), (d, J 59.4 Hz, C-P), (d, J 10.3 Hz, 2xCH), (d, J 2.3 Hz, CH), (d, J 68.4 Hz, C-P), (2xCH), (d, J 10.4 Hz, 2xCH), (CH), (2xCH), (d, J 11.5 Hz, 2xCH) (d, J 1.3 Hz, CH), 78.5 (d, J 5.8 Hz, CH-O), 58.0 (d, J 10.5 Hz, CH-N), 55.4 (2xOCH 3 ), 30.5 (d, J 4.0 Hz, CH 3 N), 13.5 (d, J 1.9 Hz, CH 3 ); 31 P-NMR: +72.4; MS (EI, 70 ev) m/z: 422 (4%, [M-H] + ), 316 (47, [M-PhCHOH] + ), 302 (100, [M-BH 3 -PhCHOH] + ), 245 (89, [(3,5-MeO-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 24 H 31 BNNaO 3 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 24 H 28 NNaO 3 P found ; [M-BH 3 +H] + : m/z calcd. for C 24 H 29 NO 3 P found ;

15 (1R,2S)-2-{Methyl[(S)-naphthalen-1-yl(phenyl)phosphinyl]amino}-1-phenylpropan-1-ol P-borane complex (3q) Yield 87%; white solid, m.p. = C (column chromatography heptane/acoet 9/1 to 4/1); 20 = (c 1.0, CHCl 3 ); ( ] = (c 0.68, CH 2 Cl 2 ) 6 ) 22 [ 1 H-NMR: 8.24 (1H, d, J 8.7 Hz, arom. H), 7.96 (1H, d, J 8.3 Hz, arom. H), 7.87 (1H, d, J 8.1 Hz, arom. H), (14H, m, arom. H), 5.01 (1H, d, J 4.0 Hz, CH-O), 4.49 (1H, m, CH-N), 2.63 (3H, d, J 7.5 Hz, CH 3 -N), 1.82 (1H, br s, OH), 1.30 (3H, d, J 6.9 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (C-C), (d, J 7.7 Hz, C-C), (d, J 11.3 Hz, C-C), (d, J 7.4 Hz, CH), (d, J 2.6 Hz, CH), (d, J 62.3 Hz, C-P), (d, J 10.3 Hz, 2xCH), (d, J 2.2 Hz, CH), (CH), (d, J 10.5 Hz, 2xCH), (2xCH), (CH), (d, J 5.6 Hz, CH), (d, J 61.1 Hz, C-P), (CH),126.2 (CH), (2xCH), (d, J 10.3 Hz, CH), 79.1 (d, J 2.3 Hz, CH-O), 58.1 (d, J 10.3 Hz, CH-N), 31.5 (d, J 3.4 Hz, CH 3 N), 11.6 (d, J 4.2 Hz, CH 3 ); 31 P-NMR: +71.4; MS (EI, 70 ev) m/z: 306 (7, [M-PhCHOH] + ), 292 (97, [M-PhCHOH-BH 3 ] + ), 235 (100, [PPh(1- naphthyl)] + ; HRMS (ESI) [M+Na] + : m/z calcd. for C 26 H 29 BNNaOP , found ; [M+H] + : m/z calcd. for C 26 H 26 NNaOP , found , [M-BH 3 +Na] + : m/z calcd. for C 26 H 26 NNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 26 H 27 NOP , found ; (1R,2S)-2-{Methyl[(S)-naphthalen-2-yl(phenyl)phosphinyl]amino}-1-phenylpropan-1-ol P-borane complex (3r) In this case solid 2-bromonaphthalene was placed in a Schlenk-tube and sec-butyllithium solution was added at 0 C. Yield 85%; white solid, m.p. = C (from i-proh/hexane); 20 = (c 1.1, CH 2 Cl 2 ); ( ] = (c 0.524, CH 2 Cl 2 ) 6 ) 22 [ 1 H-NMR: 8.14 (1H, d, J 12.3 Hz, arom. H), (3H, m, arom. H), (13H, m, arom. H), 4.86 (1H, d, J 6.4 Hz, CH-O), 4.40 (1H, m, CH-N), 2.56 (3H, d, J 7.7 Hz, CH 3 -N), 1.98 (1H, br s, OH), 1.32 (3H, d, J 6.7 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (C-C), (d, J 1.4 Hz, C-C), (d, J 10.6 Hz, CH), (d, J 11.1 Hz, C- C), (d, J 10.6 Hz, 2xCH), (d, J 2.2 Hz, CH), (d, J 68.3 Hz, C-P), (CH), (2xCH), (d, J 10.5 Hz, 2xCH), (d, J 55.2 Hz, C-P), (d, J 9.8 Hz, CH),

16 (CH), (CH), (CH), (CH), (2xCH), (CH), 78.6 (d, J 5.8 Hz, CH-O), 58.1 (d, J 10.1 Hz, CH-N), 30.4 (d, J 4.4 Hz, CH 3 N), 13.5 (d, J 2.0 Hz, CH 3 ); 31 P-NMR: +71.2; MS (EI, 70 ev) m/z: 306 (28, [M-PhCHOH] + ), 292 (99, [M-PhCHOH -BH 3 ] + ), 235 (100, [PPh(2- naphthyl)] + ; HRMS (ESI) [M+Na] + : m/z calcd. for C 26 H 29 BNNaOP , found , [M-BH 3 +H] + : m/z calcd. for C 26 H 26 NNaOP , found , [M-BH 3 +Na] + : m/z calcd. for C 26 H 26 NNaOP , found ; (1R,2S)-2-{Methyl[(S)-phenanthren-9-yl(phenyl)phosphinyl]amino}-1-phenylpropan-1-ol P-borane complex (3s) For the preparation of the lithiated 9-phenantryl derivative the aromatic bromide (20 mmol) was solved in hexane (15 ml) and treated with sec-buli (1.4 M, 14.2 ml) at 0 C. After dilution with THF the resulted slightly cloudy solution was used for the next step. Yield 79%; white solid, m.p. = C (column chromatography cyclohexane/acoet 19/1 to 4:1); 24 [ ] 20 = (c 1, CHCl 3 ); (other enantiomer ] = (c 0.243, CH 2 Cl 2 ) 6 ) [ 1 H-NMR: 8.72 (1H, br d, J 8.6 Hz, arom. H), 8.67 (1H, br d, J 8.3 Hz, arom. H), 8.34 (1H, br d, J 8.3 Hz, arom. H), (16H, m, arom. H), 5.06 (1H, d, J 4.0 Hz, CH-O), 4.53 (1H, m, CH-N), 2.69 (3H, d, J 7.4 Hz, CH 3 -N), 1.82 (1H, br s, OH), 1.35 (3H, d, J 6.9 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (C-C), (d, J 7.2 Hz, CH), (d, J 10.0 Hz, 2xC-H), (d, J 61.3 Hz, C-P), (d, J 1.8 Hz, C-C), (d, J 2.8 Hz, CH), (d, J 11.2 Hz, C-C), (d, J 7.2 Hz, C-C), (d, J 11.0 Hz, C-C), (CH), (CH), (d, J 10.1 Hz, 2xCH), (2xCH), (d, J 5.6 Hz, CH), (CH), (2xCH), (CH), (2xCH), (d, J 60.9 Hz, C-P), (CH), (CH), 79.2 (d, J 2.6 Hz, CH-O), 58.1 (d, J 10.3 Hz, CH-N), 31.5 (d, J 3.4 Hz, CH 3 N), 11.5 (d, J 4.2 Hz, CH 3 ); 31 P-NMR: +72.2; MS (EI, 70 ev) m/z: 342 (81, [M-BH 3 -PhCHOH] + ), 285 (100, PPh(9-phenanthryl) + ); HRMS (ESI) [M-BH 3 +H]: m/z calcd. for C 30 H 29 NOP , found ; [M+H] + : m/z calcd. for C 30 H 32 BNOP , found ; [M-BH 3 +Na]: m/z calcd. for C 30 H 28 NaNOP , found ;

17 (1R,2S)-2-{[(S)-(ibenzo[b,d]furan-4-yl)(phenyl)phosphinyl](methyl)amino}-1-phenylpropan-1-ol P-borane complex (3t) For the lithiation reaction dibenzofuran in THF was treated with 1.1 eq. of n-butyllithium solution at -30 C. After stirring at ambient temperature for further 20 hours the solution was used for further reaction. Yield 82%; white solid, m.p. = C (column chromatography cyclohexane/acoet 9/1); 22 = (c 1.0, CHCl 3 ); 1 H-NMR: 8.10 (1H, m, arom. H), 7.95 (1H, m, arom. H), 7.78 (1H, ddd, J 12.0, 7.6, 1.3 Hz, arom. H), 7.48 (2H, m, arom. H), (12H, m, arom. H), 4.88 (1H, d, J 5.9 Hz, CH-O), 4.44 (1H, m, CH-N), 2.62 (3H, d, J 8.1 Hz, CH 3 -N), 1.82 (1H, br s, OH), 1.28 (3H, d, J 6.6 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (C-O), (C-O), (C-C), (d, J 11.5 Hz, CH), (d, J 10.5 Hz, 2xCH), (d, J 72.1 Hz, C-P), (d, J 2.6 Hz, CH), (2xCH), (d, J 11.2 Hz, 2xCH), (CH), (CH), (2xCH), (d, J 5.0 Hz, C-C), (d, J 1.9 Hz, CH), (C-C), (CH), (d, J 10.1 Hz, CH), (CH), (d, J 54.6 Hz, C-P), (CH), 78.8 (d, J 6.1 Hz, CH-O), 58.3 (d, J 11.1 Hz, CH-N), 31.0 (d, J 4.4 Hz, CH 3 N), 13.0 (d, J 1.9 Hz, CH 3 ); 31 P-NMR: +67.7; MS (EI, 70 ev) m/z: 452 (1%, [M-H] + ), 346 (2, [M-PhCHOH] + ), 332 (28, [M-BH 3 -PhCHOH] + ), 291 (100), 275 (34, [(4-BF)PhP] + ), 168 (55, [BF] + ); HRMS (ESI) [M+H] + : m/z calcd. for C 28 H 30 BNO 2 P , found ; [M+Na] + : m/z calcd. forc 28 H 29 BNNaO 2 P , found ; [M-BH 3 +H] + : m/z calcd. forc 28 H 27 NO 2 P found ; [M-BH 3 +Na] + : m/z calcd. for C 25 H 26 NNaO 2 P found ;

18 4. Synthesis of (R)-(aryl)(methoxy)(phenyl)phosphine P-borane complexes 4a-t General Procedure for the Preparation To a stirred solution of 10 mmol of the corresponding phosphinamide P-borane complex 3a-t in methanol (80 ml) was slowly added one equivalent of conc. H 2 SO 4 (0.98 g) at 0 C. After 1 hour the stirring was continued at ambient temperature for further 20 hours. Water (10 ml) was added and the volatile methanol was removed under vacuum. The residue was extracted with CM (2x 25 ml) and the combined organic phases were washed with water and dried (Na 2 SO 4 ). After evaporation the residue was purified by column chromatography. (R)-(-)-Methoxy(2-methoxyphenyl)(phenyl)phosphine P-borane complex (4a) Yield 87%; colourless oil (column chromatography cyclohexane/acoet 9/1); = (c 0.5, CH 2 Cl 2 ), ( [ ] = (c 1.07, CHCl 3 8 ; for (S)-(+)-enantiomer = (c 0.565, CH 2 Cl 2 ) 6 ); 1 H-NMR: 7.80 (1H, ddd, J 1.7, 7.6, 12.2 Hz, arom. H), (2H, m, arom. H), (4H, m, arom. H), 7.06 (1H, ddt, J 1.0, 2.1, 7.6 Hz, arom. H), 6.86 (1H, ddd, J 0.6, 4.3, 8.3 Hz, arom. H), 3.73 (3H, d, J 12.2 Hz, OCH 3 ), 3.62 (3H, s, OCH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 3.5 Hz, C-O), (d, J 2.1 Hz, CH), (d, J 11.2 Hz, CH), (d, J 66.1 Hz, C-P), (d, J 2.1 Hz, CH), (d, J 11.2 Hz, 2xCH), (d, J 11.1 Hz, 2xCH), (d, J 11.2 Hz, CH), (d, J 62.9 Hz, C-P), (d, J 4.9 Hz, CH), 55.4 (OCH 3 ), 53.9 (d, J 2.4 Hz, OCH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 246 (100, [M-BH 3 ] + ), 231 (8, [M-BH 3 -CH 3 ] + ), 215 (8, [M-BH 3 -OCH 3 ] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 14 H 18 BNaO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 14 H 15 NaO 2 P , found ; HPLC: optical purity >99%ee; column: Chiralcel OJ-H (150x4.6 mm), hexane/i-proh 92/8, 1.00 ml/min, t R = 11.0 min (S)-enantiomer and 16.9 min (R)-enantiomer; (R)-(-)-Methoxy(3-methoxyphenyl)(phenyl)phosphine P-borane complex (4b) Yield 76%; colourless oil (column chromatography cyclohexane/acoet 19/1); 23 [ ] = -3.2 (c 1.00, CHCl 3 ), (for (S)-(+)-enantiomer 25 = -0.4 (c 1.20, CHCl 3 ) 7 ); 1 H-NMR: 7.74 (2H, m, arom. H), (6H, m, arom. H), 7.04 (1H, m, arom. H), 3.80 (3H, s, OCH 3 ), 3.74 (3H, d, J 12.1 Hz, OCH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 13.1 Hz, C-O), (d, J 63.2 Hz, C-P), (d, J 2.7 Hz, CH), (d, J 63.2 Hz, C-P), (d, J 11.3 Hz, 2xCH), (d, J 12.1 Hz, CH), (d, J 10.3 Hz, 2xCH),

19 123.3 (d, J 10.9 Hz, CH), (d, J 2.1 Hz, CH), (d, J 12.8 Hz, CH), 55.3 (OCH 3 ), 54.0 (d, J 2.5 Hz, OCH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 246 (100, [M-BH 3 ] + ), 231 (93, [M-BH 3 -CH 3 ] + ), 215 (30, [M-BH 3 -OCH 3 ] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 14 H 18 BNaO 2 P , found ; M-BH 3 +H] + : m/z calcd. for C 14 H 16 O 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 14 H 15 NaO 2 P , found ; HPLC: optical purity >98%ee; column: Chiralpak AS-H (150x4.6 mm), hexane/i-proh 99.75/0.25, 1.20 ml/min, t R = 7.7 min (S)-enantiomer and 11.1 min (R)-enantiomer; (R)-(+)-Methoxy(4-methoxyphenyl)(phenyl)phosphine P-borane complex (4c) Yield 81%; colourless oil (column chromatography cyclohexane/acoet 19/1); 25 [ ] = (c 1.07, CHCl 3 ), (for (S)-(-)-enantiomer 25 = (c 1.1, CHCl 3 ) 7 ); 1 H-NMR: (4H, m, arom. H), (3H, m, arom. H), 6.96 (2H, m, arom. H), 3.82 (3H, s, OCH 3 ), 3.70 (3H, d, J 12.3 Hz, OCH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 2.7 Hz, C-O), (d, J 11.9 Hz, 2xCH), (d, J 65.8 Hz, C-P), (d, J.2.7 Hz, CH), (d, J 11.0 Hz, 2xCH), (d, J 10.1 Hz, 2xCH), (d, J 67.6 Hz, C- P), (d, J 11.9 Hz, 2xCH), 55.3 (OCH 3 ), 53.8 (d, J 1.8 Hz, OCH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 246 (100, [M-BH 3 ] + ), 231 (95, [M-BH 3 -CH 3 ] + ), 215 (74, [M-BH 3 -OCH 3 ] + ), 138 (56, [4-MeO-PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 14 H 18 BNaO 2 P , found ; HPLC: optical purity >98%ee; Chiralpak AS-H (150x0.46 mm), hexane/i-proh 99.5/0.5, 1.00 ml/min, t R = 8.8 min (S)-enantiomer and 10.5 min (R)-enantiomer; (R)-(+)-Methoxy(2-methylphenyl)(phenyl)phosphine P-borane complex (4d) Yield 76%, colourless oil (column chromatography cyclohexane/acoet 19/1); 24 = +3.8 (c 1.0, CH 2 Cl 2 ); 1 H-NMR: 7.79 (1H, ddd, J 1.4, 7.7, 12.8 Hz, arom. H), (2H, m, arom. H), (4H, m, arom. H), 7.31 (1H, m, arom. H), 7.20 (1H, m, arom. H), 3.74 (3H, d, J 12.0 Hz, OCH 3 ), 2.24 (3H, s, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 7.7 Hz, C-C), (d, J 14.8 Hz, CH), (d, J 2.6 Hz, CH), (d, J 64.0 Hz, C-P), (d, J 2.3 Hz, CH), (d, J 8.8 Hz, CH), (d, J 11.6 Hz, 2xCH), (d, J 58.6 Hz, C-P), (d, J 10.3 Hz, 2xCH), (d, J 11.6 Hz, CH), 53.7 (d, J 2.6 Hz, OCH 3 ), 21.2 (d, J 3.9 Hz, CH 3 );

20 31 P-NMR: ; MS (EI, 70 ev) m/z: 230 (100, [M-BH 3 ] + ), 215 (85, [M-BH 3 -CH 3 ] + ), 199 (51, [M-BH 3 -OCH 3 ] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 14 H 18 BNaOP , found ; [M-BH 3 +Na] + : m/z calcd. for C 14 H 15 NaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 14 H 15 NaOP , found ; HPLC: optical purity >99%ee; column: Chiralcel OJ-H (150x4.6 mm), hexane/ i-proh 95/5, 1.00 ml/min, t R = 7.8 min (S)-enantiomer and 11.8 min (R)-enantiomer; (R)-(-)-Methoxy(3-methylphenyl)(phenyl)phosphine P-borane complex (4e) Yield 80%; colourless oil (column chromatography cyclohexane/acoet 19/1); 23 = -1.5 (c 1.00, CHCl 3 ); 1 H-NMR: (2H, m, arom. H), (5H, m, arom. H), (2H, m, arom. H), 3.74 (3H, d, J 12.1 Hz, OCH 3 ), 2.37 (3H, s, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J Hz, C-C), (d, J 2.4 Hz, CH), (d, J 2.5 Hz, CH), (d, J 64.0 Hz, C-P), (d, J 11.8 Hz, CH), (d, J 63.8 Hz, C-P), (d, J 11.0 Hz, 2xCH), (d, J 10.6 Hz, 2xCH), (d, J 10.8 Hz, CH), (d, J 10.9 Hz, CH), 54.0 (d, J 2.5 Hz, OCH 3 ), 21.4 (CH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 243 (3, [M-H] + ), 230 (100, [M-BH 3 ] + ), 215 (91, [M-BH 3 -CH 3 ] + ), 199 (20, [(3- Me-Ph)PhP] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 14 H 18 BNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 14 H 16 OP , found ; [M-BH 3 +Na] + : m/z calcd. for C 14 H 15 NaOP , found ; HPLC: optical purity >98%ee; column: Chiralcel OJ-H (150x4.6 mm), hexane/ i-proh 99/1, 1.10 ml/min, t R = 15.6 min (R)-enantiomer and 18.0 min (S)-enantiomer; (R)-(+)-Methoxy(4-methylphenyl)(phenyl)phosphine P-borane complex (4f) Yield 86%; colourless oil (column chromatography cyclohexane/acoet 9/1); 24 = (c 1.0, CHCl 3 ); 1 H-NMR: (2H, m, arom. H), 7.62 (2H, m, arom. H), (3H, m, arom. H), 7.26 (2H, m, arom. H), 3.71 (3H, d, J 12.1 Hz, OCH 3 ), 2.38 (3H, s, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 2.6 Hz, C-C), (d, J 64.4 Hz, C-P), (d, J.2.6 Hz, CH), (d, J 11.6 Hz, 2xCH), (d, J 10.9 Hz, 2xCH), (d, J 10.9 Hz, 2xCH), (d, J 10.3 Hz, 2xCH), (d, J 67.0 Hz, C-P), 53.9 (d, J 2.6 Hz, OCH 3 ), 21.5 (CH 3 ); 31 P-NMR: ;

21 MS (EI, 70 ev) m/z: 244 (7, [M] + ), 230 (100, M-BH 3 ] + ), 215 (88, [M-BH 3 -CH 3 ] + ), 199 (12, Ph(4- Me-Ph)P + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 14 H 18 BNaOP , found ; [M-BH 3 +Na] + : m/z calcd. for C 14 H 15 NaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 14 H 16 OP , found ; HPLC: optical purity 97%ee; Chiralcel OJ-H (150x4.6 mm), hexane/etoh 85/15, 1.00 ml/min, t R = 9.2 min (S)-enantiomer and 15.9 min (R)-enantiomer; (R)-(-)-(2-Ethoxy-phenyl)(methoxy)(phenyl)phosphine P-borane complex (4g) Yield 76%; white solid, m.p. = C (column chromatography cyclohexane/acoet 19/1 to 9/1); 23 = (c 1.0, CHCl 3 ); 1 H-NMR: 7.80 (1H, ddd, J 1.7, 7.6, 12.1 Hz, arom. H), (2H, m, arom. H), (4H, m, arom. H), 7.04 (1H, ddt, J 1.0, 2.1, 7.6 Hz, arom. H), 6.81 (1H, ddd, J 0.6, 4.5, 8.3 Hz, arom. H), 3.87 (2H, m, OCH 2 ), 3.73 (3H, d, J 12.1 Hz, OCH 3 ), 1.10 (3H, t, J 7.1 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 3.8 Hz, C-O), (d, J 1.9 Hz, CH), (d, J 10.4 Hz, CH), (d, J 65.1 Hz, C-P), (d, J 2.7 Hz, CH), (d, J 11.4 Hz, 2xCH), (d, J 11.0 Hz, 2xCH), (d, J 10.6 Hz, CH), (d, J 64.1 Hz, C-P), (d, J 5.2 Hz, CH), 63.9 (OCH 2 ), 53.8 (d, J 2.7 Hz, OCH 3 ), 14.0 (CH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 273 (4, [M-H] + ), 260 (100, [M-BH 3 ] + ), 245 (43, [M-BH 3 -CH 3 ] + ), 229 (20, [M- BH 3 -OCH 3 ] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 15 H 20 BNaO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 15 H 17 NaO 2 P , found ; HPLC: optical purity >98%ee; column: Chiralcel O-H (150x4.6 mm), hexane/ i-proh 99.75/0.25, 1.25 ml/min, t R = 8.7 min (R)-enantiomer and 10.4 min (S)-enantiomer; (R)-(-)-(3-Ethoxy-phenyl)(methoxy)(phenyl)phosphine P-borane complex (4h) Yield 83%; colourless oil (column chromatography cyclohexane/acoet 9/1); 24 = -1.7 (c 1.00, CHCl 3 ); 1 H-NMR: 7.75 (2H, m, arom. H), (6H, m, arom. H), 7.02 (1H, m, arom. H), 4.03 (2H, q, J 7.0 Hz, CH 2 ), 3.74 (3H, d, J 12.1 Hz, OCH 3 ), 1.41 (3H, t, J 7.0 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 13.3 Hz, C-O), (d, J 63.1 Hz, C-P), (d, J 2.5 Hz, CH), (d, J 64.3 Hz, C-P), (d, J 11.6 Hz, 2xCH), (d, J 12.5 Hz, CH), (d, J 10.2 Hz 2xCH),

22 123.1 (d, J 10.9 Hz, CH), (d, J 1.9 Hz, CH), (d, J 12.8 Hz, CH), 63.5(OCH 2 ), 54.0 (d, J 2.0 Hz, OCH 3 ), 14.6 (CH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 273 (1, [M-H] + ), 260 (100, [M-BH 3 ] + ), 245 (94, [M-BH 3 -CH 3 ] + ), 229 (15, [M- BH 3 -OCH 3 ] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 15 H 20 BNaO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 15 H 17 NaO 2 P , found ; HPLC: optical purity >98%ee; column: Chiralpak AS-H (150x4.6 mm), hexane/i-proh 99.75/0.25, 1.00 ml/min, t R = 6.7 min (S)-enantiomer and 7.4 min (R)-enantiomer; (R)-(-)-(4-Ethoxy-phenyl)(methoxy)(phenyl)phosphine P-borane complex (4i) Yield 79%; colourless oil (column chromatography cyclohexane/acoet 49/1); 23 = (c 1.00, CHCl 3 ); 1 H-NMR: (4H, m, arom. H), (3H, m, arom. H), 6.95 (2H, m, arom. H), 4.04 (2H, q, J 7.0 Hz, CH 2 ), 3.70 (3H, d, J 12.1 Hz, OCH 3 ), 1.41 (3H, t, J 7.0 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 2.4 Hz, C-O), (d, J 12.6, 2xCH), (d, J 65.6 Hz, C-P), (d, J 2.4 Hz, CH), (d, J 11.3 Hz, 2xCH), (d, J 10.7 Hz 2xCH), (d, J 67.8 Hz, C-P), (d, J 11.4 Hz, 2xCH), 63.5(OCH 2 ), 53.7 (d, J 2.6 Hz, OCH 3 ), 14.5 (CH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 260 (100, [M-BH 3 ] + ), 245 (96, [M-BH 3 -CH 3 ] + ), 229 (37, [M-BH 3 -OCH 3 ] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 15 H 20 BNaO 2 P , found ; [M-BH 3 +Na] + : m/z calcd. for C 15 H 17 NaO 2 P , found ; HPLC: optical purity >99%ee; column: Reprosil 100 (150x4.6 mm), hexane/i-proh 99.75/0.25, 1.25 ml/min, t R = 8.4 min (R)-enantiomer and 8.9 min (S)-enantiomer; (R)-(-)-(2-Ethylphenyl)(methoxy)(phenyl)phosphine P-borane complex (4j) Yield 52%; colourless oil (column chromatography cyclohexane/acoet 19/1); 23 = -5.1 (c 1.00, CHCl 3 ); 1 H-NMR: 7.87 (1H, m, arom. H), (2H, m, arom. H), (4H, m, arom. H), (2H, m, arom. H), 3.75 (3H, d, J 12.2 Hz, OCH 3 ), 2.65 (2H, m, CH 2 ), 0.95 (3H, t, J 7.5 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 8.6 Hz, C-C), (d, J 1.9 Hz, CH), (d, J 14.6 Hz, CH), (d, J 64.1 Hz, C-P), (d, J 2.6 Hz, CH), (d, J 2.6 Hz, CH), (d, J 11.4 Hz, 2xCH),

23 (d, J 8.4 Hz, CH), (d, J 60.3 Hz, C-P), (d, J 10.5 Hz, 2xCH), (d, J 11.4 Hz, CH), 53.8 (d, J 2.3 Hz, OCH 3 ), 26.8 (CH 2 ), 15.1 (CH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 244 (100, [M-BH 3 ] + ), 229 (43, [M-BH 3 -CH 3 ] + ), 213 (40, [M-BH 3 -OCH 3 ] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 15 H 20 BNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 15 H 18 OP , found ; [M-BH 3 +Na] + : m/z calcd. for C 15 H 17 NaOP , found ; HPLC: optical purity >99%ee; column: Chiralcel OJ-H (150x4.6 mm), hexane/i-proh 99/1, 1.00 ml/min, t R = 8.2 min (R)-enantiomer and 10.5 min (S)-enantiomer; (R)-(-)-(3-Ethylphenyl)(methoxy)(phenyl)phosphine P-borane complex (4k) Yield 84%; colourless oil (column chromatography cyclohexane/acoet 19/1); 23 = -0.4 (c 1.00, CHCl 3 ); 1 H-NMR: 7.74 (2H, m, arom. H), 7.58 (1H, m, arom. H), (4H, m, arom. H), (2H, m, arom. H), 3.74 (3H, d, J 12.0 Hz, OCH 3 ), 2.68 (2H, q, J 7.6 Hz, CH 2 ), 1.23 (3H, t, J 7.6 Hz, CH 3 ), (3H, br q, BH 3 ); 13 C-NMR: (d, J 10.1 Hz, C-C), (d, J 2.1 Hz, CH), (d, J 63.8 Hz, C-P), (d, J 2.7 Hz, CH), (d, J 63.4 Hz, C-P), (d, J 10.9 Hz, 2xCH), (d, J 11.9 Hz, CH), (d, J 10.9 Hz, CH), (d, J 10.9 Hz, 2xCH), (d, J 10.9 Hz, CH), 54.0 (d, J 2.7 Hz, OCH 3 ), 28.7 (CH 2 ), 15.3 (CH 3 ); 31 P-NMR: ; MS (EI, 70 ev) m/z: 257 (2, [M-H] + ), 244 (100, [M-BH 3 ] + ), 229 (96, [M-BH 3 -CH 3 ] + ), 213 (26, [M- BH 3 -OCH 3 ] + ); HRMS (ESI) [M+Na] + : m/z calcd. for C 15 H 20 BNaOP , found ; [M-BH 3 +H] + : m/z calcd. for C 15 H 18 OP , found ; HPLC: optical purity >98%ee; Column: Chiralcel OJ-H (150x4.6 mm), hexane/i-proh 99/1, 1.00 ml/min, t R = 12.7 min (S)-enantiomer and 16.1 min (R)-enantiomer; (R)-(-)-(2-Isopropoxyphenyl)(methoxy)(phenyl)phosphine P-borane complex (4l) Yield 81%; colourless oil (column chromatography cyclohexane/acoet 19/1) 23 = (c 1, CHCl 3 ); 1 H-NMR: 7.82 (1H, ddd, J 12.0, 7.6, 1.8 Hz, arom. H), (2H, m, arom. H), (4H, m, arom. H), 7.01 (1H, ddd, J 7.6, 2.0, 0.9 Hz, arom. H), 6.80 (1H, dd, J 8.4, 4.5 Hz, arom. H), 4.46 (1H, sept, J 6.1 Hz, CH-O), 3.71 (3H, d, J 12.1 Hz, OCH 3 ), 1.06 (3H, d, J 6.0 Hz, CH 3 ), 0.96 (3H, d, J 6.0 Hz, CH 3 ), (3H, br q, BH 3 );

Stereoselective Aza-Darzens Reactions of Tert- Butanesulfinimines: Convenient Access to Chiral Aziridines

Stereoselective Aza-Darzens Reactions of Tert- Butanesulfinimines: Convenient Access to Chiral Aziridines Stereoselective Aza-Darzens Reactions of Tert- Butanesulfinimines: Convenient Access to Chiral Aziridines Toni Moragas Solá, a Ian Churcher, b William Lewis a and Robert A. Stockman* a Supplementary Information

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Organocatalytic Asymmetric Sulfa-Michael Addition to α,β- Unsaturated Ketones Paolo Ricci, Armando Carlone, Giuseppe

More information

Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa, and Yoshiharu Iwabuchi* Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences,

Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa, and Yoshiharu Iwabuchi* Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Oxoammonium ion/naclo 2 : An Expedient, Catalytic System for One-pot Oxidation of Primary Alcohols to Carboxylic Acid with Broad Substrate Applicability Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa,

More information

Supporting Information

Supporting Information Supporting Information B(C 6 F 5 ) 3 -catalyzed Regioselective Deuteration of Electronrich Aromatic and Heteroaromatic compounds Wu Li, Ming-Ming Wang, Yuya Hu and Thomas Werner* Leibniz-Institute of Catalysis

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Enantioselective Cu-catalyzed 1,4-Addition of Various Grignard Reagents to Cyclohexenone using Taddol-derived Phosphine-Phosphite

More information

Rameshwar Prasad Pandit and Yong Rok Lee * School of Chemical Engineering, Yeungnam University, Gyeongsan , Korea

Rameshwar Prasad Pandit and Yong Rok Lee * School of Chemical Engineering, Yeungnam University, Gyeongsan , Korea Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Novel ne-pot Synthesis of Diverse γ,δ-unsaturated β-ketoesters by Thermal

More information

Electronic Supplementary Information. Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of

Electronic Supplementary Information. Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of Electronic Supplementary Information Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of Allylic Alcohols: An Effective and Enantioselective Approach to α Quaternary β Fluoro

More information

Supporting information

Supporting information Supporting information Diversity Oriented Asymmetric Catalysis (DOAC): Stereochemically Divergent Synthesis of Thiochromanes Using an Imidazoline-aminophenol aminophenol (IAP)-Ni Catalyzed Michael/Henry

More information

Direct ortho-c H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-palladacycle

Direct ortho-c H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-palladacycle Direct ortho-c H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-palladacycle Kun Guo, Xiaolan Chen, Mingyu Guan, and Yingsheng Zhao* Key Laboratory of Organic Synthesis of

More information

Supporting Information

Supporting Information Supporting Information Unconventional Passerini Reaction towards α-aminoxyamides Ajay L. Chandgude, Alexander Dömling* Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9713 AV

More information

Copyright Wiley-VCH Verlag GmbH, D Weinheim, Angew. Chem

Copyright Wiley-VCH Verlag GmbH, D Weinheim, Angew. Chem Copyright Wiley-VCH Verlag GmbH, D-69451 Weinheim, 2000. Angew. Chem. 2000. Supporting Information for Salen as Chiral Activator : Anti vs Syn Switchable Diastereoselection in the Enantioselective Addition

More information

Supporting Information. An Efficient Synthesis of Optically Active Physostigmine from Tryptophan via Alkylative Cyclization

Supporting Information. An Efficient Synthesis of Optically Active Physostigmine from Tryptophan via Alkylative Cyclization Supporting Information An Efficient Synthesis of Optically Active Physostigmine from Tryptophan via Alkylative Cyclization Michiaki, Kawahara, Atsushi Nishida, Masako Nakagawa* Faculty of Pharmaceutical

More information

Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines

Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines Supporting Information for Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines Yingle Liu a, Jiawang Liu

More information

Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature

Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature Supplementary Information Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature Weili Si 1, Xuan Zhang 1, Shirong Lu 1, Takeshi Yasuda

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information Facile Three-Step Synthesis and Photophysical Properties of [8]-, [9]-,

More information

Supporting Materials. Experimental Section. internal standard TMS (0 ppm). The peak patterns are indicated as follows: s, singlet; d,

Supporting Materials. Experimental Section. internal standard TMS (0 ppm). The peak patterns are indicated as follows: s, singlet; d, CuBr-Catalyzed Efficient Alkynylation of sp 3 C-H Bonds Adjacent to a itrogen Atom Zhiping Li and Chao-Jun Li* Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec H3A

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Enantioselective Rhodium-catalyzed Addition of Arylboronic Acids to α-ketoesters Hai-Feng Duan, Jian-Hua Xie, Xiang-Chen Qiao, Li-Xin Wang,

More information

Thiol-Activated gem-dithiols: A New Class of Controllable. Hydrogen Sulfide (H 2 S) Donors

Thiol-Activated gem-dithiols: A New Class of Controllable. Hydrogen Sulfide (H 2 S) Donors Thiol-Activated gem-dithiols: A New Class of Controllable Hydrogen Sulfide (H 2 S) Donors Yu Zhao, Jianming Kang, Chung-Min Park, Powell E. Bagdon, Bo Peng, and Ming Xian * Department of Chemistry, Washington

More information

Zinc Chloride Promoted Formal Oxidative Coupling of Aromatic Aldehydes and Isocyanides to α- Ketoamides

Zinc Chloride Promoted Formal Oxidative Coupling of Aromatic Aldehydes and Isocyanides to α- Ketoamides Supporting information for Zinc Chloride Promoted Formal xidative Coupling of Aromatic Aldehydes and Isocyanides to α- Ketoamides Marinus Bouma, Géraldine Masson* and Jieping Zhu* Institut de Chimie des

More information

Asymmetric organocatalytic diboration of alkenes

Asymmetric organocatalytic diboration of alkenes Asymmetric organocatalytic diboration of alkenes Amadeu Bonet, a Cristina Solé, Henrik Gulyás,* Elena Fernández* a Dept. Química Física i Inorgànica, University Rovira i Virgili, C/Marcel lí Domingo s/n,

More information

Chemo- and Enantioselective Rh-Catalyzed Hydrogenation of 3-Methylene-1,2-diazetidines: Application to Vicinal Diamine Synthesis

Chemo- and Enantioselective Rh-Catalyzed Hydrogenation of 3-Methylene-1,2-diazetidines: Application to Vicinal Diamine Synthesis Chemo- and Enantioselective Rh-Catalyzed Hydrogenation of 3-Methylene-1,2-diazetidines: Application to Vicinal Diamine Synthesis Greg P. Iacobini, a David W. Porter, b and Michael Shipman* a a Department

More information

Preparation of Stable Aziridinium Ions and Their Ring Openings

Preparation of Stable Aziridinium Ions and Their Ring Openings Supplementary Information Preparation of Stable Aziridinium Ions and Their Ring Openings Yongeun Kim a Hyun-Joon Ha*, a Sae Young Yun b and Won Koo Lee,*,b a Department of Chemistry and Protein Research

More information

Supporting Information

Supporting Information Supporting Information Enantioselective Phosphine-Catalyzed Allylic Alkylations of mix- Indene with MBH Carbonates Junyou Zhang, Hai-Hong Wu,* and Junliang Zhang* Shanghai Key Laboratory of Green Chemistry

More information

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of Supporting Information for: p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of Nitroolefins with NaN 3 for Synthesis of 4-Aryl-NH-1,2,3-triazoles Xue-Jing Quan, Zhi-Hui Ren, Yao-Yu Wang, and

More information

Regioective Halogenation of 2-Substituted-1,2,3-Triazole via sp 2 C-H Activation

Regioective Halogenation of 2-Substituted-1,2,3-Triazole via sp 2 C-H Activation Regioective Halogenation of 2-Substituted-1,2,3-Triazole via sp 2 C-H Activation Qingshan Tian, Xianmin Chen, Wei Liu, Zechao Wang, Suping Shi, Chunxiang Kuang,* Department of Chemistry, Tongji University,

More information

Ruthenium-Catalyzed C H Oxygenation on Aryl Weinreb Amides

Ruthenium-Catalyzed C H Oxygenation on Aryl Weinreb Amides Supporting Information Ruthenium-Catalyzed C H xygenation on Aryl Weinreb Amides Fanzhi Yang and Lutz Ackermann* Institut für rganische und Biomolekulare Chemie Georg-August-Universität Tammannstrasse

More information

Supplementary Materials Contents

Supplementary Materials Contents Supplementary Materials Contents Supporting information... S1 1. General Information & Materials... S2 2. General Procedure for ptimization of Amidation of Aryl Bromides with Copper/,-Dimethylglycine Catalytic

More information

1,5-Electrocyclization of conjugated azomethine ylides derived from 3-formyl chromene and N-alkyl amino acids/esters

1,5-Electrocyclization of conjugated azomethine ylides derived from 3-formyl chromene and N-alkyl amino acids/esters Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 7 Supporting Information for,5-electrocyclization of conjugated azomethine ylides

More information

Supporting Information. Ruthenium(II)-Catalyzed C H Alkynylation of Weakly-Coordinating Benzoic Acids. Ruhuai Mei, Shou-Kun Zhang, and Lutz Ackermann*

Supporting Information. Ruthenium(II)-Catalyzed C H Alkynylation of Weakly-Coordinating Benzoic Acids. Ruhuai Mei, Shou-Kun Zhang, and Lutz Ackermann* Supporting Information Ruthenium(II)-Catalyzed C H Alkynylation of Weakly-Coordinating Benzoic Acids Ruhuai Mei, Shou-Kun Zhang, and Lutz Ackermann* Institut für Organische und Biomolekulare Chemie, Georg-August-Universität

More information

Schwartz s reagent-mediated regiospecific synthesis of 2,3-disubstituted indoles from isatins

Schwartz s reagent-mediated regiospecific synthesis of 2,3-disubstituted indoles from isatins Electronic Supplementary Information (ESI) Schwartz s reagent-mediated regiospecific synthesis of 2,3-disubstituted indoles from isatins A. Ulikowski and B. Furman* Institute of Organic Chemistry, Polish

More information

Ethyl 2-hydroxy-4-methyl-1-((prop-2-yn-1-yloxy)methyl)cyclohex-3-enecarboxylate (16):

Ethyl 2-hydroxy-4-methyl-1-((prop-2-yn-1-yloxy)methyl)cyclohex-3-enecarboxylate (16): General methods: 1 H NMR and 13 C NMR spectra were recorded in CDCl 3 or CDCl3 and CCl 4 as solvent on 300 MHz or 500 MHz spectrometer at ambient temperature. The coupling constant J is given in Hz. The

More information

An Unusual Glycosylation Product from a Partially Protected Fucosyl Donor. under Silver Triflate activation conditions. Supporting information

An Unusual Glycosylation Product from a Partially Protected Fucosyl Donor. under Silver Triflate activation conditions. Supporting information An Unusual Glycosylation Product from a Partially Protected Fucosyl Donor under Silver Triflate activation conditions Robin Daly a and Eoin M. Scanlan* a e-mail: eoin.scanlan@tcd.ie a Trinity Biomedical

More information

Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction

Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction P. Veeraraghavan Ramachandran* and Prem B. Chanda Department of Chemistry, Purdue

More information

ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors

ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors Jie Li, Chendong Ji, Wantai Yang, Meizhen Yin* State Key Laboratory of Chemical Resource Engineering,

More information

Supplementary Information. Intramolecular 5-exo, 7-endo-dig Transition Metal-Free Cyclization

Supplementary Information. Intramolecular 5-exo, 7-endo-dig Transition Metal-Free Cyclization Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry Supplementary Information Intramolecular -exo, -endo-dig Transition Metal-Free Cyclization Sequence

More information

Supporting Information for. Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the. analysis of Glucose in Whole Blood

Supporting Information for. Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the. analysis of Glucose in Whole Blood Supporting Information for Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the analysis of Glucose in Whole Blood Yueling Liu, Jingwei Zhu, Yanmei Xu, Yu Qin*, Dechen Jiang*

More information

NHC-catalyzed cleavage of vicinal diketones and. triketones followed by insertion of enones and

NHC-catalyzed cleavage of vicinal diketones and. triketones followed by insertion of enones and Supporting Information for NHC-catalyzed cleavage of vicinal diketones and triketones followed by insertion of enones and ynones Ken Takaki*, Makoto Hino, Akira Ohno, Kimihiro Komeyama, Hiroto Yoshida

More information

Preparation of Fluorinated Tetrahydropyrans and Piperidines using a New Nucleophilic Fluorination Reagent DMPU/HF

Preparation of Fluorinated Tetrahydropyrans and Piperidines using a New Nucleophilic Fluorination Reagent DMPU/HF Supporting information Preparation of Fluorinated Tetrahydropyrans and Piperidines using a New Nucleophilic Fluorination Reagent DMPU/HF Otome E. Okoromoba, a Gerald B. Hammond, a, * Bo Xu b, * a Department

More information

Supporting Information

Supporting Information Supporting Information Direct Synthesis of Benzimidazoles by Dehydrogenative Coupling of Aromatic Diamines and Alcohols Catalyzed by Cobalt Prosenjit Daw, Yehoshoa Ben-David, and David Milstein* Department

More information

Pyridazine N-Oxides as Precursors of Metallocarbenes: Rhodium-Catalyzed Transannulation with Pyrroles. Supporting Information

Pyridazine N-Oxides as Precursors of Metallocarbenes: Rhodium-Catalyzed Transannulation with Pyrroles. Supporting Information Pyridazine N-Oxides as Precursors of Metallocarbenes: Rhodium-Catalyzed Transannulation with Pyrroles Vinaykumar Kanchupalli, Desna Joseph and Sreenivas Katukojvala* Department of Chemistry, Indian Institute

More information

A bidirectional synthesis of spiroacetals via Rh(II)-catalysed C H insertion

A bidirectional synthesis of spiroacetals via Rh(II)-catalysed C H insertion Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information A bidirectional synthesis of spiroacetals via Rh(II)-catalysed C H insertion

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information [Fe III (TF4DMAP)OTf] Catalysed Anti-Markovnikov Oxidation

More information

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice Supporting Information Rec. Nat. Prod. 9:4 (2015) 561-566 Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice Anita Mahapatra 1*, Purvi Shah 1, Mehul Jivrajani

More information

Supporting Information

Supporting Information Supporting Information Asymmetric organocatalytic formation of protected and unprotected tetroses under potentially prebiotic conditions. Laurence Burroughs, Paul A. Clarke,* Henrietta Forintos, James

More information

Supporting Information. Radical fluorination powered expedient synthesis of 3 fluorobicyclo[1.1.1]pentan 1 amine

Supporting Information. Radical fluorination powered expedient synthesis of 3 fluorobicyclo[1.1.1]pentan 1 amine Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Radical fluorination powered expedient synthesis

More information

Highly efficient hydrazination of conjugated nitroalkenes via imidazole or DMAP mediated Morita-Baylis-Hillman reaction

Highly efficient hydrazination of conjugated nitroalkenes via imidazole or DMAP mediated Morita-Baylis-Hillman reaction Experimental Data and ptimization Tables For Highly efficient hydrazination of conjugated nitroalkenes via imidazole or DMAP mediated Morita-Baylis-Hillman reaction M. Dadwal, S. M. Mobin, I... amboothiri

More information

Methyltrioxorhenium-Catalyzed Highly Selective Dihydroxylation of 1,2-Allenylic Diphenyl Phosphine Oxides

Methyltrioxorhenium-Catalyzed Highly Selective Dihydroxylation of 1,2-Allenylic Diphenyl Phosphine Oxides Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2015 Methyltrioxorhenium-Catalyzed Highly Selective Dihydroxylation of 1,2-Allenylic

More information

Supporting Information. for. Access to pyrrolo-pyridines by gold-catalyzed. hydroarylation of pyrroles tethered to terminal alkynes

Supporting Information. for. Access to pyrrolo-pyridines by gold-catalyzed. hydroarylation of pyrroles tethered to terminal alkynes Supporting Information for Access to pyrrolo-pyridines by gold-catalyzed hydroarylation of pyrroles tethered to terminal alkynes Elena Borsini 1, Gianluigi Broggini* 1, Andrea Fasana 1, Chiara Baldassarri

More information

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base Supporting Information Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base Feng Wang, a Haijun Yang, b Hua Fu, b,c * and Zhichao Pei a * a College

More information

Supporting Information Synthesis of 2-Aminobenzonitriles through Nitrosation Reaction and Sequential Iron(III)-Catalyzed C C Bond Cleavage of 2-Arylin

Supporting Information Synthesis of 2-Aminobenzonitriles through Nitrosation Reaction and Sequential Iron(III)-Catalyzed C C Bond Cleavage of 2-Arylin Supporting Information Synthesis of 2-Aminobenzonitriles through Nitrosation Reaction and Sequential Iron(III)-Catalyzed C C Bond Cleavage of 2-Arylindoles Wei-Li Chen, Si-Yi Wu, Xue-Ling Mo, Liu-Xu Wei,

More information

Base-promoted acetal formation employing aryl salicylates

Base-promoted acetal formation employing aryl salicylates Base-promoted acetal formation employing aryl salicylates Pinmanee Boontheung, Patrick Perlmutter*, and Evaloni Puniani School of Chemistry, Monash University, PO Box 23, Victoria 3800 Australia E-mail:

More information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 Supporting Information General. NMR spectra for identification of intermediates and final compoundswere recorded

More information

Supplementary Information

Supplementary Information Supplementary Information Ruthenium(IV) porphyrin catalyzed phosphoramidation of aldehyde with phosphoryl azide as nitrene source Wenbo Xiao, Cong-Ying Zhou and Chi-Ming Che* Department of Chemistry, State

More information

Supporting Information

Supporting Information Supporting Information Asymmetric Catalysis of the Carbonyl-Amine Condensation: Kinetic Resolution of Primary Amines Sayantani Das, Nilanjana Majumdar, Chandra Kanta De, Dipti Sankar Kundu, Arno Döhring,

More information

Synergistic Cu-amine catalysis for the enantioselective synthesis of chiral cyclohexenones

Synergistic Cu-amine catalysis for the enantioselective synthesis of chiral cyclohexenones Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synergistic Cu-amine catalysis for the enantioselective synthesis of chiral cyclohexenones Adrien

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2016 Supporting Information Fangyi Li, Changgui Zhao, and Jian Wang* Department of Pharmacology

More information

Preparation, isolation and characterization of N α -Fmoc-peptide isocyanates: Solution synthesis of oligo-α-peptidyl ureas

Preparation, isolation and characterization of N α -Fmoc-peptide isocyanates: Solution synthesis of oligo-α-peptidyl ureas SUPPORTING INFORMATION Preparation, isolation and characterization of N α -Fmoc-peptide isocyanates: Solution synthesis of oligo-α-peptidyl ureas Vommina V. Suresh Babu*, Basanagoud S. Patil, and Rao Venkataramanarao

More information

Supporting Information: Cis-to-Trans Isomerization of Azobenzene Investigated by Using Thin Films of Metal-Organic Frameworks

Supporting Information: Cis-to-Trans Isomerization of Azobenzene Investigated by Using Thin Films of Metal-Organic Frameworks Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the wner Societies 2015 Supporting Information: Cis-to-Trans Isomerization of Azobenzene Investigated by

More information

Scheme S1. Synthesis of glycose-amino ligand.

Scheme S1. Synthesis of glycose-amino ligand. Scheme S1. Synthesis of glycose-amino ligand. 5-Chloro-1-pentyl-2,3,4,6-tetra-O-acetyl-ß-D-glucopyranoside S2 To a solution of penta-o-acetyl-ß-d-glucopyranoside S1 (3.0 g, 7.69 mmol) and 5-chloropentan-1-ol

More information

Supplementary Material. Efficient Synthesis of an Indinavir Precursor from Biomass Derived (-)- Levoglucosenone

Supplementary Material. Efficient Synthesis of an Indinavir Precursor from Biomass Derived (-)- Levoglucosenone 1.171/CH17227_AC CSIRO 217 Australian Journal of Chemistry 217, 7(1), 1146-115 Supplementary Material Efficient Synthesis of an Indinavir Precursor from Biomass Derived (-)- Levoglucosenone Edward T. Ledingham,

More information

# Supplementary Material (ESI) for Chemical Communications # This journal is The Royal Society of Chemistry 2005

# Supplementary Material (ESI) for Chemical Communications # This journal is The Royal Society of Chemistry 2005 Electronic Supplementary Information for: (Z)-Selective cross-dimerization of arylacetylenes with silylacetylenes catalyzed by vinylideneruthenium complexes Hiroyuki Katayama,* Hiroshi Yari, Masaki Tanaka,

More information

Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes

Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes Serena Mantenuto, Fabio Mantellini, Gianfranco Favi,* and Orazio A. Attanasi Department of Biomolecular

More information

yellow coloured amorphous powder, which on crystallization from hot acetone resulted in pale

yellow coloured amorphous powder, which on crystallization from hot acetone resulted in pale Supporting Information Hexane Extract. Compound I: Elution of column with hexane: dichloromethane (50:50 v/v; 200 ml), gave a pale yellow coloured amorphous powder, which on crystallization from hot acetone

More information

Solid Phase Peptide Synthesis (SPPS) and Solid Phase. Fragment Coupling (SPFC) Mediated by Isonitriles

Solid Phase Peptide Synthesis (SPPS) and Solid Phase. Fragment Coupling (SPFC) Mediated by Isonitriles Solid Phase Peptide Synthesis (SPPS) and Solid Phase Fragment Coupling (SPFC) Mediated by Isonitriles Ting Wang a and Samuel J. Danishefsky a,b,* alaboratory for Bioorganic Chemistry, Sloan- Kettering

More information

Palladium(II)-Catalyzed Cross-Coupling of Simple Alkenes with Acrylates: A Direct Approach to 1,3-Dienes through C H Activation

Palladium(II)-Catalyzed Cross-Coupling of Simple Alkenes with Acrylates: A Direct Approach to 1,3-Dienes through C H Activation 1 Palladium(II)-Catalyzed Cross-Coupling of Simple Alkenes with Acrylates: A Direct Approach to 1,3-Dienes through C H Activation Zhen-Kang Wen, Yun-He Xu* and Teck-Peng Loh* Division of Chemistry and

More information

Supporting Information

Supporting Information Zinc-Mediated Addition of Diethyl Bromomalonate to Alkynes for the Cascade Reaction towards Polysubstituted Pyranones and Tetracarbonyl Derivatives Anne Miersch, Klaus Harms, and Gerhard Hilt* Fachbereich

More information

Reaction of difluorocarbene with acetylene ethers generates novel fluorinated 5- and 7-membered carbacycles.

Reaction of difluorocarbene with acetylene ethers generates novel fluorinated 5- and 7-membered carbacycles. Electronic Supplementary Information (ESI) Reaction of difluorocarbene with acetylene ethers generates novel fluorinated 5- and 7-membered carbacycles. Poh Wai Chia, Davide Bello, Alexandra M. Z. Slawin

More information

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state Mingguang Pan, Min Xue* Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China Fax:

More information

Cu-Catalyzed Direct C6-Arylation of Indoles

Cu-Catalyzed Direct C6-Arylation of Indoles Cu-Catalyzed Direct C6-Arylation of Indoles (Supporting Information) Youqing Yang, Ruirui Li, Yue Zhao, Dongbing Zhao, and Zhuangzhi Shi*, State Key Laboratory of Coordination Chemistry, Collaborative

More information

Supporting Information

Supporting Information Supporting Information A Regioselective Ring-Expansion of Isatins with In-situ Generated α-aryldiazomethanes; Direct Access to Viridicatin Alkaloids Yellaiah Tangella,, Kesari Lakshmi Manasa,, Namballa

More information

Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. Jeremiah P. Malerich, Koji Hagihara, and Viresh H.

Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. Jeremiah P. Malerich, Koji Hagihara, and Viresh H. Chiral Squaramide Derivatives are Excellent ydrogen Bond Donor Catalysts Jeremiah P. Malerich, Koji agihara, and Viresh. Rawal* Department of Chemistry, University of Chicago, Chicago, Illinois 60637 E-mail:

More information

Supporting Information. Palladium-catalyzed reductive cleavage of tosylated arene using isopropanol as the mild reducing agent

Supporting Information. Palladium-catalyzed reductive cleavage of tosylated arene using isopropanol as the mild reducing agent Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2014 Supporting Information Supporting Information Palladium-catalyzed reductive cleavage

More information

Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of. Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis

Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of. Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis of Fully Substituted Pyrazoles Shirin Safaei, Iraj Mohammadpoor-Baltork,*

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Chemoselective Peptide Cyclization via Induced Traceless Staudinger Ligation Rolf Kleineweischede, Christian P.R. Hackenberger* Institute for

More information

Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds

Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds Cui-Feng Yang, Jian-Yong Wang and Shi-Kai Tian* Joint Laboratory of Green

More information

Improved Carbonylation of Heterocyclic Chlorides and Challenging Aryl Bromides

Improved Carbonylation of Heterocyclic Chlorides and Challenging Aryl Bromides Albaneze-Walker et al S-1 Improved Carbonylation of Heterocyclic Chlorides and Challenging Aryl Bromides Jennifer Albaneze-Walker*, Charles Bazaral, Tanya Leavey, Peter G. Dormer, and Jerry A. Murry Department

More information

Supporting Information. Recyclable hypervalent-iodine-mediated solid-phase peptide

Supporting Information. Recyclable hypervalent-iodine-mediated solid-phase peptide Supporting Information Recyclable hypervalent-iodine-mediated solid-phase peptide synthesis and cyclic peptide synthesis Dan Liu, Ya-Li Guo, Jin Qu and Chi Zhang* for Address: State Key Laboratory of Elemento-Organic

More information

Supporting Information

Supporting Information Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2011 Supporting Information Potassium tert-butoxide Mediated Heck-Type Cyclization/Isomerization

More information

Supporting Information

Supporting Information Supporting Information Synthesis and biological evaluation of Aryl-hospho-Indole (AI) as novel IV-1 non-nucleoside reverse transcriptase inhibitors. François-René Alexandre a *, Agnès Amador a, Stéphanie

More information

SUPPORTING INFORMATION FOR. Regioselective Ring-opening and Isomerization Reactions of 3,4-Epoxyesters Catalyzed by Boron Trifluoride

SUPPORTING INFORMATION FOR. Regioselective Ring-opening and Isomerization Reactions of 3,4-Epoxyesters Catalyzed by Boron Trifluoride S1 SUPPORTING INFORMATION FOR Regioselective Ring-opening and Isomerization Reactions of 3,4-Epoxyesters Catalyzed by Boron Trifluoride Javier Izquierdo, Santiago Rodríguez and Florenci V. González* Departament

More information

An Orthogonal Array Optimization of Lipid-like Nanoparticles for. mrna Delivery in Vivo

An Orthogonal Array Optimization of Lipid-like Nanoparticles for. mrna Delivery in Vivo Supporting Information An rthogonal Array ptimization of Lipid-like Nanoparticles for mrna Delivery in Vivo Bin Li, Xiao Luo, Binbin Deng, Junfeng Wang, David W. McComb, Yimin Shi, Karin M.L. Gaensler,

More information

University of Groningen

University of Groningen University of Groningen Copper phosphoramidite-catalyzed enantioselective desymmetrization of meso-cyclic allylic bisdiethyl phosphates Piarulli, Umberto; Claverie, Christelle; Daubos, Philippe; Gennari,

More information

Ynamides as racemization-free coupling reagents for amide and peptide synthesis

Ynamides as racemization-free coupling reagents for amide and peptide synthesis Ynamides as racemization-free coupling reagents for amide and peptide synthesis Long Hu, Silin Xu, Zhenguang Zhao, Yang Yang, Zhiyuan Peng, Ming Yang, Changliu Wang, Junfeng Zhao* Key Laboratory of Chemical

More information

Supporting Information. Palladium-Catalyzed Formylation of Aryl Iodides with HCOOH as

Supporting Information. Palladium-Catalyzed Formylation of Aryl Iodides with HCOOH as Supporting Information Palladium-Catalyzed Formylation of Aryl Iodides with HCOOH as CO Source Guanglong Sun,,, Xue Lv,,, Yinan Zhang, Min Lei,*,, and Lihong Hu*, Jiangsu Key Laboratory for Functional

More information

by Donor-Acceptor Complex

by Donor-Acceptor Complex Metal-Free C(sp 3 )-H Allylation via Aryl Carboxyl Radicals Enabled by Donor-Acceptor Complex Yang Li 1+, Jing Zhang 1+, Defang Li 1,2, and Yiyun Chen 1,2 * Supplementary Information I. General Procedures...

More information

Novel D-erythro N-Octanoyl Sphingosine Analogs As Chemo- and Endocrine. Resistant Breast Cancer Therapeutics

Novel D-erythro N-Octanoyl Sphingosine Analogs As Chemo- and Endocrine. Resistant Breast Cancer Therapeutics Page 11 of 32 Cancer Chemotherapy and Pharmacology Novel D-erythro N-Octanoyl Sphingosine Analogs As Chemo- and Endocrine Resistant Breast Cancer Therapeutics James W. Antoon, Jiawang Liu, Adharsh P. Ponnapakkam,

More information

Nitro-Grela-type complexes containing iodides. robust and selective catalysts for olefin metathesis

Nitro-Grela-type complexes containing iodides. robust and selective catalysts for olefin metathesis Supporting Information for Nitro-Grela-type complexes containing iodides robust and selective catalysts for olefin metathesis under challenging conditions. Andrzej Tracz, 1,2 Mateusz Matczak, 1 Katarzyna

More information

SUPPORTING INFORMATION. Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S

SUPPORTING INFORMATION. Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S 1 SUPPORTING INFORMATION Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S Bond formation by Chan-Lam Cross-Coupling Reaction SATYA KARUNA PULAKHANDAM a, NARESH KUMAR KATARI

More information

Supporting Information. Use of Potassium. -Trifluoroborato Amides in Suzuki-Miyaura. Cross-Coupling Reactions

Supporting Information. Use of Potassium. -Trifluoroborato Amides in Suzuki-Miyaura. Cross-Coupling Reactions Supporting Information Use of Potassium -Trifluoroborato Amides in Suzuki-Miyaura Cross-Coupling Reactions Gary A. Molander* and Ludivine Jean-Gérard Roy and Diana Vagelos Laboratories, Department of Chemistry,

More information

Facile Cu(II) mediated conjugation of thioesters and thioacids to peptides and proteins under mild conditions

Facile Cu(II) mediated conjugation of thioesters and thioacids to peptides and proteins under mild conditions Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Facile Cu(II) mediated conjugation of thioesters and thioacids to peptides

More information

Supporting Information for. Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of. 3,5-Disubstituted Pyridines: Mechanistic Studies

Supporting Information for. Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of. 3,5-Disubstituted Pyridines: Mechanistic Studies Supporting Information for Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of 3,5-Disubstituted Pyridines: Mechanistic Studies Ta-Hsien Chuang* a, Yu-Chi Chen b and Someshwar Pola

More information

Supporting Information

Supporting Information Palladium-Catalyzed Cascade Oxidantion/sp 2 C-H Acylation of Azoarenes with Aryl Methanes Feng Xiong, a Cheng Qian, b Dongen Lin, b Wei Zeng b,* and Xiaoxia Lu a,* a Chengdu Institute of Biology,CAS, Chengdu

More information

Supplementary Information

Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supplementary Information Oxidative Tandem Annulation of 1 (2 Ethynylaryl)prop 2 en 1 ones Catalyzed

More information

Supporting Information

Supporting Information Supporting Information Synthesis of N-Heteropolycyclic Compounds Including Quinazolinone Skeletons by Using Friedel-Crafts Alkylation Bu Keun Oh, Eun Bi Ko, Jin Wook Han* and Chang Ho Oh* Department of

More information

A Hierarchy of Aryloxide Deprotection by Boron Tribromide. Supporting Information

A Hierarchy of Aryloxide Deprotection by Boron Tribromide. Supporting Information A Hierarchy of Aryloxide Deprotection by Boron Tribromide Sreenivas Punna, Stéphane Meunier and M. G. Finn* Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute,

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information A Novel and Facile Zn-mediated Intramolecular Five-membered Cyclization of β-tetraarylporphyrin Radicals from β-bromotetraarylporphyrins Dong-Mei Shen, Chao Liu, Qing-Yun

More information

Christophe Lincheneau, Bernard Jean-Denis and Thorfinnur Gunnlaugsson* Electronic Supplementary Information

Christophe Lincheneau, Bernard Jean-Denis and Thorfinnur Gunnlaugsson* Electronic Supplementary Information Self-assembly formation of mechanically interlocked [2]- and [3]catenanes using lanthanide ion [Eu(III)] templation and ring closing metathesis reactions Christophe Lincheneau, Bernard Jean-Denis and Thorfinnur

More information

Supporting Information

Supporting Information DABCO-bis(sulfur dioxide), DABSO, as a Convenient Source of Sulfur Dioxide for Organic Synthesis: Utility in Sulfonamide and Sulfamide Preparation Holly Woolven, Carlos González-Rodríguez, Isabel Marco,

More information

Design, Synthesis and Evaluation of a Series of Novel Benzocyclobutene Derivatives as General Anesthetics

Design, Synthesis and Evaluation of a Series of Novel Benzocyclobutene Derivatives as General Anesthetics Design, Synthesis and Evaluation of a Series of Novel Benzocyclobutene Derivatives as General Anesthetics Chen Zhang*, Fangqiong Li, Yan Yu, Anbang Huang, Ping He, Ming Lei, Jianmin Wang, Longbin Huang,

More information

The oxazoline 6 was prepared according to a literature procedure 2 but on a 30g scale. The 1 H NMR is identical to what was reported.

The oxazoline 6 was prepared according to a literature procedure 2 but on a 30g scale. The 1 H NMR is identical to what was reported. Supporting Information for: A Facile Approach to 2-Acetamido-2-deoxy-b-D-Glucopyranosides via a Furanosyl xazoline Ye Cai, Chang-Chun Ling and David R. Bundle* Alberta Ingenuity Center for Carbohydrate

More information