Ruthenium Tetroxide Oxidation of N-Acylated Alkylamines: A New General Synthesis of Imides1)

Size: px
Start display at page:

Download "Ruthenium Tetroxide Oxidation of N-Acylated Alkylamines: A New General Synthesis of Imides1)"

Transcription

1 Ruthenium Tetroxide Oxidation of N-Acylated Alkylamines: A New General Synthesis of Imides1) KEN-ICHI TANAKA,* SHIGEYUKI YOSHIFUJI, and YOSHIHIRO NITTA School of Pharmacy, Hokuriku University, Kanagawa-machi, Kanazawa , Japan (Received September 1, 1986) Oxidation of various N-acylalkylamines with ruthenium tetroxide (RuO4) was systematically investigated. N-Acylalkylamines having an electron-donating group at the ƒ - or ƒà-position with respect to amide nitrogen or an electron-donating alkyl function in the acyl group were smoothly oxidized to the corresponding imides in excellent yields. On the other hand, N-acylalkylamines having an electron-withdrawing group were not oxidized at all, and most of the starting material was recovered. It appears that the reactivity of N-acylalkylamines is closely correlated with the acidity of the carboxylic acid from which the N-acyl group is derived, and also with the electron density at the methylene moiety adjacent to the amide nitrogen atom. Keywords oxidation; ruthenium tetroxide oxidation; imide synthesis; acyclic imide; amide; ruthenium tetroxide; substituent effect Ruthenium tetroxide (RuO4) is well known as an effective multipurpose oxidant2) and has recently been used for the oxidation of some N-acylated cyclic amines to lactams and imides.3) In contrast, only one example of RuO4 oxidation of an N-acylated acyclic amine, i.e., the conversion of N-hexylheptanamide into N-hexanoylheptanamide, has been reported.4) The oxidation was carried out in a one-phase system of carbon tetrachloride (CCl4) solution containing a stoichiometric amount of RuO4 oxidant to afford the imide in a low yield. To date, no detailed and systematic study on RuO, oxidation of N-acylated alkylamines has been done, and the above procedure seems not to represent a generally applicable synthetic method for acyclic imides in terms of yield. Chart 1

2 In connection with our program aimed at developing a strategy for the oxidative transformation5) of L-ƒ,ƒÖ-diamino acids into the corresponding L-ƒÖ-carbamoyl-ƒ -amino acids by employing RuO4 oxidation, we decided to investigate the oxidation of N-acylated alkylamines, as outlined in Chart 1. We report in the present paper the RuO4 oxidation of N- acylated alkylamines in detail. As the first model of alkylamines for the present study, we selected a propylamine, which was acylated with various acyl chlorides under the Schotten-Baumann reaction conditions. Initially, we investigated the relationship between the N-acyl group and reactivity. In our recent studies on RuO4 oxidation, we developed an improved oxidation method3e) employing ethyl acetate (AcOEt) as an organic solvent in a two-phase system instead of the traditional halogenated solvents (CCl4 and CHCl3). In our system, the oxidation time was significantly shortened and products were obtained in high yields in comparison with those by employing the traditional solvent systems. This was also confirmed by the present results (Table I, entries 7-9) obtained in the oxidation of N-acetylPropylamine 1g under various conditions. Thus, the RuO4 oxidation of a variety of N-acylated propylamines was carried out using a small amount of RuO2 hydrate and excess 10% aqueous sodium metaperiodate in a two-phase system of AcOEt-water at room temperature according to our procedure3e) reported previously. The consumption of the starting materials was checked by thin layer chromatography (TLC). The corresponding N-acylated amides (imides) were obtained and their structures were assigned on the basis of the spectral data (proton nuclear magnetic resonance (1H-NMR) spectra, infrared (IR) spectra, and mass spectra (MS)). The individual results are summarized in Table I. As shown in Table I, the N-acylamines (1a-g) were oxidized to give the corresponding imides (2a-g) in 67-96% yields. However, in the case of N-trichloroacetylpropylamine 1h, the reaction did not occur at all even after 120 h and most of the starting material was recovered unchanged. Among the results obtained above, the shortest reaction time was observed with the pivaloyl group, as shown in entry 1. It was found that the reaction rate of the N-acylamines is dependent on the N-acyl group. Thus, the relative oxidation rates of these compounds are approximately parallel to the acidity of the carboxylic acids from which the N- TABLE I. Oxidation of N-Acylpropylamines

3 Chart 2 TABLE II. 7 8 acyl groups were derived. Namely, the reactivity of RuO4, oxidation is dependent on the electron density at the nitrogen atom. This is consistent with an earlier suggestion3a) by Sheehan and Tulis, who investigated the oxidation of N-acylated cyclic amines with RuO4. It has been shown that the product yields are little affected by the bulkiness or acidity of the N- acyl group. Next, we examined the oxidation of various amines having an acyl group (Chart 2 and Table II). An N-acylated secondary amine 3 was smoothly oxidized to the corresponding imide 4 in 96% yield. This observation can be explained in terms of the increase of electron density at the nitrogen atom. An arylalkylamide 5 of benzylamine type was oxidized to N- benzoylalkylamide 6 in moderate yield, as in the case of N-benzoylpropylamine 1c (Table I), due to oxidative degradation of the aromatic ring.7 When the reaction was carried out at 0 Ž, the yield of 6 was found to increase to 84%. This suggests that the oxidative degradation of the aromatic ring is prevented at the lower reaction temperature. N-Butyrylamines (7a and 7b) having an alkyl or halogen group at the ƒà-position with respect to the nitrogen atom were smoothly oxidized to the corresponding imides (8a and 8b) in 92% and 82% yields, respectively. However, with the N-butyrylamines (7c-e) bearing an electron-withdrawing group at the ƒ - or ƒà-position from the nitrogen atom, the reaction did not progress even after 120 h. These results show that the electron density at the methylene moiety adjacent to the nitrogen atom significantly affects the reactivity. In conclusion, RuO4 oxidation should be a useful method for the synthesis of simple symmetrical and unsymmetrical acyclic imides, which have generally been prepared under drastic reaction conditions which have resulted in low yields.8) Experimental All melting points were measured on a Yanagimoto micro melting point apparatus and are uncorrected. IR

4 spectra were recorded on a JASCO IRA-2 or Hitachi spectrometer. MS were measured on a JEOL JMS D-300 spectrometer. NMR spectra were obtained at 23 Ž using tetramethylsilane as an internal standard with a JEOL JNM-MH-100 spectrometer. Column chromatography was performed on Merck silica gel ( mesh). Starting Materials for the RuO4 Oxidation All the starting N-acylamines (1a-h, 3, 5, and 7a-e) were prepared from commercially available amines and amino acid esters by acylation with the corresponding acid chlorides under the Shotten-Baumann reaction conditions (benzene- or EtOH-aqueous Na2CO3, 0-5 Ž) and purified by distillation or recrystallization. The samples for the RuO4 oxidation were characterized as described below. N-Propylpivalamide (1a): by Ž (1 mmhg), colorless solid. Anal. Calcd for C8H17NO: C, 67.09; H, 11.96; N, Found: C, 67.14; H, 11.82; N, N-Propylcyclohexanecarboxamide (1b): mp Ž, colorless solid. Anal. Calcd for C10H19NO: C, 70.96; H, 11.32; N, Found: C, 70.88; H, 11.21; N N-Propylbenzamide (1c): mp Ž (lit.9) mp 84.5 Ž), colorless plates (from hexane). N-Propyldodecanamide (1d): mp Ž, colorless scales. Anal. Calcd for C15H31NO: C, 74.63; H, 12.94; N, Found: C, 74.54; H, 12.87; N, N-Propyl-isobutyramide (1e): by Ž (1 mmhg), colorless solid. Anal. Calcd for C7H15NO: C, 65.07; H, 11.70; N, Found: C ; H, 11.73; N, N-Propylbutyramide (10: by Ž (1 mmhg) (lit.10) by 93 Ž (0.3 mmhg)), colorless solid. N-Propylacetamide (1g): bp Ž (8 mmhg) (lit.10) by Ž (10 mmhg)), colorless oil. N-Propyltrichloroacetamide (1h): by Ž (1 mmhg), colorless solid. Anal. Calcd for C5H8Cl3NO: C, 29.37; H. 3.94; N, Found: C, 29.20; H, 3.88; N, N,N-Diethylbutyramide (3): by Ž (4 mmhg) (lit.11) by 89 Ž (12 mmhg)), colorless oil. N-Benzylacetamide (5): mp Ž mp Ž), colorless needles (from hexane). N-Isobutylbutyramide (7a): by 110 Ž (5 mmhg) (lit.13) by 137 Ž (17 mmhg)), colorless oil. N-2-Chloroethylbutyramide (7b): by 111 C (5 mmhg), colorless solid. Anal. Calcd for C6H12ClNO: C, 48.17; H, 8.09; N, Found: C, 48.10; H, 8.21; N, TABLE III. MS and IR Spectral Data and Elemental Analyses for the Imides

5 TABLE IV. 1H-NMR Spectral Data for the Imides Ethyl N-Butyryl-fl-alaninate (7c): by Ž (7 mmhg), colorless oil. Anal. Calcd for C91-17NO3: C, 57.73; H, 9.15; N, Found: C, 57.65; H, 9.00; N, N-Cyanomethylbutyramide (7d): by 154 Ž (5 mmhg) (lit.14) by Ž (3 mmhg)), colorless oil. Ethyl N-Butyrylglycinate (7e): by Ž (8 mmhg) (lit15) by 124 Ž (3 mmhg)), colorless oil. General Procedure for the RuO4 Oxidation of N-Acylamines (1a-h, 3, 5, and 7a-e) in a Two-Phase System Using AcOEt \A solution of substrates (6 mmol) to be oxidized in AcOEt (20 ml) was added to a mixture of RuO2 E H2O (100 mg) and 10% aqueous NaIO4 (30 ml). The mixture was vigorously stirred in a sealed flask at room temperature. After the starting material had disappeared as determined by TLC, the layers were separated. The aqueous layer was extracted with three 20-ml portions of AcOEt. The combined AcOEt solution was treated with isopropyl alcohol (2 ml) for 2-3 h to destroy the RuO4 oxidant. Black-colored RuO2 which precipitated from the solution was filtered of and the filtrate was washed with saturated NaCl solution, then dried over anhydrous Na2SO4. The solution was concentrated in vacuo to leave a residue, which was purified by recrystallization for the solid products or by vacuum distillation for the oily products. The results are summarized in Tables I and II, and Chart 2. Analytical and spectral (MS, IR, and 1H-NMR) data for the oxidation products (2a \g, 4, 6, 8a, and 8b) are listed in Tables III and IV. N-Propionylpivalamide (2a): mp Ž, colorless prisms (from H2O). N-Propionylcyclohexanecarboxamide(2b): mp Ž, colorless prisms (from 70% EtOH). N-Propionylbenzamide (2c): mp Ž mp 98 Ž), colorless prisms (from hexane). N-Propionyl-isobutyramide (2e): mp Ž, colorless needles (from hexane). N-Propionylbutyramide (2f): mp Ž, colorless needless (from hexane). N-Acetylpropionamide (2g): mp Ž mp Ž), colorless needles (from hexane). N-Acetyl-N-ethylbutyramide (4): The oxidation of 3 was carried out under the general conditions for 3 h to give 4 (96%) as a colorless oil, by 1l0-115 Ž (bath temp.)/6 mmhg. N-Acetylbenzamide (6): 1) The oxidation of 5 was carried out under the general conditions for 2 h to give 6 as a colorless solid (64%), which was recrystallized from 70% EtOH as colorless needles, mp Ž (lit.18) mp Ž). 2) A similar oxidation of 5 was carried out at 0 Ž for 7 h to give 6 (84%). N-Isobutyrylbutyramide (8a): mp C, colorless needles (from hexane). N-Chloroacetylbutyramide (8b): mp C, colorless prisms (from hexane). RuO4 Oxidation of 1g in a One-Phase System The substrate (1g) (607 mg, 6 mmol) was added to a mixture of

6 RuO2 E xh2o (100 mg) and 10% aqueous NaIO4 solution (30 ml), and the mixture was vigorously stirred at room temperature in a sealed flask. After disappearance of the substrate, the reaction mixture was extracted with three 20- ml portions of AcOEt. The aqueous layer was concentrated in vacuo to leave a white solid, which was triturated with two 20-ml portions of AcOEt. The AcOEt extracts were combined, dried over anhydrous Na2SO4 and concentrated in vacuo to give crude 2g, which was purified by column chromatography on SiO2 with AcOEt hexane (1 : 2, v/v) as an eluent to give 2g (310 mg, 45%). RuO4 Oxidation of 1g in a Two-Phase System Using CCl4 \Oxidation of 1g was carried out under the general conditions in CCl4 as an organic solvent for 120 h, then the-reaction mixture was worked up in a manner similar to that described above. The crude oxidation products were purified by column chromatography on SiO2 with AcOEthexane (1 : 2, v/v) as an eluent. From the earlier part of the eluate, 2g (25%) was obtained. From the later part, 1g (65%) was recovered. Oxidation of 1h, Ethyl N-Butyl-ƒÀ-alaninate (7c), N-Cyanomethylbutyramide (7d), and Ethyl N-Butylglycinate (7e) \The oxidation of these compounds (1h, 7c, 7d, and 7e) did not progress under the general conditions for 120 h. The recovery of each starting material was 86-92%. References 1) A part of this work was presented at the 11th Symposium on Progress in Organic Reactions and Syntheses, Nagasaki, Japan, Nov. 1984, p ) D. G. Lee and M. van den Engl, "Oxidation in Organic Chemistry," Part B, ed. by W. S. Trahanovsky, Academic Press, New York, 1973, Chapter 4. 3) a) J. C. Sheehan and R. W. Tulis, J. Org. Chem., 39, 2264 (1974); b) N. Tangari and V. Tortorella, J. Chem. Soc., Chem. Commun., 1975, 71; c) R. Perrone, G. Bettoni, and V. Tortorella, Synthesis, 1976, 598; d) G. Bettoni, G. Carbonara, C. Franchini, and V. Tortorella, Tetrahedron, 37, 4159 (1981); e) S. Yoshifuji, K. Tanaka, T. Kawai, and Y. Nitta, Chem. Pharm. Bull., 33, 5515 (1985). 4) L. M. Berkowitz and P. N. Rylander, J. Am. Chem. Soc., 80, 6682 (1958). 5) S. Yoshifuji, K. Tanaka, and Y. Nitta, Chem. Pharm. Bull., 33, 1749 (1985). 6) Z. Rappoport, "Handbook of Tables for Organic Compound Identification," 3rd ed., CRC Press, Inc., Cleveland, 1967, p ) D. C. Ayres, J. Chem. Soc., Chem. Commun., 1975, ) R. B. Bates, F. A. Fletcher, K. D. Janda, and W. A. Miller, J. Org. Chem., 49, 3038 (1984) and references cited therein. 9) A. W. Titherly, J. Chem. Soc., 79, 405 (1901). 10) G. M. Burnett and K. M. Riclies, J. Chem. Soc. (B), 1966, ) C. R. Hauser and H. G. Walker, Jr., J. Am. Chem. Soc., 69, 295 (1947). 12) H. Amsel and A. W. Hofmann, Ber., 19, 1286 (1886). 13) S. I. Gertler and A. P. Yerington, U. S. Dep. Ag. Research Service, Entomol. Research Branch ARS-33-31, 1956, p. 10 [Chem. Abstr., 50, 17297h (1956)]. 14) A. Kotelko, Acta Polon. Pharm., 19, 109 (1962) [Chem. Abstr., 59, 1482f (1963)]. 15) G. Ya. Kondrateva and C.-H. Hung, Zh. Obshch. Kim., 32, 2348 (1962) [Chem. Abstr., 58, 7919h (1963)]. 16) J. B. Polya and T. M. Spotwood, Recl. Tray. Chim. Pays-Bas, 67, 927 (1948) [Chem. Abstr., 43, 4221b (1949)]. 17) Q. E. Thompson, J. Am. Chem. Soc., 73, 5841 (1951). 18) A. W. Titherley and T. H. Holden, J. Chem. Soc., 101, 1871 (1912).

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base

Supporting Information. Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base Supporting Information Efficient copper-catalyzed Michael addition of acrylic derivatives with primary alcohols in the presence of base Feng Wang, a Haijun Yang, b Hua Fu, b,c * and Zhichao Pei a * a College

More information

Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa, and Yoshiharu Iwabuchi* Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences,

Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa, and Yoshiharu Iwabuchi* Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Oxoammonium ion/naclo 2 : An Expedient, Catalytic System for One-pot Oxidation of Primary Alcohols to Carboxylic Acid with Broad Substrate Applicability Masatoshi Shibuya,Takahisa Sato, Masaki Tomizawa,

More information

Supporting Information

Supporting Information Supporting Information Synthesis of N-Heteropolycyclic Compounds Including Quinazolinone Skeletons by Using Friedel-Crafts Alkylation Bu Keun Oh, Eun Bi Ko, Jin Wook Han* and Chang Ho Oh* Department of

More information

National Defense Academy, Hashirimizu, Yokosuka, , Japan

National Defense Academy, Hashirimizu, Yokosuka, , Japan Suppoing Information for Reaction of Arynes with Amino Acid Esters Kentaro kuma, a * ahoko Matsunaga, a oriyoshi agahora, a Kosei Shioji, a and Yoshinobu Yokomori b a Depament of Chemistry, Faculty of

More information

Supplemental Information. Reactivity of Monovinyl (Meth)Acrylates Containing Cyclic Carbonates

Supplemental Information. Reactivity of Monovinyl (Meth)Acrylates Containing Cyclic Carbonates Supplemental Information Reactivity of Monovinyl (Meth)Acrylates Containing Cyclic Carbonates Kathryn A. Berchtold a, Jun Nie b, Jeffrey W. Stansbury c, d, and Christopher N. Bowman c, d, a Materials Science

More information

Schwartz s reagent-mediated regiospecific synthesis of 2,3-disubstituted indoles from isatins

Schwartz s reagent-mediated regiospecific synthesis of 2,3-disubstituted indoles from isatins Electronic Supplementary Information (ESI) Schwartz s reagent-mediated regiospecific synthesis of 2,3-disubstituted indoles from isatins A. Ulikowski and B. Furman* Institute of Organic Chemistry, Polish

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information ~ Experimental Procedures and Spectral/Analytical Data ~ Use of Dimethyl Carbonate as a Solvent Greatly Enhances the Biaryl Coupling of Aryl Iodides and Organoboron

More information

Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines

Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines Supporting Information for Lewis acid-catalyzed regioselective synthesis of chiral α-fluoroalkyl amines via asymmetric addition of silyl dienolates to fluorinated sulfinylimines Yingle Liu a, Jiawang Liu

More information

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of

p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of Supporting Information for: p-toluenesulfonic Acid-Mediated 1,3-Dipolar Cycloaddition of Nitroolefins with NaN 3 for Synthesis of 4-Aryl-NH-1,2,3-triazoles Xue-Jing Quan, Zhi-Hui Ren, Yao-Yu Wang, and

More information

Base-promoted acetal formation employing aryl salicylates

Base-promoted acetal formation employing aryl salicylates Base-promoted acetal formation employing aryl salicylates Pinmanee Boontheung, Patrick Perlmutter*, and Evaloni Puniani School of Chemistry, Monash University, PO Box 23, Victoria 3800 Australia E-mail:

More information

Supporting Information for. Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of. 3,5-Disubstituted Pyridines: Mechanistic Studies

Supporting Information for. Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of. 3,5-Disubstituted Pyridines: Mechanistic Studies Supporting Information for Use of the Curtius Rearrangement of Acryloyl Azides in the Synthesis of 3,5-Disubstituted Pyridines: Mechanistic Studies Ta-Hsien Chuang* a, Yu-Chi Chen b and Someshwar Pola

More information

Supporting Information. Radical fluorination powered expedient synthesis of 3 fluorobicyclo[1.1.1]pentan 1 amine

Supporting Information. Radical fluorination powered expedient synthesis of 3 fluorobicyclo[1.1.1]pentan 1 amine Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Radical fluorination powered expedient synthesis

More information

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice

Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice Supporting Information Rec. Nat. Prod. 9:4 (2015) 561-566 Synthesis and Blastocyst Implantation Inhibition Potential of Lupeol Derivatives in Female Mice Anita Mahapatra 1*, Purvi Shah 1, Mehul Jivrajani

More information

Allenylphosphine oxides as simple scaffolds for. phosphinoylindoles and phosphinoylisocoumarins

Allenylphosphine oxides as simple scaffolds for. phosphinoylindoles and phosphinoylisocoumarins Supporting Information for Allenylphosphine oxides as simple scaffolds for phosphinoylindoles and phosphinoylisocoumarins G. Gangadhararao, Ramesh Kotikalapudi, M. Nagarjuna Reddy and K. C. Kumara Swamy*

More information

Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes

Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes Divergent Construction of Pyrazoles via Michael Addition of N-Aryl Hydrazones to 1,2-Diaza-1,3-dienes Serena Mantenuto, Fabio Mantellini, Gianfranco Favi,* and Orazio A. Attanasi Department of Biomolecular

More information

CDI Mediated Monoacylation of Symmetrical Diamines and Selective Acylation of Primary Amines of Unsymmetrical Diamines

CDI Mediated Monoacylation of Symmetrical Diamines and Selective Acylation of Primary Amines of Unsymmetrical Diamines Supporting information: CDI Mediated Monoacylation of Symmetrical Diamines and Selective Acylation of Primary Amines of Unsymmetrical Diamines Sanjeev K. Verma*, Ramarao Ghorpade, Ajay Pratap and M. P.

More information

Supporting Information. Copper-catalyzed cascade synthesis of benzimidazoquinazoline derivatives under mild condition

Supporting Information. Copper-catalyzed cascade synthesis of benzimidazoquinazoline derivatives under mild condition Supporting Information Copper-catalyzed cascade synthesis of benzimidazoquinazoline derivatives under mild condition Shan Xu, Juyou Lu and Hua Fu* Key Laboratory of Bioorganic Phosphorus Chemistry and

More information

Supporting Information. for. Pd-catalyzed decarboxylative Heck vinylation of. 2-nitro-benzoates in the presence of CuF 2

Supporting Information. for. Pd-catalyzed decarboxylative Heck vinylation of. 2-nitro-benzoates in the presence of CuF 2 Supporting Information for Pd-catalyzed decarboxylative Heck vinylation of 2-nitro-benzoates in the presence of CuF 2 Lukas J. Gooßen*, Bettina Zimmermann, Thomas Knauber Address: Department of Chemistry,

More information

Preparation of Stable Aziridinium Ions and Their Ring Openings

Preparation of Stable Aziridinium Ions and Their Ring Openings Supplementary Information Preparation of Stable Aziridinium Ions and Their Ring Openings Yongeun Kim a Hyun-Joon Ha*, a Sae Young Yun b and Won Koo Lee,*,b a Department of Chemistry and Protein Research

More information

Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature

Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature Supplementary Information Manganese powder promoted highly efficient and selective synthesis of fullerene mono- and biscycloadducts at room temperature Weili Si 1, Xuan Zhang 1, Shirong Lu 1, Takeshi Yasuda

More information

Supporting Information. for. Synthesis of 2,1-benzisoxazole-3(1H)-ones by basemediated. photochemical N O bond-forming

Supporting Information. for. Synthesis of 2,1-benzisoxazole-3(1H)-ones by basemediated. photochemical N O bond-forming Supporting Information for Synthesis of 2,1-benzisoxazole-3(1H)-ones by basemediated photochemical N O bond-forming cyclization of 2-azidobenzoic acids Daria Yu. Dzhons and Andrei V. Budruev* Address:

More information

Ruthenium-Catalyzed C H Oxygenation on Aryl Weinreb Amides

Ruthenium-Catalyzed C H Oxygenation on Aryl Weinreb Amides Supporting Information Ruthenium-Catalyzed C H xygenation on Aryl Weinreb Amides Fanzhi Yang and Lutz Ackermann* Institut für rganische und Biomolekulare Chemie Georg-August-Universität Tammannstrasse

More information

Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction

Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction Enantioselective synthesis of anti- and syn-β-hydroxy-α-phenyl carboxylates via boron-mediated asymmetric aldol reaction P. Veeraraghavan Ramachandran* and Prem B. Chanda Department of Chemistry, Purdue

More information

Supporting Information Synthesis of 2-Aminobenzonitriles through Nitrosation Reaction and Sequential Iron(III)-Catalyzed C C Bond Cleavage of 2-Arylin

Supporting Information Synthesis of 2-Aminobenzonitriles through Nitrosation Reaction and Sequential Iron(III)-Catalyzed C C Bond Cleavage of 2-Arylin Supporting Information Synthesis of 2-Aminobenzonitriles through Nitrosation Reaction and Sequential Iron(III)-Catalyzed C C Bond Cleavage of 2-Arylindoles Wei-Li Chen, Si-Yi Wu, Xue-Ling Mo, Liu-Xu Wei,

More information

Novel D-erythro N-Octanoyl Sphingosine Analogs As Chemo- and Endocrine. Resistant Breast Cancer Therapeutics

Novel D-erythro N-Octanoyl Sphingosine Analogs As Chemo- and Endocrine. Resistant Breast Cancer Therapeutics Page 11 of 32 Cancer Chemotherapy and Pharmacology Novel D-erythro N-Octanoyl Sphingosine Analogs As Chemo- and Endocrine Resistant Breast Cancer Therapeutics James W. Antoon, Jiawang Liu, Adharsh P. Ponnapakkam,

More information

Use of degradable cationic surfactants with cleavable linkages for enhancing the. chemiluminescence of acridinium ester labels. Supplementary Material

Use of degradable cationic surfactants with cleavable linkages for enhancing the. chemiluminescence of acridinium ester labels. Supplementary Material Use of degradable cationic surfactants with cleavable linkages for enhancing the chemiluminescence of acridinium ester labels Supplementary Material Anand atrajan*and David Wen Siemens Healthcare Diagnostics

More information

3016 Oxidation of ricinoleic acid (from castor oil) with KMnO 4 to azelaic acid

3016 Oxidation of ricinoleic acid (from castor oil) with KMnO 4 to azelaic acid 6 Oxidation of ricinoleic acid (from castor oil) with KMnO 4 to azelaic acid CH -(CH ) OH (CH ) -COOH KMnO 4 /KOH HOOC-(CH ) -COOH C H 4 O (.) KMnO 4 KOH (.) (6.) C H 6 O 4 (.) Classification Reaction

More information

Rameshwar Prasad Pandit and Yong Rok Lee * School of Chemical Engineering, Yeungnam University, Gyeongsan , Korea

Rameshwar Prasad Pandit and Yong Rok Lee * School of Chemical Engineering, Yeungnam University, Gyeongsan , Korea Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Novel ne-pot Synthesis of Diverse γ,δ-unsaturated β-ketoesters by Thermal

More information

Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds

Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds Catalytic decarboxylative alkylation of β-keto acids with sulfonamides via the cleavage of carbon nitrogen and carbon carbon bonds Cui-Feng Yang, Jian-Yong Wang and Shi-Kai Tian* Joint Laboratory of Green

More information

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material

Naoya Takahashi, Keiya Hirota and Yoshitaka Saga* Supplementary material Supplementary material Facile transformation of the five-membered exocyclic E-ring in 13 2 -demethoxycarbonyl chlorophyll derivatives by molecular oxygen with titanium oxide in the dark Naoya Takahashi,

More information

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Supporting Information Facile Three-Step Synthesis and Photophysical Properties of [8]-, [9]-,

More information

Supporting Information. An Efficient Synthesis of Optically Active Physostigmine from Tryptophan via Alkylative Cyclization

Supporting Information. An Efficient Synthesis of Optically Active Physostigmine from Tryptophan via Alkylative Cyclization Supporting Information An Efficient Synthesis of Optically Active Physostigmine from Tryptophan via Alkylative Cyclization Michiaki, Kawahara, Atsushi Nishida, Masako Nakagawa* Faculty of Pharmaceutical

More information

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state

A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state A pillar[2]arene[3]hydroquinone which can self-assemble to a molecular zipper in the solid state Mingguang Pan, Min Xue* Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China Fax:

More information

SUPPORTING INFORMATION. Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S

SUPPORTING INFORMATION. Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S 1 SUPPORTING INFORMATION Transition metal-promoted synthesis of 2-aryl/heteroaryl-thioquinazoline: C-S Bond formation by Chan-Lam Cross-Coupling Reaction SATYA KARUNA PULAKHANDAM a, NARESH KUMAR KATARI

More information

ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors

ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors ph Switchable and Fluorescent Ratiometric Squarylium Indocyanine Dyes as Extremely Alkaline Sensors Jie Li, Chendong Ji, Wantai Yang, Meizhen Yin* State Key Laboratory of Chemical Resource Engineering,

More information

Supporting Information. for. Access to pyrrolo-pyridines by gold-catalyzed. hydroarylation of pyrroles tethered to terminal alkynes

Supporting Information. for. Access to pyrrolo-pyridines by gold-catalyzed. hydroarylation of pyrroles tethered to terminal alkynes Supporting Information for Access to pyrrolo-pyridines by gold-catalyzed hydroarylation of pyrroles tethered to terminal alkynes Elena Borsini 1, Gianluigi Broggini* 1, Andrea Fasana 1, Chiara Baldassarri

More information

THE JOURNAL OF ANTIBIOTICS. Polyketomycin, a New Antibiotic from Streptomyces sp. MK277-AF1. II. Structure Determination

THE JOURNAL OF ANTIBIOTICS. Polyketomycin, a New Antibiotic from Streptomyces sp. MK277-AF1. II. Structure Determination THE JOURNAL OF ANTIBIOTICS Polyketomycin, a New Antibiotic from Streptomyces sp. MK277-AF1 II. Structure Determination ISAO MOMOSE, WEI CHEN, HIKARU NAKAMURA, HIROSHI NAGANAWA, HIRONOBU IINUMA and TOMIO

More information

Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Introduction The carboxyl group (-CO 2 H) is the parent group of a family of compounds called acyl

More information

Stereoselective Aza-Darzens Reactions of Tert- Butanesulfinimines: Convenient Access to Chiral Aziridines

Stereoselective Aza-Darzens Reactions of Tert- Butanesulfinimines: Convenient Access to Chiral Aziridines Stereoselective Aza-Darzens Reactions of Tert- Butanesulfinimines: Convenient Access to Chiral Aziridines Toni Moragas Solá, a Ian Churcher, b William Lewis a and Robert A. Stockman* a Supplementary Information

More information

1/3/2011. Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon

1/3/2011. Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic Addition- Elimination at the Acyl Carbon Introduction The carboxyl group (-CO 2 H) is the parent group of a family of compounds called acyl compounds or carboxylic acid derivatives Chapter 17 Carboxylic Acids and Their Derivatives. Nucleophilic

More information

Supporting Information

Supporting Information Supporting Information Unconventional Passerini Reaction towards α-aminoxyamides Ajay L. Chandgude, Alexander Dömling* Department of Drug Design, University of Groningen, Antonius Deusinglaan 1, 9713 AV

More information

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information ovel pseudo[2]rotaxanes constructed by selfassembly of dibenzyl

More information

The oxazoline 6 was prepared according to a literature procedure 2 but on a 30g scale. The 1 H NMR is identical to what was reported.

The oxazoline 6 was prepared according to a literature procedure 2 but on a 30g scale. The 1 H NMR is identical to what was reported. Supporting Information for: A Facile Approach to 2-Acetamido-2-deoxy-b-D-Glucopyranosides via a Furanosyl xazoline Ye Cai, Chang-Chun Ling and David R. Bundle* Alberta Ingenuity Center for Carbohydrate

More information

Supporting Information for

Supporting Information for S 1 Supporting Information for Novel and Convenient Synthesis of Substituted Quinolines by Copper or PalladiumCatalyzed Cyclodehydration of 1-(2-Aminoaryl)-2-yn-1-ols Bartolo Gabriele,*, Raffaella Mancuso,

More information

Improved Carbonylation of Heterocyclic Chlorides and Challenging Aryl Bromides

Improved Carbonylation of Heterocyclic Chlorides and Challenging Aryl Bromides Albaneze-Walker et al S-1 Improved Carbonylation of Heterocyclic Chlorides and Challenging Aryl Bromides Jennifer Albaneze-Walker*, Charles Bazaral, Tanya Leavey, Peter G. Dormer, and Jerry A. Murry Department

More information

Regioective Halogenation of 2-Substituted-1,2,3-Triazole via sp 2 C-H Activation

Regioective Halogenation of 2-Substituted-1,2,3-Triazole via sp 2 C-H Activation Regioective Halogenation of 2-Substituted-1,2,3-Triazole via sp 2 C-H Activation Qingshan Tian, Xianmin Chen, Wei Liu, Zechao Wang, Suping Shi, Chunxiang Kuang,* Department of Chemistry, Tongji University,

More information

Supporting Information for

Supporting Information for Supporting Information for Tandem Mass Spectrometry Assays of Palmitoyl Protein Thioesterase and Tripeptidyl Peptidase Activity in Dried Blood Spots for the Detection of Neuronal Ceroid Lipofuscinoses

More information

Catalyst-free chemoselective N-tert-butyloxycarbonylation of amines in water

Catalyst-free chemoselective N-tert-butyloxycarbonylation of amines in water SUPPORTING INFORMATION Catalyst-free chemoselective N-tert-butyloxycarbonylation of amines in water Sunay V. Chankeshwara and Asit K. Chakraborti* National Institute of Pharmaceutical Education and Research

More information

Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. Jeremiah P. Malerich, Koji Hagihara, and Viresh H.

Chiral Squaramide Derivatives are Excellent Hydrogen Bond Donor Catalysts. Jeremiah P. Malerich, Koji Hagihara, and Viresh H. Chiral Squaramide Derivatives are Excellent ydrogen Bond Donor Catalysts Jeremiah P. Malerich, Koji agihara, and Viresh. Rawal* Department of Chemistry, University of Chicago, Chicago, Illinois 60637 E-mail:

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2010 69451 Weinheim, Germany Direct, One-pot Sequential Reductive Alkylation of Lactams/Amides with Grignard and Organolithium Reagents through Lactam/Amide Activation**

More information

Zinc Chloride Promoted Formal Oxidative Coupling of Aromatic Aldehydes and Isocyanides to α- Ketoamides

Zinc Chloride Promoted Formal Oxidative Coupling of Aromatic Aldehydes and Isocyanides to α- Ketoamides Supporting information for Zinc Chloride Promoted Formal xidative Coupling of Aromatic Aldehydes and Isocyanides to α- Ketoamides Marinus Bouma, Géraldine Masson* and Jieping Zhu* Institut de Chimie des

More information

Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of. Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis

Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of. Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis Copper(II) Ionic Liquid Catalyzed Cyclization-Aromatization of Hydrazones with Dimethyl Acetylenedicarboxylate: A Green Synthesis of Fully Substituted Pyrazoles Shirin Safaei, Iraj Mohammadpoor-Baltork,*

More information

Chapter 18. Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon

Chapter 18. Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon Chapter 18 Carboxylic Acids and Their Derivatives. Nucleophilic Addition-Elimination at the Acyl Carbon Carboxylic Acids Organic compounds characterized by their acidity Contains COOH group (must be at

More information

Supporting information

Supporting information Supporting information Diversity Oriented Asymmetric Catalysis (DOAC): Stereochemically Divergent Synthesis of Thiochromanes Using an Imidazoline-aminophenol aminophenol (IAP)-Ni Catalyzed Michael/Henry

More information

Direct Aerobic Carbonylation of C(sp 2 )-H and C(sp 3 )-H Bonds through Ni/Cu Synergistic Catalysis with DMF as the Carbonyl Source

Direct Aerobic Carbonylation of C(sp 2 )-H and C(sp 3 )-H Bonds through Ni/Cu Synergistic Catalysis with DMF as the Carbonyl Source Direct Aerobic Carbonylation of C(sp 2 )-H and C(sp 3 )-H Bonds through Ni/Cu Synergistic Catalysis with DMF as the Carbonyl Source Xuesong Wu, Yan Zhao, and Haibo Ge* Table of Contents General Information...

More information

SYNTHESIS OF QUATERNARY AMMONIUM COMPOUNDS FROM NATURAL MATERIALS

SYNTHESIS OF QUATERNARY AMMONIUM COMPOUNDS FROM NATURAL MATERIALS Int. J. Chem. Sci.: 12(3), 2014, 880-884 ISSN 0972-768X www.sadgurupublications.com SYNTHESIS OF QUATERNARY AMMONIUM COMPOUNDS FROM NATURAL MATERIALS MUHAMMAD ABDUL QADIR, MAHMOOD AHMED *, SHOUKAT HAYAT,

More information

Supporting Information. Total Synthesis of Grandisine D. Haruaki Kurasaki, Iwao Okamoto, Nobuyoshi Morita, and Osamu Tamura*

Supporting Information. Total Synthesis of Grandisine D. Haruaki Kurasaki, Iwao Okamoto, Nobuyoshi Morita, and Osamu Tamura* Supporting Information Total Synthesis of Grandisine D Haruaki Kurasaki, Iwao Okamoto, Nobuyoshi Morita, and Osamu Tamura* Discovery Research Laboratories, Kyorin Pharmaceutical Co. Ltd. 2399-1, Nogi,

More information

Student Handout. This experiment allows you to explore the properties of chiral molecules. You have

Student Handout. This experiment allows you to explore the properties of chiral molecules. You have Student Handout This experiment allows you to explore the properties of chiral molecules. You have learned that some compounds exist as enantiomers non-identical mirror images, such as your left and right

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Supporting Information Enantioselective Cu-catalyzed 1,4-Addition of Various Grignard Reagents to Cyclohexenone using Taddol-derived Phosphine-Phosphite

More information

Efficient Metal-Free Pathway to Vinyl Thioesters with Calcium Carbide as the Acetylene Source

Efficient Metal-Free Pathway to Vinyl Thioesters with Calcium Carbide as the Acetylene Source Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information Efficient Metal-Free Pathway to Vinyl Thioesters with Calcium Carbide

More information

Synthesis and Analysis of N-Acetyltyrosine-N- Ethyl Amide from N-Acetyl Yyrosine Ethyl Ester

Synthesis and Analysis of N-Acetyltyrosine-N- Ethyl Amide from N-Acetyl Yyrosine Ethyl Ester Governors State University OPUS Open Portal to University Scholarship All Capstone Projects Student Capstone Projects Fall 2010 Synthesis and Analysis of N-Acetyltyrosine-N- Ethyl Amide from N-Acetyl Yyrosine

More information

Iron-Catalyzed Alkylation of Alkenyl Grignard Reagents

Iron-Catalyzed Alkylation of Alkenyl Grignard Reagents Supporting Information for Iron-Catalyzed Alkylation of Alkenyl Grignard Reagents Gérard Cahiez,* Christophe Duplais and Alban Moyeux Laboratoire de Synthèse Organique Sélective et de Chimie Organométallique

More information

Simple copper/tempo catalyzed aerobic dehydrogenation. of benzylic amines and anilines

Simple copper/tempo catalyzed aerobic dehydrogenation. of benzylic amines and anilines Simple copper/tempo catalyzed aerobic dehydrogenation of benzylic amines and anilines Zhenzhong Hu and Francesca M. Kerton,* Department of Chemistry, Memorial University of Newfoundland, St. John s, NL,

More information

SUPPORTING INFORMATION FOR. Regioselective Ring-opening and Isomerization Reactions of 3,4-Epoxyesters Catalyzed by Boron Trifluoride

SUPPORTING INFORMATION FOR. Regioselective Ring-opening and Isomerization Reactions of 3,4-Epoxyesters Catalyzed by Boron Trifluoride S1 SUPPORTING INFORMATION FOR Regioselective Ring-opening and Isomerization Reactions of 3,4-Epoxyesters Catalyzed by Boron Trifluoride Javier Izquierdo, Santiago Rodríguez and Florenci V. González* Departament

More information

Nitro-Grela-type complexes containing iodides. robust and selective catalysts for olefin metathesis

Nitro-Grela-type complexes containing iodides. robust and selective catalysts for olefin metathesis Supporting Information for Nitro-Grela-type complexes containing iodides robust and selective catalysts for olefin metathesis under challenging conditions. Andrzej Tracz, 1,2 Mateusz Matczak, 1 Katarzyna

More information

Supporting Information File 1. for. Synthesis of functionalised β-keto amides by. aminoacylation/domino fragmentation of β-enamino amides

Supporting Information File 1. for. Synthesis of functionalised β-keto amides by. aminoacylation/domino fragmentation of β-enamino amides Supporting Information File 1 for Synthesis of functionalised β-keto amides by aminoacylation/domino fragmentation of β-enamino amides Pavel Yanev and Plamen Angelov* Address: Department of Organic Chemistry,

More information

Supporting Information. as the nitro source

Supporting Information. as the nitro source Supporting Information Efficient ipso-nitration of arylboronic acids with iron nitrate as the nitro source Min Jiang, a,b Haijun Yang,* a,b Yong Li, a,b Zhiying Jia b and Hua Fu b a Beijing Key Laboratory

More information

Acyl Radical Reactions in Fullerene Chemistry: Direct Acylation of. [60]Fullerene through an Efficient Decatungstate-Photomediated Approach.

Acyl Radical Reactions in Fullerene Chemistry: Direct Acylation of. [60]Fullerene through an Efficient Decatungstate-Photomediated Approach. Supporting information Acyl Radical Reactions in Fullerene Chemistry: Direct Acylation of [60]Fullerene through an Efficient Decatungstate-Photomediated Approach. Manolis D. Tzirakis and Michael rfanopoulos

More information

Supporting Information

Supporting Information Notes Bull. Korean Chem. Soc. 2013, Vol. 34, No. 1 1 http://dx.doi.org/10.5012/bkcs.2013.34.1.xxx Supporting Information Chemical Constituents of Ficus drupacea Leaves and their α-glucosidase Inhibitory

More information

# Supplementary Material (ESI) for Chemical Communications # This journal is The Royal Society of Chemistry 2005

# Supplementary Material (ESI) for Chemical Communications # This journal is The Royal Society of Chemistry 2005 Electronic Supplementary Information for: (Z)-Selective cross-dimerization of arylacetylenes with silylacetylenes catalyzed by vinylideneruthenium complexes Hiroyuki Katayama,* Hiroshi Yari, Masaki Tanaka,

More information

Supporting Information. Palladium-Catalyzed Formylation of Aryl Iodides with HCOOH as

Supporting Information. Palladium-Catalyzed Formylation of Aryl Iodides with HCOOH as Supporting Information Palladium-Catalyzed Formylation of Aryl Iodides with HCOOH as CO Source Guanglong Sun,,, Xue Lv,,, Yinan Zhang, Min Lei,*,, and Lihong Hu*, Jiangsu Key Laboratory for Functional

More information

A General and Efficient 2-Amination of Pyridines and Quinolines

A General and Efficient 2-Amination of Pyridines and Quinolines A General and Efficient 2-Amination of Pyridines and Quinolines Jingjun Yin,* Bangping Xiang,* Mark A. Huffman, Conrad E. Raab, and Ian W. Davies Department of Process Research, rck Research Laboratories,

More information

Electronic Supplementary Information. Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of

Electronic Supplementary Information. Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of Electronic Supplementary Information Quinine/Selectfluor Combination Induced Asymmetric Semipinacol Rearrangement of Allylic Alcohols: An Effective and Enantioselective Approach to α Quaternary β Fluoro

More information

Supporting Information for. Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the. analysis of Glucose in Whole Blood

Supporting Information for. Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the. analysis of Glucose in Whole Blood Supporting Information for Boronic Acid Functionalized Aza-Bodipy (azabdpba) based Fluorescence Optodes for the analysis of Glucose in Whole Blood Yueling Liu, Jingwei Zhu, Yanmei Xu, Yu Qin*, Dechen Jiang*

More information

Supporting Information. Palladium-catalyzed reductive cleavage of tosylated arene using isopropanol as the mild reducing agent

Supporting Information. Palladium-catalyzed reductive cleavage of tosylated arene using isopropanol as the mild reducing agent Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2014 Supporting Information Supporting Information Palladium-catalyzed reductive cleavage

More information

Thiol-Activated gem-dithiols: A New Class of Controllable. Hydrogen Sulfide (H 2 S) Donors

Thiol-Activated gem-dithiols: A New Class of Controllable. Hydrogen Sulfide (H 2 S) Donors Thiol-Activated gem-dithiols: A New Class of Controllable Hydrogen Sulfide (H 2 S) Donors Yu Zhao, Jianming Kang, Chung-Min Park, Powell E. Bagdon, Bo Peng, and Ming Xian * Department of Chemistry, Washington

More information

All chemicals were obtained from Aldrich, Acros, Fisher, or Fluka and were used without

All chemicals were obtained from Aldrich, Acros, Fisher, or Fluka and were used without Supplemental Data Alexander et al. Experimental Procedures General Methods for Inhibitor Synthesis All chemicals were obtained from Aldrich, Acros, Fisher, or Fluka and were used without further purification,

More information

The synthesis of condensed imidazoles II. A simple synthesis of some 1,5-diaryl-3-[2-(naphtho[2,3-d]imidazol-2-yl)]formazans and its derivatives 1

The synthesis of condensed imidazoles II. A simple synthesis of some 1,5-diaryl-3-[2-(naphtho[2,3-d]imidazol-2-yl)]formazans and its derivatives 1 The synthesis of condensed imidazoles II. A simple synthesis of some 1,5-diaryl-3-[2-(naphtho[2,3-d]imidazol-2-yl)]formazans and its derivatives 1 Iveta Fryšová *, Jan Slouka, and Jan laváč Department

More information

Supplementary Materials Contents

Supplementary Materials Contents Supplementary Materials Contents Supporting information... S1 1. General Information & Materials... S2 2. General Procedure for ptimization of Amidation of Aryl Bromides with Copper/,-Dimethylglycine Catalytic

More information

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives EXPERIMENT 8 (rganic Chemistry II) Carboxylic Acids Reactions and Derivatives Pahlavan/Cherif Materials Medium test tubes (6) Test tube rack Beakers (50, 150, 400 ml) Ice Hot plate Graduated cylinders

More information

One-pot Synthesis of 1-Alkyl-1H-indazoles. Supporting Information

One-pot Synthesis of 1-Alkyl-1H-indazoles. Supporting Information One-pot Synthesis of 1-Alkyl-1H-indazoles from 1,1-Dialkylhydrazones via Aryne Annulation ataliya A. Markina, Anton V. Dubrovskiy, and Richard C. Larock* Department of Chemistry, Iowa State University,

More information

A Novel Synthesis of Arylpyrrolo[1,2-a]pyrazinone Derivatives

A Novel Synthesis of Arylpyrrolo[1,2-a]pyrazinone Derivatives Molecules 2004, 9, 574-582 molecules ISS 1420-049 http://www.mdpi.org A ovel Synthesis of ylpyrrolo[1,2-a]pyrazinone Derivatives Fei Wang*, Jiawei Wang and Shoufang Zhang School of Pharmaceutical Engineering,

More information

Palladium-Catalyzed Regioselective C-2 Arylation of 7-Azaindoles, Indoles, and Pyrroles with Arenes. Supporting Information

Palladium-Catalyzed Regioselective C-2 Arylation of 7-Azaindoles, Indoles, and Pyrroles with Arenes. Supporting Information Electronic Supplementary Material (ESI) for Chemical Communications. This journal is The Royal Society of Chemistry 2016 Palladium-Catalyzed Regioselective C-2 Arylation of 7-Azaindoles, Indoles, and Pyrroles

More information

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Information (ESI) Mild and convenient one-pot synthesis of 2-amino-1,3,4-oxadiazoles promoted by trimethylsilyl isothiocyanate (TMSNCS) Dinneswara Reddy Guda, Hyeon Mo Cho, Myong

More information

Eur. J. Org. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN X SUPPORTING INFORMATION

Eur. J. Org. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN X SUPPORTING INFORMATION Eur. J. Org. Chem. 2007 WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2007 ISSN 1434 193X SUPPORTING INFORMATION Title: Effect of Varying the Anionic Component of a Copper(I) Catalyst on Homologation

More information

The First Au-Nanoparticles Catalyzed Green Synthesis of Propargylamines Via Three-Component Coupling Reaction of Aldehyde, Alkyne And Amine

The First Au-Nanoparticles Catalyzed Green Synthesis of Propargylamines Via Three-Component Coupling Reaction of Aldehyde, Alkyne And Amine Supporting information of The First Au-anoparticles Catalyzed Green Synthesis of Propargylamines Via Three-Component Coupling Reaction of Aldehyde, Alkyne And Amine Mazaahir Kidwai a *, Vikas Bansal a,

More information

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives

Carboxylic Acid Derivatives Reading Study Problems Key Concepts and Skills Lecture Topics: Structures and reactivity of carboxylic acid derivatives Carboxylic Acid Derivatives Reading: Wade chapter 21, sections 21-1- 21-16 Study Problems: 21-45, 21-46, 21-48, 21-49, 21-50, 21-53, 21-56, 21-58, 21-63 Key Concepts and Skills: Interpret the spectra of

More information

Structures and Hypotensive Effect of Flavonoid Glycosides. in Young Citrus unshiu Peelings õ

Structures and Hypotensive Effect of Flavonoid Glycosides. in Young Citrus unshiu Peelings õ Structures and Hypotensive Effect of Flavonoid Glycosides in Young Citrus unshiu Peelings õ Akiyoshi SAWABE, Yoshiharu MATSUBARA, Yoshitomi IIZUKA*, and Kozo OKAMOTO** Department of Applied Chemistry,

More information

Supporting Information

Supporting Information Supporting Information Developing novel activity-based fluorescent probes that target different classes of proteases Qing Zhu, Aparna Girish, Souvik Chattopadhaya and Shao Q Yao * Departments of Chemistry

More information

January 2001 Chem. Pharm. Bull. 49(1) (2001) 87

January 2001 Chem. Pharm. Bull. 49(1) (2001) 87 January 2001 Chem. Pharm. Bull. 49(1) 87 96 (2001) 87 The Chemistry of Indoles. CIII. 1) Simple Syntheses of Serotonin, N-Methylserotonin, Bufotenine, 5-Methoxy-N-methyltryptamine, Bufobutanoic Acid, N-(Indol-3-yl)methyl-5-methoxy-N-methyltryptamine,

More information

Electronic Supplementary Material

Electronic Supplementary Material Electronic Supplementary Material PAMAM Dendrimers Bearing Electron-Donating Chromophores: Fluorescence and Electrochemical Properties Bing-BingWang a, Xin Zhang a, Ling Yang a, Xin-Ru Jia* a, Yan Ji a,

More information

A Hierarchy of Aryloxide Deprotection by Boron Tribromide. Supporting Information

A Hierarchy of Aryloxide Deprotection by Boron Tribromide. Supporting Information A Hierarchy of Aryloxide Deprotection by Boron Tribromide Sreenivas Punna, Stéphane Meunier and M. G. Finn* Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute,

More information

EXPERIMENTAL PROCEDURES, OPTIMIZATION STUDIES, CHARACTERIZATION DATA and NMR SPECTRA

EXPERIMENTAL PROCEDURES, OPTIMIZATION STUDIES, CHARACTERIZATION DATA and NMR SPECTRA Supporting Information for Chemical Communications: S1 SUPPRTING INFRMATIN FR CHEM. CMMUN. Direct, facile synthesis of N-acyl-α-amino amides from α-keto esters and ammonia Rukundo Ntaganda, a Tamara Milovic,

More information

Supporting Information

Supporting Information Supporting Information Cobalt-Catalyzed Carbonylation of C(sp 2 )-H Bonds with Azodicarboxylate as the Carbonyl Source Jiabin Ni,, Jie Li,,š Zhoulong Fan,, and Ao Zhang *,,,š CAS Key Laboratory of Receptor

More information

Supporting Information. Nitrodibenzofuran: a One- and Two-Photon Sensitive Protecting Group that is Superior to

Supporting Information. Nitrodibenzofuran: a One- and Two-Photon Sensitive Protecting Group that is Superior to Supporting Information Nitrodibenzofuran: a One- and Two-Photon Sensitive Protecting Group that is Superior to Brominated Hydroxycoumarin for Thiol Caging in Peptides M. Mohsen Mahmoodi, Daniel Abate-Pella,

More information

Direct ortho-c H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-palladacycle

Direct ortho-c H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-palladacycle Direct ortho-c H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via exo-palladacycle Kun Guo, Xiaolan Chen, Mingyu Guan, and Yingsheng Zhao* Key Laboratory of Organic Synthesis of

More information

Supplemental Material

Supplemental Material Supplemental Material General Methods Unless otherwise indicated, all anhydrous solvents were commercially obtained and stored under nitrogen. Reactions were performed under an atmosphere of dry nitrogen

More information

Organic Letters. Synthesis of Oxygen-Free [2]Rotaxanes: Recognition of Diarylguanidinium Ions by Tetraazacyclophanes. and Sheng-Hsien Chiu*

Organic Letters. Synthesis of Oxygen-Free [2]Rotaxanes: Recognition of Diarylguanidinium Ions by Tetraazacyclophanes. and Sheng-Hsien Chiu* Organic Letters Synthesis of Oxygen-Free [2]Rotaxanes: Recognition of Diarylguanidinium Ions by Tetraazacyclophanes Yu-Hsuan Chang, Yong-Jay Lee, Chien-Chen Lai, Yi-Hung Liu, Shie-Ming Peng, and Sheng-Hsien

More information

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany Enantioselective Rhodium-catalyzed Addition of Arylboronic Acids to α-ketoesters Hai-Feng Duan, Jian-Hua Xie, Xiang-Chen Qiao, Li-Xin Wang,

More information

Supporting Information

Supporting Information Supporting Information Synthesis of Pyrido-fused Quinazolinone Derivatives via Copper-catalyzed Domino Reaction Meilin Liu, Miaomiao Shu, Chaochao Yao, Guodong Yin,* Dunjia Wang, and Jinkun Huang* Hubei

More information