Acid-base profile in patients on PD

Size: px
Start display at page:

Download "Acid-base profile in patients on PD"

Transcription

1 Kidney International, Vol. 6, Supplement 88 (23), pp. S26 S36 Acid-base profile in patients on PD SALIM MUJAIS Renal Division, Baxter Healthcare Corporation, McGaw Park, Illinois Acid-base profile in patients on PD. Secular trends in dialysis dose in peritoneal dialysis (PD) and modes of dialysis delivery [automated PD () versus continuous ambulatory PD (C)] require a reexamination of acid-base status in patients treated with these renal replacement modalities. We explored steady-state acid-base profile and its determinants in 17 patients on C and 77 patients on. The majority (62% to 7%) of patients had serum bicarbonate levels in the normal range, and a minority (17% to 27%) had values just above 28 meq/l. Only a small percentage (1% to 12%) of patients in either the C or the groups had a serum HCO 3 less than 22 meq/l, an indication of the successful correction of acidosis in most patients. The anion gap was elevated (>16 meq/l) in the majority of patients on C and and bore an inverse relationship to serum HCO 3 and a direct relationship to serum albumin and serum phosphate. In C patients, but not patients, a significant inverse relationship was observed between the anion gap and peritoneal permeability as assessed by four-hour D/P creatinine. The correction of acidosis in PD appears to be predominantly achieved by the continuous supplementation of alkali via dialysis, with residual renal function not differentiating the degree of correction. Steady-state serum bicarbonate in patients on C appeared to be responsive to the underlying peritoneal membrane permeability characteristics of the patient that govern alkali loss and gain, but the higher dialysate volumes in appear to override this effect. Higher albumin, blood urea nitrogen (BUN), and phosphate in patients with lower HCO 3 suggest a discrepancy between daily acid load and dialysis dose. Acidosis is one of the cardinal manifestations of renal failure and its correction is one of the elementary and obvious goals of renal replacement therapy. A variety of studies have examined the correction of acidosis and the relevance of such corrections on the health of patients on dialysis [1 2]. While these contributions have greatly advanced our understanding of mechanisms of generation and correction of acidosis [13, 1], the ongoing changes in dialysis technology as to delivery modes and changing buffer use in both hemodialysis (HD) and peritoneal dialysis (PD) require that examination of contemporary patient groups be undertaken to delineate current Key words: peritoneal dialysis, acidosis, residual renal function, creatinine clearance. C 23 by the International Society of Nephrology successes. Changes in buffer sources have been undertaken in both HD (from acetate to bicarbonate) and in PD (from acetate to lactate, and to bicarbonate alone or supplemented with lactate) [1, 3, 6 1, 12]. Furthermore, changes in dialysis dose (increasing in both HD and PD) [21 28], dialysis frequency (shorter times in in-center HD and the emergence of short daily and nocturnal HD), and modifications in dialysis delivery modes (an increasing use of ), may have an impact on the correction of uremic acidosis. It is the aim of the present paper to examine the status of acidosis correction in patients on PD and compare the effects of C,, and patient factors that may modulate response to alkali therapy delivered by dialysis. METHODS The present analysis is based on cohorts of patients originally recruited to participate in a randomized controlled trial for the evaluation of a new dialysis solution [29, 3]. Only measurements obtained at baseline while patients were on standard dialysis regimen and solution are considered herein. The criteria for patient selection, and hence, inclusion in the current analysis, were as follows: (1) Patients who had given written informed consent; (2) patients who were at least 18 years old; (3) patients who were treated with PD for at least 9 days before the screening visit; and () patients whose standard prescription was stable for at least 3 days prior to the screening visit. The following patients were excluded from the study and hence the present analysis: (1) Patients who had an acute or chronic exit site or tunnel infection; (2) patients who required antibiotics for the treatment of an episode of peritonitis in the 3 days prior to the screening visit; (3) patients who were known to be HIV positive; () patients who had other serious disease such as active malignancy, or, if previously treated, residual malignancy or systemic infection; () patients who had active liver disease such as cirrhosis of the liver, active hepatitis, or other active liver disease; (6) patients who had an illness or injury requiring hospitalization during the 3 days preceding the screening visit; and (7) patients who were pregnant or lactating. It is recognized that any and each S-26

2 Mujais: Acid-base profile in patients on PD S-27 Table 1. Overall demographic profile Parameter C P value N Age.29 ± ± 1.66 NS Height 16.2 ± ± Weight 76. ± ± M:F 6:11 9:28 Duration of dialysis years 2.1 ± ±..1 Data are mean ± SE. Table 2. Overall biochemical profile Parameter C N BUN mg/dl 1.8 ± ± 1.92 Creatinine mg/dl 9.67 ± ±.9 Na meq/l ± ±. K meq/l 3.91 ±. 3.8 ±.7 Cl meq/l 9.7 ± ±.6 HCO 3 meq/l 2.3 ± ±.36 AGAP meq/l ± ±.1 Ca mg/dl 9. ± ±.1 PO mg/dl.7 ± ±.19 Albumin g/dl 3.21 ± ±.21 Cholesterol mg/dl ± ±.8 Data are mean ± SE. Abbreviations are: BUN, blood urea nitrogen; Na, sodium; K, potassium; Cl, chloride; HCO 3, bicarbonate; AGAP, anion gap; Ca, calcium; PO, phosphate. of the above exclusion conditions can have an effect on patient acid-base balance. As part of their baseline evaluation, all patients described had standard blood chemistry and hematology measures, as well as a standard peritoneal equilibration test (PET). All patients, who had urine output >1 ml/2 hours, collected their 2-hour urine output during the 2 hours preceding baseline. Urea nitrogen and creatinine were used to determine the residual renal function (RRF). RRF was calculated as the average of renal creatinine clearance (CrCl) and renal urea nitrogen clearance (Ucl) by standard formulas. RESULTS General characteristics of the population The overall profile of the study population is illustrated in Tables 1 3. The demographic characteristics of this population are similar to the dialysis population in North America in general and can thus be considered as representative of the state of stable patients on PD. Patients on were slightly larger than patients on C, had lower residual renal function (RRF), and used a higher volume of dialysis solution daily. All of these differences reflect common practice patterns in North America. A small percentage (1% to 12%) of patients in either the C or the groups had a serum HCO 3 less than 22 meq/l, an indication of the successful correction of acidosis in most patients. The majority (62% to Table 3. Overall renal and dialytic profile Parameter C N Urine volume ml/2 hr 718 ± 6 1 ± 61 CrCl ml/min.23 ± ±.8 Urea Cl ml/min 2.3 ±.2.96 ±.19 RRF ml/min 3.88 ± ±.31 Dialysis volume ml/2 hr 936 ± ± 31 -hour D/P creatinine.67 ±.1.69 ±.1 D /D glucose.38 ±.1.39 ±.2 -hour D/P urea.89 ±.1.9 ±.1 PET-UF ml/ hr 36 ± ± 26 LD-UF ml 29 ± ± Data are mean ± SE. Abbreviations are: CrCl, creatinine clearance; urea Cl, urea clearance; RRF, average of creatinine and urea clearances; -hour D/P creatinine, ratio of dialysate creatinine at hours of dwell to serum creatinine; D /D glucose, ratio of -hour dialysate glucose to hour dialysate glucose; -hour D/P urea, ratio of dialysate urea at hours of dwell to BUN; PET-UF, net ultrafiltration during a -hour PET with 2.% dextrose solution; LD-UF, net ultrafiltration during an overnight dwell with 2.% dextrose solution. 7%) of patients had serum bicarbonate levels in the normal range, and a small group (17% to 27%) had values just above 28 meq/l (Fig. 1). The anion gap was elevated (>16 meq/l) in the majority of patients on C and (Fig. 2) and bore an inverse relationship to serum HCO 3 (Fig. 3) and a direct relationship to serum albumin (Fig. ) and serum phosphate (Fig. ). In C patients, but not patients, a significant inverse relationship was observed between the anion gap and peritoneal permeability as assessed by four-hour D/P creatinine (Fig. 6). The correlation between the anion gap and albumin in C patients (r =.3, P <.1) was reduced when it was controlled for phosphate levels (r =.363, P <.1), but remained significant and was further reduced when controlled for both phosphate and four-hour D/P creatinine (r =.276, P <.1). In patients, however, the correlation between albumin and the anion gap (r =.3, P <.1) was minimally affected by controlling for phosphate (r =.28, P <.1) or both phosphate and four-hour D/P creatinine (r =.16, P <.1). In C patients, the correlation between the anion gap and four-hour D/P creatinine (r =.319, P <.1) was reduced but remained significant when it was controlled for phosphate (r =.269, P <.1). Controlling for albumin, however, abolished the correlation between the anion gap and the four-hour D/P creatinine (r =.13, P = ns). In neither C nor did the dialysis solution volume correlate with any of the biochemical markers of interest, either absolute or factored for body weight or height. Profile by residual renal function Because renal function plays a crucial role in acid excretion, the impact of residual renal function (RRF) on the acid-base status of patients on dialysis was examined to explore whether the effects of continuous dialysis

3 S-28 Mujais: Acid-base profile in patients on PD Patient number C HCO 3, meq/l HCO 3, meq/l Fig. 1. Distribution of serum HCO 3 values in patients on continuous ambulatory peritoneal dialysis (C) and automated peritoneal dialysis (). Numerals within each bar reflect number of patients falling within the indicated interval. C 16 Patient number Fig. 2. Distribution of serum anion gap values in patients on continuous ambulatory peritoneal dialysis (C) and automated peritoneal dialysis (). Numerals within each bar reflect number of patients falling within the indicated interval C 3 HCO 3, meq/l R =.667, P <.1 R =.76, P < Fig. 3. Inverse significant correlations were observed between serum HCO 3 and anion gap in continuous ambulatory peritoneal dialysis (C) and automated peritoneal dialysis () patients.

4 Mujais: Acid-base profile in patients on PD S-29.. C.. Albumin, g/dl R =.3, P <.1 1. R =.3, P < Fig.. Direct significant correlations were observed between serum albumin and anion gap in continuous ambulatory peritoneal dialysis (C) and automated peritoneal dialysis () patients. Phosphate, mg/dl C R =.7, P <.1 1 R =.39, P < Fig.. Direct significant correlations were observed between serum phosphate and anion gap in continuous ambulatory peritoneal dialysis (C) and automated peritoneal dialysis () patients. hour D/P creatinine 1. C R =.319, P < R =.27, P = NS Fig. 6. Inverse significant correlations were observed between four-hour D/P creatinine and anion gap in continuous ambulatory peritoneal dialysis (C) and automated peritoneal dialysis () patients.

5 S-3 Mujais: Acid-base profile in patients on PD were dominant, or whether the role of RRF was still apparent in the face of continuous alkali supplementation. Among patients on C, 86 had measurable urine output (mean ± SE, 718 ± 6 ml/2 h) and consequently measurable renal function (CrCl,.1 ±. ml/min; urea Cl, 2. ±.2 ml/min; RRF, 3.8 ±.3 ml/min), and 87 patients were considered anuric. The two groups were comparable for demographic characteristics (except for duration on dialysis, which was longer in the anuric patients: 2.8 ±.3 vs. 1. ±.1 years, P <.1). On examination of biochemical profile, albumin, blood urea nitrogen, cation levels (calcium, phosphate), electrolytes (Na, K, Cl, HCO 3 ) and anemia control were similar between the two groups. Serum bicarbonate levels were equivalent (2.3 ±.3 vs. 2.3 ±.3 meq/l), but the anion gap was slightly higher in the anuric group (22.1 ±. vs. 2.3 ±. meq/l, P <.1). The other notable difference between the two groups was serum creatinine, which was higher in the anuric patients compared with those with RRF (11. ±. vs. 8.3 ±.3 mg/dl, respectively, P <.1). Among patients on, 39 had measurable urine output (mean ± SE, 1 ± 61 ml/2 h) and consequently measurable renal function (CrCl,. ±.8 ml/min; urea Cl, 1.9 ±.3 ml/min; RRF, 3.1 ±. ml/min), and 38 patients were considered anuric. The two groups were comparable for demographic characteristics (except for duration on dialysis, which was longer in the anuric patients). On examination of biochemical profile, albumin, blood urea nitrogen, cation levels (calcium, phosphate), electrolytes (Na, K, Cl, HCO 3 ) and anemia control were similar between the two groups. Serum bicarbonate levels were equivalent (2.6 ±.6 vs. 2.9 ±. meq/l) and so were the anion gaps (2.7 ±.7 vs ±.7 meq/l). The only notable difference between the two groups was serum creatinine, which was higher in the anuric patients compared with those with residual renal function (13. ±.7 vs. 8.6 ±. mg/dl, respectively, P <.1). Profile by HCO 3 level To gain better insight into the factors underlying the broad range of values of bicarbonate, the C and groups were further subdivided into subsets based on serum bicarbonate levels (Tables 7). In C patients, those with HCO 3 lower than 22 had higher blood urea nitrogen (BUN), anion gap, phosphate, and cholesterol than the other two groups (P <.1 to P <.1) (Figs. 7 and 8). Furthermore, albumin levels were higher than the other two groups but were statistically different only compared with the high HCO 3 group (P <.) (Fig. 9). These differences in biochemical profile were paralleled by differences in peritoneal membrane characteristics, with the low bicarbonate group being characterized by lower membrane permeability and higher Table. C biochemical profile by HCO 3 status Parameter HCO 3 <22 22 HCO 3 <28 HCO 3 28 N% 22 (12.6%) 122 (7.1%) 3 (17.3%) BUN mg/dl 6.1 ± ± 1.. ± 2.6 Creatinine mg/dl 1.8 ±.9 9. ± ±.7 Na meq/l ± ± ±. K meq/l 3.96 ± ± ±.11 Cl meq/l 9.2 ± ±. 9.7 ±.7 HCO 3 meq/l 2.3 ±.2 a 2.9 ± ±. AGAP meq/l 2. ±.9 a 21.7 ± ±.7 Ca mg/dl 9. ± ±.7 9. ±.18 PO mg/dl.8 ±.3 b. ±.1.6 ±.2 Albumin g/dl 3.37 ± ±. 3. ±.11 Cholesterol mg/dl 23 ± 12 2 ± 19 ± 8 Data are mean ± SE. Abbreviations are: BUN, blood urea nitrogen; Na, sodium; K, potassium; Cl, chloride; HCO 3, bicarbonate; AGAP, anion gap; Ca, calcium; PO, phosphate. a P <.1 vs. each of the other two groups; b P <.1 vs. HCO 3 >28 group Table. C renal and dialytic profile by HCO 3 status Parameter <22 22 x <28 28 N% 22 (12.6%) 122 (7.1%) 3 (17.3%) Urine volume ml/2 hr 3 ± ± ± 96 CrCl ml/min 2.2 ± ± ±.96 Urea Cl ml/min 2.2 ± ± ±. RRF ml/min 3.76 ± ± ±.96 Dialysis volume ml/2 hr 929 ± ± ± 26 -hour D/P creatinine.61 ±.1.67 ±.1.71 ±.2 D /D glucose.2 ±.1.38 ±.7.3 ±.1 -hour D/P urea.86 ±.1.89 ±.7.9 ±.1 PET-UF ml/ hr ± 6 3 ± 19 3 ± 31 LD-UF ml 79 ± ± 32 2 ± 62 Data are mean ± SE. Abbreviations are: CrCl, creatinine clearance; urea Cl, urea clearance; RRF, average of creatinine and urea clearances; -hour D/P creatinine, ratio of dialysate creatinine at hours of dwell to serum creatinine; D /D glucose, ratio of -hour dialysate glucose to hour dialysate glucose; hour D/P urea, ratio of dialysate urea at hours of dwell to BUN; PET-UF, net ultrafiltration during a -hour PET with 2.% dextrose solution; LD-UF, net ultrafiltration during an overnight dwell with 2.% dextrose solution. ultrafiltration response than the other two groups (P <.1 for all comparisons). Patients in the intermediate HCO 3 group differed from the high HCO 3 group only in terms of a higher anion gap (P <.1), slightly elevated phosphate and BUN (P <.1), and marginally significant lower membrane permeability and higher UF response. In patients, those with HCO 3 lower than 22 had higher BUN, anion gap, and phosphate than the other two groups, but only the anion gap was significantly different from the intermediate HCO 3 group (P <.1) (Figs. 7 and 8). BUN, anion gap, and phosphate were significantly different from the higher HCO 3 group (P <.1). Furthermore, albumin levels were higher than the other two groups but were statistically different only compared with the high HCO 3 group (P <.2) (Fig. 9). Unlike patients on C, the three groups were not distinct in peritoneal membrane characteristics and ultrafiltration response. Patients in the intermediate HCO 3 group differed from the high HCO 3 group only in terms of a higher anion gap (P <.1) and higher BUN (P <.1).

6 Mujais: Acid-base profile in patients on PD S-31 Table 6. biochemical profile by HCO 3 status Parameter HCO 3 <22 22 HCO 3 <28 HCO 3 28 N% 8 (1.%) 8 (62.3%) 21 (27.3%) BUN mg/dl 6. ± ± ± 2.7 Creatinine mg/dl 12.6 ± ± ±.8 Na meq/l 13.7 ± ± ±.9 K meq/l.19 ± ± ±.1 Cl meq/l 93.2 ± ±. 9.6 ±.9 HCO 3 meq/l 21. ± ±.2 3. ±. AGAP meq/l 2.7 ± ± ±.7 Ca mg/dl 8.8 ± ± ±.17 PO mg/dl 6.3 ±.7.2 ±.2. ±.3 Albumin g/dl 3. ± ± ±.1 Cholesterol mg/dl 21 ± ± 6 29 ± 1 Data are mean ± SE. Abbreviations are: BUN, blood urea nitrogen; Na, sodium; K, potassium; Cl, chloride; HCO 3, bicarbonate; AGAP, anion gap; Ca, calcium; PO, phosphate. No correlation was found between HCO 3 and peritoneal transport as reflected in the four-hour D/P creatinine.no correlation was found between HCO 3 and serum creatinine or serum albumin or any measure of renal clearance (CrCl, urea Cl, or RRF). In patients, a significant correlation was found between the anion gap and each of the following parameters: BUN (r =.382, P <.1), albumin (r =.3, P <.1), serum creatinine (r =.36, P <.1), phosphate (r =.39, P <.1), and urea Cl (r =.29, P <.1). Unlike C patients, no correlation was found in patients between the anion gap and peritoneal transport profile, and the correlations with measures of renal clearance were of lower value and significant only for urea clearance. Table 7. renal and dialytic profile by HCO 3 status Parameter HCO 3 <22 22 HCO 3 <28 HCO 3 28 N% 8 (1.%) 8 (62.3%) 21 (27.3%) Urine volume ml/2 hr 1 ± 17 1 ± 7 67 ± 181 CrCl ml/min.92 ± ± ±.7 Urea Cl ml/min.8 ± ± ±. RRF ml/min.7 ± ± ±.9 Dialysis volume ml/2 hr ± ± ± 736 -hour D/P creatinine.66 ±.3.7 ±.1.68 ±.2 D /D glucose. ±.2.1 ±.3.36 ±.2 -hour D/P urea.88 ±.3.9 ±.1.89 ±.2 PET-UF ml/ hr 13 ± ± ± 9 LD-UF ml 3 ± ± ± 7 Data are mean ± SE. Abbreviations are: CrCl, creatinine clearance; urea Cl, urea clearance; RRF, average of creatinine and urea clearances; -hour D/P creatinine, ratio of dialysate creatinine at hours of dwell to serum creatinine; D /D glucose, ratio of -hour dialysate glucose to hour dialysate glucose; hour D/P urea, ratio of dialysate urea at hours of dwell to BUN; PET-UF, net ultrafiltration during a -hour PET with 2.% dextrose solution; LD-UF, net ultrafiltration during an overnight dwell with 2.% dextrose solution. Because categorization by HCO 3 status is empiric and arbitrary, we further explored whether HCO 3 as a continuous variable was correlated with other parameters of biochemical control. In patients on C, there was an inverse correlation between HCO 3 and BUN (r =.3, P <.1), albumin (r =.19, P <.1), and phosphate levels (r =.279, P <.1). A direct correlation was found between HCO 3 and peritoneal transport as reflected in the four-hour D/P creatinine (r =.2, P <.1). No correlation was found between HCO 3 and serum creatinine or any measure of renal clearance (CrCl, urea Cl, or RRF). In C patients, a significant correlation was found between the anion gap and each of the following parameters: BUN (r =.29, P <.1), albumin (r =.3, P <.1), serum creatinine (r =.362, P <.1), four-hour D/P creatinine (r =.319, P <.1), phosphate (r =.7, P <.1), and measures of renal clearance [CrCl (r =.371, P <.1), urea Cl (r =.386, P <.1), and RRF (r =.393, P <.1)]. In patients on, there was an inverse correlation found only between HCO 3 and BUN (r =.371, P <.1) and phosphate levels (r =.336, P <.). Profile by transport status To gain further insight into the impact of peritoneal transport status on biochemical parameters, the C and groups were divided into four subsets corresponding to the standard definitions of transport subtypes by PET. In C patients, no notable differences were observed between the four subgroups with respect to BUN, creatinine, electrolytes, calcium, and cholesterol (Tables 8 and 9). The only significant difference in HCO 3 levels was between high transporters and low-average transporters (P <.7), but considering the proximity of the values for the four subgroups it is not likely to represent a clinically meaningful finding. A tendency for phosphate levels to increase with declining peritoneal permeability parameters was observed with the difference between high, high-average, and low-average of borderline statistical significance (P <.8), but attaining statistical significance compared to low transporters (P <.2). A similar tendency for the anion gap to increase with declining peritoneal permeability was also observed and was statistically significant between high and high-average (P <.17), high and low-average (P <.2), and marginally significant between high-average and lowaverage (P =.6). The trend for increasing serum albumin with diminishing peritoneal permeability was statistically significant for all comparisons (P <.1). Among C patients, peritoneal transport profile did not have an effect on measures of renal function, but, as expected, was manifest in the parameter of peritoneal transport and ultrafiltration. Ultrafiltration during the PET and during the overnight dwell with 2.% dextrose showed a tendency to increase with declining peritoneal permeability measures. In patients on, statistically significant differences in biochemical profile were not found in intergroup comparisons for any of the biochemical markers measured (Tables 9 and 1). This may have been due to the small size of the two groups (high and low transporters) represented in the sample.

7 S-32 Mujais: Acid-base profile in patients on PD 12 1 C 12 1 BUN, mg/dl <22 22<xx<28 >28 HCO 3, meq/l <22 22<xx<28 >28 HCO 3, meq/l Fig. 7. Blood urea nitrogen (BUN) values were higher in patients with lower HCO 3 values in both continuous ambulatory peritoneal dialysis (C) and automated peritoneal dialysis () patients. 3 C High High Av Low Av PET category Low High High Av Low Av PET category Low Fig. 8. Distribution of anion gap values by peritoneal equilibration test (PET) category. C Albumin, g/dl High High Av Low Av Low High High Av Low Av Low PET category PET category Fig. 9. Albumin values were lower in patients with higher peritoneal equilibration test (PET) categories in both continuous ambulatory peritoneal dialysis (C) and automated peritoneal dialysis () patients. The differences, however, were more marked in C patients.

8 Mujais: Acid-base profile in patients on PD S-33 Table 8. C biochemical profile by transport status Parameter High High Avg. Low Avg. Low N% BUN mg/dl 6. ± ± ± ± 7.3 Creatinine mg/dl 9.2 ± ± ±. 1.9 ± 1. Na meq/l ± ± ± ±.9 K meq/l 3.83 ± ± ±.8.2 ±.29 Cl meq/l 9.7 ± ±. 9.6 ± ± 1.7 HCO 3 meq/l 26.6 ±.6 2. ±. 2.6 ±. 2.6 ± 1.1 AGAP meq/l 19.1 ± ± ± ± 1.1 Ca mg/dl 9.2 ±.2 9. ± ± ±.27 PO mg/dl. ±.2.1 ±.1.2 ±.2.7 ±. Albumin g/dl 2.62 ± ±. 3. ± ±.9 Cholesterol mg/dl 198 ± 1 23 ± 216 ± ± 13 Data are mean ± SE. Abbreviations are: BUN, blood urea nitrogen; Na, sodium; K, potassium; Cl, chloride; HCO 3, bicarbonate; AGAP, anion gap; Ca, calcium; PO, phosphate. Because categorization by PET category is empiric and arbitrary, we further explored whether measures of peritoneal permeability as continuous variables were correlated with other parameters of biochemical control. In C patients, four-hour D/P creatinine was significantly inversely correlated with BUN (r =.179, P <.), albumin (r =.91, P <.1), anion gap (r =.319, P <.1), and phosphate (r =.19, P <.12), and directly correlated with HCO 3 (r =.2, P <.1). A similar pattern was observed for four-hour D/D glucose, which was significantly correlated with albumin (r =.6, P <.1), anion gap (r =.32, P <.1), and phosphate (r =.183, P <.2), and inversely correlated with HCO 3 (r =.28, P <.1). The correlations of four-hour D/P urea with biochemical measures was similar to that of four-hour D/P creatinine, but of lower magnitude. In patients on, no correlations were found between any of the peritoneal permeability parameters and measures of biochemical control. DISCUSSION The findings of this study can be summarized as follows: (1) Patients on PD have, as a group, adequate correction of acidosis as reflected by normal mean bicarbonate levels; (2) the correction of acidosis in PD appears to be predominantly achieved by the continuous supplementation of alkali via dialysis with RRF not differentiating the degree of correction; (3) steady-state serum bicarbonate in patients on C appears to be responsive to the underlying peritoneal membrane permeability characteristics of the patient which govern alkali loss and gain, but the higher dialysate volumes in appear to override this effect; and () higher albumin, BUN, and phosphate in patients with lower HCO 3 suggest a discrepancy between daily acid load and dialysis dose as the latter is usually adjusted to the uninformative Kt/V measure rather than indices of metabolic correction. The observation that the majority of patients on either C or had adequate correction of their metabolic acidosis does not corroborate statements made in the literature about the status of acidosis correction in these populations. Indeed, the statements of lack of full correction of metabolic acidosis [1] in reference to the use of mmol/l lactate are dated as they reference studies in the early 198s [31] and do not represent the contemporary status, particularly in view of the higher dose of dialysis used currently [21]. The results of the present study also call into doubt the representativeness of recent studies that show values for bicarbonate in patients on lactate-based solutions significantly lower than those observed in current North American practice [3]. These aberrantly lower values have been used as reference for comparative efficiency of dialysis solutions with different alkali preparations, which is clearly problematic. The present report represents the largest database of the status of acidosis correction in patients on C and. Our findings are consistent with several publications in the literature of smaller series. Kung et al [32] reported mean HCO 3 values of 2.9 meq/l in 3 patients, with nine patients having values lower than 22, a proportion slightly higher than ours. Dumler and Gallan [33] described values of HCO 3 of 2 ± meq/l, stable over a one-year period of observation with 13 of 8 patients having values lower than 22 meq/l. Interestingly, Kung et al [32] found that the lowest values of HCO 3 were seen in well nourished patients (as assessed by subjective global assessment [SGA]), suggesting that a higher food intake may be responsible for an acid load higher than the rate of alkali replenishment by dialysis. Higher values for BUN and albumin were also observed in the Korean patients with the lowest HCO 3. Kang et al [3] found a negative correlation between npna and HCO 3, suggesting that increased dietary acid load is responsible for the lower HCO 3. The elevation of the anion gap would not be surprising in patients with untreated uremic metabolic acidosis as it is a hallmark of the condition. The persistent elevation in the face of normal bicarbonate levels invites further scrutiny [3]. While the correlation between the anion gap and serum bicarbonate is expected for the condition, the curve is shifted upward because of the normal levels of bicarbonate. The increase in the anion gap cannot in this case be explained by decreased cations as the concentrations of K and Ca were normal, and Mg, while not measured in the present study, is not likely to be low in patients with advanced renal failure. Additionally, unidentified anions of a hyperosmolar state can also be ruled out. Elevations in either inorganic anions (phosphate and sulfate) or organic anions (lactate, ketones, and uremic organic anions of various identities) must be invoked as residual causality factors. Phosphate levels were elevated in these patients and correlated with the anion gap. While

9 S-3 Mujais: Acid-base profile in patients on PD Table 9. C renal and dialytic profile by transport status Parameter High High Avg. Low Avg. Low N% Urine volume ml/2 hr 6 ± ± 13 6 ± 78 3 ± 121 CrCl ml/min 3.6 ± ± ± ± 1.17 Urea Cl ml/min 1.7 ± ± ± ±.1 RRF ml/min 2.6 ±.77.1 ±.1.26 ± ±.83 Dialysis volume ml/2 hr 978 ± ± ± ± 327 -hour D/P creatinine.88 ±.1.71 ±.1.8 ±.1. ±.3 D /D glucose.26 ±.1.37 ±.1. ±.1. ±.3 -hour D/P urea.98 ±.1.92 ±..8 ±.1.72 ±.6 PET-UF ml/ hr 2 ± 33 9 ± 2 72 ± 2 9 ± 1 LD-UF ml 133 ± ± 16 ± ± 81 Data are mean ± SE. Abbreviations are: CrCl, creatinine clearance; urea Cl, urea clearance; RRF, average of creatinine and urea clearances; -hour D/P creatinine, ratio of dialysate creatinine at hours of dwell to serum creatinine; D /D glucose, ratio of -hour dialysate glucose to hour dialysate glucose; -hour D/P urea, ratio of dialysate urea at hours of dwell to BUN; PET-UF, net ultrafiltration during a -hour PET with 2.% dextrose solution; LD-UF, net ultrafiltration during an overnight dwell with 2.% dextrose solution. Table 1. biochemical profile by transport status Parameter High High Avg. Low Avg. Low N% BUN mg/dl.3 ± ± ± ± 1.6 Creatinine mg/dl 1.76 ± ± ± ± 3.9 Na meq/l ± ± ± ± 1.19 K meq/l. ± ± ± ±.1 Cl meq/l ± ± ± ±.8 HCO 3 meq/l 2.77 ± ± ± ± 1.73 AGAP meq/l 19.9 ± ± ± ±.8 Ca mg/dl 9. ± ± ± ±.72 PO mg/dl.82 ± ±.2.3 ± ± 1.6 Albumin g/dl 3.8 ± ± ±.8 3. ±.22 Cholesterol mg/dl 27 ± ± ± 8 2 ± 23 Data are mean ± SE. Abbreviations are: BUN, blood urea nitrogen; Na, sodium; K, potassium; Cl, chloride; HCO 3, bicarbonate; AGAP, anion gap; Ca, calcium; PO, phosphate. Table 11. renal and dialytic profile by transport status Parameter High High Avg. Low Avg. Low N% Urine volume ml/2 hr 16 ± ± 9 2 ± 9 23 ± CrCl ml/min 2.1 ± ±.8 1. ±..9 ±.9 Urea Cl ml/min 1. ±. 1.2 ±.3.6 ± ±.26 RRF ml/min 1. ± ±. 1.1 ±..9 ±.9 Dialysis volume ml/2 hr 16 ± ± ± ± 172 -hour D/P creatinine.87 ±.2.72 ±.1.61 ±.1. ± D /D glucose.2 ±.2.38 ±.2.7 ±..36 ±.1 -hour D/P urea.99 ±.1.92 ±.1.8 ±.2.6 ± PET-UF ml/ hr 168 ± ± 29 ± 7 1 ± 11 LD-UF ml 99 ± ± ± ± 37 Data are mean ± SE. Abbreviations are: CrCl, creatinine clearance; urea Cl, urea clearance; RRF, average of creatinine and urea clearances; -hour D/P creatinine, ratio of dialysate creatinine at hours of dwell to serum creatinine; D /D glucose, ratio of -hour dialysate glucose to hour dialysate glucose; hour D/P urea, ratio of dialysate urea at hours of dwell to BUN; PET-UF, net ultrafiltration during a -hour PET with 2.% dextrose solution; LD-UF, net ultrafiltration during an overnight dwell with 2.% dextrose solution. these patients were on lactate-containing dialysis fluid, the likelihood of an elevation in serum lactate in stable patients on PD is extremely remote. The load of lactate absorbed in PD is greatly inferior to the rate of production of lactic acid in normal humans (1 to 3 meq/kg/day), and elevation in serum lactate has not been reported in patients on PD [36]. The inclusion criteria for the study also rule out ketones as a source of organic anions. We are therefore left with the inorganic anions [phosphate (documented) and sulfate (assumed)] and the elevation in organic uremic anions. The low albumin concentration observed in these patients, while typical of patients on dialysis in North America, is expected to lead to a narrowing of the anion gap. Indeed, the correlation between serum albumin and serum anion gap confirms this expectation (Fig. ). The lowest anion gap values are observed in the patients with the lowest albumin. A correction of the anion gap for the decline in albumin would have

10 Mujais: Acid-base profile in patients on PD S-3 resulted in higher values for the anion gap in the majority of subjects in this study. Finally, some of the increase in the anion gap may be due to the level of alkalosis observed in some patients, as alkalosis affects the charge on serum albumin. It is interesting to note, however, that the lowest levels of anion gap were observed in the patients with the highest values of serum bicarbonate (Fig. 3). The combination of a low anion gap and high bicarbonate may imply that the acid burden from diet and metabolism is lower than alkali gain from dialysis and may identify patients with lower dietary protein intake. Correlations between the anion gap and other biochemical measures in patients on PD were previously explored by Dumler et al [37]. They found a direct correlation (P <.1) between anion gap and serum albumin (R =.2), BUN (R =.88), and serum creatinine (R =.73) concentrations [37]. These authors used a definition of acidosis based exclusively on the elevation in anion gap [37]. However, as our analysis illustrates, the relationship between bicarbonate and anion gap is shifted in such a way that an elevated anion gap will continue to be observed in these patients despite a normalization of the metabolic acidosis. The impact of the PD modality used (C vs. ) on acid base balance has been invoked as unexplored in recent reviews [13]. The present study serves to address this issue in that it shows equal correction of metabolic acidosis in both modalities of PD. The use of short cycles in nighttime period may be expected to alter the kinetics of buffer exchange (discussed in a separate paper in this supplement), but the net overall effect of acidosis correction appears to be identical. In neither group did the level of residual renal function influence acidbase status, suggesting that the provision of alkali via PD overrides quantitatively the small contribution of RRF. There were differences, however, observed in the relationships between certain measures of acid-base status and transport characteristics that were different between C and. These were notably the independence of HCO 3 levels in from the patient transport status and their dependence on peritoneal permeability in patients on C. This may relate to the higher dialysate volume and, hence, alkali exposure in patients on. patients are recurrently exposed to high lactate concentrations by virtue of the solution replenishment during frequent short exchanges during the nocturnal phase of the therapy. In patients on C, peritoneal transport status appeared to be correlated with HCO 3 levels, BUN, albumin, and the anion gap. In both C and, lower levels of HCO 3 were observed in association with higher BUN and phosphate, suggesting a slight discrepancy between the acid burden (reflected in the high BUN and phosphate from protein catabolism) and the dialytic provision of alkali. It is plausible that, had dialysis dose been directed at general metabolic correction rather than a fixed Kt/V target, such a discrepancy may have been bridged. Kt/V is notoriously uninformative when used as the sole guidance for dialysis dose. The source of higher acid load was also associated with higher albumin level reflecting likely a better nutritional status. CONCLUSION Patients on PD have as a group adequate correction of acidosis as reflected by normal mean bicarbonate levels. The correction of acidosis in PD appears to be predominantly achieved by the continuous supplementation of alkali via dialysis with RRF not differentiating the degree of correction. Steady-state serum bicarbonate in patients on C appears to be responsive to the underlying peritoneal membrane permeability characteristics of the patient that govern alkali loss and gain, but the higher dialysate volumes in appear to override this effect. Higher albumin, BUN, and phosphate in patients with lower HCO 3 suggest a discrepancy between daily acid load and dialysis dose, as the latter is usually adjusted to the uninformative Kt/V measure rather than indices of metabolic correction. Adjustment of dialysis dose to achieve full metabolic correction needs to be considered. REFERENCES 1. FERIANI M: Use of different buffers in peritoneal dialysis. Semin Dial 13:26 26, 2 2. FERIANI M, DELL AQUILA R: Buffer content in automated peritoneal dialysis solutions. Contrib Nephrol 129:187 19, FERIANI M, KIRCHGESSNER J, LA GRECA G, PASSLICK-DEETJEN J: Randomized long-term evaluation of bicarbonate-buffered C solution. Kidney Int : , FERIANI M: Behaviour of acid-base control with different dialysis schedules. Nephrol Dial Transplant 13(Suppl 6):62 6, FERIANI M, DELL AQUILA R: Acid-base balance and replacement solutions in continuous renal replacement therapies. Kidney Int 66(Suppl):S16 19, FERIANI M: Bicarbonate-buffered C solutions: From clinical trials to clinical practice. Perit Dial Int 17(Suppl 2):S1, FERIANI M, CAROBI C, LA GRECA G, et al: Clinical experience with a 39 mmol/l bicarbonate-buffered peritoneal dialysis solution. Perit Dial Int 17:17 21, FERIANI M: Buffers: Bicarbonate, lactate and pyruvate. Kidney Int 6(Suppl):S7 8, FERIANI M, RONCO C, LA GRECA G: Acid-base balance with different C solutions. Perit Dial Int 16(Suppl 1):S , FERIANI M, PASSLICK-DEETJEN J, LA GRECA G: Factors affecting bicarbonate transfer with bicarbonate-containing C solution. Perit Dial Int 1:336 31, FERIANI M: Adequacy of acid base correction in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 1(Suppl 3):S , FERIANI M, DISSEGNA D, LA GRECA G, PASSLICK-DEETJEN J: Shortterm clinical study with bicarbonate-containing peritoneal dialysis solution. Perit Dial Int 13:296 31, GENNARI FJ: Acid-base balance in dialysis patients. Semin Dial 13:23 239, 2 1. GENNARI FJ: Acid-base balance in dialysis patients. Kidney Int 28: , TRANAEUS A: A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution Clinical benefits. The Bicarbonate/Lactate Study Group. Perit Dial Int 2:16 23, 2

11 S-36 Mujais: Acid-base profile in patients on PD 16. BERGSTROM J: Metabolic acidosis and nutrition in dialysis patients. Blood Purif 13: , CARRASCO AM, RUBIO MA, SANCHEZ TOMMERO JA, et al: Acidosis correction with a new 2 mmol/l bicarbonate/1 mmol/l lactate peritoneal dialysis solution. Perit Dial Int 21:6 3, COLES GA, GOKAL R, OGG C, et al: A randomized controlled trial of a bicarbonate- and a bicarbonate/lactate-containing dialysis solution in C. Perit Dial Int 17:8 1, GRAHAM KA, REAICH D, CHANNON SM,et al: Correction of acidosis in C decreases whole body protein degradation. Kidney Int 9:1396 1, STEIN A, MOORHOUSE J, ILES-SMITH H, et al: Role of an improvement in acid-base status and nutrition in C patients. Kidney Int 2:189 19, FRANKENFIELD DL, PROWANT BF, FLANIGAN MJ,et al: Trends in clinical indicators of care for adult peritoneal dialysis patients in the United States from 199 to ESRD Core Indicators Workgroup. Kidney Int : , FLANIGAN MJ, ROCCO MV, PROWANT B, et al: Clinical performance measures: The changing status of peritoneal dialysis. Kidney Int 6: , FLANIGAN MJ, ROCCO MV, FRANKENFIELD D, et al: 1997 Peritoneal Dialysis-Core Indicators Study: Dialysis Adequacy and Nutritional Indicators Report. Am J Kidney Dis 33:e3, ROCCO MV, FLANIGAN MJ, PROWANT B, et al: Cycler adequacy and prescription data in a national cohort sample: The 1997 core indicators report. Health Care Financing Administration Peritoneal Dialysis Core Indicators Study Group. Kidney Int :23 239, FLANIGAN MJ, ROCCO MV, FRANKENFIELD DL, et al: 1996 peritoneal dialysis Core indicators report. Am J Kidney Dis 32:E3, FREDERICK PR, FRANKENFIELD DL, BIDDLE MG, SIMS TW: Changes in dialysis units quality improvement practices from 199 to Anna J 2:69 78, HELGERSON SD, MCCLELLAN WM, FREDERICK PR, et al: Improvement in adequacy of delivered dialysis for adult in-center hemodialysis patients in the United States, 1993 to 199. Am J Kidney Dis 29:81 861, ROCCO MV, BEDINGER MR, MILAM R, et al: Duration of dialysis and its relationship to dialysis adequacy, anemia management, and serum albumin level. Am J Kidney Dis 38: , WOLFSON M, HAGEN T, OGRINC F, MARTIS L, for the Icodextrin Study Group: Effects of icodextrin on ultrafiltration (UF) and small solute clearance in continuous ambulatory peritoneal dialysis patients (C). J Am Soc Nephrol 12:317A, WOLFSON M, HAGEN T, OGRINC F, MARTIS L, for the Icodextrin Study Group: One year results Icodextrin vs dextrose for the long dwell in peritoneal dialysis. J Am Soc Nephrol 12:317A, NOLPH K, PROWANT B, SERKES KD, et al: Multicenter evaluation of a new peritoneal dialysis solution with a high lactate and a low magnesium concentration. Perit Dial Bull 3:63 6, KUNG SC, MORSE SA, BLOOM E, RAJA RM: Acid-base balance and nutrition in peritoneal dialysis. Adv Perit Dial 17:23 237, DUMLER F, GALAN M: Impact of acidosis on nutritional status in chronic peritoneal dialysis patients. Adv Perit Dial 12:37 31, KANG DH, YOON KI, LEE HY, Han DS: Impact of peritoneal membrane transport characteristics on acid-base status in C patients. Perit Dial Int 18:29 32, SALEM MM, MUJAIS SK: Gaps in the anion gap. Arch Intern Med 12: , SENNESAEL JJ, DE SMEDT GC, VAN DER NIEPEN P, VERBEELEN DL: The impact of peritonitis on peritoneal and systemic acid-base status of patients on continuous ambulatory peritoneal dialysis. Perit Dial Int 1:61 6, DUMLER F, FALLA P, BUTLER R, et al: Impact of dialysis modality and acidosis on nutritional status. Asaio J :13 17, 1999

PART FOUR. Metabolism and Nutrition

PART FOUR. Metabolism and Nutrition PART FOUR Metabolism and Nutrition Advances in Peritoneal Dialysis, Vol. 22, 2006 Costas Fourtounas, Eirini Savidaki, Marilena Roumelioti, Periklis Dousdampanis, Andreas Hardalias, Pantelitsa Kalliakmani,

More information

Objectives. Peritoneal Dialysis vs. Hemodialysis 02/27/2018. Peritoneal Dialysis Prescription and Adequacy Monitoring

Objectives. Peritoneal Dialysis vs. Hemodialysis 02/27/2018. Peritoneal Dialysis Prescription and Adequacy Monitoring Peritoneal Dialysis Prescription and Adequacy Monitoring Christine B. Sethna, MD, EdM Division Director, Pediatric Nephrology Cohen Children s Medical Center Associate Professor Hofstra Northwell School

More information

3/21/2017. Solute Clearance and Adequacy Targets in Peritoneal Dialysis. Peritoneal Membrane. Peritoneal Membrane

3/21/2017. Solute Clearance and Adequacy Targets in Peritoneal Dialysis. Peritoneal Membrane. Peritoneal Membrane 3/21/2017 Solute Clearance and Adequacy Targets in Peritoneal Dialysis Steven Guest MD Director, Medical Consulting Services Baxter Healthcare Corporation Deerfield, IL, USA Peritoneal Membrane Image courtesy

More information

Chapter 2 Peritoneal Equilibration Testing and Application

Chapter 2 Peritoneal Equilibration Testing and Application Chapter 2 Peritoneal Equilibration Testing and Application Francisco J. Cano Case Presentation FW, a recently diagnosed patient with CKD Stage 5, is a 6-year-old boy who has been recommended to initiate

More information

Buffer transport in peritoneal dialysis

Buffer transport in peritoneal dialysis Kidney International, Vol. 64, Supplement 88 (23), pp. S37 S42 Buffer transport in peritoneal dialysis OLOF HEIMBURGER and SALIM MUJAIS Division of Renal Medicine, Department of Clinical Sciences, Karolinska

More information

Advances in Peritoneal Dialysis, Vol. 23, 2007

Advances in Peritoneal Dialysis, Vol. 23, 2007 Advances in Peritoneal Dialysis, Vol. 23, 2007 Antonios H. Tzamaloukas, 1,2 Aideloje Onime, 1,2 Dominic S.C. Raj, 2 Glen H. Murata, 1 Dorothy J. VanderJagt, 3 Karen S. Servilla 1,2 Computation of the Dose

More information

Ana Paula Bernardo. CHP Hospital de Santo António ICBAS/ Universidade do Porto

Ana Paula Bernardo. CHP Hospital de Santo António ICBAS/ Universidade do Porto Ana Paula Bernardo CHP Hospital de Santo António ICBAS/ Universidade do Porto Clinical relevance of hyperphosphatemia Phosphate handling in dialysis patients Phosphate kinetics in PD peritoneal phosphate

More information

PERITONEAL DIALYSIS PRESCRIPTION MANAGEMENT QUICK REFERENCE GUIDE

PERITONEAL DIALYSIS PRESCRIPTION MANAGEMENT QUICK REFERENCE GUIDE PERITONEAL DIALYSIS PRESCRIPTION MANAGEMENT QUICK REFERENCE GUIDE This quick reference guide will help serve as a reference tool for clinicians setting a patient s Peritoneal Dialysis (PD) prescription.

More information

PART ONE. Peritoneal Kinetics and Anatomy

PART ONE. Peritoneal Kinetics and Anatomy PART ONE Peritoneal Kinetics and Anatomy Advances in Peritoneal Dialysis, Vol. 22, 2006 Paul A. Fein, Irfan Fazil, Muhammad A. Rafiq, Teresa Schloth, Betty Matza, Jyotiprakas Chattopadhyay, Morrell M.

More information

The CARI Guidelines Caring for Australians with Renal Impairment. Monitoring patients on peritoneal dialysis GUIDELINES

The CARI Guidelines Caring for Australians with Renal Impairment. Monitoring patients on peritoneal dialysis GUIDELINES Date written: August 2004 Final submission: July 2005 Monitoring patients on peritoneal dialysis GUIDELINES No recommendations possible based on Level I or II evidence SUGGESTIONS FOR CLINICAL CARE (Suggestions

More information

The peritoneal equilibration test (PET) was developed THE SHORT PET IN PEDIATRICS. Bradley A. Warady and Janelle Jennings

The peritoneal equilibration test (PET) was developed THE SHORT PET IN PEDIATRICS. Bradley A. Warady and Janelle Jennings Peritoneal Dialysis International, Vol. 27, pp. 441 445 Printed in Canada. All rights reserved. 0896-8608/07 $3.00 +.00 Copyright 2007 International Society for Peritoneal Dialysis THE SHORT PET IN PEDIATRICS

More information

PERITONEAL DIALYSIS PRESCRIPTION MANAGEMENT GUIDE

PERITONEAL DIALYSIS PRESCRIPTION MANAGEMENT GUIDE PERITONEAL DIALYSIS PRESCRIPTION MANAGEMENT GUIDE TABLE OF CONTENTS Introduction.... 3 SECTION 1: FUNDAMENTALS OF THE PRESCRIPTION.... 4 Getting Started: Patient Pathway to First Prescription.... 5 Volume

More information

02/21/2017. Assessment of the Peritoneal Membrane: Practice Workshop. Objectives. Review of Physiology. Marina Villano, MSN, RN, CNN

02/21/2017. Assessment of the Peritoneal Membrane: Practice Workshop. Objectives. Review of Physiology. Marina Villano, MSN, RN, CNN Assessment of the Peritoneal Membrane: Practice Workshop Marina Villano, MSN, RN, CNN marina.villano@fmc-na.com Objectives Briefly review normal peritoneal physiology including the three pore model. Compare

More information

Early Estimation of High Peritoneal Permeability Can Predict Poor Prognosis for Technique Survival in Patients on Peritoneal Dialysis

Early Estimation of High Peritoneal Permeability Can Predict Poor Prognosis for Technique Survival in Patients on Peritoneal Dialysis Advances in Peritoneal Dialysis, Vol. 22, 2006 Hidetomo Nakamoto, 1,2 Hirokazu Imai, 2 Hideki Kawanishi, 2 Masahiko Nakamoto, 2 Jun Minakuchi, 2 Shinichi Kumon, 2 Syuichi Watanabe, 2 Yoshhiko Shiohira,

More information

PD prescribing for all. QUESTION: Which approach? One size fits all or haute couture? (1) or (2)? The patient 18/03/2014.

PD prescribing for all. QUESTION: Which approach? One size fits all or haute couture? (1) or (2)? The patient 18/03/2014. PD prescribing for all Pr Max Dratwa Honorary consultant, Nephrology-Dialysis CHU Brugmann Université Libre de Bruxelles BSN 22 March 2014 QUESTION: Which approach? One size fits all or haute couture?

More information

2016 Annual Dialysis Conference Michelle Hofmann RN, BSN, CNN Renal Clinical Educator - Home

2016 Annual Dialysis Conference Michelle Hofmann RN, BSN, CNN Renal Clinical Educator - Home Fluid Management 2016 Annual Dialysis Conference Michelle Hofmann RN, BSN, CNN Renal Clinical Educator - Home Objectives Define euvolemia Determine factors which contribute to fluid imbalance Discuss strategies

More information

Smart APD prescription. Prof. Wai Kei Lo Tung Wah Hospital The University of Hong Kong

Smart APD prescription. Prof. Wai Kei Lo Tung Wah Hospital The University of Hong Kong Smart APD prescription Prof. Wai Kei Lo Tung Wah Hospital The University of Hong Kong Costing Comparison of Different Modes of RRT in Hong Kong in 2011 (Per Year) HK$300,000 HK$250,000 HK$200,000 HK$150,000

More information

THE HEMODIALYSIS PRESCRIPTION: TREATMENT ADEQUACY GERALD SCHULMAN MD VANDERBILT UNIVERSITY MEDICAL SCHOOL NASHVILLE, TENNESSEE

THE HEMODIALYSIS PRESCRIPTION: TREATMENT ADEQUACY GERALD SCHULMAN MD VANDERBILT UNIVERSITY MEDICAL SCHOOL NASHVILLE, TENNESSEE THE HEMODIALYSIS PRESCRIPTION: TREATMENT ADEQUACY GERALD SCHULMAN MD VANDERBILT UNIVERSITY MEDICAL SCHOOL NASHVILLE, TENNESSEE THE DIALYSIS CYCLE /TIME DESIGN OF THE NATIONAL COOPERATIVE DIALYSIS STUDY

More information

Hyperphosphatemia is a strong predictor of overall

Hyperphosphatemia is a strong predictor of overall Peritoneal Phosphate Clearance is Influenced by Peritoneal Dialysis Modality, Independent of Peritoneal Transport Characteristics Sunil V. Badve,* Deborah L. Zimmerman,* Greg A. Knoll, * Kevin D. Burns,*

More information

Managing Acid Base and Electrolyte Disturbances with RRT

Managing Acid Base and Electrolyte Disturbances with RRT Managing Acid Base and Electrolyte Disturbances with RRT John R Prowle MA MSc MD MRCP FFICM Consultant in Intensive Care & Renal Medicine RRT for Regulation of Acid-base and Electrolyte Acid base load

More information

The low ph of conventional peritoneal dialysis (PD) solutions,

The low ph of conventional peritoneal dialysis (PD) solutions, Peritoneal Dialysis International, Vol. 29, pp. 158 162 Printed in Canada. All rights reserved. 0896-8608/09 $3.00 +.00 Copyright 2009 International Society for Peritoneal Dialysis EFFECTS OF IONIZED SODIUM

More information

The CARI Guidelines Caring for Australians with Renal Impairment. Peritoneal transport and ultrafiltration GUIDELINES

The CARI Guidelines Caring for Australians with Renal Impairment. Peritoneal transport and ultrafiltration GUIDELINES Date written: January 2004 Final submission: May 2004 Peritoneal transport and ultrafiltration GUIDELINES No recommendations possible based on Level I or II evidence SUGGESTIONS FOR CLINICAL CARE (Suggestions

More information

Volume Management 2/25/2017. Disclosures statement: Objectives. To discuss evaluation of hypervolemia in peritoneal dialysis patients

Volume Management 2/25/2017. Disclosures statement: Objectives. To discuss evaluation of hypervolemia in peritoneal dialysis patients Volume Management Sagar Nigwekar MD, MMSc Massachusetts General Hospital E-mail: snigwekar@mgh.harvard.edu March 14, 2017 Disclosures statement: Consultant: Allena, Becker Professional Education Grant

More information

ad e quate adjective \ˈa-di-kwət\

ad e quate adjective \ˈa-di-kwət\ PD Prescriptions and Adequacy Monitoring: The Basics Fundamentals of Dialysis in Children Seattle, Washington February 27th, 2016 Colin White Steve Alexander Brad Warady Alicia Neu Franz Schaefer Bruce

More information

Drug Use in Dialysis

Drug Use in Dialysis (Last Updated: 08/22/2018) Created by: Socco, Samantha Drug Use in Dialysis Drambarean, B. (2017). Drug Use in Dialysis. Lecture presented at PHAR 503 Lecture in UIC College of Pharmacy, Chicago. DIALYSIS

More information

What is a PET? Although there are many types of pets, we will be discussing the Peritoneal Equilibration Test

What is a PET? Although there are many types of pets, we will be discussing the Peritoneal Equilibration Test 1 2 3 What is a PET? Although there are many types of pets, we will be discussing the Peritoneal Equilibration Test 4 Background information about the PET 1983 Dr. Twardowski and colleagues began measuring

More information

Strategies to Preserve the Peritoneal Membrane. Reusz GS Ist Dept of Pediatrics Semmelweis University, Budapest

Strategies to Preserve the Peritoneal Membrane. Reusz GS Ist Dept of Pediatrics Semmelweis University, Budapest Strategies to Preserve the Peritoneal Membrane Reusz GS Ist Dept of Pediatrics Semmelweis University, Budapest Outline 1. Structure of the peritoneal membrane 2. Mechanisms of peritoneal injury 3. Signs

More information

Advances in Peritoneal Dialysis, Vol. 29, 2013

Advances in Peritoneal Dialysis, Vol. 29, 2013 Advances in Peritoneal Dialysis, Vol. 29, 2013 Takeyuki Hiramatsu, 1 Takahiro Hayasaki, 1 Akinori Hobo, 1 Shinji Furuta, 1 Koki Kabu, 2 Yukio Tonozuka, 2 Yoshiyasu Iida 1 Icodextrin Eliminates Phosphate

More information

Tidal peritoneal dialysis: Comparison of different tidal regimens and automated peritoneal dialysis

Tidal peritoneal dialysis: Comparison of different tidal regimens and automated peritoneal dialysis Kidney International, Vol. 57 (2000), 2603 2607 Tidal peritoneal dialysis: Comparison of different tidal regimens and automated peritoneal dialysis PETER H. JUERGENSEN, A. LOLA MURPHY, KATHY A. PHERSON,

More information

THERAPEUTIC INTERVENTIONS TO PRESERVE RESIDUAL KIDNEY FUNCTION. Rajnish Mehrotra Harborview Medical Center University of Washington, Seattle

THERAPEUTIC INTERVENTIONS TO PRESERVE RESIDUAL KIDNEY FUNCTION. Rajnish Mehrotra Harborview Medical Center University of Washington, Seattle THERAPEUTIC INTERVENTIONS TO PRESERVE RESIDUAL KIDNEY FUNCTION Rajnish Mehrotra Harborview Medical Center University of Washington, Seattle 1 2 Outline of Presentation Refinements in our understanding

More information

Hemodialysis today has evolved

Hemodialysis today has evolved Lessons in Dialysis, Dialyzers, and Dialysate Robert Hootkins, MD, PhD The author is Chief of Nephrology and Hypertension at The Austin Diagnostic Clinic, Austin, Texas. He is also a member of D&T s editorial

More information

You can sleep while I dialyze

You can sleep while I dialyze You can sleep while I dialyze Nocturnal Peritoneal Dialysis Dr. Suneet Singh Medical Director, PD, VGH Division of Nephrology University of British Columbia Acknowledgements Melissa Etheridge You can sleep

More information

Glucose sparing in peritoneal dialysis: Implications and metrics

Glucose sparing in peritoneal dialysis: Implications and metrics http://www.kidney-international.org & 26 International Society of Nephrology Glucose sparing in peritoneal dialysis: Implications and metrics C Holmes 1 and S Mujais 1 1 Renal Division, Baxter Healthcare

More information

The Physiology of Peritoneal Dialysis As Related To Drug Removal

The Physiology of Peritoneal Dialysis As Related To Drug Removal The Physiology of Peritoneal Dialysis As Related To Drug Removal Thomas A. Golper, MD, FACP, FASN Vanderbilt University Medical Center Nashville, TN thomas.golper@vanderbilt.edu Clearance By Dialysis Clearance

More information

LLL Session - Nutritional support in renal disease

LLL Session - Nutritional support in renal disease ESPEN Congress Leipzig 2013 LLL Session - Nutritional support in renal disease Peritoneal dialysis D. Teta (CH) Nutrition Support in Patients undergoing Peritoneal Dialysis (PD) Congress ESPEN, Leipzig

More information

PERITONEAL EQUILIBRATION TEST. AR. Merrikhi. MD. Isfahan University of Medical Sciences

PERITONEAL EQUILIBRATION TEST. AR. Merrikhi. MD. Isfahan University of Medical Sciences PERITONEAL EQUILIBRATION TEST AR. Merrikhi. MD. Isfahan University of Medical Sciences INTRODUCTION The peritoneal equilibration test (PET) is a semiquantitative assessment of peritoneal membrane transport

More information

PERITONEAL DIALYSIS CLINICAL PERFORMANCE MEASURES DATA COLLECTION FORM 2006

PERITONEAL DIALYSIS CLINICAL PERFORMANCE MEASURES DATA COLLECTION FORM 2006 PERITONEAL DIALYSIS CLINICAL PERFORMANCE MEASURES DATA COLLECTION FORM 2006 PATIENT IDENTIFICATION [Before completing please read instructions at the bottom of this page and on pages 5 and 6] MAKE CORRECTIONS

More information

De Novo Hypokalemia in Incident Peritoneal Dialysis

De Novo Hypokalemia in Incident Peritoneal Dialysis Original investigation 73 1) De Novo Hypokalemia in Incident Peritoneal Dialysis Patients: A 1-Year Observational Study Ji Yong Jung, M.D., Jae Hyun Chang, M.D., Hyun Hee Lee, M.D., Wookyung Chung, M.D.

More information

Acid base homeostasis with the high convective dialysis treatments

Acid base homeostasis with the high convective dialysis treatments Nephrol Dial Transplant (2003) 18 [Suppl 7]: vii26 vii30 DOI: 10.1093/ndt/gfg1075 Acid base homeostasis with the high convective dialysis treatments Mariano Feriani Department of Nephrology and Dialysis,

More information

Maintaining Peritoneal Dialysis Adequacy: The Process of Incremental Prescription

Maintaining Peritoneal Dialysis Adequacy: The Process of Incremental Prescription Advances in Peritoneal Dialysis, Vol. 34, 2018 Susie Q. Lew Maintaining Peritoneal Dialysis Adequacy: The Process of Incremental Prescription Urea kinetics (weekly Kt/V) greater than 1.7 generally define

More information

Original Article. Key words: Icodextrin, peritoneal dialysis, metabolic effects, ultrafiltration

Original Article. Key words: Icodextrin, peritoneal dialysis, metabolic effects, ultrafiltration Original Article 133 Clinical Experience of One-Year Icodextrin Treatment in Peritoneal Dialysis Patients Chun-Shuo Hsu *, Chien-Yu Su **, Chih-Hung Chang ***, Kao-Tai Hsu **, King-Kwan Lam **, Shang-Chih

More information

Brief communication (Original)

Brief communication (Original) Asian Biomedicine Vol. 8 No. 1 February 2014; 67-73 DOI: 10.5372/1905-7415.0801.263 Brief communication (Original) Long-term clinical effects of treatment by daytime ambulatory peritoneal dialysis with

More information

PD In Acute Kidney Injury. February 7 th -9 th, 2013

PD In Acute Kidney Injury. February 7 th -9 th, 2013 PD In Acute Kidney Injury February 7 th -9 th, 2013 Objectives PD as a viable initial therapy PD in AKI PD versus dhd PD versus CVVHD Why not PD first PD for AKI Early days (1970 s) PD was the option of

More information

Free water transport: Clinical implications. Sodium sieving during short very hypertonic dialysis exchanges

Free water transport: Clinical implications. Sodium sieving during short very hypertonic dialysis exchanges Free water transport: Clinical implications Raymond T Krediet, MD,PhD University of Amsterdam Sodium sieving during short very hypertonic dialysis exchanges Nolph KD et al. Ann Int Med 1969;70:931-947

More information

Intermittent peritoneal dialysis (IPD) has occasionally

Intermittent peritoneal dialysis (IPD) has occasionally Peritoneal Dialysis International, Vol. 32, pp. 142 148 doi: 10.3747/pdi.2011.00027 0896-8608/12 $3.00 +.00 Copyright 2012 International Society for Peritoneal Dialysis INTERMITTENT PERITONEAL DIALYSIS:

More information

Supplemental Quick Reference Guide

Supplemental Quick Reference Guide Supplemental Quick Reference Guide How to use this Supplemental Quick Reference Guide This guide provides a 5-step method for considering a variety of frequencies and treatment lengths, based on achieving

More information

Chapter 12 PERITONEAL DIALYSIS

Chapter 12 PERITONEAL DIALYSIS Chapter 12 PERITONEAL DIALYSIS B. Sunita A/P V. Bavanandan Anita Bhajan Manocha Lily Binti Mushahar Mohamad Zaimi Bin Abdul Wahab Sudhaharan Sivathasan PERITONEAL DIALYSIS 22nd Report of the SECTION 12.1:

More information

End-Stage Renal Disease. Anna Vinnikova, M.D. Associate Professor of Medicine Division of Nephrology

End-Stage Renal Disease. Anna Vinnikova, M.D. Associate Professor of Medicine Division of Nephrology End-Stage Renal Disease Anna Vinnikova, M.D. Associate Professor of Medicine Division of Nephrology ESRD : Life with renal replacement therapy CASE: 18 month old male with HUS develops ESRD PD complicated

More information

Gambrosol Trio, clinical studies 91 Glitazone, malnutrition-inflammationatherosclerosis

Gambrosol Trio, clinical studies 91 Glitazone, malnutrition-inflammationatherosclerosis Subject Index Acidosis, see Metabolic acidosis Activated carbon, sorbents 337 Adipokines adipose tissue and systemic inflammation 169 functions 167 169 prospects for study in renal patients 171 Adiponectin,

More information

The greatest benefit of peritoneal dialysis (PD) is the

The greatest benefit of peritoneal dialysis (PD) is the Peritoneal Dialysis International, Vol. 26, pp. 150 154 Printed in Canada. All rights reserved. 0896-8608/06 $3.00 +.00 Copyright 2006 International Society for Peritoneal Dialysis COMBINATION THERAPY

More information

The CARI Guidelines Caring for Australians with Renal Impairment. Mode of dialysis at initiation GUIDELINES

The CARI Guidelines Caring for Australians with Renal Impairment. Mode of dialysis at initiation GUIDELINES Date written: September 2004 Final submission: February 2005 Mode of dialysis at initiation GUIDELINES No recommendations possible based on Level I or II evidence SUGGESTIONS FOR CLINICAL CARE (Suggestions

More information

PERITONEAL DIALYSIS ADEQUACY: The KDOQI Guidelines and Beyond

PERITONEAL DIALYSIS ADEQUACY: The KDOQI Guidelines and Beyond PERITONEAL DIALYSIS ADEQUACY: The KDOQI Guidelines and Beyond John Burkart, M.D. Wake Forest University Baptist Medical Center CMO Health Systems Management 8/2014 John M. Burkart, MD Educational Grants

More information

Predictors of Patient Survival in Continuous Ambulatory Peritoneal Dialysis 10-Year Experience in 2 Major Centers in Tehran

Predictors of Patient Survival in Continuous Ambulatory Peritoneal Dialysis 10-Year Experience in 2 Major Centers in Tehran Dialysis Predictors of Patient Survival in Continuous Ambulatory Peritoneal Dialysis 10-Year Experience in 2 Major Centers in Tehran Monir Sadat Hakemi, 1 Mehdi Golbabaei, 2 Amirahmad Nassiri, 3 Mandana

More information

CRRT Interactive Hyperkalemia Cases AKI & CRRT conference 2018

CRRT Interactive Hyperkalemia Cases AKI & CRRT conference 2018 CRRT Interactive Hyperkalemia Cases AKI & CRRT conference 2018 Case 1 Potassium Clearance A 70 kg male is placed on CVVH with a total ultrafiltration rate (effluent rate) of 20 ml/kg/hr. The Blood Flow

More information

CRRT Interactive Hyperkalemia Cases AKI & CRRT conference 2018

CRRT Interactive Hyperkalemia Cases AKI & CRRT conference 2018 CRRT Interactive Hyperkalemia Cases AKI & CRRT conference 2018 Case 1 Potassium Clearance A 70 kg male is placed on CVVH with a total ultrafiltration rate (effluent rate) of 20 ml/kg/hr. The Blood Flow

More information

CRRT Fundamentals Pre-Test. AKI & CRRT 2017 Practice Based Learning in CRRT

CRRT Fundamentals Pre-Test. AKI & CRRT 2017 Practice Based Learning in CRRT CRRT Fundamentals Pre-Test AKI & CRRT 2017 Practice Based Learning in CRRT Question 1 A 72-year-old man with HTN presents to the ED with slurred speech, headache and weakness after falling at home. He

More information

IN-CENTER HEMODIALYSIS (HD) CLINICAL PERFORMANCE MEASURES DATA COLLECTION FORM 2001

IN-CENTER HEMODIALYSIS (HD) CLINICAL PERFORMANCE MEASURES DATA COLLECTION FORM 2001 IN-CENTER HEMODIALYSIS (HD) CLINICAL PERFORMANCE MEASURES DATA COLLECTION FORM 2001 [Before completing please read instructions at the bottom of this page and on pages 4 and 5] PATIENT IDENTIFICATION MAKE

More information

The goal of dialysis for patients with chronic renal failure is to

The goal of dialysis for patients with chronic renal failure is to Dialysate Composition in Hemodialysis and Peritoneal Dialysis Biff F. Palmer The goal of dialysis for patients with chronic renal failure is to restore the composition of the body s fluid environment toward

More information

METABOLISM AND NUTRITION WITH PD OBESITY. Rajnish Mehrotra Harborview Medical Center University of Washington, Seattle

METABOLISM AND NUTRITION WITH PD OBESITY. Rajnish Mehrotra Harborview Medical Center University of Washington, Seattle METABOLISM AND NUTRITION WITH PD OBESITY Rajnish Mehrotra Harborview Medical Center University of Washington, Seattle 1 Body Size in Patients New to Dialysis United States Body Mass Index, kg/m2 33 31

More information

BONE AND MINERAL METABOLISM in the PD PATIENT

BONE AND MINERAL METABOLISM in the PD PATIENT BONE AND MINERAL METABOLISM in the PD PATIENT John Burkart, MD Professor of Medicine/Nephrology Wake Forest University Baptist Medical Center Chief Medical Officer Health Systems Management Maria V. DeVita,

More information

The Effect of Residual Renal Function at the Initiation of Dialysis on Patient Survival

The Effect of Residual Renal Function at the Initiation of Dialysis on Patient Survival ORIGINAL ARTICLE DOI: 10.3904/kjim.2009.24.1.55 The Effect of Residual Renal Function at the Initiation of Dialysis on Patient Survival Seoung Gu Kim 1 and Nam Ho Kim 2 Department of Internal Medicine,

More information

Peritoneal Dialysis Adequacy: Not Just Small- Solute Clearance

Peritoneal Dialysis Adequacy: Not Just Small- Solute Clearance Advances in Peritoneal Dialysis, Vol. 24, 2008 Rajesh Yalavarthy, Isaac Teitelbaum Peritoneal Dialysis Adequacy: Not Just Small- Solute Clearance Two indices of small-solute clearance, Kt/V urea and creatinine

More information

Phosphate Clearance in Peritoneal Dialysis: Automated PD Compared with Continuous Ambulatory PD

Phosphate Clearance in Peritoneal Dialysis: Automated PD Compared with Continuous Ambulatory PD Advances in Peritoneal Dialysis, Vol. 28, 2012 Dixie-Ann Sawin, Rainer Himmele, Jose A. Diaz Buxo Phosphate Clearance in Peritoneal Dialysis: Automated PD Compared with Continuous Ambulatory PD Although

More information

Study of association of serum bicarbonate levels with mortality in chronic kidney disease

Study of association of serum bicarbonate levels with mortality in chronic kidney disease International Journal of Research in Medical Sciences Kumar S et al. Int J Res Med Sci. 2016 Nov;4(11):4852-4856 www.msjonline.org pissn 2320-6071 eissn 2320-6012 Original Research Article DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20163779

More information

Clinical Grand Rounds BY AL ETINGER AUGUST 2015

Clinical Grand Rounds BY AL ETINGER AUGUST 2015 Clinical Grand Rounds BY AL ETINGER AUGUST 2015 The Case 51M with a PMHx of ESRD secondary to DM on peritoneal dialysis, type 1 DM, CAD s/p CABG, HFrEF s/p ICD, HTN presents with substernal chest pain.

More information

Timing, Dosing and Selecting of modality of RRT for AKI - the ERBP position statement

Timing, Dosing and Selecting of modality of RRT for AKI - the ERBP position statement Timing, Dosing and Selecting of modality of RRT for AKI - the ERBP position statement Prof. Dr. Achim Jörres Dept. of Nephrology and Medical Intensive Care Charité University Hospital Campus Virchow Klinikum

More information

Peritoneal Dialysis International, Vol. 16, pp /96$300+00

Peritoneal Dialysis International, Vol. 16, pp /96$300+00 Peritoneal Dialysis International, Vol. 16, pp 302-306 0896-8608/96$300+00 Printed in Canada All rights reserved Copyright 1996 International Society for Peritoneal Dialysis CONTINUOUS PERITONEAL DIAL

More information

Urgent start PD: Putting the person first

Urgent start PD: Putting the person first Urgent start PD: Putting the person first Arsh Jain MD, FRCPC, MSc ADC 2019 Who can we target with urgent start PD? Late or not referred Early referral Urgent dialysis start HD catheter Facility HD Who

More information

From Peritoneal Dialysis to Hemodialysis How could we improve the transition? Th Lobbedez CHU de Caen Self Dialysis Meeting 22 May 2014

From Peritoneal Dialysis to Hemodialysis How could we improve the transition? Th Lobbedez CHU de Caen Self Dialysis Meeting 22 May 2014 From Peritoneal Dialysis to Hemodialysis How could we improve the transition? Th Lobbedez CHU de Caen Self Dialysis Meeting 22 May 2014 Deux grands principes concernant la DP La dialyse péritonéale doit

More information

Effects of Diabetes Mellitus, Age, and Duration of Dialysis on Parathormone in Chronic Hemodialysis Patients. Hamid Nasri 1, Soleiman Kheiri 2

Effects of Diabetes Mellitus, Age, and Duration of Dialysis on Parathormone in Chronic Hemodialysis Patients. Hamid Nasri 1, Soleiman Kheiri 2 Saudi J Kidney Dis Transplant 2008;19(4):608-613 2008 Saudi Center for Organ Transplantation Saudi Journal of Kidney Diseases and Transplantation Original Article Effects of Diabetes Mellitus, Age, and

More information

Amjad Bani Hani Ass.Prof. of Cardiac Surgery & Intensive Care FLUIDS AND ELECTROLYTES

Amjad Bani Hani Ass.Prof. of Cardiac Surgery & Intensive Care FLUIDS AND ELECTROLYTES Amjad Bani Hani Ass.Prof. of Cardiac Surgery & Intensive Care FLUIDS AND ELECTROLYTES Body Water Content Water Balance: Normal 2500 2000 1500 1000 500 Metab Food Fluids Stool Breath Sweat Urine

More information

Title:Hyperphosphatemia as an Independent Risk Factor of Coronary Artery Calcification Progression in Peritoneal Dialysis Patients

Title:Hyperphosphatemia as an Independent Risk Factor of Coronary Artery Calcification Progression in Peritoneal Dialysis Patients Author's response to reviews Title:Hyperphosphatemia as an Independent Risk Factor of Coronary Artery Calcification Progression in Peritoneal Dialysis Patients Authors: Da Shang (sdshangda@163.com) Qionghong

More information

Olistic Approach to Treatment Adequacy in AKI

Olistic Approach to Treatment Adequacy in AKI Toronto - Canada, 2014 Olistic Approach to Treatment Adequacy in AKI Claudio Ronco, MD Department of Nephrology, St. Bortolo Hospital, International Renal Research Institute Vicenza - Italy 1) RRT

More information

Changes in the Peritoneal Equilibration Test in Selected Chronic Peritoneal Dialysis Patients1

Changes in the Peritoneal Equilibration Test in Selected Chronic Peritoneal Dialysis Patients1 hanges in the Peritoneal Equilibration Test in Selected hronic Peritoneal Dialysis Patients1 Wai-Kei Lo, Alessandra Brendolan, Barbara F. Prowant, Harold L. Moore, Ramesh Khanna, Zbylut J. Twardowski,

More information

CRRT: The Technical Questions Modality & Dose. Ashita J. Tolwani, MD, MSc University of Alabama at Birmingham 2018

CRRT: The Technical Questions Modality & Dose. Ashita J. Tolwani, MD, MSc University of Alabama at Birmingham 2018 CRRT: The Technical Questions Modality & Dose Ashita J. Tolwani, MD, MSc University of Alabama at Birmingham 2018 Case A 24YOM with HTN and OSA presents with acute pancreatitis. Despite aggressive fluid

More information

Continuous Ambulatory Peritoneal Dialysis and Automated Peritoneal Dialysis: What, Who, Why, and How? Review and Case Study

Continuous Ambulatory Peritoneal Dialysis and Automated Peritoneal Dialysis: What, Who, Why, and How? Review and Case Study Advances in Peritoneal Dialysis, Vol. 33, 2017 Kunal Malhotra, Ramesh Khanna Continuous Ambulatory Peritoneal Dialysis and Automated Peritoneal Dialysis: What, Who, Why, and How? Review and Case Study

More information

Geriatric Nutritional Risk Index, home hemodialysis outcomes 131

Geriatric Nutritional Risk Index, home hemodialysis outcomes 131 Subject Index Aksys PHD system 113 Anemia, home outcomes 111, 172, 173 Automated peritoneal dialysis dialysis comparison 17, 18 selection factors 18, 19 telemedicine system 19 21 Blood pressure -peritoneal

More information

Peritoneal Dialysis Prescriptions: A Primer for Nurses

Peritoneal Dialysis Prescriptions: A Primer for Nurses Peritoneal Dialysis Prescriptions: A Primer for Nurses A Primer ABCs of PD R x Betty Kelman RN-EC MEd CNeph (C) Toronto General Hospital University Health Network Toronto, Ontario, Canada A moment to remember

More information

Evaluation and management of nutrition in children

Evaluation and management of nutrition in children Evaluation and management of nutrition in children Date written: May 2004 Final submission: January 2005 Author: Elisabeth Hodson GUIDELINES No recommendations possible based on Level I or II evidence

More information

Physiology of Blood Purification: Dialysis & Apheresis. Outline. Solute Removal Mechanisms in RRT

Physiology of Blood Purification: Dialysis & Apheresis. Outline. Solute Removal Mechanisms in RRT Physiology of Blood Purification: Dialysis & Apheresis Jordan M. Symons, MD University of Washington School of Medicine Seattle Children s Hospital Outline Physical principles of mass transfer Hemodialysis

More information

Hemodialysis is a life-sustaining procedure for the treatment of

Hemodialysis is a life-sustaining procedure for the treatment of The Dialysis Prescription and Urea Modeling Biff F. Palmer Hemodialysis is a life-sustaining procedure for the treatment of patients with end-stage renal disease. In acute renal failure the procedure provides

More information

CITRATE DIALYSIS FLUID

CITRATE DIALYSIS FLUID CITRATE DIALYSIS FLUID Making possible personal. A CITRATE CONTAINING DIALYSIS FLUID FREE OF ACETATE The Gambro SoftPac concentrate is a citrate-containing, acetate-free concentrate developed by Gambro

More information

The CARI Guidelines Caring for Australians with Renal Impairment. Other criteria for starting dialysis GUIDELINES

The CARI Guidelines Caring for Australians with Renal Impairment. Other criteria for starting dialysis GUIDELINES Date written: September 2004 Final submission: February 2005 Other criteria for starting dialysis GUIDELINES No recommendations possible based on Level I or II evidence SUGGESTIONS FOR CLINICAL CARE (Suggestions

More information

Peritoneal dialysis adequacy: A model to assess feasibility with various modalities

Peritoneal dialysis adequacy: A model to assess feasibility with various modalities Kidney International, Vol. 55 (1999), pp. 2493 2501 Peritoneal dialysis adequacy: A model to assess feasibility with various modalities JOSE A. DIAZ-BUXO, FRANK A. GOTCH, TOM I. FOLDEN, SHELDEN ROSENBLUM,

More information

Effects of Increased Peritoneal Clearances on Mortality Rates in Peritoneal Dialysis: ADEMEX, a Prospective, Randomized, Controlled Trial

Effects of Increased Peritoneal Clearances on Mortality Rates in Peritoneal Dialysis: ADEMEX, a Prospective, Randomized, Controlled Trial J Am Soc Nephrol 13: 1307 1320, 2002 Effects of Increased Peritoneal Clearances on Mortality Rates in Peritoneal Dialysis: ADEMEX, a Prospective, Randomized, Controlled Trial RAMÓN PANIAGUA,* DANTE AMATO,*

More information

Electrolytes Solution

Electrolytes Solution Electrolytes Solution Substances that are not dissociated in solution are called nonelectrolytes, and those with varying degrees of dissociation are called electrolytes. Urea and dextrose are examples

More information

Decision making in acute dialysis

Decision making in acute dialysis Decision making in acute dialysis Geoffrey Bihl MB.BCh M.MED FCP(SA) Nephrologist and Director Winelands Kidney and Dialysis Centre Somerset West South Africa Important questions in AKI What is the cause?

More information

Is Your Patient Receiving the Treatment You Prescribed?

Is Your Patient Receiving the Treatment You Prescribed? Rx Tx Medical Directors Pre-Symposium Dallas, Texas September 22, 2011 Objectives Show the significance of staff s independent check of conductivity and ph Show significance of pressure alarm limits Show

More information

Principal Equations of Dialysis. John A. Sweeny

Principal Equations of Dialysis. John A. Sweeny Principal Equations of Dialysis John A. Sweeny john@sweenyfamily.net 1 An Equation is Math: A statement that each of two statements are equal to each other. Y 2 = 3x 3 + 2x + 7 Chemistry: A symbolic expression

More information

Diabetic Ketoacidosis

Diabetic Ketoacidosis Diabetic Ketoacidosis Definition: Diabetic Ketoacidosis is one of the most serious acute complications of diabetes. It s more common in young patients with type 1 diabetes mellitus. It s usually characterized

More information

Dialysis Adequacy (HD) Guidelines

Dialysis Adequacy (HD) Guidelines Dialysis Adequacy (HD) Guidelines Peter Kerr, Convenor (Monash, Victoria) Vlado Perkovic (Camperdown, New South Wales) Jim Petrie (Woolloongabba, Queensland) John Agar (Geelong, Victoria) Alex Disney (Woodville,

More information

Oral Sodium Bicarbonate for the Treatment of Metabolic Acidosis in Peritoneal Dialysis Patients: A Randomized Placebo-Control Trial

Oral Sodium Bicarbonate for the Treatment of Metabolic Acidosis in Peritoneal Dialysis Patients: A Randomized Placebo-Control Trial J Am Soc Nephrol 14: 2119 2126, 2003 Oral Sodium Bicarbonate for the Treatment of Metabolic Acidosis in Peritoneal Dialysis Patients: A Randomized Placebo-Control Trial CHEUK-CHUN SZETO, TERESA YUK-HWA

More information

i. Where is the participant seen?

i. Where is the participant seen? PFU01 method used: Phone/in-person interview 1 Enter PIP # here: Online survey 2 Enter Web # here: Initials of person completing form: Date Form Completed: / / Form Version: 03 / 01 / 18 Is the participant

More information

I. FILL IN THE BLANKS

I. FILL IN THE BLANKS 1 BHARAT SEVAK SAMAJ NATIONAL DEVELOPMENT AGENCY, PROMOTED BY GOVERNMENT OF INDIA CENTRAL BOARD OF EXAMINATIONS BSS NATIONAL VOCATIONAL EDUCATION MISSION AHE025-BSS DIPLOMA IN DIALYSIS TECHNOLOGY TWO YEARS

More information

I. CLINICAL PRACTICE GUIDELINES FOR PERITONEAL DIALYSIS ADEQUACY

I. CLINICAL PRACTICE GUIDELINES FOR PERITONEAL DIALYSIS ADEQUACY I. CLINICAL PRACTICE GUIDELINES FOR PERITONEAL DIALYSIS ADEQUACY GUIDELINE 1. INITIATION OF DIALYSIS 1.1 Preparation for kidney failure: Patients who reach chronic kidney disease (CKD) stage 4 (estimated

More information

CRRT Fundamentals Pre- and Post- Test. AKI & CRRT Conference 2018

CRRT Fundamentals Pre- and Post- Test. AKI & CRRT Conference 2018 CRRT Fundamentals Pre- and Post- Test AKI & CRRT Conference 2018 Question 1 Which ONE of the following statements regarding solute clearance in CRRT is MOST correct? A. Convective and diffusive solute

More information

Slide 1. Slide 2. Slide 3. Learning Outcomes. Acid base terminology ARTERIAL BLOOD GAS INTERPRETATION

Slide 1. Slide 2. Slide 3. Learning Outcomes. Acid base terminology ARTERIAL BLOOD GAS INTERPRETATION Slide 1 ARTERIAL BLOOD GAS INTERPRETATION David O Neill MSc BSc RN NMP FHEA Associate Lecturer (Non Medical Prescribing) Cardiff University Advanced Nurse Practitioner Respiratory Medicine Slide 2 Learning

More information

CSI (Clinical Scenario Investigation): Hyperkalemia

CSI (Clinical Scenario Investigation): Hyperkalemia CSI (Clinical Scenario Investigation): Hyperkalemia Alison Thomas, RN(EC), MN, CNeph(C) Ann Jones, RN(EC), MSN, CNeph(C) Joyce Hunter, RN, Vascular Access Co-ordinator Simcoe Muskoka Regional Kidney Care

More information

Renal Disease and PK/PD. Anjay Rastogi MD PhD Division of Nephrology

Renal Disease and PK/PD. Anjay Rastogi MD PhD Division of Nephrology Renal Disease and PK/PD Anjay Rastogi MD PhD Division of Nephrology Drugs and Kidneys Kidney is one of the major organ of drug elimination from the human body Renal disease and dialysis alters the pharmacokinetics

More information

Kieran McCafferty 1,2, Stanley Fan 1 and Andrew Davenport 2. clinical investigation. see commentary on page 15

Kieran McCafferty 1,2, Stanley Fan 1 and Andrew Davenport 2. clinical investigation. see commentary on page 15 http://www.kidney-international.org & 2013 International Society of Nephrology see commentary on page 15 Extracellular volume expansion, measured by multifrequency bioimpedance, does not help preserve

More information