Using Accelerometers to Determine the Cessation of Activity of Broilers

Size: px
Start display at page:

Download "Using Accelerometers to Determine the Cessation of Activity of Broilers"

Transcription

1 2007 Poultry Science Association, Inc. Using Accelerometers to Determine the Cessation of Activity of Broilers M. D. Dawson, M. E. Lombardi, E. R. Benson, 1 R. L. Alphin, and G. W. Malone Delaware Experimental Station, College of Agriculture and Natural Resources, University of Delaware, Newark Primary Audience: Complex Managers, Veterinarians, Researchers SUMMARY In recent years, the threat of a pandemic outbreak of avian influenza has become a global issue. The existence of zoonotic strains, causing cases of human infection throughout Eastern Asia, has increased interest in the prevention and containment of avian influenza outbreaks. Research has led to the development of a mass emergency depopulation method utilizing water-based foam for turkeys and chickens. Birds undergoing foam depopulation cannot be easily observed to determine time to death. As a result, a means to monitor birds and to determine time to death was needed to be developed in parallel to the new depopulation method. In this study, the use of an accelerometer for determination of the cessation of reflex reactions during the procedure was validated by comparing muscular cessation on external limbs to cardio-relaxation detected by an electrocardiogram. Electrocardiogram and accelerometer readings were taken from trials in which birds were euthanized by cervical dislocation and compared with other experiments in which water-based foam and CO 2 -polyethylene tent treatments were used. Statistical analysis indicated that accelerometers are valid sensors for the detection of the cessation of terminal convulsions in broilers. Key words: accelerometer, broiler, depopulation, electrocardiogram, foam, carbon dioxide polyethylene tent procedure 2007 J. Appl. Poult. Res. 16: doi: /japr DESCRIPTION OF PROBLEM The spread of avian influenza (AI) poses a serious threat to poultry populations and a potential threat to humans. An outbreak of highpathogenic AI virus, H5N1 virus, has caused many human fatalities and has required the destruction of millions of birds [1]. The United States has been fortunate in that most domestic outbreaks have been of the low-pathogenic AI virus (LPAIV) that has less of a zoonotic potential. Most recent disease outbreaks in the United States have been quickly contained. The United States has suffered high-pathogenic AI virus outbreaks such as the 1983 Pennsylvania H5N2 outbreak in which 17 million birds were destroyed at a cost of US$61 million [2, 3]. More recently, an outbreak of LPAIV in Delaware and Maryland resulted in a ban on the import of US poultry in 30 nations in 2004 [4, 5]. The economic effect of AI outbreaks can be devastating, particularly in heavy poultry production areas such as Sussex County, Delaware, the highest poultry-producing county in the United States, where the 2004 outbreak re- 1 Corresponding author: ebenson@udel.edu

2 584 sulted in the destruction of 85,000 birds on 2 Delaware farms. For this reason, a new technique to rapidly contain and depopulate infected flocks was developed using water-based fire-fighting foam. One measure of effectiveness of a depopulation treatment is the elapsed time from treatment to death. During the early evaluation of the water-based foam depopulation technique, measurement of the elapsed time to death was not practical, because terminal movements could not be observed with birds fully immersed in opaque water-based firefighting foam. Monitoring of heart activity by a stethoscope required removal of 1 or more birds from the treatment to perform the observation, introducing an observer effect. The need to quantitatively monitor the depopulation process is a relatively unusual requirement associated with the development of a depopulation procedure, not a requirement for field use during emergency depopulation. To compensate for the difficulty in viewing the birds immersed in foam, the use of an accelerometer to measure terminal activity was evaluated. An accelerometer measures changes in velocity or speed. The accelerometer was used to measure vibration caused by a bird in terminal convulsions, where the observation of a flat line on monitoring equipment would indicate cessation of the terminal convulsive activity. In this study, the use of an accelerometer for monitoring the cessation of activity in broilers was evaluated. Background The CO 2 -polyethylene tent procedure used in the 2004 LPAIV outbreaks in Delaware was the control procedure in early experiments to determine the effectiveness of foam as a depopulation method [6]. In the CO 2 -polyethylene tent procedure, the birds are covered with polyethylene, and the volume of air under the polyethylene sheet is replaced with CO 2 gas. When subjected to high levels of CO 2, birds are anesthetized and then begin terminal convulsions before dying of hypoxia. Cessation time in CO 2 - polyethylene tent trials was declared by a poultry science expert when the cessation of terminal convulsions was observed. Five minutes after the induction of gas, a random bird was selected and checked for a heartbeat. JAPR: Research Report The CO 2 -polyethylene tent procedure used in Delaware was similar to the techniques used in the 2002 Virginia AI virus outbreak. Depopulation was handled in Virginia using 2 controlled atmosphere methods. The first method involved constructing a ground panel enclosure. A rectangular plywood enclosure was built at 1 end of a turkey house and covered by a tarp supported by a zigzag rope truss to prevent sagging [7]. Turkeys were herded into the enclosure in batches of 5,500 birds, and an average of 6 min 20 s were required for audible signs of activity to cease. In a second procedure for caged birds, a metal enclosure was placed over birds in live-haul cages on a flatbed truck. The second technique also required the euthanasia of birds in batches with the cessation of audible signs of activity occurring at an average of 1 min 28 s for 375 chickens. Detailed physiological studies were conducted in the United Kingdom, where the effects of CO 2 stunning of hens on electroencephalogram (EEG) suppression and loss of somatosensory-evoked potentials (SEP) were analyzed [8, 9]. In these studies, several physiological phases were studied, and data were provided for suppression of EEG, loss of SEP, period of convulsing (e.g., onset and duration of clonic and tonic phases), and finally EEG silence. In terms of the period of convulsions, the clonic phase is characterized by episodes of wing-flapping, whereas the tonic phase involved the birds becoming rigid and showing final paddling motions with their legs and wings extended [8]. In the first study, Raj et al. [8] stunned 17 hens in 45% CO 2. Raj et al. [8] found EEG suppression (unconsciousness) occurred in 21 ± 4 s, loss of SEP in 30 ± 2 s, and EEG silence (brain death) in 101 ± 18 s. In terms of the reflex response brought on by the suppression of brain activity, the onset of the clonic phase occurred at 45 ± 4 s and typically lasted 15 ± 5 s. The birds would typically enter the tonic phase at 68 ± 10 s for a duration of 25 ± 10 s. Using the data presented, visible movement typically ceased in 93 s. In a second study, 12 hens were euthanized using 30% CO 2 in Ar with 5% residual O 2 [9]. The CO 2 -O 2 gas mixture caused EEG suppression to occur in an average of 14.0 s, loss of

3 DAWSON ET AL.: DETERMINING BROILER CESSATION ACTIVITY 585 SEP in 17.1 s, and EEG silence in 58.0 s. Cessation of visible movement occurred on average in 60.0 s. The clonic phase typically set in at 17.1 s and lasted 14.6 s. The tonic phase typically started at 35.0 s. During early foam depopulation studies [6, 10], small polycarbonate euthanasia chambers were used. After treatment with foam, involuntary convulsions in birds would agitate and cause motion of the foam. In these experiments, the cessation of foam agitation was the best possible indication of the cessation of bird activity. Once foam agitation ceased, a poultry expert would call the cessation time. At 5 min after the introduction of foam, a random bird would be removed from the chamber and examined for a heartbeat. In all but 1 instance, all birds were found to have no detectable heartbeat within 5 min, and no bird had a detectable heartbeat at 10 min [6]. During depopulation experiments, it is not practical to examine many birds to determine cessation, cessation time, or both. Examination of individual birds is time-consuming and requires removing the birds from treatment. The use of EEG in large experiments is impractical, because surgery is required to implant the sensor. Although the use of an electrocardiogram (ECG) does not require surgery, it does require extended preparation time including bird preparation and attachment of multiple electrodes, making it impractical in the field. Because measurement of brain activity (EEG) or heart activity (ECG) is not practical under field conditions, an alternate method of monitoring the birds during controlled depopulation studies was needed. The use of an accelerometer, a device that can detect sudden acceleration changes, was suggested for detecting the time associated with the irreversible convulsions that accompany the loss of brain activity. Using an accelerometer provides several advantages over EEG and ECG. The preparation time is negligible, because it only requires securing the sensor to a limb (Figure 1). Accelerometers also require less equipment, because multiple sensors can be monitored from a single computer. Both EEG and ECG have high bandwidth requirements that restrict the number of birds that can be simultaneously monitored. The AVMA [11] considers cardiac arrest to be clinical death. Because there is little information on the detection of time of death through measurement of terminal movements, an analytical method was required to determine when death occurs in relation to the cessation of the convulsive period. Cervical dislocation, or the dislocation of the neck vertebrae from the cranium, is an approved method of euthanasia in poultry [11]. Cervical dislocation causes separation of the brain from the spinal cord and carotid arteries. Terminal movements including wing motion may be observed for several minutes in birds subjected to cervical dislocation. The observed spastic movements are reflex reactions resulting from sudden termination of signals from the brain and represent the irreversible clonic and tonic phases of convulsion preceding death. Based on the findings of Raj et al. [8, 9], brain death occurs at or shortly after the convulsive phase. Because the accelerometer senses motion and can detect the end of the convulsive phase, it can therefore serve as a relative indicator of the time of brain death. MATERIALS AND METHODS In a preliminary experiment (data not shown) to evaluate the best placement for an accelerometer, 3 locations (e.g., the wing, neck, and leg) of broilers were tested as possible contact points. Given that the cessation of final movements would serve as a critical time, the extremity that provided the longest time until a flat line was observed on monitoring equipment was desired. Accelerometer data indicated that the leg position provided the longest cessation times when a broiler was euthanized by cervical dislocation. After cessation of leg movement, motion could still be observed in the breast of the bird, but no practical means of attaching the accelerometer to detect chest motion was available. Although the heart will beat for several minutes after brain death in a bird, an accelerometer does not directly measure heart activity. To monitor heart activity, ECG electrodes were attached to the birds. Although the application of electrode pads was a stressful experience for the birds, ECG measurements showed that birds returned to a steady heartbeat within

4 586 JAPR: Research Report Figure 1. Accelerometers were attached to the leg of broilers to measure cessation of activity. seconds of the completion of preparation for ECG measurements. For this study, data were collected from a controlled experiment utilizing euthanasia by cervical dislocation and from 2 prior experiments using mass emergency depopulation methods. Experiment 1 describes the base cervical dislocation experiment conducted specifically for this study. Experiments 2 and 3 were conducted previously to investigate the following: 1. water-based fire-fighting foam as an effective method for the mass depopulation of floor-reared poultry in emergency scenarios, 2. stress experienced by the birds when subjected to different depopulation treatments, and 3. performance of foam-generation equipment under field conditions. Accelerometer readings were collected during experiments 2 and 3, but those experiments were not conducted specifically to evaluate the use of accelerometers. To validate the use of accelerometers in determining the cessation of convulsions, a stepwise statistical analysis was conducted. The first step was to determine if the cessation times for external extremities measured by the accelerometer were significantly different from heart relaxation times as observed via an ECG when broilers are euthanized by cervical dislocation. The second step was to compare data gathered from laboratory-based foam depopulation trials to the cessation-relaxation times from the cervical dislocation experiment. The final stage of analysis was to compare CO 2 -polyethylene tent depopulation and foam depopulation data collected under field-simulated conditions to the cervical dislocation data set.

5 DAWSON ET AL.: DETERMINING BROILER CESSATION ACTIVITY 587 In all 3 experiments, 1 of 2 PCB Piezotronics [12] shear mode accelerometers, models 353B16 and 352C66, were used on each bird as shown in Figure 1. The 353B16 was the initial accelerometer, with a sensitivity of 1.02 mv/(m/s 2 ) ± 10% (10 mv/g ± 10%) capable of operating over a range of ±4,905 m/s 2 of peak (±500 g of peak). The second higher-sensitivity accelerometer, 10.2 mv/(m/s 2 ) ± 10% (100 mv/ g ± 10%), which was introduced in later trials, had an operational range of ±491 m/s 2 of peak (±50 g of peak). For the purpose of the depopulation study, the signal characteristic of interest was the time at which a flat line begins, which minimized any difference in accelerometer characteristics. The accelerometer output was passed through a PCB Piezotronics [12] single-channel signal conditioner, model 480C02, and recorded independently using National Instruments [13] PCI-6036E data acquisition card. The monitoring interface was a custom-written virtual instrument developed in National Instruments [13] LabVIEW data acquisition and analysis software. The cessation time of interest was the period from the beginning of convulsive activity until detectable motion ceases. Each bird was also instrumented with ECG sensors in the first and second experiment. By design, no ECG data were collected in the field during the third experiment. Each bird had ECG monitoring pads secured onto their left leg, right wing, and right leg. The ECG output was recorded on a BIOPAC Systems Inc. [14] MP30A acquisition unit using BSL Pro monitoring software. Due to bandwidth requirements, ECG monitoring and virtual instrumentation software for the accelerometer were operated on separate computers. The time at which the heart relaxes, observed as a stable low-amplitude heart signal with a decreasing beat rate, was the signal characteristic of interest. Bird activity in each experiment was recorded over a 300-s period for both ECG and accelerometer sensors. All testing was performed under the approval and guidelines of the University of Delaware Agricultural Animal Care and Use Committee and followed the guidelines laid out by the Federation of Animal Science Societies [15]. Experiment 1 Twelve randomly selected 6-wk-old broilers were instrumented with both accelerometer and ECG sensors. One bird per trial was euthanized via cervical dislocation. Each broiler was placed in a 113-L (30 gal) chamber to restrict the range of movement during clonic convulsions. Cervical dislocation was applied 7 s after sensor recordings began. Experiment 2 A laboratory study was conducted to determine the differences between depopulation by the introduction of fire-fighting foam and the CO 2 -polyethylene tent procedure. The purpose of the experiment was to determine the physiological cause of death in birds subjected to each treatment and to measure the corticosterone hormone levels before and after treatment to gauge stress. Ten broilers (1-bird replicates) were subjected to 3 depopulation treatments: foam enriched with CO 2, foam without CO 2, and the CO 2 -polyethylene tent procedure. A total of 30 broilers were tested. Further detail of experiment 2 is discussed in Benson et al. [10]. For the evaluation of the accelerometer, missing data were omitted, and six 1-bird replicates, each of the foam with CO 2 and foam without CO 2, were used for a total of 12 foam depopulation observations. It was previously determined that no significant difference existed between foam with and without CO 2 [10], so both foam treatments can be handled as a single foam treatment. For the foam trials, each bird was placed into 1 of 2 prefilled 113-L (30 gal) chambers. A solution of 160 ml of Ansul [16] Jet-X high expansion foam concentrate and 6 L of tap water were agitated to create foam. Sensor recording began at the moment the bird was introduced to the foam chamber. Inadequate accelerometer data were collected for the CO 2 -polyethylene tent replicates precluding comparisons to the CO 2 -polyethylene tent procedure from this experiment. Experiment 3 A study was conducted to compare the effects of foam depopulation against the CO 2 - polyethylene tent procedure under simulated field conditions. Experiment 3 was also used to

6 588 JAPR: Research Report Table 1. Descriptive statistics for accelerometer-detected cessation times and electrocardiogram (ECG)-detected cardiac-relaxation times for each treatment across all experiments Cessation and relaxation Experiment Treatment Sensor Mean (s) SD (s) Min (s) Max (s) 1 Cervical dislocation Accelerometer Cervical dislocation ECG Foam Accelerometer Foam ECG Foam Accelerometer Poly tent 1 Accelerometer CO 2 -polyethylene tent procedure. evaluate the expected performance of a prototype depopulation foam generator by comparing the reliability of properly (good) and improperly generated (bad) foam. Of the 2 foam formulations, good foam was found to have a very high probability of depopulation success; bad foam had a lower likelihood of depopulation success, in which success was defined as a 0% survival rate. For the purposes of this study, only good foam and CO 2 -polyethylene tent data were analyzed. For the CO 2 -polyethylene tent procedure, each bird was instrumented and placed in a cm ( in.) clear polycarbonate euthanasia chamber. The CO 2 gas was discharged from a gas cylinder for 60 s via a hose entering the chamber from the top. The hose was secured to the bottom of the chamber to prevent hose movement. The chamber was lined with clear polyethylene while an excess polyethylene sheet was then folded over the birds and held in place with weights. The birds were not in a hermetically sealed environment, and CO 2 gas could escape during the depopulation procedure. The rate of the introduction of CO 2 gas was much higher than the rate of escape during the induction period. Also, because CO 2 is heavier than air, much of the escaping air during the induction period would be displaced breathable atmo- sphere. Sensor recording started simultaneously with the opening of the valve on the CO 2 cylinder. The foaming trials were conducted in a field open to the elements. The birds were placed in an open triangular enclosure made of two m (4 8 ft) plywood boards. The third wall was a section of plywood cut to a height of approximately 0.61 m (2 ft) so that foam could be introduced into the enclosure from a cart-mounted foam generator. Each bird was instrumented, placed in the enclosure, and then foam was introduced into the enclosure until it overflowed the front panel. Foam generation was performed using a prototype Kifco [17] Avi-FoamGuard foam generator system. Analysis Statistical analysis was conducted in SAS [18]. The data collected in each experiment were generally nonnormal, requiring analysis using nonparametric statistical tests techniques. The Wilcoxon signed rank test was used for analysis of sensor differences. Comparison of depopulation treatments was analyzed with the exact Wilcoxon 2-sample test. All tests were conducted at the 5% significance level (α = 0.05). Table 2. Results of the Wilcoxon signed rank test performed on differences between cessation times measured by the accelerometer and cardiac relaxation detected by electrocardiogram (ECG) Mean, SD Median Signed P-value Experiment 1 d (s) (s) (s) rank S P(= S )

7 DAWSON ET AL.: DETERMINING BROILER CESSATION ACTIVITY 589 Table 3. Results of the Wilcoxon 2-sample exact test indicating the significance of differences between treatments Observations, Sum of Expected under SD under Mean One-sided Experiment Sensor Treatment 1 n scores S H 0 E 0 (S) H 0 σ 0 (S) score a P-value 2 Accelerometer Cervical dislocation < ECG Foam < Accelerometer Poly tent Accelerometer Cervical dislocation Accelerometer Cervical dislocation < The Wilcoxon exact test sums the scores of the observations of the smaller set of samples. 2 Experiment 2 compared foam depopulation to cervical dislocation. 3 Foam depopulation vs. the CO 2 -polyethylene tent procedure. 4 Foam depopulation vs. cervical dislocation. 5 CO 2 -polyethylene tent procedure vs. cervical dislocation. RESULTS AND DISCUSSION The accelerometer and ECG were used to measure cessation of activity for 3 experiments. Table 1 shows the descriptive statistics for each experiment. The results of the Wilcoxon tests are summarized in Tables 2 and 3. Experiment 1 In the cervical dislocation experiment, 24 data points were collected for a total of 12 observations (n = 12) per sensor. A 1-way analysis was conducted on the calculated differences between the cessation times measured by the accelerometer and the cardiac relaxation times recorded by the ECG. The mean difference ( accelerometer ECG ) used in the signed rank test was 26 ± 29 s (Table 2). The hypothesis for the sensor comparison was: H 0 : accelerometer ECG = 0 [1] H A : accelerometer ECG 0 [2] The P-value for the signed rank test was , indicating significance (P 0.05). Therefore, a significant difference exists between the cessation of (observable) movement and the relaxation of the heart. Experiment 2 Three statistical tests were conducted on the results from the second experiment. The first test was similar to the test conducted in experiment 1 (Table 2). A total of 21 observations were collected from the second experiment (n accelerometer = 12, n ECG = 9, accelerometer ECG = 22 ± 16 s) and analyzed. Using the same hypothesis as in experiment 1 (equations [1] and [2]), the signed rank test returned a P-value of , indicating significant differences between the times recorded by the accelerometer and ECG consistent with the findings for experiment 1. Because the accelerometer and ECG measure different times, treatment comparisons had to be performed on a per-sensor basis. The hypothesis for comparing the foam data to the cervical dislocation data from experiment 1 is: H 0 : foam = CD [3] H A : foam CD [4] Separate tests were conducted for the data acquired from the accelerometer (n accelerometer, foam = 12, n accelerometer, CD = 12) and ECG (n ECG, foam = 9, n ECG, CD = 12). For both the accelerometer and ECG, the 1-sided exact Wilcoxon 2- sample test returned P < (Table 3). Therefore, both the accelerometer and ECG see foam depopulation and cervical dislocation as different treatments. Experiment 3 Field conditions for experiment 3 made it impractical to collect ECG measurements. As a result, heart relaxation time was not measured, and no sensor comparisons could be made. Three Wilcoxon 2-sample tests were conducted to compare treatments. The first test compared the data collected from foam depopulation (n = 17) and CO 2 -polyethylene tent (n = 15) repli-

8 590 cates. The hypothesis is as shown in equations [5] and [6]. H 0 : foam = poly [5] H A : foam poly [6] The Wilcoxon test returned P = , indicating that foam depopulation has different cessation times from the CO 2 -polyethylene tent procedure (Table 3). Thus, comparisons to the base treatment, cervical dislocation (experiment 1), must be performed separately. When the CO 2 -polyethylene tent procedure was compared with cervical dislocation, the 2 treatments were found to have significantly different cessation times, but no significant difference was found between foam and cervical dislocation (Table 3). The latter finding is inconsistent with the findings from experiment 2. DISCUSSION Using the UK study [8, 9] as a reference, birds lose consciousness before entering into involuntary convulsions due to the suppression of brain activity. The loss of SEP also occurs at or before the onset of the clonic phase of terminal seizures, meaning that the birds are not responsive to external stimuli once convulsions begin. Cervical dislocation, which involves severing the vertebrae, has the same physiological effects with EEG suppression, loss of SEP and onset of convulsions occurring almost instantaneously. The CO 2 -polyethylene tent procedure is very similar to the stunning techniques used by Raj et al. [8, 9], indicating that as the result of EEG suppression and loss of SEP (unconsciousness), the birds enter into terminal convulsions. During the convulsive phase, there is a significant difference between the time that the heart relaxes and the time that cessation of terminal convulsions occur. It is understood that heart activity will continue for up to several minutes after brain death. Using combined statistical data from Raj et al. [8, 9], brain death occurs at approximately 81 s. Cessation times as detected by the accelerometer ranged from 25 to 179 s, whereas EEG suspension occurred between 58 to 119 s. Therefore, the birds are JAPR: Research Report effectively brain dead at the point at which the convulsive phase ends. The AVMA defines clinical death in animals as cardiac arrest, but the study of poultry physiology shows that death occurs in phases. First, brain activity is suppressed, and then response to external stimuli ceases (i.e., loss of SEP). Convulsions occur once brain activity is irreversibly suppressed. Brain death occurs at or shortly after the cessation of the convulsive phase. Finally, cardiac arrest in birds subjected to cervical dislocation, the CO 2 -polyethylene tent procedure, and foam treatment always occurs at some time after the 300-s recording session, well outside the range of EEG suspension times found by Raj et al. [8, 9]. Because the ECG detects cardiac muscle reflexes and the accelerometer measures gross body movement, ECG cessation times are therefore different from accelerometer cessation times. The Wilcoxon signed rank tests performed in experiments 1 and 2 confirm that the 2 sensors are not interchangeable. When the data collected in experiment 2 were compared with the data from experiment 1, the cessation (accelerometer) and cardio-relaxation (ECG) times for cervical dislocation and the foam treatment were found to be statistically different per sensor. Based on the mean cessation and relaxation times (Table 1), it can be stated with 95% confidence that cessation of observable activity, the conclusion of the tonic phase of convulsions, occurs before cardiac relaxation and subsequent cardiac arrest. In experiment 3, only accelerometer data were collected, and a significant difference was detected between the foam and CO 2 -polyethylene tent treatments. The differences between the foam and CO 2 stunning found here are consistent with the findings in Benson et al. [10]. One inconsistency was found in that no significant difference was found by the Wilcoxon 2- sample exact test between the cessation times for foam and cervical dislocation as in experiment 2. The inconsistency may be attributed to the differences in the quality of foam produced in the laboratory vs. foam generated by the prototype foam generator in the field. Unpublished findings based on experiment 3 did indicate that foam quality can have a significant

9 DAWSON ET AL.: DETERMINING BROILER CESSATION ACTIVITY 591 effect on the effectiveness of foam depopulation (data not shown). Cessation times measured by the accelerometer occur at the end of the tonic phase of convulsions and before heart relaxation. Based on the findings by Raj et al. [8, 9], brain death occurs at or shortly after the end of the convulsive phase. Therefore, accelerometers can be used to determine the end of the convulsive phase and as an estimator of the time of brain death. A further study including the use of EEG will be required to determine the mean time difference between the cessation times detected by the accelerometer and the actual time that brain death occurs. CONCLUSIONS AND APPLICATIONS 1. Cessation of activity, as measured by the accelerometer, occurs at or about the same time as brain death. 2. Cardiac relaxation typically occurs after the convulsive phase. 3. Cardiac arrest typically did not occur during the 5-min observation period. 4. Ideally, in a similar future study, 3 depopulation-euthanasia procedures including cervical dislocation, CO 2 -polyethylene tent, and foam treatments should be conducted recording simultaneous ECG, EEG, and accelerometer observations. The depopulation treatments used should be conducted under both controlled laboratory as well as uncontrolled field-simulation conditions. REFERENCES AND NOTES 1. World Health Organization Cumulative Number of Confirmed Human Cases of Avian Influenza A/(H5N1) Reported to WHO. cases_table_2007_02_03/en/index.html Accessed Feb Goldblatt, J., C. Barrish, and B. Tadesse So far, no more Delaware farms test positive. News Journal (Wilmington, DE) 13:1, 2A. 3. Lu, H., P. A. Dunn, E. A. Wallner-Pendleton, D. J. Henzler, D. C. Kradel, J. Liu, D. P. Shaw, and P. Miller Investigation of two H7N2 avian influenza outbreaks in two broiler breeder flocks in Pennsylvania, Avian Dis. 48: Capua, I., and D. J. Alexander Avian influenza: Recent developments. Avian Pathol. 33: Montgomery, J Bird flu in Texas a threat. News Journal (Wilmington, DE) 25:1, 2A. 6. Dawson, M. D., E. R. Benson, G. W. Malone, R. L. Alphin, I. Estevez, and G. L. Van Wicklen Evaluation of foam-based mass depopulation methodology for floor-reared meat-type poultry operations. Appl. Eng. Agric. 22: Kingston, S. K., C. A. Dussalt, R. S. Zaaidlicz, N. H. Faltas, M. E. Geib, S. Taylor, T. Holt, and B. A. Porter-Spalding Evaluation of two methods for mass emergency depopulation of poultry in disease outbreaks. J. Am. Vet. Med. Assoc. 227: Raj, A. B. M., N. G. Gregory, and S. B. Wotton Effect of carbon dioxide stunning on somatosensory evoked potentials in hens. Res. Vet. Sci. 49: Raj, A. B. M., S. B. Wotton, and P. E. Whittington Changes in the spontaneous and evoked electrical activity in the brain of hens during stunning with 30 percent carbon dioxide in argon with 5 percent residual oxygen. Res. Vet. Sci. 53: Benson, E. R., G. W. Malone, R. L. Alphin, M. D. Dawson, C. R. Pope, and G. L. Van Wicklen Foam-based mass emergency depopulation of floor-reared meat-type poultry operations. Poult. Sci. 86: AVMA Report of the AVMA panel on depopulation. J. Am. Vet. Med. Assoc. 218: PCB Piezotronics Inc., Depew, NY. 13. National Instruments Corporation, Austin, TX. 14. BIOPAC Systems Inc., Goleta, CA. 15. Federation for Animal Science Societies Guidelines for the Care and Use of Agricultural Animals in Agricultural Research and Teaching. 1st rev. ed. Fed. Anim. Sci. Soc., Savoy, IL. 16. Ansul Inc., Marinette, WI. 17. Kifco Inc., Havana, IL. 18. SAS Institute Inc., Cary, NC. Acknowledgments This research was supported by University of Delaware College of Agriculture and Natural Resources, US Poultry and Egg Association, USDA-Veterinary Services, and Kifco Inc. We would like to acknowledge the contributions of V. Lariccia, C. R. Pope, G. L. Van Wicklen, K. Johnson, J. Kelly, and S. L. Collier.

Determining cessation of brain activity during depopulation or euthanasia of broilers using accelerometers

Determining cessation of brain activity during depopulation or euthanasia of broilers using accelerometers 2009 Poultry Science Association, Inc. Determining cessation of brain activity during depopulation or euthanasia of broilers using accelerometers M. D. Dawson,* K. J. Johnson, E. R. Benson,* 1 R. L. Alphin,

More information

Comparison of water-based foam and carbon dioxide gas emergency depopulation methods of turkeys

Comparison of water-based foam and carbon dioxide gas emergency depopulation methods of turkeys Comparison of water-based foam and carbon dioxide gas emergency depopulation methods of turkeys M. K. Rankin,* R. L. Alphin,* E. R. Benson,* 1 A. L. Johnson, D. P. Hougentogler,* and P. Mohankumar * Department

More information

Determining Insensibility for Accurate Stunning and On-Farm Euthanasia

Determining Insensibility for Accurate Stunning and On-Farm Euthanasia Determining Insensibility for Accurate Stunning and On-Farm Euthanasia Recognition that animals can perceive pain is fundamental to animal welfare. Euthanasia implies that death occurs with minimal pain

More information

On-farm poultry euthanasia technologies. Phase 1 Lab Based Evaluation

On-farm poultry euthanasia technologies. Phase 1 Lab Based Evaluation On-farm poultry euthanasia technologies Phase 1 Lab Based Evaluation 1 Evaluation of Euthanasia Technologies Institute for Applied Poultry Technologies (IAPT) project: Applicability of Commercial Euthanasia

More information

OIE Situation Report for Highly Pathogenic Avian Influenza

OIE Situation Report for Highly Pathogenic Avian Influenza OIE Situation Report for Highly Pathogenic Avian Influenza Latest update: 30/06/2018 The epidemiology of avian influenza (AI) is complex. The AI virus constantly evolves by mutation and re-assortment with

More information

OIE Situation Report for Avian Influenza

OIE Situation Report for Avian Influenza OIE Situation Report for Avian Influenza Latest update: 25/01/2018 The epidemiology of avian influenza is complex. The virus constantly evolves and the behavior of each new subtype (and strains within

More information

Influenza and the Poultry Link

Influenza and the Poultry Link Influenza and the Poultry Link Hemagglutinin Neuraminidase Type A Influenza Surface Antigens Subtype Surface Antigens Hemagglutinin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 human equine swine Neuraminidase

More information

Avian Influenza. Poultry Growers September 2015

Avian Influenza. Poultry Growers September 2015 Avian Influenza Poultry Growers September 2015 What shoes are you wearing? Avian Influenza Caused by a virus Named after proteins on their envelope H for Hemagglutinin (1-16) N for Neuraminidase (1-9)

More information

OIE Situation Report for Highly Pathogenic Avian Influenza

OIE Situation Report for Highly Pathogenic Avian Influenza OIE Situation Report for Highly Pathogenic Avian Influenza Latest update: 31/05/2018 The epidemiology of avian influenza (AI) is complex. The AI virus constantly evolves by mutation and re-assortment with

More information

OIE Situation Report for Highly Pathogenic Avian Influenza

OIE Situation Report for Highly Pathogenic Avian Influenza OIE Situation Report for Highly Pathogenic Avian Influenza Latest update: 28/02/2018 The epidemiology of avian influenza is complex. The virus constantly evolves and the behavior of each new subtype (and

More information

Avian Influenza Outbreaks. in the USA (12/2014 5/2015)

Avian Influenza Outbreaks. in the USA (12/2014 5/2015) Avian Influenza Outbreaks in the USA (12/2014 5/2015) Hans-Wilhelm Windhorst WING, University of Vechta Paper presented at the 8th International Turkey Production Symposium Berlin May 29, 2015 Agenda The

More information

Highly Pathogenic Avian Influenza:

Highly Pathogenic Avian Influenza: United States Department of Agriculture Animal and Plant Health Inspection Service Program Aid No. 1704 Highly Pathogenic Avian Influenza: A Threat to U.S. Poultry A Threat to U.S. Poultry Worldwide, there

More information

Fighting Bird Flu with Technology

Fighting Bird Flu with Technology Fighting Bird Flu with Technology Cross-Boundary Collaboration State of Minnesota Jenna Covey, jenna.covey@state.mn.us, 651-201-1199 Project start: March 2015; Project end: July 2015 Executive Summary

More information

Update on Livestock Diseases: Avian Flu and More

Update on Livestock Diseases: Avian Flu and More Update on Livestock Diseases: Avian Flu and More A presentation for the 2016 Midwest Rural Energy Council s Annual Rural Energy Conference, March 2-4, La Crosse, WI. Presentation given by Darlene Konkle,

More information

Mexico H7N3 HPAI Summary

Mexico H7N3 HPAI Summary Mexico H7N3 HPAI 2012-2013 Summary Considerations for the US Poultry Producer WSU Poultry Institute 2013 John P Huntley DVM, MPH DACVPM Area Veterinarian in Charge WA/AK/OR 5 NOV 2013 Acknowledgments and

More information

OIE Situation Report for Avian Influenza

OIE Situation Report for Avian Influenza OIE Situation Report for Avian Influenza Latest update: 18/09/2017 This report presents an overview of current disease events reported to the OIE by its Members. The objective is to describe what is happening

More information

California Custom Processing Plant Quality Assurance Plan

California Custom Processing Plant Quality Assurance Plan California Custom Processing Plant Quality Assurance Plan ABC Poultry Los Angeles Phone: (801) 798-2593 Fax: (801) 798-8243 The purpose of this plan is to provide a Quality Assurance Plan for Custom Process

More information

Agricultural Outlook Forum Presented: February 16, 2006 THE CURRENT STATE OF SCIENCE ON AVIAN INFLUENZA

Agricultural Outlook Forum Presented: February 16, 2006 THE CURRENT STATE OF SCIENCE ON AVIAN INFLUENZA Agricultural Outlook Forum Presented: February 16, 2006 THE CURRENT STATE OF SCIENCE ON AVIAN INFLUENZA David L. Suarez Southeast Poultry Research Laboratory, Exotic and Emerging Avian Viral Diseases Research

More information

HIGHLY PATHOGENIC AVIAN INFLUENZA POLICY UPDATES

HIGHLY PATHOGENIC AVIAN INFLUENZA POLICY UPDATES HIGHLY PATHOGENIC AVIAN INFLUENZA POLICY UPDATES DR. JON ZACK DIRECTOR, NATIONAL PREPAREDNESS AND INCIDENT COORDINATION U.S. DEPARTMENT OF AGRICULTURE ANIMAL AND PLANT HEALTH INSPECTION SERVICE VETERINARY

More information

Frequently Asked Questions on Avian Influenza

Frequently Asked Questions on Avian Influenza Frequently Asked Questions on Avian Influenza What is bird flu (avian influenza) and how does it differ from seasonal flu and pandemic influenza? Avian influenza or bird flu is a disease of birds caused

More information

Animal Welfare at Slaughter

Animal Welfare at Slaughter Animal Welfare at Slaughter The purpose of any method of stunning is to render the animal immediately unconscious until it is dead Haluk ANIL - The Welfare of Animals (Slaughter or Killing) Regulations

More information

Highly Pathogenic Avian Influenza. Outbreak Prevention Protocol September 2015

Highly Pathogenic Avian Influenza. Outbreak Prevention Protocol September 2015 Highly Pathogenic Avian Influenza Outbreak Prevention Protocol September 2015 BACKGROUND In November 2014 Highly Pathogenic Avian Influenza was discovered in British Columbia. By December the virus had

More information

Surviving an HPAI Outbreak

Surviving an HPAI Outbreak Surviving an HPAI Outbreak Lessons Learned VIV Poultry & Egg Summit Latin America, October 2016 Travis Schaal, DVM Avian Influenza Secreted in birds feces and nasal discharges Virus survives for days

More information

OIE Situation Report for Avian Influenza

OIE Situation Report for Avian Influenza OIE Situation Report for Avian Influenza Latest update: 24/04/2017 This report presents an overview of current disease events reported to the OIE by its Members. The objective is to describe what is happening

More information

W. Berry, D. Bourassa, J. Davis, J. Hess, J. Johnson, A. Morey, R. Wallace Auburn University Department of Poultry Science

W. Berry, D. Bourassa, J. Davis, J. Hess, J. Johnson, A. Morey, R. Wallace Auburn University Department of Poultry Science Advancements in Poultry Stunning W. Berry, D. Bourassa, J. Davis, J. Hess, J. Johnson, A. Morey, R. Wallace Auburn University Department of Poultry Science Purpose and Goals of Stunning An effective stunning

More information

Local Preparedness and Response for Animal Disease Emergencies

Local Preparedness and Response for Animal Disease Emergencies Table Top Exercise: Exotic Newcastle Disease MODERATOR BOOKLET **This is an exercise and for official use only ** Local Preparedness and Response for Animal Disease Emergencies IOWA DEPARTMENT OF AGRICULTURE

More information

Avian influenza Avian influenza ("bird flu") and the significance of its transmission to humans

Avian influenza Avian influenza (bird flu) and the significance of its transmission to humans 15 January 2004 Avian influenza Avian influenza ("bird flu") and the significance of its transmission to humans The disease in birds: impact and control measures Avian influenza is an infectious disease

More information

OIE Situation Report for Avian Influenza

OIE Situation Report for Avian Influenza OIE Situation Report for Avian Influenza Latest update: 08/05/2017 This report presents an overview of current disease events reported to the OIE by its Members. The objective is to describe what is happening

More information

Final Report for the Outbreak of Highly Pathogenic Avian Influenza (HPAI) in the United States

Final Report for the Outbreak of Highly Pathogenic Avian Influenza (HPAI) in the United States Final Report for the 2014 2015 Outbreak of Highly Pathogenic Avian Influenza (HPAI) in the United States USDA Animal and Plant Health Inspection Service Veterinary Services 1 Nature of Disease Avian influenza

More information

Page 1 of 6 Release No. 0458.05 Contact: USDA Press Office (202) 720-4623 Questions and Answers: Avian Influenza March 2007 The Biology of Avian Influenza Q. What is avian influenza? A. Avian influenza

More information

High Path Avian Influenza. October 14, 2015 Reservoir Migrating Wild Waterfowl

High Path Avian Influenza. October 14, 2015 Reservoir Migrating Wild Waterfowl High Path Avian Influenza October 14, 2015 Reservoir Migrating Wild Waterfowl 1 Most Severe Animal Disease Outbreak in US History 232 Domestic Poultry Flocks Small flocks (21) to large commercial (211)

More information

Avian Flu Update. Dr. Sheila E. Purdum Extension Poultry Specialist Professor, Animal Science, UNL

Avian Flu Update. Dr. Sheila E. Purdum Extension Poultry Specialist Professor, Animal Science, UNL Avian Flu Update Dr. Sheila E. Purdum Extension Poultry Specialist Professor, Animal Science, UNL Flu virsus multiple species HPAI H5N2 Largest loss of livestock due to a Foreign Animal Disease in the

More information

Effectiveness of non-penetrating captive bolt (Zephyr) and restraint for euthanasia of piglets from birth to 9 kg NPB #

Effectiveness of non-penetrating captive bolt (Zephyr) and restraint for euthanasia of piglets from birth to 9 kg NPB # Title: Investigator: Institution: Effectiveness of non-penetrating captive bolt (Zephyr) and restraint for euthanasia of piglets from birth to 9 kg NPB # 09-190 Dr. Tina Widowski University of Guelph Co-investigators:

More information

OIE European Regional Conference on Animal Welfare Istanbul July 2009

OIE European Regional Conference on Animal Welfare Istanbul July 2009 OIE European Regional Conference on Animal Welfare Istanbul July 2009 Implementation of the OIE standards in the countries of the Region Practical Experience Killing Animals for Disease Control Purposes

More information

Highly-Pathogenic Avian Influenza (HPAI) Iowa Concern Hotline Frequently Asked Questions Updated :30pm

Highly-Pathogenic Avian Influenza (HPAI) Iowa Concern Hotline Frequently Asked Questions Updated :30pm Highly-Pathogenic Avian Influenza (HPAI) Iowa Concern Hotline Frequently Asked Questions Updated 4.28.15 2:30pm Statement from Iowa Department of Agriculture and Land Stewardship Department staff is coordinating

More information

Chicken: Myths and Facts

Chicken: Myths and Facts Chicken: Myths and Facts University of Delaware Bud Malone Gary VanWicklen Dan Bautista Stephen Collier University of Maryland Nick Zimmermann Nat Tablante Jennifer Timmons Inma Estevez The following poster

More information

5 th International Symposium

5 th International Symposium 5 th International Symposium Managing Animal Mortalities, Products, By-Products, & Associated Health Risk: Connecting Research, Regulations, & Responses September 28 October 1, 2015 Lancaster, Pennsylvania

More information

EVALUATION OF THE DIVING REFLEX IN RESPONSE TO WATER- BASED FOAM VS. CARBON DIOXIDE GAS DEPOPULATION IN WHITE PEKIN DUCKS. Megan Patricia Caputo

EVALUATION OF THE DIVING REFLEX IN RESPONSE TO WATER- BASED FOAM VS. CARBON DIOXIDE GAS DEPOPULATION IN WHITE PEKIN DUCKS. Megan Patricia Caputo EVALUATION OF THE DIVING REFLEX IN RESPONSE TO WATER- BASED FOAM VS. CARBON DIOXIDE GAS DEPOPULATION IN WHITE PEKIN DUCKS by Megan Patricia Caputo A thesis submitted to the Faculty of the University of

More information

Fact Sheet. Data, Information & Economic Analysis Livestock Marketing Information Center

Fact Sheet. Data, Information & Economic Analysis Livestock Marketing Information Center Fact Sheet Data, Information & Economic Analysis Livestock Marketing Information Center www.lmic.info November, 2011 Export Market Recovery Post Livestock Disease Outbreak 1 A UTHORS Kamina Johnson, USDA

More information

OIE Situation Report for Avian Influenza

OIE Situation Report for Avian Influenza OIE Situation Report for Avian Influenza Latest update: 10/07/2017 This report presents an overview of current disease events reported to the OIE by its Members. The objective is to describe what is happening

More information

AVIAN INFLUENZA (AI)

AVIAN INFLUENZA (AI) REPUBLIC OF TURKEY MINISTRY OF AGRICULTURE AND RURAL AFFAIRS GENERAL DIRECTORATE OF PROTECTION AND CONTROL AVIAN INFLUENZA (AI) SITUATION IN TURKEY AND LESSONS LEARNED By H. Haluk A KARO LU Section Director

More information

Avian Influenza (Bird Flu) Fact Sheet

Avian Influenza (Bird Flu) Fact Sheet What is an avian influenza A (H5N1) virus? Influenza A (H5N1) virus also called H5N1 virus is an influenza A virus subtype that occurs mainly in birds. It was first isolated from birds (terns) in South

More information

A. No. There are no current reports of avian influenza (bird flu) in birds in the U.S.

A. No. There are no current reports of avian influenza (bird flu) in birds in the U.S. Bird Flu FAQ 2 Frequently Asked Avian Influenza Questions Avian influenza in birds Q. What is avian influenza? A. Avian influenza is an infectious disease of birds caused by type A strains of the influenza

More information

Selection of Young Broiler Breeders for Semen Quality Improves Hatchability in an Industry Field Trial 1

Selection of Young Broiler Breeders for Semen Quality Improves Hatchability in an Industry Field Trial 1 2002 Poultry Science Association, Inc. Selection of Young Broiler Breeders for Semen Quality Improves Hatchability in an Industry Field Trial 1 H. M. Parker and C. D. McDaniel 2 Poultry Science Department,

More information

Avian Influenza Update Webinar Agenda January 22, University of Georgia Poultry Science Department

Avian Influenza Update Webinar Agenda January 22, University of Georgia Poultry Science Department Avian Influenza Update Webinar Agenda January 22, 2016 University of Georgia Poultry Science Department Agenda! Indiana avian influenza update! Justin Fowler, UGA Poultry Science! Report on Georgia AI

More information

Secure Egg Supply. Maintaining a Secure Egg Supply During a Highly Pathogenic Avian Influenza Outbreak

Secure Egg Supply. Maintaining a Secure Egg Supply During a Highly Pathogenic Avian Influenza Outbreak Please note: The following slides have been broken into sections and are meant to be utilized in accordance with the user s needs and time allotments. This presentation can be used in the following manner:

More information

Welfare assessment of Low Atmospheric Pressure Stunning (LAPS) in chickens

Welfare assessment of Low Atmospheric Pressure Stunning (LAPS) in chickens Welfare assessment of Low Atmospheric Pressure Stunning (LAPS) in chickens Jessica E. Martin 1,2, Karen Christensen 3, Yvonne Vizzier-Thaxton 3, Malcolm A. Mitchell 4 and Dorothy E. F. McKeegan 2 1 The

More information

HPAI in Washington State and Beyond?

HPAI in Washington State and Beyond? HPAI in Washington State 2014-2015 and Beyond? Joe B. Baker, DVM Washington Department of Agriculture 1111 Washington St. SE Olympia, WA 98504 (360) 902-1878 A Map of Washington State (Or, HPAI in Washington,

More information

THE PENNSYLVANIA/VIRGINIA EXPERIENCE IN ERADICATION OF AVIAN INFLUENZA (H5N 2) Gerald J. Fichtner

THE PENNSYLVANIA/VIRGINIA EXPERIENCE IN ERADICATION OF AVIAN INFLUENZA (H5N 2) Gerald J. Fichtner THE PENNSYLVANIA/VIRGINIA EXPERIENCE IN ERADICATION OF AVIAN INFLUENZA (H5N 2) Gerald J. Fichtner Avian influenza was identified in 448 flocks with over 17 million birds destroyed in Pennsylvania and Virginia

More information

VETERINARY EXTENSION

VETERINARY EXTENSION VETERINARY EXTENSION Avian Influenza: News Update Mohamed El-Gazzar, DVM, MAM, PhD, DACPV Assistant Professor and Poultry Extension Veterinarian, Department of Veterinary Preventive Medicine, College of

More information

Pre-Slaughter Stunning: Why it is important

Pre-Slaughter Stunning: Why it is important A Greener World Technical Advice Fact Sheet No. 18 Pre-Slaughter Stunning: Why it is important Certified Animal Welfare Approved by A Greener World (AGW) has the most rigorous standards for farm animal

More information

Avian Influenza: Implications for Agriculture and Public Health. Faculty. Avian Influenza Orthomyxovirus (type A) - 15 (16) Hemagglutinin and 9

Avian Influenza: Implications for Agriculture and Public Health. Faculty. Avian Influenza Orthomyxovirus (type A) - 15 (16) Hemagglutinin and 9 Avian Influenza: Implications for Agriculture and Public Health Satellite Conference Friday, August 5, 25 12: - 1:3 p.m. (Central Time) Faculty Frederick J. Hoerr, DVN, PhD Director, Alabama Veterinary

More information

In House Composting of. Disease

In House Composting of. Disease In House Composting of Poultry Mortalities Due To Catastrophic Disease Nathaniel L. Tablante 1 George W. Malone 2 1 University of Maryland College Park and 2 University of Delaware Introduction Complete

More information

SCIENTIFIC DISCUSSION

SCIENTIFIC DISCUSSION SCIENTIFIC DISCUSSION 1. SUMMARY OF THE DOSSIER Nobilis Influenza H5N2 emulsion for injection, is an adjuvanted, inactivated vaccine against avian influenza type A, subtype H5 in chickens. Avian influenza

More information

Retrospection into Avian Influenza Outbreak in Vietnam during T.D. Nguyen, DVM, PhD National Institute of Veterinary Research Hanoi, Vietnam

Retrospection into Avian Influenza Outbreak in Vietnam during T.D. Nguyen, DVM, PhD National Institute of Veterinary Research Hanoi, Vietnam Retrospection into Avian Influenza Outbreak in Vietnam during 2003-04 04 T.D. Nguyen, DVM, PhD National Institute of Veterinary Research Hanoi, Vietnam Poultry production in Vietnam (millions) Number (2004):

More information

COMPOSTING POULTRY MORTALITIES FROM AN AVIAN INFLUENZA OUTBREAK WESTERN CAPE, SOUTH AFRICA Dr Melanie Jones BVSc

COMPOSTING POULTRY MORTALITIES FROM AN AVIAN INFLUENZA OUTBREAK WESTERN CAPE, SOUTH AFRICA Dr Melanie Jones BVSc COMPOSTING POULTRY MORTALITIES FROM AN AVIAN INFLUENZA OUTBREAK WESTERN CAPE, SOUTH AFRICA 2017 Dr Melanie Jones BVSc Composting of animal mortalities since 2012 in Cape Town, South Africa dogs and cats

More information

ABSTRACT Research concerning the qualitative characterization of turkey meat by traceability analysis

ABSTRACT Research concerning the qualitative characterization of turkey meat by traceability analysis ABSTRACT PhD thesis entitled Research concerning the qualitative characterization of turkey meat by traceability analysis is structured in two distinct parts: data from literature and the one represented

More information

Updations on the epidemiological situation of Avian Influenza (AI) in Libya. The 11 th JPC REMESA Algiers, Algeria 24-25November2015

Updations on the epidemiological situation of Avian Influenza (AI) in Libya. The 11 th JPC REMESA Algiers, Algeria 24-25November2015 Updations on the epidemiological situation of Avian Influenza (AI) in Libya The 11 th JPC REMESA Algiers, Algeria 24-25November2015 The main issue in Libya right now that; There are non-reported (underestimated

More information

National Solid Wastes Management Association 4301 Connecticut Avenue, NW, Suite 300 Washington, D.C

National Solid Wastes Management Association 4301 Connecticut Avenue, NW, Suite 300 Washington, D.C National Solid Wastes Management Association 4301 Connecticut Avenue, NW, Suite 300 Washington, D.C. 20008 May 8, 2006 Via e-mail: cassidy.paul@epamail.epa.gov Paul Cassidy USEPA Headquarters Ariel Rios

More information

Regional Disease Update-South and West

Regional Disease Update-South and West 2015 MPF Convention Regional Disease Update-South and West John G. Brown, DVM, MAM Zoetis, Inc. John.brown@zoetis.com 706-206-8028 I was asked to give an update on the disease situation in the southern

More information

AVIAN FLU BACKGROUND ABOUT THE CAUSE. 2. Is this a form of SARS? No. SARS is caused by a Coronavirus, not an influenza virus.

AVIAN FLU BACKGROUND ABOUT THE CAUSE. 2. Is this a form of SARS? No. SARS is caused by a Coronavirus, not an influenza virus. AVIAN FLU BACKGROUND 1. What is Avian Influenza? Is there only one type of avian flu? Avian influenza, or "bird flu", is a contagious disease of animals caused by Type A flu viruses that normally infect

More information

Alberta Poultry Industry Emergency Management Team. Date: April 28, 2015 No. Pages (Including cover page): 5

Alberta Poultry Industry Emergency Management Team. Date: April 28, 2015 No. Pages (Including cover page): 5 NOTICE To: From: Alberta Poultry Producers Alberta Poultry Industry Emergency Management Team Date: April 28, 2015 No. Pages (Including cover page): 5 Re: H5 Avian Influenza Vigilance Update The Alberta

More information

MAINE USES A TEAM APPROACH TO DEVELOPING AN EMERGENCY CARCASS DISPOSAL PLAN. Bill Seekins. Maine Department of Agriculture & The Maine Compost Team

MAINE USES A TEAM APPROACH TO DEVELOPING AN EMERGENCY CARCASS DISPOSAL PLAN. Bill Seekins. Maine Department of Agriculture & The Maine Compost Team MAINE USES A TEAM APPROACH TO DEVELOPING AN EMERGENCY CARCASS DISPOSAL PLAN b y Bill Seekins o f t h e Maine Department of Agriculture & The Maine Compost Team The State of Maine, through the Maine Compost

More information

High Pathogenic Avian Influenza

High Pathogenic Avian Influenza High athogenic Avian Influenza Dr. Jack Shere Associate Deputy Administrator U.S. Department of Agriculture Animal and lant Health Inspection Service Veterinary Services NIAA Annual Meeting 1 HAI History

More information

Avian Influenza: Outbreak in Spring 2015 and Preparing for Fall

Avian Influenza: Outbreak in Spring 2015 and Preparing for Fall Avian Influenza: Outbreak in Spring 2015 and reparing for Fall James A. Roth, DVM, hd Center for Food Security and ublic Health College of Veterinary Medicine Iowa State University Topics for Today Understanding

More information

Jianhong Mu and Bruce A. McCarl

Jianhong Mu and Bruce A. McCarl Avian Influenza outbreaks and poultry production mitigation strategies in the U.S. Jianhong Mu and Bruce A. McCarl Department of Agricultural Economics, Texas A&M University Mujh1024@gmail.com 2010 Selected

More information

Effectiveness of a non-penetrating captive bolt for the euthanasia of piglets from birth to 9 kg

Effectiveness of a non-penetrating captive bolt for the euthanasia of piglets from birth to 9 kg Effectiveness of a non-penetrating captive bolt for the euthanasia of piglets from birth to 9 kg T.M. Casey-Trott 1 ; R. Brooks 2 ; P.V. Turner 1 ; S.G. Nykamp 1 ; M. Litman 1 ; S.M. Millman 2 ; T.M. Widowski

More information

PRESS RELEASE. Libourne, May 29 th, 2013: The signature of a scientific collaboration protocol about avian influenza vaccines between

PRESS RELEASE. Libourne, May 29 th, 2013: The signature of a scientific collaboration protocol about avian influenza vaccines between Libourne, May 29 th, 2013: The signature of a scientific collaboration protocol about avian influenza vaccines between Dr. Marc Prikazsky, Chairman and Chief Executive Officer and Prof. Ren Tao, Vice-Dean

More information

Poultry Health Services Ltd. Highly Pathogenic Avian Influenza Outbreaks in Canada in

Poultry Health Services Ltd. Highly Pathogenic Avian Influenza Outbreaks in Canada in Poultry Health Services Ltd. 97 East Lake Ramp NE, Airdrie, Alberta T4A 0C3 Telephone: (403) 948-8577; Fax: (403) 948-0520; E-mail: phsinfo@poultryhealth.ca Highly Pathogenic Avian Influenza Outbreaks

More information

Lab #3: Electrocardiogram (ECG / EKG)

Lab #3: Electrocardiogram (ECG / EKG) Lab #3: Electrocardiogram (ECG / EKG) An introduction to the recording and analysis of cardiac activity Introduction The beating of the heart is triggered by an electrical signal from the pacemaker. The

More information

U.S. Flock Trends and Projections

U.S. Flock Trends and Projections U.S. Flock Trends and Projections JULY 15, 2015 Compiled by Maro Ibarburu Sponsored in part by:!!! The Egg Industry Center Market Reports & Industry Analysis are compiled in the memory of their creator,

More information

This paper is in two Sections (A and B) and instructions relating to the number of questions to be answered are given at the head of each Section.

This paper is in two Sections (A and B) and instructions relating to the number of questions to be answered are given at the head of each Section. TUESDAY 28 MARCH 2000 PAPER I (3 hours) This paper is in two Sections (A and B) and instructions relating to the number of questions to be answered are given at the head of each Section. SECTION A Two

More information

Predictive Modeling for Risk Assessment of Microbial Hazards

Predictive Modeling for Risk Assessment of Microbial Hazards A D V A N C E S I N P A T H O G E N R E D U C T I O N Predictive Modeling for Risk Assessment of Microbial Hazards THOMAS P. OSCAR * Risk assessment models of meat animal production and processing systems

More information

Avian Influenza (AI) National & International Update

Avian Influenza (AI) National & International Update Avian Influenza (AI) National & International Update T.J. Myers, F. Hegngi, A. Rhorer, P. Klein, T. Duvernoy & M. David USDA, APHIS, Veterinary Services Delmarva Breeder, Hatchery & Grow Out Conference

More information

Impact of Avian Influenza on U.S. Poultry Trade Relations 2002

Impact of Avian Influenza on U.S. Poultry Trade Relations 2002 Impact of Avian Influenza on U.S. Poultry Trade Relations 2002 H5 or H7 Low Pathogenic Avian Influenza CHERYL HALL United States Department of Agriculture, Animal and Plant Health Inspection Service, Riverdale,

More information

Veterinary Services Update

Veterinary Services Update Veterinary Services Update NPIP Biennial Conference Seattle, WA August 31, 2016 T.J. Myers & Lee Ann Thomas U.S. Department of Agriculture Animal and Plant Health Inspection Service 2014-2015 HPAI Outbreak

More information

Introduction. Chapter 7 Protecting Animal Health. Implementation Plan for the National Strategy for Pandemic Influenza 137

Introduction. Chapter 7 Protecting Animal Health. Implementation Plan for the National Strategy for Pandemic Influenza 137 Chapter 7 Protecting Animal Health Introduction Influenza viruses that cause severe disease outbreaks in animals, especially birds, are believed to be a likely source for the emergence of a human pandemic

More information

PROCESSING, PRODUCTS, AND FOOD SAFETY

PROCESSING, PRODUCTS, AND FOOD SAFETY PROCESSING, PRODUCTS, AND FOOD SAFETY Electrical waterbath stunning: Influence of different waveform and voltage settings on the induction of unconsciousness and death in male and female broiler chickens

More information

Research Note INCIDENCE AND DEGREE OF SEVERITY OF DEEP PECTORAL IN COMMERCIAL GENOTYPES OF BROILERS'- 2. J. Agrie. Univ. P.R. 98(2): (2014)

Research Note INCIDENCE AND DEGREE OF SEVERITY OF DEEP PECTORAL IN COMMERCIAL GENOTYPES OF BROILERS'- 2. J. Agrie. Univ. P.R. 98(2): (2014) Research Note INCIDENCE AND DEGREE OF SEVERITY OF DEEP PECTORAL IN COMMERCIAL GENOTYPES OF BROILERS'- 2 MYOPATHY Héctor L. Santiago-Anadón 3, José C. Torres 4 and José A. Orama 6 J. Agrie. Univ. P.R. 98(2):195-199

More information

July 12, 2006 Ankara-TURKEY

July 12, 2006 Ankara-TURKEY REPUBLIC OF TURKEY MINISTRIES OF AGRICULTURE AND RURAL AFFAIRS (MARA) and HEALTH (MOH) AVIAN INFLUENZA (AI) SITUATION IN TURKEY AND LESSONS LEARNED July 12, 2006 Ankara-TURKEY MARA General Directorate

More information

Introduction to Avian Influenza

Introduction to Avian Influenza Introduction to Avian Influenza David L. Suarez D.V.M., Ph.D. Research Leader Exotic and Emerging Avian Viral Disease Research Unit Agricultural Research Service United States Department of Agriculture

More information

1. Avian Influenza H5N1 had not occurred in Malaysia until the first case of

1. Avian Influenza H5N1 had not occurred in Malaysia until the first case of INTERVENTION NOTES BY H.E. AMBASSADOR HAMIDON ALI, PERMANENT REPRESENTATIVE OF MALAYSIA TO THE UNITED NATIONS AT THE SPECIAL EVENT ON THE THEME OF AVIAN FLU, ORGANIZED BY THE ECONOMIC AND SOCIAL COUNCIL

More information

What we need to know about Bird Flu

What we need to know about Bird Flu AVIAN I NFLUENZA FACT S HEET What we need to know about Bird Flu 1. What is bird flu? How does it spread? Bird flu is primarily a disease of birds that live and feed in water, particularly ducks, geese,

More information

Modeling and Quantitative Risk Analyses to Support Business Continuity

Modeling and Quantitative Risk Analyses to Support Business Continuity UMN Secure Food System Team Food system solutions through risked based science Modeling and Quantitative Risk Analyses to Support Business Continuity Sasidhar Malladi 1, Peter Bonney 1, J. Todd Weaver

More information

Self-declaration of Belgium regarding the recovery of the HPAI free status in poultry

Self-declaration of Belgium regarding the recovery of the HPAI free status in poultry Self-declaration of Belgium regarding the recovery of the HPAI free status in poultry Declaration sent to the OIE on October 11, 2017 by Dr. Jean-François Heymans, Chief of Veterinary Services of the Belgian

More information

Update to Iowa Foot and Mouth Disease (FMD) and Livestock Emergency Management Plans

Update to Iowa Foot and Mouth Disease (FMD) and Livestock Emergency Management Plans Update to Iowa Foot and Mouth Disease (FMD) and Livestock Emergency Management Plans James A. Roth, DVM, PhD Center for Food Security and Public Health College of Veterinary Medicine Iowa State University

More information

Moving beyond AI Case study from The Netherlands

Moving beyond AI Case study from The Netherlands Moving beyond AI Case study from The Netherlands IEC/OVONED Ben Dellaert Buenos Aires, 26th October 2016 Disease control AI in NL Regulations European Guideline: 2005/94 stamping out (no vaccination) National:

More information

Indicators for assessing unconsciousness and death during slaughter without stunning

Indicators for assessing unconsciousness and death during slaughter without stunning Indicators for assessing unconsciousness and death during slaughter without stunning Antonio Velarde Parma, January, 30th 2013 References - EFSA opinions of 2004 and 2006 on the stunning and killing of

More information

Avian Influenza 2003 A six months experience 21 October Ben Dellaert

Avian Influenza 2003 A six months experience 21 October Ben Dellaert Avian Influenza 2003 A six months experience 21 October 2008 Ben Dellaert Avian Influenza Virus Subtypes H1 t/m H15 N 1 t/m N9 poultry susceptible to all subtypes Low pathogenic / high pathogenic Clinical

More information

Guidelines for In-house Composting of Catastrophic Poultry Mortality*

Guidelines for In-house Composting of Catastrophic Poultry Mortality* Fact Sheet 801 Guidelines for In-house Composting of Catastrophic Poultry Mortality* Typical methods of disposal of poultry carcasses with highly pathogenic disease include burial, incineration, landfill

More information

Biology 13A Lab #10: Cardiovascular System II ECG & Heart Disease

Biology 13A Lab #10: Cardiovascular System II ECG & Heart Disease Biology 13A Lab #10: Cardiovascular System II ECG & Heart Disease Lab #10 Table of Contents: Expected Learning Outcomes...... 83 Introduction....... 84 Activity 1: Collecting ECG Data..... 85 Activity

More information

OBJECTIVE. 1. Define defibrillation. 2. Describe Need and history of defibrillation. 3. Describe the principle and mechanism of defibrillation.

OBJECTIVE. 1. Define defibrillation. 2. Describe Need and history of defibrillation. 3. Describe the principle and mechanism of defibrillation. Defibrillators OBJECTIVE 1. Define defibrillation. 2. Describe Need and history of defibrillation. 3. Describe the principle and mechanism of defibrillation. 4. Types and classes of defibrillator 5. Describe

More information

IUF Briefing Paper: Avian Influenza (H5N1) and Agricultural Workers October 2005

IUF Briefing Paper: Avian Influenza (H5N1) and Agricultural Workers October 2005 IUF Briefing Paper: Avian Influenza (H5N1) and Agricultural Workers October 2005 I believe that the momentum that is now building up will give us a chance to change the course of history and head off a

More information

Effect of electrical water bath stunning on physical reflexes of broilers: evaluation of stunning efficacy under field conditions

Effect of electrical water bath stunning on physical reflexes of broilers: evaluation of stunning efficacy under field conditions Effect of electrical water bath stunning on physical reflexes of broilers: evaluation of stunning efficacy under field conditions M. Girasole,,1 R. Marrone, A. Anastasio, Antonio Chianese, R. Mercogliano,

More information

Poultry

Poultry 40-13-2-0.01-.15 Poultry (1) All poultry, including but not limited to hatching eggs, chicks, poults, and poultry breeding stock entering Georgia must be accompanied by an official Certificate of Veterinary

More information

Self-declaration of the recovery of country freedom from Notifiable Avian Influenza in poultry by the United Kingdom

Self-declaration of the recovery of country freedom from Notifiable Avian Influenza in poultry by the United Kingdom Self-declaration of the recovery of country freedom from Notifiable Avian Influenza in poultry by the United Kingdom Declaration sent to the OIE on 13 September 2017 by Dr Nigel Gibbens MRCVS, OIE Delegate

More information

Salt Intoxication in Commercial Broilers and Breeders a Clinical and Pathological Description

Salt Intoxication in Commercial Broilers and Breeders a Clinical and Pathological Description Salt Intoxication in Commercial Broilers and Breeders a Clinical and Pathological Description Perelman, B., 1 * Farnoushi, Y., 2 Krispin, H. 3 and Rish, D. 4 1 Poultry Veterinarian-Clinical Consultant,

More information

USAID s approach to the control of avian and pandemic influenza

USAID s approach to the control of avian and pandemic influenza USAID s approach to the control of avian and pandemic influenza Murray Trostle, Dr. PH Deputy Director Avian and Pandemic Influenza Unit USAID December 19, 2006 USAID goals Prevent an influenza pandemic

More information

Table Top Exercise: Foot and Mouth Disease. Local Preparedness and Response for Animal Disease Emergencies

Table Top Exercise: Foot and Mouth Disease. Local Preparedness and Response for Animal Disease Emergencies Table Top Exercise: Foot and Mouth Disease PARTICIPANT BOOKLET **This is an exercise and for official use only ** Local Preparedness and Response for Animal Disease Emergencies IOWA DEPARTMENT OF AGRICULTURE

More information

Botulinum Toxin Injections

Botulinum Toxin Injections KAISER PERMANENTE SAN FRANCISCO DEPARTMENT OF NEUROLOGY Office Procedures included: - Botulinum Toxin Injections - Electroencephalogram (EEG) - Electromyography (EMG) and Nerve Condition Studies (NCS)

More information