Effects of aural combination tones on the loudness of a pure tone masked by an inharmonic pure-tone

Size: px
Start display at page:

Download "Effects of aural combination tones on the loudness of a pure tone masked by an inharmonic pure-tone"

Transcription

1 J. Acoust. Soc. Jpn. (E) 18, 1 (1997) Effects of aural combination tones on the loudness of a pure tone masked by an inharmonic pure-tone Kenji Ozawa, YOiti Suzuki, Hisashi Uematsu, and Toshio Sone Research Institute of Electrical Communication & Graduate School of Information Science, Tohoku University, 2-1-1, Katahira, Aoba-ku, Sendai, Japan (Received 8 January 1996) The loudness of a 1,600-Hz pure-tone signal partially masked by a 1,000-Hz, 70-dB SPL masker is experimentally examined using the loudness matching method. As for two of the four subjects who participated in the experiment, the loudness of the signal for signal levels higher than 45 db SPL was found to be enhanced in spite of the masking. This phenomenon disappeared in the presence of one-third-octave band noise whose center frequency was 2,500 Hz. These results suggest that judgments of the loudness are affected by aural combination tones when the masker used is a pure tone. Five loudness functions proposed earlier were tested to determine if they can explain the loudness of a pure tone partially masked by another pure tone. As a result, the formula using the driven firing rate function of the auditory sensory receptor shows good agreement with some of the data. Keywords: Partially masked loudness, Loudness function, Aural combination tone, Loudness enhancement, Pure-tone masker PACS number: Cb, Dc, Ki 1. INTRODUCTION The loudness of a pure tone is one of the most important psychoacoustic characters. Many researchers have therefore tried to determine the general form of the loudness function for a tone. The results are well summarized for example by Scharf (1978) or Scharf and Houtsma (1986), but briefly reviewing, Stevens (1959) argued that the loudness scale showed a power function. For sound-pressure levels above 40 db, the function is given by (1) where V is the loudness of a pure tone, I is the intensity of the pure tone, k is a constant, and the exponent n is approximately 0.3. In the region near threshold, however, the experimental data departs from the power function (Scharf and Stevens, 1961; Hellman and Zwislocki, 1961). This discrepancy is more evident when the tone is partially masked by noise. Even if the external noise is absent, the physiological noise can be regarded as a kind of masking noise to determine the hearing threshold. If so, the origin of the discrepancy from the simple power function of Eq. (1) is always attributable to a masking noise (Lochner and Burger, 1961). When the tone is partially masked, its loudness is referred to as a partially masked loudness or simply a masked loudness. Though a function to describe the masked loudness of a pure tone was proposed by Lochner and Burger (1961), it did not agree with all the subjective data obtained in other studies (Hellman and Zwislocki, 1964). Moreover, it is reported that a narrowerband noise masker produced a steeper loudness function for a pure tone than a wide-band noise masker (Hellman, 1970). Besides Lochner and Burger's function, several forms of the function have been proposed to describe the masked loudness of a

2 J. Acoust. Soc. Jpn. (E) 18, 1 (1997) tone (Scharf and Stevens, 1961; Zwicker, 1958, 1963; Zwicker and Scharf, 1965; Pavel and Iverson, 1981). All of the above studies, however, investigated the loudness of a tone masked by noise. Thus, it is not clear whether the loudness functions are applicable to the loudness of a tone masked by another pure-tone. We often hear tonal sound with harmonics in our daily life, such as that of a musical instrument or vowels in speech. It is natural to imagine that mutual masking between components of the sound takes place. Therefore, it is fundamentally important to establish the loudness function of a tone partially masked by another pure-tone in order to understand the perception of a complex sound consisting of harmonic tones. There are a few reports on the loudness of a tone masked by a pure-tone masker in which the general form of the loudness function was not considered. For example, Lamore (1977 b) investigated the loudness of the higher frequency (f) component of an octave complex with the low frequency (f) component being a masker. From the results, he determined the "loudness enhancement" phenomenon in which the loudness of the f2 component was enhanced when it was masked by the f1 component. However, the loudness function was not determined. To examine the general form of the loudness function of a tone (signal) partially masked by another tone (masker), it would be best to deal with two tones in harmonic relation because many sounds consist of harmonic components. However, as a nonlinearity exists in the auditory system, the frequencies of a signal and one of the harmonics of a masker, possibly produced by the nonlinearity of the auditory system, are identical if the masker is a subharmonic of the signal. In such a case a vector summation between the signal and the harmonic occurs, so that the loudness of the signal tone varies as a function of its phase difference (Lamore, 1975, 1977 a, b). Therefore, the general form of the loudness function becomes complicated. Regarding the above consideration, the present study investigates the loudness of a pure tone masked by an inharmonic masker as the first step towards understanding the comprehensive form of the loudness function of a pure tone masked by another pure-tone. 2. LOUDNESS-MATCHING EXPERIMEMT BETWEEN AN UNMASKED TONE AND A TONE PARTIALLY MASKED BY AN INHARMONIC TONE 2.1 Method and Apparatus A loudness matching experiment between a partially masked tone and an unmasked comparison tone was carried out using the method of adjustment. The frequencies of both the signal (masked tone) and the comparison tone were 1,600 Hz, and the frequency of the masker was 1,000 Hz, with its level fixed at 70 db SPL. Stimuli were presented monaurally via a headphone (YAMAHA YHD-3) to the right ear of the subject whilst seated in a soundproof chamber. Figure 1 shows the time pattern of the stimuli; each burst has rise- and decay-times of 200 ms with raised-cosine ramps to avoid any audible clicks. The subjects were asked to vary the level of the comparison tone, until it was perceived to have the same loudness as the signal. When the subject judged that the comparison tone was softer/louder than the signal, the level of the comparison tone was increased/decreased by as much as 1 db for the signal levels below 50 db SPL, or 2 db for the levels above 50 db SPL. If the subject did not respond, the level of the comparison tone in the following presentation was kept as in the present one. The initial value of the comparison-tone level was set to be obviously softer than the signal. For each experimental condition, levels of the signal in terms of PSE (Point of Subjective Equality) were examined four times: two times with the time pattern shown in Fig. 1, and two times with a time pattern which had the order of the comparison tone and the signal with the masker reversed. These four adjustments were averaged to obtain a result. Fig. 1 Temporal pattern of a pair of stimuli.

3 K. OZAWA et al.: LOUDNESS OF A PURE TONE MASKED BY ANOTHER PURE-TONE Four male subjects, 22 to 28 years of age, participated in the experiments. They had no history of auditory diseases, and the minimum audible pressure of each was checked as being normal using a Bekesy-type audiometer from 100 to 10 khz. 2.2 Results Figure 2 shows the results the abscissa is the level of the signal, while the ordinate represents the PSE level of the matched comparison tone. Vertical bars represent the 95% confidence intervals with the model t-distribution. The hearing thresholds of the comparison tone and the masked threshold of the signal were also determined by the method of tracking using the same apparatus as in the loudness-matching experiment. The tracking was started with a downward sequence, in which the level of the signal was decreased in 1-dB steps. Levels at the reversals between upward- and downward-sequences were recorded 20 times, and the last 18 levels were averaged to obtain the threshold data. The thresholds are plotted in Fig. 2 as the lowest point of the data for each subject. If the presence of the masker had no effects on the loudness of the signal, all of the plots would lie precisely upon the diagonal in the figure. The thresholds and the PSE's for low signal levels are lower than the diagonal because of the partial masking of the signal by the masker. As the signal level increases, the PSE's asymptotically approach the diagonal. This shows that recruitment occurs not only with a noise masker but also with a puretone masker. However, the data points lie above the diagonal for signal levels above 45 db SPL. This indicates that the loudness of the signal is "enhanced" while it is masked. This tendency is statistically significant beyond the 0.05 level for subjects 1 and Discussion An enhancement in loudness of a pure tone masked by a subharmonic tone was reported by Lamore (1977 b). He observed the enhancement for a wide signal level range, from near masked threshold to high levels. In the present results with an inharmonic-tone masker, however, the enhancement is observed only above 45 db SPL. Similar Sub.1 Sub.3 Sub.2 Sub.4 Fig. 2 Loudness-matching data between an unmasked 1,600-Hz tone and a 1,600-Hz tone masked by a 1,000-Hz tone at 70 db SPL. The ordinate represents the matched level of the unmasked tone as a PSE (Point of Subjective Equality). The vertical bars indicate 95% confidence intervals. 11

4 J. Acoust. Soc. Jpn. (E) 18, 1 (1997) phenomenon to the present results have also been reported for a noise masker (Sakai and Inoue, 1965). They found this phenomenon only when the frequencies of the signal and the comparison tone were different, whereas for this experiment the frequencies were identical. These differences in the experimental conditions suggest that both the enhancement phenomena observed by Lamore (1977 b) and Sakai and Inoue (1965) cannot be directly compared with the present results. In this loudness-matching experiment, the level of the comparison tone is varied. Hellman and Zwislocki (1964) showed the effect of the procedure on the results in their loudness-matching experiments, i.e., the loudness of the signal was judged to be louder when the level of the comparison tone was varied than when the level of the signal was varied. However, the effect was not so affective as to invoke the "enhancement" phenomenon. For this experiment, the results show that PSE's at signal levels above 40 db SPL increased rapidly for subjects 1, 3, and 4. In addition, all of the subjects reported that they were able to hear tones whose pitches were lower than the masker or higher than the signal at the levels where "enhancement" was observed. Incidentally, it is well known that the nonlinearity of the auditory system produces distortion products with frequencies lower and/or higher than those of acoustical input. From these facts, it can be therefore assumed that the present "enhancement" phenomenon was caused by the aural distortion products produced by the masker and the signal. To confirm this assumption, the subsequent experiments were carried out. 3. LOUDNESS-MATCHING EXPERIMENTS IN THE PRESENCE OF BACKGROUND NOISE 3.1 Method and Apparatus The masker tone of f1 (1,000 Hz) and the signal tone of f2 (1,600 Hz) would create at least quadratic and cubic aural-distortions at 2f1-f2; (400 Hz), f2-f1 (600 Hz), 2f1 (2,000 Hz), 2f2-f1 (2,200 Hz), f1+f2 (2,600 Hz), 3f1 (3,000 Hz), 2f2 (3,200 Hz), 2f1+f2 (3,600 Hz), 2f2 (4,200 Hz), and 3f2(4,800 Hz). Although it is impossible to precisely tell which of them affects judgment of loudness, only the quadratic aural-combination tones, i.e., f2-f1 and f1+ f2 components, are taken into consideration at the present time. This is because the aural combination tones are more predominant than the quadratic and cubic aural-harmonics at 2f1, 2f2, 3f1, and 3f2 (Zwicker and Fastl, 1990) and because the quadratic aural-combination tone at f2-f1, is expected to be superior to the cubic aural-combination tone at for the frequency ratio f2/f1 =1.6 used here (Plomp, 1965 ; Goldstein, 1967). To mask each of the quadratic aural-combination tones, one-thirdoctave band noise, of which the center frequency was either 630 Hz or 2,500 Hz, was adopted. The former will be hereafter referred to as N630, and the latter as N2500. They were fed from a white noise generator (Briiel & Kjxr 1402) via a one-thirdoctave band pass filter (Bruel & Kjar 1614). Their spectral level at the center frequency was set at 51.5 db below the masker in order to mask the aural combination tones (Clack et al., 1972). The experimental procedure was the same as in the previous loudness-matching experiment except for the presence of continuous background noise during the experiments. The experiments were carried out first in the presence of N630, then N Results The PSE's under the conditions with N630 and N2500 are shown in Fig. 3(a) and (b), respectively (the results under the condition without noise are taken from Fig. 2). To avoid confusion, the 95% confidence intervals are shown only for the results obtained under the conditions with the noises. The hearing thresholds changed slightly in almost all of the conditions, since background noise (N630 or N2500) was present for this experiment. Obviously, shifts in the hearing threshold would affect the loudness of both the signal tone and the comparison tone in the presence of background noise. However, considering the loudness function for a pure tone partially masked by noise (e.g., Lochner and Burger, 1961), the effect would be negligible when the level of the tone is about 10 db higher than the hearing threshold. Therefore, we assume that the results under the three conditions of background noise are comparable with each other except for levels near the hearing thresholds. Though PSE's seem to decrease slightly when N630 was present, the rapid increments in PSE's observed under the condition without noise still remain for subjects 1, 3 and 4. When N2600 was present, however, the rapid increments in PSE's under the condition without noise disappeared. Furthermore, the 12

5 K. OZAWA et al.: LOUDNESS OF A PURE TONE MASKED BY ANOTHER PURE-TONE Sub.1 Sub.3 Sub.2 Sub.4 (a) Data under the conditions without noise and with N630. Sub.1 Sub.3 Sub.2 Sub.4 (b) Data under the conditions without noise and with N2500. Fig. 3 Loudness matching data for individual subjects under the three conditions of background noises. Both N630 and N2500 are one-third-octave band noises. The center frequency of N630 is 630 Hz, while that of N2500 is 2,500 Hz. The vertical bars indicate 95% confidence intervals for the data with the noises. The data without noise are taken from Fig

6 J. Acoust. Soc. Jpn. (E) 18, 1 (1997) "enhancement" disappeared for subject 1, and was no longer statistically significant for subject 3. These results revealed that aural combination tones at frequencies near 2,500 Hz affected the loudness of the pure tone. The experiments were carried out in order of experimental conditions without noise, with N630, and with N2500. The authors consider that the order of the experimental conditions hardly affected the results, because the PSE's for signal levels below 45 db SPL are very similar among the experimental conditions for all the subjects including subjects 1 and 3 who exhibited clear disappearance of the enhancement when the masker was added. 3.3 Discussion The results support the assumption that the aural combination tones affect the loudness of a pure tone masked by an inharmonic tone so that the loudness of the masked pure tone was judged to be greater. In other words, part of the loudness of an aural combination tone is included in the loudness of the pure tone when being partially masked by another pure-tone. Returning to subject 3, the tendency of "enhancement" still remains, though it is no more statistically significant. There are two possible explanations for this. One is that the judgments were somewhat biased by the masker ; i.e., this subject would have judged the loudness of the signal including a part of the loudness of the masker. The other is that the distortion products other than that masked by the background noises were predominant, so that their effects could not be completely eliminated by the noises given here. Anyway, the tendency of subject 3 cannot be fully interpreted from the present data. Incidentally, all the subjects reported that at near threshold levels it was difficult to distinguish the loudness of the signal tone from that of the complex tone consisting of the signal and the masker, irrespective of the presence of the background noise. This seems to show that a more advanced procedure than the simple loudness-balance would be required to obtain an exact loudness-function under various conditions. 4. CONSIDERATION ON THE FORM OF THE LOUDNESS FUNCTION OF A TONE PARTIALLY MASKED BY AN INHARMONIC TONE As stated in the introduction, several equations have been proposed to estimate the loudness of a pure tone partially masked by noise. All of them were originally introduced to explain the loudness of a sound partially masked by wide-band noise. Among them, an equation proposed by Pavel and Iverson (1981) requires the level of the masking noise. It is therefore difficult to apply the equation to the present case where a pure tone is masked by another pure-tone. Conversely, equations proposed by Scharf and Stevens (1961), Lochner and Burger (1961), and Zwicker (1958, 1963), and Zwicker and Scharf (1965) seem to be applicable to the present condition because they only require the hearing threshold of the signal in the presence of the masker. The complete forms of the applicable equations are as follows: the equation proposed by Scharf and Stevens (1961) is given by (2) where I is the intensity of the tone, and I0 is the intensity of the pure tone at threshold. This function states that the masked loudness of a pure tone is given by a power function of its "unmasked intensity." Lochner and Burger (1961) proposed (3) where the exponent n is 0.27 for a 1,000-Hz puretone. This function shows that the masked loudness of a pure tone is found by subtracting the magnitude of the hearing threshold denoted in loudness from that in the absence of any masker. This equation implies that the partially masked loudness is an unmasked part of the original loudness and this idea fits well with the additivity of loudness. Lochner and Burger (1961) showed that the loudness of a 1-kHz pure tone at 40 db SPL (I=10-8 W/ m2) is 1.09 and 1.00 sone by Eqs. (2) and (3), respectively, if the threshold is 0 db SPL (I0=10-12 W/m2) and k= Zwicker (1958, 1963), and Zwicker and Scharf (1965) derived the loudness of a tone as an integral of specific loudness over the critical-band rate. The specific loudness ƒõ' of a partially masked tone is given by 14

7 K. OZAWA et al.: LOUDNESS OF A PURE TONE MASKED BY ANOTHER PURE-TONE where E is the excitation evoked by the tone, E0, is the excitation at threshold, and Er is the excitation corresponding to the reference intensity Ir=10-12 W/m2. The exponent n is 0.23 when the tone is not masked. It becomes larger if the tone is partially masked. At the signal frequency, the ratios Er/E0 and E/E0 are equal to Ir/I0 and I/I0, respectively. At other frequencies, excitations are determined by slopes of thresholds for pure tones masked by narrow-band noise. If the threshold is 0 db SPL, the specific loudness of 1-kHz pure tone at 40 db SPL is soneg/bark at that frequency, and the loudness is calculated as being 1.12 soneg by a computational program (Paulus and Zwicker, 1972) for determining the excitations at frequencies other than 1 khz and integrating the specific loudness over the critical-band rate. In addition to these three functions, some other functions have been proposed to describe the loudness of an unmasked pure tone. Attneave (1962), Curtis et al. (1968), Curtis and Fox (1969), and Zwislocki (1983) argued a two-stage scaling model as a general form of the power function, i.e., Eq. (1). (4) In the model, the psychological process involved in judgment of loudness is divided into two parts. The first part transforms the intensity of a pure tone into a sensation magnitude. Then this sensation magnitude is transformed into loudness via a number-assigning process. Although the model adequately explains the loudness additivity (Zwislocki, 1983), it does not refer to the discrepancy near threshold of the loudness from the power function. Here it is assumed that the function can be expanded to describe this discrepancy. For example, if the sensation magnitude is given by the form of Eq. (3), then loudness ƒõ is given by where a and b are dimensional constants, and the product of n and m is known to be approximately 0.3. For example, the average numerical values for subjects seen in the literature (Zwislocki, 1983) are n=0.34 and m=1.08, respectively. If the constant abm is assumed to be 908.9, the loudness of a tone at 40 db SPL is 1.0 with these values of n and m and the threshold of 0 db SPL. Hellman and Hellman (1975) represented the loudness function of a pure tone using the driven (5) firing rate function of the auditory sensory receptor. They showed that the function agrees well with the loudness of a pure tone in the absence of masking sound. We assume that the function is also applicable to the partially masked loudness by slightly modifying the function as where I is the intensity of the tone, Io is the intensity of the pure tone at threshold in the presence of the masker, Ir is the reference intensity of W/m2, C is a normalization constant, R0 is the firing rate in neurons in the absence of an external stimulus, Rm is the saturation firing rate, and the term Rm[1-R0/ the driven rate function. Clearly ƒõ=0 when I= because the driven rate should equal to zero. The ratio R0/Rm is approximately 0.1 (Hellman and Hellman, 1975). If the term CRm is 9.24 ~10-2 and (6) n is 0.27, the loudness of a tone at 40 db SPL is 1.0 when the threshold is 0 db SPL. We have tested these five equations to determine if they can explain the loudness of a pure tone partially masked by another pure-tone or not. Figure 4 shows a comparison between the data obtained in the presence of N2500 with the estimated values from Eqs. (2) through (6). It can be seen that the estimation from Eq. (2) is independent of the exponent term of n because the terms are canceled between the masked tone and the comparison tone. For Eq. (3), the exponent n is fixed at 0.27 (Lochner and Burger, 1961). Alternatively for Eqs. (4), (5), and (6), the parameter values which provide the best fit for each subject are determined by minimizing the mean-squares error along the ordinate. Regarding Eq. (4), ƒõ' of the signal is compared with that of the comparison tone directly without taking its integral over the critical-band rate. This means that we assume that the excitation patterns of the signal and the comparison tone are similar. Here, the exponent n in Eq. (4) for the signal is assumed to be greater than or equal to 0.23 because Zwicker (1963) stated that the exponent of the power function became greater when it was partially masked. Estimation from Eq. (5) is also independent of the exponent term of m, so that only the term of n was changed to fit the equation to the data. For Eq. (6), two parameters were changed, i.e., the ratio of 15

8 J. Acoust. Soc. Jpn. (E) 18, 1 (1997) Sub.1 Sub.3 Sub.2 Sub.4 Fig. 4 Comparison of earlier proposed loudness-functions with the loudness-matching data obtained in the presence of N2500. The vertical bars indicate 95% confidence intervals for the data with N2500. the spontaneous firing rate (R0M) to the saturation firing rate (RmM) for the masked tone, and the ratio of the saturation firing rate for the unmasked comparison tone (R,mQ) to that for the masked tone Table 1 shows the values of the parameters of Eqs. (4), (5), and (6) used to minimize the mean-squares error. For Eq. (4), differences in the values among the four subjects are small and the values are equal to or greater than 0.23 which well agree with Zwicker's (1963) results. As for Eq. (5), the difference in the values are greater than the individual differences from 0.23 to 0.43 reported by Zwislocki (1983). For Eq. (6), although the values are different among the subjects, it is difficult to discuss the validity of the values because there is insufficient data on the driven firing rate function masked by a pure-tone masker in the human auditory system. Though some data are available for some animals with different maskers, the data indicate quite a wide range of values. For example, for a single cat cochlear fiber masked by a wide-band noise masker, the ratio R0/ Rm varies from 0.05 to 0.5, and the ratio RmQ/RmM changes from 0.8 to 3.3 depending on the level of the masker (Evans, 1974). Thus, the authors consider the values shown in Table 1 Fitted values of parameters in Eqs. (4), (5), and (6). Superscripts Q, M of the parameters in Eq. (6) represent the condition of the absence and the presence of the pure-tone masker, respectively. Table 1 for Eq. (6) to be within the range of possibility. As shown in Fig. 4, Eqs. (2), (3), and (5) cannot explain the tendency of "enhancement" which is seen in the data of subject 3, whichever values are assigned to the parameters. As for the other subjects, the equations also fail to satisfactorily explain the masked loudness of the pure tone, even though the large individual values are assigned. Eqations (4) and (6), on the other hand, can explain the enhancement. For Eq. (4), when the exponent n of the partially masked tone is estimated to be greater than that of the unmasked tone, the 16

9 K. OZAWA et al.: LOUDNESS OF A PURE TONE MASKED BY ANOTHER PURE-TONE estimated PSE's exceed the diagonal for higher levels. For Eq. (6), the loudness of the partially masked tone can exceed the diagonal if it is assumed that the saturation firing rate Rm increases and the ratio R0/Rm decreases when the tone is partially masked as shown in Table 1. We are not confident as to the validity of this assumption as mentioned. above ; if the saturation firing rate Rm, is kept constant against the induction of the masker sound, Eq. (6) cannot then explain the enhancement. Some explanations are possible for the discrepancies between the data and the equations. For example, 1. The aural distortion products unmasked by either N630 or N2500 affect the function. 2. The general form of the loudness functions of a tone partially masked by another pure-tone is essentially different from that of the tone partially masked by noise. This implies that the mode of loudness perception is different between the two conditions. It is not guaranteed that the effect of the other aural distortion products is suppressed to be negligibly small by the background noise used here. If the effect of aural distortion products other than those that are masked by the noises still remains, it is interesting that Eq. (6) can explain the "enhancement" of the loudness when Rm in the presence of the masker is set to be greater than that without the masker. We can consider that the growth of Rn, in the presence of the masker is due to the contribution of not only the masker but also aural distortion products other than that masked by the background noise. When we review the data closely, the rapid increment in PSE's around 40 db is found in the data of subjects 1, 3, and 4. This might suggest that this increment is caused by other aural distortion products. Equation (6) seems to be the most promising one at present to explain the loudness of a tone partially masked by another tone. We cannot immediately conclude here, however, that Eq. (6) is the general formula which can explain the masked loudness of a pure tone. The equation has so many degrees of freedom that it provides a good fit even without reasonable modeling of the system. In any case, further experiments in the presence of wideband noise at low sound-pressure level might be useful in order to investigate this possibility. There are two possible explanations as to why a pure-tone masker and wide-band noise lead to different forms of the loudness functions. One is related to the correlation between the pure-tone signal and the masker. When a pure tone is masked by noise, there is little correlation between them. When a pure tone is masked by another tone, there can be some correlation. Thus the mode of detecting the pure-tone signal from the masker could be different depending on whether the masker is noise or a pure tone. This would then make the loudness function with a correlated masker different from that with an uncorrelated one. From the psychoacoustical point of view, the correlation between the signal and the masker might exist in similarity in timbre perceived by a subject. The similarity would have made it difficult for the subjects to separate the loudness of the signal from that of the complex sound consisting of the signal and the masker, as claimed by the subjects. Such a difference in the difficulty in the loudness matching between the cases with a pure-tone masker and that with a noise masker might cause biases in the loudness judgment of the signal. The other explanation is that the stage in the hearing system used to perceive the loudness of a signal partially masked by a tone may be different from the stage for a signal masked by noise. The analysis in the latter case is carried out within a single auditory filter such as a critical band filter. Conversely, the signal and the pure-tone masker used in the present experiments would not be included in a single critical band. Therefore, a different analysis than that referring to a signal detection in a single critical band would have operated in order to perceive the loudness of the signal that is masked by another pure-tone existed far enough apart from the signal beyond the critical band. Experiments using a signal and a masker that are included in the critical band might be useful to confirm this assumption. 5. CONCLUSION In this paper, the loudness function of a 1,600-Hz 70-dB SPL pure-tone masker has been examined. When the level of the signal tone was low, its loudness decreased because it was partially masked by the pure-tone masker. For two of the four subjects, its loudness was "enhanced" although it was masked at signal levels above 45 db SPL. The "enhancement," however, disappeared in the pres- 17

10 J. Acoust. Soc. Jim. (E) 18, 1 (1997) ence of the one-third-octave background noise whose center frequency was 2,500 Hz and the level at the center frequency was 51.5 db below the masker level. This suggests that the aural combination tone at f1+f2 affected the loudness judgments of the signal so that the loudness of the combination tone is included in that of the signal. An attempt was made to explain the data obtained in the presence of the background noise by fitting the loudness functions presented earlier. As a result, the formula that was originally proposed by Hellman and Hellman (1975) shows good agreement with some of the data. However, it cannot be asserted that the formula gives the general form of the loudness function of a tone partially masked by another pure-tone. ACKNOWLEDGEMENT This study was, partially supported by a Grant-in- Aid for Scientific Research (No ) by the Ministry of Education, Science, Sport and Culture of Japan and the Sound Technology Promotion Foundation. REFERENCES Attneave, F. (1962). "Perception and related areas," in Psychology: A Study of a Science, Vol. 4, S. Koch, Ed. (McGraw Hill, New York), pp Clack, T. D., Erdreich, J., and Knighton, R. W. (1972). "Aural harmonics: The monaural phase effects at 1500 Hz, 2000 Hz, and 2500 Hz observed in tone-on-tone masking when f1=1000 Hz," J. Acoust. Soc. Am. 52, Curtis, D. W., Attneave, F., and Harrington, T. L. (1968). "A test of a two -stage model of magnitude judgment," Percept. Psychophys. 3, Curtis, D. W. and Fox, B. E. (1969). "Direct quantitative judgments of sums and a two-stage model for psychophysical judgments," Percept. Psychophys. 5, Evans, E. F. (1974). "Auditory frequency selectivity and the cochlear nerve," Facts and Models in Hearing, E. Zwicker and E. Terhardt, Eds. (Springer-Verlag, Berlin), pp Goldstein, J. L. (1967). "Auditory nonlinearity," J. Acoust. Soc. Am. 41, Hellman, R. P. and Zwislocki, J. (1961). "Some factors affecting the estimation of loudness," J. Acoust. Soc. Am. 33, Hellman, R. P. and Zwislocki, J. (1964). "Loudness function of a 1000-cps tone in the presence of a masking noise," J. Acoust. Soc. Am. 36, Hellman, R. P. (1970). "Effect of noise bandwidth on the loudness of a 1000-Hz tone," J. Acoust. Soc. Am. 48, Hellman, W. S. and Hellman, R. P. (1975). "Relation of the loudness function to the intensity characteristic of the ear," J. Acoust. Soc. Am. 57, Lamore, P. J. J. (1975). "Perception of two-tone octave complexes," Acustica 34, Lamore, P. J. J. (1977 a). "Pitch and masked threshold in octave complexes in relation to interaction phenomena in two-tone stimuli in general," Acustica 37, Lamore, P. J. J. (1977 b). "Investigation of two-tone interaction in octave complexes with the help of the pulsationthreshold method," Acustica 39, Lochner, J. P. A. and Burger, J. F. (1961). "Form of the loudness function in the presence of masking noise," J. Acoust. Soc. Am. 33, Pavel, M. and Iverson, G. J. (1981). "Invarient characteristics of partial masking: Implications for mathematical models," J. Acoust. Soc. Am. 69, Paulus, E. and Zwicker, E. (1972). "Programme zur automatischen Bestimmung der Lautheit aus Terzpegeln oder Frequenzgruppenpegeln," Acustica 27, Plomp, R. (1965). "Detectability threshold for combination tones," J. Acoust. Soc. Am. 37, Sakai, H. and Inoue, T. (1965). "Note on the masked loudness and the critical band," Proc. Autumn Meet. Acoust. Soc. Jpn., (in Japanese). Scharf, B. and Stevens, J. C. (1961). "The form of the loudness function near threshold," Proc. Int. Congr. Acoust., 3rd, Stuttgart, 1959, L. Cremer, Ed. (Elsevier Publishing Co., Inc., Amsterdam), pp Scharf, B. (1978). "Loudness," in Handbook of Perception IV, Hearing, E. C. Carterette and M. P. Freidman, Eds. (Academic Press, New York), Chap. 6, pp Scharf, B. and Houtsma, A. J. M. (1986). "Audition II: loudness, pitch, localization, aural distortion, pathology," in Handbook of Perception and Human Performance I, Sensory Processes and Perception, K. R. Boff, L. Kaufman, and J. P. Thomas, Eds. (John Wiley & Sons, New York), Chap. 15. Stevens, S. S. (1959). "On the validity of the loudness scale," J. Acoust. Soc. Am. 31, Zwicker, E. (1958). "Uber psychologische und methodische Grundlagen der Lautheit," Acustica 8, Zwicker, E. (1963). "Uber die Lautheit von ungedrosselten und gedrosselten Schallen," Acustica 13, Zwicker, E. and Fastl, H. (1990). Psychoacoustics (Springer-Verlag, Berlin), Chap. 14. Zwicker, E. and Scharf, B. (1965). "A model of loudness summation," Psychol. Rev. 72, Zwislocki, J. J. (1983). "Group and individual relations between sensation magnitudes and their numerical estimates," Percept. Psychophys. 33,

Psychoacoustical Models WS 2016/17

Psychoacoustical Models WS 2016/17 Psychoacoustical Models WS 2016/17 related lectures: Applied and Virtual Acoustics (Winter Term) Advanced Psychoacoustics (Summer Term) Sound Perception 2 Frequency and Level Range of Human Hearing Source:

More information

Study of perceptual balance for binaural dichotic presentation

Study of perceptual balance for binaural dichotic presentation Paper No. 556 Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia Study of perceptual balance for binaural dichotic presentation Pandurangarao N. Kulkarni

More information

Effects of partial masking for vehicle sounds

Effects of partial masking for vehicle sounds Effects of partial masking for vehicle sounds Hugo FASTL 1 ; Josef KONRADL 2 ; Stefan KERBER 3 1 AG Technische Akustik, MMK, TU München, Germany 2 now at: ithera Medical GmbH, München, Germany 3 now at:

More information

Keywords: time perception; illusion; empty interval; filled intervals; cluster analysis

Keywords: time perception; illusion; empty interval; filled intervals; cluster analysis Journal of Sound and Vibration Manuscript Draft Manuscript Number: JSV-D-10-00826 Title: Does filled duration illusion occur for very short time intervals? Article Type: Rapid Communication Keywords: time

More information

A linear relation between loudness and decibels

A linear relation between loudness and decibels Perception & Psychophysics 1984, 36 (4), 338-342 A linear relation between loudness and decibels E. C. POULTON Applied Psychology Unit, Cambridge, England A total of 37 uninitiated observers made repeated

More information

Determination of filtering parameters for dichotic-listening binaural hearing aids

Determination of filtering parameters for dichotic-listening binaural hearing aids Determination of filtering parameters for dichotic-listening binaural hearing aids Yôiti Suzuki a, Atsunobu Murase b, Motokuni Itoh c and Shuichi Sakamoto a a R.I.E.C., Tohoku University, 2-1, Katahira,

More information

Linguistic Phonetics. Basic Audition. Diagram of the inner ear removed due to copyright restrictions.

Linguistic Phonetics. Basic Audition. Diagram of the inner ear removed due to copyright restrictions. 24.963 Linguistic Phonetics Basic Audition Diagram of the inner ear removed due to copyright restrictions. 1 Reading: Keating 1985 24.963 also read Flemming 2001 Assignment 1 - basic acoustics. Due 9/22.

More information

Loudness. Loudness is not simply sound intensity!

Loudness. Loudness is not simply sound intensity! is not simply sound intensity! Sound loudness is a subjective term describing the strength of the ear's perception of a sound. It is intimately related to sound intensity but can by no means be considered

More information

The basic hearing abilities of absolute pitch possessors

The basic hearing abilities of absolute pitch possessors PAPER The basic hearing abilities of absolute pitch possessors Waka Fujisaki 1;2;* and Makio Kashino 2; { 1 Graduate School of Humanities and Sciences, Ochanomizu University, 2 1 1 Ootsuka, Bunkyo-ku,

More information

What Is the Difference between db HL and db SPL?

What Is the Difference between db HL and db SPL? 1 Psychoacoustics What Is the Difference between db HL and db SPL? The decibel (db ) is a logarithmic unit of measurement used to express the magnitude of a sound relative to some reference level. Decibels

More information

TESTING A NEW THEORY OF PSYCHOPHYSICAL SCALING: TEMPORAL LOUDNESS INTEGRATION

TESTING A NEW THEORY OF PSYCHOPHYSICAL SCALING: TEMPORAL LOUDNESS INTEGRATION TESTING A NEW THEORY OF PSYCHOPHYSICAL SCALING: TEMPORAL LOUDNESS INTEGRATION Karin Zimmer, R. Duncan Luce and Wolfgang Ellermeier Institut für Kognitionsforschung der Universität Oldenburg, Germany Institute

More information

Tuning curves and pitch matches in a listener with a unilateral, low-frequency hearing loss Florentine, Mary; Houtsma, A.J.M.

Tuning curves and pitch matches in a listener with a unilateral, low-frequency hearing loss Florentine, Mary; Houtsma, A.J.M. Tuning curves and pitch matches in a listener with a unilateral, low-frequency hearing loss Florentine, Mary; Houtsma, A.J.M. Published in: Journal of the Acoustical Society of America DOI: 10.1121/1.389021

More information

HCS 7367 Speech Perception

HCS 7367 Speech Perception Long-term spectrum of speech HCS 7367 Speech Perception Connected speech Absolute threshold Males Dr. Peter Assmann Fall 212 Females Long-term spectrum of speech Vowels Males Females 2) Absolute threshold

More information

Topic 4. Pitch & Frequency. (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music)

Topic 4. Pitch & Frequency. (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music) Topic 4 Pitch & Frequency (Some slides are adapted from Zhiyao Duan s course slides on Computer Audition and Its Applications in Music) A musical interlude KOMBU This solo by Kaigal-ool of Huun-Huur-Tu

More information

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds

Hearing Lectures. Acoustics of Speech and Hearing. Auditory Lighthouse. Facts about Timbre. Analysis of Complex Sounds Hearing Lectures Acoustics of Speech and Hearing Week 2-10 Hearing 3: Auditory Filtering 1. Loudness of sinusoids mainly (see Web tutorial for more) 2. Pitch of sinusoids mainly (see Web tutorial for more)

More information

The role of low frequency components in median plane localization

The role of low frequency components in median plane localization Acoust. Sci. & Tech. 24, 2 (23) PAPER The role of low components in median plane localization Masayuki Morimoto 1;, Motoki Yairi 1, Kazuhiro Iida 2 and Motokuni Itoh 1 1 Environmental Acoustics Laboratory,

More information

Thresholds for different mammals

Thresholds for different mammals Loudness Thresholds for different mammals 8 7 What s the first thing you d want to know? threshold (db SPL) 6 5 4 3 2 1 hum an poodle m ouse threshold Note bowl shape -1 1 1 1 1 frequency (Hz) Sivian &

More information

DOES FILLED DURATION ILLUSION TAKE PLACE FOR VERY SHORT TIME INTERVALS?

DOES FILLED DURATION ILLUSION TAKE PLACE FOR VERY SHORT TIME INTERVALS? DOES FILLED DURATION ILLUSION TAKE PLACE FOR VERY SHORT TIME INTERVALS? Emi Hasuo, Yoshitaka Nakajima, and Kazuo Ueda Graduate School of Design, Kyushu University -9- Shiobaru, Minami-ku, Fukuoka, - Japan

More information

An active unpleasantness control system for indoor noise based on auditory masking

An active unpleasantness control system for indoor noise based on auditory masking An active unpleasantness control system for indoor noise based on auditory masking Daisuke Ikefuji, Masato Nakayama, Takanabu Nishiura and Yoich Yamashita Graduate School of Information Science and Engineering,

More information

ClaroTM Digital Perception ProcessingTM

ClaroTM Digital Perception ProcessingTM ClaroTM Digital Perception ProcessingTM Sound processing with a human perspective Introduction Signal processing in hearing aids has always been directed towards amplifying signals according to physical

More information

Representation of sound in the auditory nerve

Representation of sound in the auditory nerve Representation of sound in the auditory nerve Eric D. Young Department of Biomedical Engineering Johns Hopkins University Young, ED. Neural representation of spectral and temporal information in speech.

More information

Topic 4. Pitch & Frequency

Topic 4. Pitch & Frequency Topic 4 Pitch & Frequency A musical interlude KOMBU This solo by Kaigal-ool of Huun-Huur-Tu (accompanying himself on doshpuluur) demonstrates perfectly the characteristic sound of the Xorekteer voice An

More information

Development of a new loudness model in consideration of audio-visual interaction

Development of a new loudness model in consideration of audio-visual interaction Development of a new loudness model in consideration of audio-visual interaction Kai AIZAWA ; Takashi KAMOGAWA ; Akihiko ARIMITSU 3 ; Takeshi TOI 4 Graduate school of Chuo University, Japan, 3, 4 Chuo

More information

functions grow at a higher rate than in normal{hearing subjects. In this chapter, the correlation

functions grow at a higher rate than in normal{hearing subjects. In this chapter, the correlation Chapter Categorical loudness scaling in hearing{impaired listeners Abstract Most sensorineural hearing{impaired subjects show the recruitment phenomenon, i.e., loudness functions grow at a higher rate

More information

Linguistic Phonetics Fall 2005

Linguistic Phonetics Fall 2005 MIT OpenCourseWare http://ocw.mit.edu 24.963 Linguistic Phonetics Fall 2005 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 24.963 Linguistic Phonetics

More information

Loudness Processing of Time-Varying Sounds: Recent advances in psychophysics and challenges for future research

Loudness Processing of Time-Varying Sounds: Recent advances in psychophysics and challenges for future research Loudness Processing of Time-Varying Sounds: Recent advances in psychophysics and challenges for future research Emmanuel PONSOT 1 ; Patrick SUSINI 1 ; Sabine MEUNIER 2 1 STMS lab (Ircam, CNRS, UPMC), 1

More information

Technical Discussion HUSHCORE Acoustical Products & Systems

Technical Discussion HUSHCORE Acoustical Products & Systems What Is Noise? Noise is unwanted sound which may be hazardous to health, interfere with speech and verbal communications or is otherwise disturbing, irritating or annoying. What Is Sound? Sound is defined

More information

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment

Acoustics, signals & systems for audiology. Psychoacoustics of hearing impairment Acoustics, signals & systems for audiology Psychoacoustics of hearing impairment Three main types of hearing impairment Conductive Sound is not properly transmitted from the outer to the inner ear Sensorineural

More information

Frequency refers to how often something happens. Period refers to the time it takes something to happen.

Frequency refers to how often something happens. Period refers to the time it takes something to happen. Lecture 2 Properties of Waves Frequency and period are distinctly different, yet related, quantities. Frequency refers to how often something happens. Period refers to the time it takes something to happen.

More information

Masked Perception Thresholds of Low Frequency Tones Under Background Noises and Their Estimation by Loudness Model

Masked Perception Thresholds of Low Frequency Tones Under Background Noises and Their Estimation by Loudness Model JOURNAL OF LOW FREQUENCY NOISE, VIBRATION AND ACTIVE CONTROL Pages 145 157 Masked Perception Thresholds of Low Frequency Tones Under Background Noises and Their Estimation by Loudness Model Jishnu K. Subedi*,

More information

Issues faced by people with a Sensorineural Hearing Loss

Issues faced by people with a Sensorineural Hearing Loss Issues faced by people with a Sensorineural Hearing Loss Issues faced by people with a Sensorineural Hearing Loss 1. Decreased Audibility 2. Decreased Dynamic Range 3. Decreased Frequency Resolution 4.

More information

Lecture 3: Perception

Lecture 3: Perception ELEN E4896 MUSIC SIGNAL PROCESSING Lecture 3: Perception 1. Ear Physiology 2. Auditory Psychophysics 3. Pitch Perception 4. Music Perception Dan Ellis Dept. Electrical Engineering, Columbia University

More information

Variation in spectral-shape discrimination weighting functions at different stimulus levels and signal strengths

Variation in spectral-shape discrimination weighting functions at different stimulus levels and signal strengths Variation in spectral-shape discrimination weighting functions at different stimulus levels and signal strengths Jennifer J. Lentz a Department of Speech and Hearing Sciences, Indiana University, Bloomington,

More information

Effect on car interior sound quality according to the variation of noisy components of tire-pattern noise

Effect on car interior sound quality according to the variation of noisy components of tire-pattern noise Effect on car interior sound quality according to the variation of noisy components of tire-pattern noise Sung-Hwan SHIN 1 ; Takeo HASHIMOTO 2 ; Shigeko HATANO 3 1 Kookmin University, Korea 2,3 Seikei

More information

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening

AUDL GS08/GAV1 Signals, systems, acoustics and the ear. Pitch & Binaural listening AUDL GS08/GAV1 Signals, systems, acoustics and the ear Pitch & Binaural listening Review 25 20 15 10 5 0-5 100 1000 10000 25 20 15 10 5 0-5 100 1000 10000 Part I: Auditory frequency selectivity Tuning

More information

Threshold of hearing for pure tone under free-field

Threshold of hearing for pure tone under free-field J. Acoust. Soc. Jpn. (E) 15, 3 (1994) Threshold of hearing for pure tone under free-field listening conditions Hisashi Takeshima,* Yoiti Suzuki,** Masazumi Kumagai,* Toshio Sone,** Takeshi Fujimori,***

More information

Pitfalls in behavioral estimates of basilar-membrane compression in humans a)

Pitfalls in behavioral estimates of basilar-membrane compression in humans a) Pitfalls in behavioral estimates of basilar-membrane compression in humans a) Magdalena Wojtczak b and Andrew J. Oxenham Department of Psychology, University of Minnesota, 75 East River Road, Minneapolis,

More information

Sound localization psychophysics

Sound localization psychophysics Sound localization psychophysics Eric Young A good reference: B.C.J. Moore An Introduction to the Psychology of Hearing Chapter 7, Space Perception. Elsevier, Amsterdam, pp. 233-267 (2004). Sound localization:

More information

Masker-signal relationships and sound level

Masker-signal relationships and sound level Chapter 6: Masking Masking Masking: a process in which the threshold of one sound (signal) is raised by the presentation of another sound (masker). Masking represents the difference in decibels (db) between

More information

INTRODUCTION. Institute of Technology, Cambridge, MA Electronic mail:

INTRODUCTION. Institute of Technology, Cambridge, MA Electronic mail: Level discrimination of sinusoids as a function of duration and level for fixed-level, roving-level, and across-frequency conditions Andrew J. Oxenham a) Institute for Hearing, Speech, and Language, and

More information

Review of Methods for Quantifying Tonalness in Noise. Quantifying Tonalness

Review of Methods for Quantifying Tonalness in Noise. Quantifying Tonalness Review of Methods for Quantifying Tonalness in Noise TC 2.6 Hot Topic Albuquerque, NM June 27, 2010 Lily M. Wang, PhD, PE, FASA Durham School of Architectural Engineering and Construction University of

More information

David A. Nelson. Anna C. Schroder. and. Magdalena Wojtczak

David A. Nelson. Anna C. Schroder. and. Magdalena Wojtczak A NEW PROCEDURE FOR MEASURING PERIPHERAL COMPRESSION IN NORMAL-HEARING AND HEARING-IMPAIRED LISTENERS David A. Nelson Anna C. Schroder and Magdalena Wojtczak Clinical Psychoacoustics Laboratory Department

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volume 19, 2013 http://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Noise Session 3aNSa: Wind Turbine Noise I 3aNSa5. Can wind turbine sound

More information

Hearing. Juan P Bello

Hearing. Juan P Bello Hearing Juan P Bello The human ear The human ear Outer Ear The human ear Middle Ear The human ear Inner Ear The cochlea (1) It separates sound into its various components If uncoiled it becomes a tapering

More information

CONTRIBUTION OF DIRECTIONAL ENERGY COMPONENTS OF LATE SOUND TO LISTENER ENVELOPMENT

CONTRIBUTION OF DIRECTIONAL ENERGY COMPONENTS OF LATE SOUND TO LISTENER ENVELOPMENT CONTRIBUTION OF DIRECTIONAL ENERGY COMPONENTS OF LATE SOUND TO LISTENER ENVELOPMENT PACS:..Hy Furuya, Hiroshi ; Wakuda, Akiko ; Anai, Ken ; Fujimoto, Kazutoshi Faculty of Engineering, Kyushu Kyoritsu University

More information

3-D SOUND IMAGE LOCALIZATION BY INTERAURAL DIFFERENCES AND THE MEDIAN PLANE HRTF. Masayuki Morimoto Motokuni Itoh Kazuhiro Iida

3-D SOUND IMAGE LOCALIZATION BY INTERAURAL DIFFERENCES AND THE MEDIAN PLANE HRTF. Masayuki Morimoto Motokuni Itoh Kazuhiro Iida 3-D SOUND IMAGE LOCALIZATION BY INTERAURAL DIFFERENCES AND THE MEDIAN PLANE HRTF Masayuki Morimoto Motokuni Itoh Kazuhiro Iida Kobe University Environmental Acoustics Laboratory Rokko, Nada, Kobe, 657-8501,

More information

Chapter 11: Sound, The Auditory System, and Pitch Perception

Chapter 11: Sound, The Auditory System, and Pitch Perception Chapter 11: Sound, The Auditory System, and Pitch Perception Overview of Questions What is it that makes sounds high pitched or low pitched? How do sound vibrations inside the ear lead to the perception

More information

Separate What and Where Decision Mechanisms In Processing a Dichotic Tonal Sequence

Separate What and Where Decision Mechanisms In Processing a Dichotic Tonal Sequence Journal of Experimental Psychology: Human Perception and Performance 1976, Vol. 2, No. 1, 23-29 Separate What and Where Decision Mechanisms In Processing a Dichotic Tonal Sequence Diana Deutsch and Philip

More information

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics

! Can hear whistle? ! Where are we on course map? ! What we did in lab last week. ! Psychoacoustics 2/14/18 Can hear whistle? Lecture 5 Psychoacoustics Based on slides 2009--2018 DeHon, Koditschek Additional Material 2014 Farmer 1 2 There are sounds we cannot hear Depends on frequency Where are we on

More information

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979)

Hearing. Figure 1. The human ear (from Kessel and Kardon, 1979) Hearing The nervous system s cognitive response to sound stimuli is known as psychoacoustics: it is partly acoustics and partly psychology. Hearing is a feature resulting from our physiology that we tend

More information

Spectrograms (revisited)

Spectrograms (revisited) Spectrograms (revisited) We begin the lecture by reviewing the units of spectrograms, which I had only glossed over when I covered spectrograms at the end of lecture 19. We then relate the blocks of a

More information

INTRODUCTION J. Acoust. Soc. Am. 103 (2), February /98/103(2)/1080/5/$ Acoustical Society of America 1080

INTRODUCTION J. Acoust. Soc. Am. 103 (2), February /98/103(2)/1080/5/$ Acoustical Society of America 1080 Perceptual segregation of a harmonic from a vowel by interaural time difference in conjunction with mistuning and onset asynchrony C. J. Darwin and R. W. Hukin Experimental Psychology, University of Sussex,

More information

Hearing II Perceptual Aspects

Hearing II Perceptual Aspects Hearing II Perceptual Aspects Overview of Topics Chapter 6 in Chaudhuri Intensity & Loudness Frequency & Pitch Auditory Space Perception 1 2 Intensity & Loudness Loudness is the subjective perceptual quality

More information

Hearing. and other senses

Hearing. and other senses Hearing and other senses Sound Sound: sensed variations in air pressure Frequency: number of peaks that pass a point per second (Hz) Pitch 2 Some Sound and Hearing Links Useful (and moderately entertaining)

More information

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES

USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES USING AUDITORY SALIENCY TO UNDERSTAND COMPLEX AUDITORY SCENES Varinthira Duangudom and David V Anderson School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332

More information

Modeling individual loudness perception in cochlear implant recipients with normal contralateral hearing

Modeling individual loudness perception in cochlear implant recipients with normal contralateral hearing Modeling individual loudness perception in cochlear implant recipients with normal contralateral hearing JOSEF CHALUPPER * Advanced Bionics GmbH, European Research Center, Hannover, Germany Use of acoustic

More information

Auditory Phase Opponency: A Temporal Model for Masked Detection at Low Frequencies

Auditory Phase Opponency: A Temporal Model for Masked Detection at Low Frequencies ACTA ACUSTICA UNITED WITH ACUSTICA Vol. 88 (22) 334 347 Scientific Papers Auditory Phase Opponency: A Temporal Model for Masked Detection at Low Frequencies Laurel H. Carney, Michael G. Heinz, Mary E.

More information

A computer model of medial efferent suppression in the mammalian auditory system

A computer model of medial efferent suppression in the mammalian auditory system A computer model of medial efferent suppression in the mammalian auditory system Robert T. Ferry a and Ray Meddis Department of Psychology, University of Essex, Colchester, CO4 3SQ, United Kingdom Received

More information

9/29/14. Amanda M. Lauer, Dept. of Otolaryngology- HNS. From Signal Detection Theory and Psychophysics, Green & Swets (1966)

9/29/14. Amanda M. Lauer, Dept. of Otolaryngology- HNS. From Signal Detection Theory and Psychophysics, Green & Swets (1966) Amanda M. Lauer, Dept. of Otolaryngology- HNS From Signal Detection Theory and Psychophysics, Green & Swets (1966) SIGNAL D sensitivity index d =Z hit - Z fa Present Absent RESPONSE Yes HIT FALSE ALARM

More information

ID# Exam 2 PS 325, Fall 2009

ID# Exam 2 PS 325, Fall 2009 ID# Exam 2 PS 325, Fall 2009 As always, the Skidmore Honor Code is in effect. At the end of the exam, I ll have you write and sign something to attest to that fact. The exam should contain no surprises,

More information

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves

Sound Waves. Sensation and Perception. Sound Waves. Sound Waves. Sound Waves Sensation and Perception Part 3 - Hearing Sound comes from pressure waves in a medium (e.g., solid, liquid, gas). Although we usually hear sounds in air, as long as the medium is there to transmit the

More information

INTRODUCTION J. Acoust. Soc. Am. 100 (4), Pt. 1, October /96/100(4)/2352/13/$ Acoustical Society of America 2352

INTRODUCTION J. Acoust. Soc. Am. 100 (4), Pt. 1, October /96/100(4)/2352/13/$ Acoustical Society of America 2352 Lateralization of a perturbed harmonic: Effects of onset asynchrony and mistuning a) Nicholas I. Hill and C. J. Darwin Laboratory of Experimental Psychology, University of Sussex, Brighton BN1 9QG, United

More information

Systems Neuroscience Oct. 16, Auditory system. http:

Systems Neuroscience Oct. 16, Auditory system. http: Systems Neuroscience Oct. 16, 2018 Auditory system http: www.ini.unizh.ch/~kiper/system_neurosci.html The physics of sound Measuring sound intensity We are sensitive to an enormous range of intensities,

More information

Recovery from on- and off-frequency forward masking in listeners with normal and impaired hearing

Recovery from on- and off-frequency forward masking in listeners with normal and impaired hearing Recovery from on- and off-frequency forward masking in listeners with normal and impaired hearing Magdalena Wojtczak a and Andrew J. Oxenham Department of Psychology, University of Minnesota, 75 East River

More information

Prescribe hearing aids to:

Prescribe hearing aids to: Harvey Dillon Audiology NOW! Prescribing hearing aids for adults and children Prescribing hearing aids for adults and children Adult Measure hearing thresholds (db HL) Child Measure hearing thresholds

More information

Hearing threshold measurements of infrasound combined with audio frequency sound

Hearing threshold measurements of infrasound combined with audio frequency sound 12th ICBEN Congress on Noise as a Public Health Problem Hearing threshold measurements of infrasound combined with audio frequency sound Elisa Burke 1, Johannes Hensel 1, Thomas Fedtke 1 1 Physikalisch-Technische

More information

Lecturer: Rob van der Willigen 11/9/08

Lecturer: Rob van der Willigen 11/9/08 Auditory Perception - Detection versus Discrimination - Localization versus Discrimination - - Electrophysiological Measurements Psychophysical Measurements Three Approaches to Researching Audition physiology

More information

Effects of speaker's and listener's environments on speech intelligibili annoyance. Author(s)Kubo, Rieko; Morikawa, Daisuke; Akag

Effects of speaker's and listener's environments on speech intelligibili annoyance. Author(s)Kubo, Rieko; Morikawa, Daisuke; Akag JAIST Reposi https://dspace.j Title Effects of speaker's and listener's environments on speech intelligibili annoyance Author(s)Kubo, Rieko; Morikawa, Daisuke; Akag Citation Inter-noise 2016: 171-176 Issue

More information

Topics in Linguistic Theory: Laboratory Phonology Spring 2007

Topics in Linguistic Theory: Laboratory Phonology Spring 2007 MIT OpenCourseWare http://ocw.mit.edu 24.91 Topics in Linguistic Theory: Laboratory Phonology Spring 27 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

Discrimination of temporal fine structure by birds and mammals

Discrimination of temporal fine structure by birds and mammals Auditory Signal Processing: Physiology, Psychoacoustics, and Models. Pressnitzer, D., de Cheveigné, A., McAdams, S.,and Collet, L. (Eds). Springer Verlag, 24. Discrimination of temporal fine structure

More information

I. INTRODUCTION. J. Acoust. Soc. Am. 111 (1), Pt. 1, Jan /2002/111(1)/271/14/$ Acoustical Society of America

I. INTRODUCTION. J. Acoust. Soc. Am. 111 (1), Pt. 1, Jan /2002/111(1)/271/14/$ Acoustical Society of America The use of distortion product otoacoustic emission suppression as an estimate of response growth Michael P. Gorga, a) Stephen T. Neely, Patricia A. Dorn, and Dawn Konrad-Martin Boys Town National Research

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 ASSESSMENTS OF BONE-CONDUCTED ULTRASONIC HEARING-AID (BCUHA): FREQUENCY-DISCRIMINATION, ARTICULATION AND INTELLIGIBILITY TESTS PACS:

More information

Psychophysical Studies of Auditory Masking in Marine Mammals: Key Concepts and New Directions

Psychophysical Studies of Auditory Masking in Marine Mammals: Key Concepts and New Directions Psychophysical Studies of Auditory Masking in Marine Mammals: Key Concepts and New Directions Colleen Reichmuth 1 Introduction In recent years, growing awareness of the potentially harmful effects of human-generated

More information

Speech Intelligibility Measurements in Auditorium

Speech Intelligibility Measurements in Auditorium Vol. 118 (2010) ACTA PHYSICA POLONICA A No. 1 Acoustic and Biomedical Engineering Speech Intelligibility Measurements in Auditorium K. Leo Faculty of Physics and Applied Mathematics, Technical University

More information

Lecturer: Rob van der Willigen 11/9/08

Lecturer: Rob van der Willigen 11/9/08 Auditory Perception - Detection versus Discrimination - Localization versus Discrimination - Electrophysiological Measurements - Psychophysical Measurements 1 Three Approaches to Researching Audition physiology

More information

Journal of Speech and Hearing Research, Volume 27, , June tleseareh Note RELATION BETWEEN REACTION TIME AND LOUDNESS

Journal of Speech and Hearing Research, Volume 27, , June tleseareh Note RELATION BETWEEN REACTION TIME AND LOUDNESS Journal of Speech and Hearing Research, Volume 27, 306-310, June 1984 tleseareh Note RELATION BETWEEN REACTION TIME AND LOUDNESS LARRY E. HUMES JAYNE B. AHLSTROM Vanderbilt University School of Medicine,

More information

Growth of Loudness in Listeners with Cochlear Hearing Losses: Recruitment Reconsidered

Growth of Loudness in Listeners with Cochlear Hearing Losses: Recruitment Reconsidered JARO 03: 120 139 (2001) DOI: 10.1007/s101620010084 Growth of Loudness in Listeners with Cochlear Hearing Losses: Recruitment Reconsidered SØREN BUUS, 1,2 AND MARY FLORENTINE 1,3 1 Institute for Hearing,

More information

Modeling Human Perception

Modeling Human Perception Modeling Human Perception Could Stevens Power Law be an Emergent Feature? Matthew L. Bolton Systems and Information Engineering University of Virginia Charlottesville, United States of America Mlb4b@Virginia.edu

More information

Christopher J. Plack Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England

Christopher J. Plack Department of Psychology, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, England Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism Brian C. J. Moore a) and Deborah A. Vickers Department of Experimental Psychology, University

More information

C HAPTER FOUR. Audiometric Configurations in Children. Andrea L. Pittman. Introduction. Methods

C HAPTER FOUR. Audiometric Configurations in Children. Andrea L. Pittman. Introduction. Methods C HAPTER FOUR Audiometric Configurations in Children Andrea L. Pittman Introduction Recent studies suggest that the amplification needs of children and adults differ due to differences in perceptual ability.

More information

A NOVEL HEAD-RELATED TRANSFER FUNCTION MODEL BASED ON SPECTRAL AND INTERAURAL DIFFERENCE CUES

A NOVEL HEAD-RELATED TRANSFER FUNCTION MODEL BASED ON SPECTRAL AND INTERAURAL DIFFERENCE CUES A NOVEL HEAD-RELATED TRANSFER FUNCTION MODEL BASED ON SPECTRAL AND INTERAURAL DIFFERENCE CUES Kazuhiro IIDA, Motokuni ITOH AV Core Technology Development Center, Matsushita Electric Industrial Co., Ltd.

More information

The Effect of Age, Noise Level, and Frequency on Loudness Matching Functions of Normal Hearing Listeners with Noise Masking

The Effect of Age, Noise Level, and Frequency on Loudness Matching Functions of Normal Hearing Listeners with Noise Masking Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2016-02-01 The Effect of Age, Noise Level, and Frequency on Loudness Matching Functions of Normal Hearing Listeners with Noise

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 and 10 Lecture 17 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2015 1 Cochlea: physical device tuned to frequency! place code: tuning of different

More information

A variant temporal-masking-curve method for inferring peripheral auditory compression a)

A variant temporal-masking-curve method for inferring peripheral auditory compression a) A variant temporal-masking-curve method for inferring peripheral auditory compression a) Enrique A. Lopez-Poveda b and Ana Alves-Pinto Unidad de Audición Computacional y Psicoacústica, Instituto de Neurociencias

More information

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 THE DUPLEX-THEORY OF LOCALIZATION INVESTIGATED UNDER NATURAL CONDITIONS

19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 2007 THE DUPLEX-THEORY OF LOCALIZATION INVESTIGATED UNDER NATURAL CONDITIONS 19 th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, 2-7 SEPTEMBER 27 THE DUPLEX-THEORY OF LOCALIZATION INVESTIGATED UNDER NATURAL CONDITIONS PACS: 43.66.Pn Seeber, Bernhard U. Auditory Perception Lab, Dept.

More information

Temporal offset judgments for concurrent vowels by young, middle-aged, and older adults

Temporal offset judgments for concurrent vowels by young, middle-aged, and older adults Temporal offset judgments for concurrent vowels by young, middle-aged, and older adults Daniel Fogerty Department of Communication Sciences and Disorders, University of South Carolina, Columbia, South

More information

HEARING AND PSYCHOACOUSTICS

HEARING AND PSYCHOACOUSTICS CHAPTER 2 HEARING AND PSYCHOACOUSTICS WITH LIDIA LEE I would like to lead off the specific audio discussions with a description of the audio receptor the ear. I believe it is always a good idea to understand

More information

I. INTRODUCTION J. Acoust. Soc. Am. 109 (5), Pt. 1, May /2001/109(5)/2103/9/$ Acoustical Society of America 2103

I. INTRODUCTION J. Acoust. Soc. Am. 109 (5), Pt. 1, May /2001/109(5)/2103/9/$ Acoustical Society of America 2103 Infants sensitivity to broadband noise Lynne A. Werner and Kumiko Boike Department of Speech and Hearing Sciences, University of Washington, 1417 NE 42nd Street, Seattle, Washington 98015-6246 Received

More information

BINAURAL DICHOTIC PRESENTATION FOR MODERATE BILATERAL SENSORINEURAL HEARING-IMPAIRED

BINAURAL DICHOTIC PRESENTATION FOR MODERATE BILATERAL SENSORINEURAL HEARING-IMPAIRED International Conference on Systemics, Cybernetics and Informatics, February 12 15, 2004 BINAURAL DICHOTIC PRESENTATION FOR MODERATE BILATERAL SENSORINEURAL HEARING-IMPAIRED Alice N. Cheeran Biomedical

More information

An algorithm modelling the Irrelevant Sound Effect (ISE)

An algorithm modelling the Irrelevant Sound Effect (ISE) An algorithm modelling the Irrelevant Sound Effect (ISE) S. J. Schlittmeier a, T. Weissgerber b, S. Kerber b, H. Fastl b and J. Hellbrueck a a Work, Environmental and Health Psychology, Catholic University

More information

Binaural Hearing. Why two ears? Definitions

Binaural Hearing. Why two ears? Definitions Binaural Hearing Why two ears? Locating sounds in space: acuity is poorer than in vision by up to two orders of magnitude, but extends in all directions. Role in alerting and orienting? Separating sound

More information

ID# Exam 2 PS 325, Fall 2003

ID# Exam 2 PS 325, Fall 2003 ID# Exam 2 PS 325, Fall 2003 As always, the Honor Code is in effect and you ll need to write the code and sign it at the end of the exam. Read each question carefully and answer it completely. Although

More information

The development of a modified spectral ripple test

The development of a modified spectral ripple test The development of a modified spectral ripple test Justin M. Aronoff a) and David M. Landsberger Communication and Neuroscience Division, House Research Institute, 2100 West 3rd Street, Los Angeles, California

More information

1706 J. Acoust. Soc. Am. 113 (3), March /2003/113(3)/1706/12/$ Acoustical Society of America

1706 J. Acoust. Soc. Am. 113 (3), March /2003/113(3)/1706/12/$ Acoustical Society of America The effects of hearing loss on the contribution of high- and lowfrequency speech information to speech understanding a) Benjamin W. Y. Hornsby b) and Todd A. Ricketts Dan Maddox Hearing Aid Research Laboratory,

More information

21/01/2013. Binaural Phenomena. Aim. To understand binaural hearing Objectives. Understand the cues used to determine the location of a sound source

21/01/2013. Binaural Phenomena. Aim. To understand binaural hearing Objectives. Understand the cues used to determine the location of a sound source Binaural Phenomena Aim To understand binaural hearing Objectives Understand the cues used to determine the location of a sound source Understand sensitivity to binaural spatial cues, including interaural

More information

Auditory System & Hearing

Auditory System & Hearing Auditory System & Hearing Chapters 9 part II Lecture 16 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Spring 2019 1 Phase locking: Firing locked to period of a sound wave example of a temporal

More information

Spectral processing of two concurrent harmonic complexes

Spectral processing of two concurrent harmonic complexes Spectral processing of two concurrent harmonic complexes Yi Shen a) and Virginia M. Richards Department of Cognitive Sciences, University of California, Irvine, California 92697-5100 (Received 7 April

More information

Perception of tonal components contained in wind turbine noise

Perception of tonal components contained in wind turbine noise Perception of tonal components contained in wind turbine noise Sakae YOKOYAMA 1 ; Tomohiro KOBAYASHI 2 ; Hideki TACHIBANA 3 1,2 Kobayasi Institute of Physical Research, Japan 3 The University of Tokyo,

More information

Comment by Delgutte and Anna. A. Dreyer (Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA)

Comment by Delgutte and Anna. A. Dreyer (Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA) Comments Comment by Delgutte and Anna. A. Dreyer (Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, MA) Is phase locking to transposed stimuli as good as phase locking to low-frequency

More information

The Handbook of Hearing and the Effects of Noise

The Handbook of Hearing and the Effects of Noise The Handbook of Hearing and the Effects of Noise Physiology, Psychology, and Public Health Karl D. Kryter San Diego State University San Diego, California Academic Press San Diego New York Boston London

More information