ORIGINAL CONTRIBUTION. Optimizing Electroencephalographic Studies for Epilepsy Diagnosis in Children With New-Onset Seizures

Size: px
Start display at page:

Download "ORIGINAL CONTRIBUTION. Optimizing Electroencephalographic Studies for Epilepsy Diagnosis in Children With New-Onset Seizures"

Transcription

1 ONLINE FIRST ORIGINAL CONTRIBUTION Optimizing Electroencephalographic Studies for Epilepsy Diagnosis in Children With New-Onset Seizures Lynette G. Sadleir, MBChB, MD; Ingrid E. Scheffer, MBBS, PhD Objectives: To establish whether early electroencephalography (EEG) or later sleep-deprived EEG (SD-EEG) has a higher yield of epileptiform and background abnormalities in children with new-onset seizures, and to use EEG results to assist in diagnosis of electroclinical epilepsy syndromes at presentation. Design: Prospective analysis blinded to EEG protocol and epilepsy diagnosis. Setting: Regional service capturing a pediatric population of Patients: Consecutive untreated children aged 2 to 16 years presenting to emergency departments with new-onset seizures (excluding myoclonic and absence seizures). Intervention: Each child had 2 EEG protocols: an early EEG study (within 24 hours following a seizure) and an SD-EEG study (48 hours to 4 weeks following a seizure). Epilepsy diagnosis was made independently by 2 pediatric epileptologists. Main Outcome Measures: Rate of epileptiform abnormalities and slowing in the 2 EEG studies. The secondary outcome measure was diagnosis of epilepsy syndrome where possible. Results: Of 92 children studied, 50 (54%) had a single seizure; 42 (46%) had 2 or more seizures at presentation. Seizures were focal in 61 children (66%) and generalized in 19 (21%). Epileptiform discharges occurred in 56 SD-EEGs (61%) and 52 early EEGs (57%) (P=.27). Background slowing occurred in 26 SD-EEGs (28%) and 42 early EEGs (46%) (P.001). Parents preferred early EEG (65 parents [71%]) to later SD-EEG (14 parents [15%]) because of availability of earlier results and epilepsy diagnosis. Forty-two of 92 children (46%) were diagnosed with a specific electroclinical syndrome. Conclusions: Early EEG and SD-EEG studies have a similar yield of epileptiform abnormalities. Background abnormalities are more frequent in early EEGs. The EEG results at presentation in new-onset seizures support epilepsy diagnosis, with electroclinical syndromes diagnosed in almost 50% of children. Arch Neurol. 2010;67(11): Published online July 12, doi: /archneurol Author Affiliations: Department of Pediatrics, Wellington School of Medicine and Health Sciences, University of Otago, Wellington, New Zealand (Dr Sadleir); and Epilepsy Research Centre and Departments of Medicine and Pediatrics, The University of Melbourne, Austin Health, Heidelberg, Victoria, Australia (Dr Scheffer). EPILEPSY SYNDROME DIAGNOsis depends on a detailed clinical history supported by the findings on electroencephalographic (EEG) studies. Ideally, an EEG would show epileptiform activity in all children with epilepsy, but this is not the case in clinical practice. Studies of routine EEG in children with epilepsy vary in their epileptiform discharge rates from 13% to 59% The optimal way of performing EEG studies is debated. 2,3,12-14 It is not known whether the yield of epileptiform abnormalities is highest with early (within 48 hours) non sleep-deprived EEG (non SD-EEG) or late (after 48 hours) SD-EEG studies. Sleep deprivation prior to an EEG study elicits more frequent epileptiform abnormalities than a routine EEG study. 1-4,6,11,15,16 It is debated whether this is due to the presence of sleep or the sleep deprivation itself. 1,2,4,6,11,15,16 Of children with a normal routine EEG, 28% to 52% will have epileptiform discharges in a subsequent SD- EEG study. 8,9,11,17-19 However, this increase may partially relate to test-retest variation. 6,16,20 An alternative approach using early EEG was first promoted in 1998 for adults and adolescents presenting with a first seizure. King et al 9 showed a significant difference, with 51% of patients having epileptiform activity on an early EEG compared with 34% of patients on routine EEG studies performed after 24 hours. Hence, we undertook a prospective study of children with new-onset seizures to 1345

2 compare the yield of epileptiform abnormalities from early EEG with that from late SD-EEG. Each child underwent electroclinical assessment to make an epilepsy syndrome diagnosis. METHODS All children aged 2 to 16 years presenting to the emergency department with new-onset seizures were recruited. The study reflected clinical practice and recruited children who had not previously been diagnosed with epilepsy at the time their physicians requested the first EEG. Cases were drawn from a population of children from Wellington, New Zealand. Between January 1, 2002, and December 31, 2005, all eligible children were recruited. Pediatric and emergency physicians made an initial assessment regarding a child s eligibility and obtained written consent. The EEG department is the sole provider of pediatric EEG services in the region and ascertains all cases of new-onset seizures. An audit of the EEG referrals was used to ascertain the number of children with new-onset seizures who were missed by the study recruitment process. The Wellington Regional Ethics Committee approved the study. Patients and their parents or legal guardians gave informed consent. Two EEG protocols were performed on each patient: (1) an early routine EEG within 24 hours of the presenting seizure (early EEG), and (2) a later SD-EEG 48 hours to 4 weeks after a seizure. Absence and myoclonic seizures within 48 hours of the SD- EEG were allowed if the patient presented with a convulsive seizure. The EEGs were recorded using a 32-channel digital video- EEG system (E-series; Compumedics, Ltd, Victoria, Australia) with a standard system electrode placement. Video-EEG recordings were a minimum of 30 minutes, included 4 minutes of hyperventilation, and used standard intermittent photic stimulation protocols. Children were encouraged to sleep for 10 minutes in both studies. For the SD-EEG, parents were given verbal and written instructions regarding sleep deprivation. In children older than 3 years, children were kept awake until midnight and awoken at 5:00 AM on the morning of the test. Children aged 2 to 3 years were kept awake 2 hours later and awoken 2 hours earlier than normal. No sedation or melatonin was given. Sleep deprivation compliance was assessed by asking the caregiver how many hours the child had slept the previous night. The EEG was considered a sleep-deprived recording if the child had less than 8 hours of sleep for children aged 2 to 4 years and less than 6 hours for children aged 5 to 16 years. If the child slept more than this, another attempt at sleep deprivation was made or the child was excluded from the study. Exclusion criteria included nonepileptic events, previous or current treatment with an antiepileptic drug, acute symptomatic seizures, or febrile seizures defined by a temperature higher than 38 C in a child younger than 6 years. Children with only absence or myoclonic seizures were excluded as it would have been difficult to obtain an EEG 48 hours after the presenting seizures given that these seizure types occur frequently and are often subtle. Children who presented with a convulsive seizure and had previously unrecognized absence or myoclonic seizures were included. Two pediatric epileptologists (L.G.S. and I.E.S.) blinded to both the patient s history and the EEG protocol read the EEGs independently. The presence of sleep did not discriminate between the 2 EEG studies as sleep was captured in a significant proportion of early EEGs, while some children did not sleep in the SD-EEGs. If there was a difference in interpretation, a consensus between the epileptologists was obtained. If that was not possible, a third opinion was sought. One pediatric epileptologist (L.G.S.) assessed each child clinically following the second EEG. She completed an extensive questionnaire on the description of the event(s), possible provoking factors, medical history, and family history and examined the child. Parents and children were asked which EEG study they preferred and the reason for their preference. A magnetic resonance imaging brain scan was arranged if clinically indicated. Two pediatric epileptologists (L.G.S. and I.E.S.) independently confirmed that the child had an epileptic seizure and was eligible for the study. Using information from the consultation, EEGs, and neuroimaging, the pediatric epileptologists independently classified the epilepsy for each child into wellrecognized electroclinical syndromes and broad groups in keeping with the recent International League Against Epilepsy organization of the epilepsies If there was a difference in diagnosis, a consensus between the epileptologists was obtained. A 20% difference in the proportion of epileptiform abnormalities between the 2 tests was considered clinically significant in that it would alter clinical practice in terms of selection of an EEG protocol to optimize yield. This is in keeping with the study by DeRoos et al, 2 who independently selected the same figure citing that approximately 20% of families report that SD- EEG was inconvenient and tiring. 27 McNemar test was used to compare the proportion of early EEG vs later SD-EEG studies that showed either epileptiform or background abnormalities and formed the basis of the sample calculation. The sample size calculation used the percentage of epileptiform abnormalities that were different in early EEG compared with SD-EEG from exploratory data, 38% (8 of 21). A sample size of 90 would have a power of 86% if the percentage of epileptiform abnormalities found only in early EEG was 9% and those found only in SD-EEG was 29%. RESULTS All families of the 114 children initially identified as eligible for the study gave their consent to participate. Of the 114 children recruited, 22 were excluded due to the event being nonepileptic (10 children), antiepileptic drug treatment prior to the second EEG (6 children), inability to obtain an SD-EEG because of very frequent seizures such that a 48-hour window without seizures was impossible to obtain or because sleep deprivation itself provoked another seizure (3 children), SD-EEG being insufficiently sleep deprived (1 child), and the family withdrawing from the study (2 children). Later audit of the EEG records identified 54 additional potentially eligible children who had not been approached for the following reasons. For 11 children, early EEG could not be performed within 24 hours due to the EEG technician s availability. Children were missed if their family doctor arranged an outpatient assessment rather than sending them to the emergency department when they first presented. This occurred in 10 children with subtle focal seizures and in 9 children with convulsive seizures when the family was familiar with seizures. Four children received phenytoin before their first EEG, and the initial treating physician was not sure whether the event was epileptic in origin for 3 children. The reason for lack of ascertainment of the remaining 17 children is not known. The 92 children (55 boys) who completed the study had a mean (SD) age of 8.4 (3.57) years (range, 2-14 years). Children were recruited when the diagnosis of epilepsy was first entertained. Although the practice of most pediatri- 1346

3 Table 1. Number of Children With Electroclinical Syndromes and Other Epilepsies Epilepsy Broad Group Syndromes Electroclinical syndromes Febrile seizures plus 2 Benign epilepsy with centrotemporal spikes 19 Benign occipital epilepsies Panayiotopoulos syndrome 2 Gastaut 2 Overlapping features 1 Idiopathic photosensitive occipital epilepsy 1 Genetic generalized epilepsies 15 Juvenile absence epilepsy 4 Juvenile myoclonic epilepsy 2 Epilepsy with generalized tonic-clonic 3 seizures alone Benign circling epilepsy 1 Other 5 Structural metabolic epilepsies 2 Unknown epilepsies with focal seizures 36 Unclassified seizures 12 Total cians in our region is to request an EEG after a first afebrile seizure, many children were not ascertained until their second or later afebrile seizure. This occurred because the second seizure led to enrollment in the study, previous seizures were not appreciated, or, in some cases, pediatric practice is not to request an EEG after a first seizure. The following electroclinical seizure types were observed: focal (61 children [66%]), generalized (19 children [21%]), and unclassified (12 children [13%]). In the 12 unclassified children, we were not able to determine whether the seizures were focal or generalized by history. The EEG results were normal in 8 of these unclassified children, and the EEGs in the other 4 children showed either nonspecific features (2 children) or both focal and generalized epileptiform abnormalities (2 children). Well-recognized electroclinical syndromes were diagnosed in 42 of 92 children (46%) (Table 1). Early EEGs were performed 2 to 24 hours (mean, 15 hours) after the seizure, with sleep captured in 52 recordings (57%). In reality, some were serendipitously sleep deprived due to the timing of their initial seizure. The SD-EEG studies were performed a mean of 17 days following presentation. For the SD-EEG, the children slept between 4 and 8 hours (mean, 5.5 hours) before the study. Sixty-seven children (73%) slept during the SD-EEG recording, which was significantly more than the 52 children (57%) who slept during the early EEG (P=.01). Epileptiform abnormalities were found in 52 early EEGs (57%) and 56 SD-EEGs (61%) (difference=4%; 95% confidence interval, 3 to 14; McNemar test of observed vs expected not statistically significant, P=.27) (Table 2). Epileptiform abnormalities occurred in both EEGs in 47 children (51%) and in at least 1 EEG in 61 children (66%). When the early EEG showed epileptiform abnormalities, there was only 1 child in whom the SD-EEG gave additional information. In this child, right centrotemporal spikes were seen in the early EEG and independent right and left centrotemporal spikes were seen in the SD-EEG. Table 2. Number of Children With Epileptiform and Background Abnormalities Found in Early and Sleep-Deprived Electroencephalographic Studies EEG Findings Children With Epileptiform Abnormalities, No. (%) (N = 92) Children With Background Abnormalities, No. (%) (N = 92) Both early EEG and SD-EEG 47 (51) 23 (25) abnormal Only early EEG abnormal 5 (5) 19 (21) Only SD-EEG abnormal 9 (10) 3 (3) Both early EEG and SD-EEG normal 31 (34) 47 (51) Abbreviations: EEG, electroencephalogram; SD-EEG, sleep-deprived electroencephalogram. In contrast, background slowing occurred significantly more frequently in early EEGs (42 early EEGs [46%]) compared with SD-EEGs (26 SD-EEGs [28%]) (difference=18%; 95% confidence interval, 7 to 28; McNemar test, P.001) (Table 2). Nineteen children had slowing only on the early EEG. This was co-localized (or diffuse in the case of generalized) with epileptiform activity in 15 cases: 12 on the early EEG studies and 15 on the SD-EEG studies. Sixty-five parents (71%) preferred the early EEG, 14 parents (15%) preferred the SD-EEG, and the remainder had no preference. Forty-six families (70%) preferred the early EEG because they anxiously sought the EEG result, and 17 families (26%) preferred the early EEG because they found sleep deprivation difficult. Some families preferred the SD-EEG because they found scheduling the EEG within 24 hours stressful and were keen to go home. Of the 61 children old enough to provide an opinion, 33 (54%) preferred the early EEG for reasons similar to those of their parents. Fifteen children (25%) preferred the SD-EEG compared with 14 parents (15%) because the children enjoyed staying up late; 13 children (21%) had no preference. COMMENT What is the optimal EEG protocol for children with newonset seizures? There has been debate regarding the yield of routine, early, and sleep-deprived studies. 2,3,12-14 With the advent of epilepsy syndrome classification, the importance of epileptiform abnormalities in confirming a specific epilepsy syndrome diagnosis has been increasingly appreciated. The aims of this study were 2-fold. First, we aimed to determine whether early EEG in children was more likely to detect abnormalities compared with late sleep-deprived recordings. Second, we used the EEG data in epilepsy diagnosis to assess the proportion of children who could be classified at presentation with newonset seizures. This study showed that there were no significant differences in the yield of epileptiform abnormalities between early EEG (52 children [57%]) and SD-EEG (56 children [61%]). As we did not examine routine EEG studies, 1347

4 we cannot draw direct conclusions about their comparative yield. However, other studies have found variable epileptiform rates in routine EEG compared with SD-EEG and early EEG in mixed populations of children or adolescents. 2-4,9,11 These studies vary as to whether the cohort studied had definite seizures, more than 1 seizure, or established epilepsy. We studied a mixed population of children with 1 or more definite seizures. Our study was designed to reflect clinical practice, focusing on when a seizure disorder was first considered in each child. A large pediatric study showed, in a subset most closely matching our cases (aged 2 years; definite clinical seizure, although some were receiving antiepileptic drugs), that there was a higher yield for SD-EEG compared with routine EEG, although these EEG protocols were tested in different patients. 2 Similarly, Leach et al 4 found a higher epileptiform rate in SD-EEG than both routine EEG and sedation EEG using temazepam in the same adolescent. Another study compared the yield from early ( 48 hours) SD-EEG and late SD-EEG recordings in different children but could only draw limited conclusions as only 19 of 94 children succeeded in having an early SD-EEG study. 28 It is difficult to compare different studies as the cohorts in each study vary considerably. Our cohort comprises patients older than 2 years with a definite seizure, of whom 42 of 92 have a recognized electroclinical syndrome. Certain electroclinical syndromes have a higher yield of epileptiform activity on EEG studies than others and are activated by specific provocateurs; these factors would strongly influence the yield of epileptiform abnormalities. One strength of our study was that it used each child acting as his or her own control rather than using 2 separate cohorts that each had 1 protocol. 2 A further differentiating point was that all subjects had both protocols regardless of whether results of the first study were normal. 5,8,11,15 To our knowledge, this is the first study to directly compare early EEG with later SD-EEG in the same patient. The yield of epileptiform abnormalities did not differ between protocols; however, the early EEGs were significantly more likely to have background abnormalities. Nineteen children had slowing only on their early EEG, which is likely to reflect postictal change. Although postictal focal slowing may be diagnostically helpful in adults, 15 this was not the case in our study. Many EEG studies focus on the importance of epileptiform abnormalities in determining whether a patient is at risk for further seizures. While this emphasis is drawn from adult studies, the key issue in pediatric studies is to consider the diagnosis of specific epilepsy syndromes that carry an EEG signature. For example, the finding of centrotemporal spikes in a child with a rolandic or convulsive seizure supports a syndrome diagnosis of benign epilepsy with centrotemporal spikes; this is crucial in informing management and prognosis. We found that almost 50% of children could be diagnosed with a specific electroclinical syndrome. Advantages and disadvantages of performing each study protocol were identified. Overall, families preferred the early EEG because of the earlier availability of results. In general, partial sleep deprivation is well tolerated and safe, although some families report irritability in their children and inconvenience associated with ensuring that their child is sleep deprived. 5,17,28,29 To assess the degree of negative feelings that families experienced about sleep deprivation, we asked a hypothetical question about whether they would prefer a blood test or an SD-EEG if similar information could be obtained from each test. All children and parents preferred sleep deprivation. Indeed, many parents commented that their children are often sleep deprived in daily life because of illness and social reasons. From a practical point of view, children with newonset seizures are often admitted to hospital or spend significant time in the emergency department, and timetabling an early EEG is not difficult. In some centers, however, scheduling an EEG within 24 hours of a seizure may not be practical owing to EEG technician availability. For these departments, a scheduled SD-EEG within the next 4 weeks may permit better use of their resources. Our findings suggest that both approaches provide similar results, so choice should be guided by service and economic preference. International guidelines and recommendations for EEGs after new-onset seizures vary markedly. 13,14,30-35 Some advocate early EEG studies within 48 hours of a seizure, others suggest initial routine EEG followed by SD-EEG if normal, and still others recommend an SD-EEG or sleep study. There is also debate as to whether an EEG should be recommended after the first or the second seizure. Our study was not designed to consider this issue. Our findings suggest that in children with new-onset seizures, there is no difference between the epileptiform discharge rate found in EEGs performed within 24 hours of a seizure and later SD-EEGs. Our epileptiform rates are greater than those found in routine EEGs in published studies, 2,7,10,11 and as other studies have found higher rates in SD- EEGs or early EEGs than in routine EEGs, 2,4,5,8-10 we can infer that both early EEG and SD-EEG protocols are preferable to routine EEGs in new-onset seizures. In practice, both protocols are well tolerated and easy to perform. Improving the yield of epileptiform abnormalities enhances the clinician s ability to make an early epilepsy syndrome diagnosis in children presenting with newonset seizures. This in turn optimizes management and prognostic counseling. Accepted for Publication: May 14, Published Online: July 12, doi: /archneurol Correspondence: Lynette G. Sadleir, MBChB, MD, Department of Pediatrics, Wellington School of Medicine and Health Sciences, University of Otago, PO Box 7343, Wellington South, 6242, New Zealand Author Contributions: Dr Sadleir had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Sadleir and Scheffer. Acquisition of data: Sadleir and Scheffer. Analysis and interpretation of data: Sadleir and Scheffer. Drafting of the manuscript: Sadleir and Scheffer. Critical revision of the manuscript for important intellectual content: Sadleir and Scheffer. Statistical analysis: Sadleir. Obtained funding: Sadleir and Scheffer. Administrative, technical, and material support: Sadleir. Study supervision: Scheffer. 1348

5 Financial Disclosure: None reported. Funding/Support: This work was supported by the University of Otago, the Wellington Research Foundation, and the Neurology Foundation of New Zealand. Role of the Sponsors: The funding bodies were not involved in the design and conduct of the study; collection, management, analysis, and interpretation of the data; or preparation, review, or approval of the manuscript. Additional Contributions: We thank the patients for their participation. Mies Gersen, HNC, and Stephen Gane, HNC, performed all of the EEGs. Gordon Purdy, BSc, Department of Public Health, Wellington School of Medicine and Health Sciences, University of Otago, provided additional statistical assistance. REFERENCES 1. Gilbert DL, Gartside PS. Factors affecting the yield of pediatric EEGs in clinical practice. Clin Pediatr (Phila). 2002;41(1): DeRoos ST, Chillag KL, Keeler M, Gilbert DL. Effects of sleep deprivation on the pediatric electroencephalogram. Pediatrics. 2009;123(2): Gilbert DL, DeRoos S, Bare MA. Does sleep or sleep deprivation increase epileptiform discharges in pediatric electroencephalograms. Pediatrics. 2004; 114(3): Leach JP, Stephen LJ, Salveta C, Brodie MJ. Which electroencephalography (EEG) for epilepsy? the relative usefulness of different EEG protocols in patients with possible epilepsy. J Neurol Neurosurg Psychiatry. 2006;77(9): Carpay JA, de Weerd AW, Schimsheimer RJ, et al. The diagnostic yield of a second EEG after partial sleep deprivation: a prospective study in children with newly diagnosed seizures. Epilepsia. 1997;38(5): Binnie CD, Stefan H. Modern electroencephalography: its role in epilepsy management. Clin Neurophysiol. 1999;110(10): Shinnar S, Kang H, Bert AT, Goldensohn ES, Hauser WA, Moshé SL. EEG abnormalities in children with a first unprovoked seizure. Epilepsia. 1994;35(3): Stroink H, Brouwer OF, Arts WF, Geerts AT, Peters AC, van Donselaar CA. The first unprovoked, untreated seizure in childhood: a hospital based study of the accuracy of the diagnosis, rate of recurrence, and long term outcome after recurrence: Dutch study of epilepsy in childhood. J Neurol Neurosurg Psychiatry. 1998;64(5): King MA, Newton MR, Jackson GD, et al. Epileptology of the first-seizure presentation: a clinical, electroencephalographic, and magnetic resonance imaging study of 300 consecutive patients. Lancet. 1998;352(9133): Tartara A, Moglia A, Manni R, Corbellini C. EEG findings and sleep deprivation. Eur Neurol. 1980;19(5): Glick TH. The sleep-deprived electroencephalogram: evidence and practice. Arch Neurol. 2002;59(8): American Clinical Neurophysiology Society. Guideline 2: minimum technical standards for pediatric electroencephalography. J Clin Neurophysiol. 2006;23(2): Pohlmann-Eden B, Newton M. First seizure: EEG and neuroimaging following an epileptic seizure. Epilepsia. 2008;49(suppl 1): Hirtz D, Ashwal S, Berg A, et al. Practice parameter: evaluating a first nonfebrile seizure in children: report of the quality standards subcommittee of the American Academy of Neurology, the Child Neurology Society, and the American Epilepsy Society. Neurology. 2000;55(5): Schreiner A, Pohlmann-Eden B. Value of the early electroencephalogram after a first unprovoked seizure. Clin Electroencephalogr. 2003;34(3): Ellingson RJ, Wilken K, Bennett DR. Efficacy of sleep deprivation as an activation procedure in epilepsy patients. J Clin Neurophysiol. 1984;1(1): Liamsuwan S, Grattan-Smith P, Fagan E, Bleasel A, Antony J. The value of partial sleep deprivation as a routine measure in pediatric electroencephalography. J Child Neurol. 2000;15(1): Degen R. A study of the diagnostic value of waking and sleep EEGs after sleep deprivation in epileptic patients on anticonvulsive therapy. Electroencephalogr Clin Neurophysiol. 1980;49(5-6): Fountain NB, Kim JS, Lee SI. Sleep deprivation activates epileptiform discharges independent of the activating effects of sleep. J Clin Neurophysiol. 1998; 15(1): Camfield P, Gordon K, Camfield C, Tibbles JA, Dooley J, Smith B. EEG results are rarely the same if repeated within six months in childhood epilepsy. Can J Neurol Sci. 1995;22(4): Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia. 1981;22(4): Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia. 1989;30(4): Guerrini R, Dravet C, Genton P, et al. Idiopathic photosensitive occipital lobe epilepsy. Epilepsia. 1995;36(9): Scheffer IE, Berkovic SF. Generalized epilepsy with febrile seizure plus: a genetic disorder with heterogeneous clinical phenotypes. Brain. 1997;120(pt 3): GastautH,AgugliaU,TinuperP.Benignversiveorcirclingepilepsywithbilateral3-cps spike-and-wave discharges in late childhood. Ann Neurol. 1986;19(3): Berg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, Epilepsia. 2010;51(4): Nijhof SL, Bakker AL, Van Nieuwenhuizen O, Oostrom K, van Huffelen AC. Is the sleep-deprivation EEG a burden for both child and parent? Epilepsia. 2005; 46(8): Hamiwka L, Singh N, Kozlik S, Wirrell E. Feasibility and clinical utility of early electroencephalogram (EEG) in children with first seizure. J Child Neurol. 2008; 23(7): Wassmer E, Quinn E, Seri S, Whitehouse W. The acceptability of sleep-deprived electroencephalograms. Seizure. 1999;8(7): Beghi E, De Maria G, Gobbi G, Veneselli E. Diagnosis and treatment of the first epileptic seizure: guidelines of the Italian League Against Epilepsy. Epilepsia. 2006; 47(suppl 5): Pohlmann-Eden B, Beghi E, Camfield C, Camfield P. The first seizure and its management in adults and children. BMJ. 2006;332(7537): Scottish Intercollegiate Guidelines Network. Diagnosis and management of epilepsies in children and young people: a national clinical guideline. Accessed January 7, Stokes T, Shaw EJ, Juarez-Garcia A, Camosso-Stefinovic J, Baker R. Clinical guidelines and evidence review for the epilepsies: diagnosis and management in adults and children in primary and secondary care. /pdf/cg020fullguideline.pdf. Accessed January 7, American Electroencephalographic Society. Guideline two: minimum technical standards for pediatric electroencephalography. J Clin Neurophysiol. 1994; 11(1): Flink R, Pedersen B, Guekht AB, et al; Commission of European Affairs of the International League Against Epilepsy, Subcommission on European Guidelines. Guidelines for the use of EEG methodology in the diagnosis of epilepsy: International League Against Epilepsy: commission report. Acta Neurol Scand. 2002;106(1):

Which Electroencephalography for Seizure?: Survey Performed in Electro-medical Diagnostic Unit

Which Electroencephalography for Seizure?: Survey Performed in Electro-medical Diagnostic Unit HK J Paediatr (new series) 2010;15:19-23 Which Electroencephalography for Seizure?: Survey Performed in Electro-medical Diagnostic Unit WY CHAN, KL KWONG, WW WONG, NS KWONG Abstract Key words Electroencephalogram

More information

Downloaded from jssu.ssu.ac.ir at 0:37 IRST on Sunday February 17th 2019

Downloaded from jssu.ssu.ac.ir at 0:37 IRST on Sunday February 17th 2019 -2384 2 *. : 4 :. 2 / 4 3 6/. ( /) : 6 /4. 6. 00 92 6. 0 :. :. 0 :. International league Against Epilepsy (ILAE) First Unprovoked Seizure (FUS) 24 () (2) 20.. 2 3-4. (). : -* - 0 626024: 0 626024 : E-mial:

More information

Electroencephalogram (EEG) for First Nonfebrile Seizure - Critically Appraised Topic (CAT)

Electroencephalogram (EEG) for First Nonfebrile Seizure - Critically Appraised Topic (CAT) Electroencephalogram (EEG) for First Nonfebrile Seizure - Critically Appraised Topic (CAT) PICOT Question: For the child who presents to the ED after a first nonfebrile seizure should an EEG be obtained

More information

T he diagnosis and classification of a first seizure in

T he diagnosis and classification of a first seizure in 241 PAPER Interrater agreement of the diagnosis and classification of a first seizure in childhood. The Dutch Study of Epilepsy in Childhood H Stroink, C A van Donselaar, A T Geerts, A C B Peters, O F

More information

Electroencephalogram and first episode afebrile seizure in children

Electroencephalogram and first episode afebrile seizure in children International Journal of Research in Medical Sciences Ghosh A et al. Int J Res Med Sci. 2017 May;5(5):1726-1732 www.msjonline.org pissn 2320-6071 eissn 2320-6012 Review Article DOI: http://dx.doi.org/10.18203/2320-6012.ijrms20171586

More information

Assessment of EEG as a Diagnostic and Prognostic Indicator Tool in the Febrile Seizures

Assessment of EEG as a Diagnostic and Prognostic Indicator Tool in the Febrile Seizures Indian J Physiol Pharmacol 2015; 59(3) : 251 260 Febrile Seizure, Diagnostic and Prognostic Indicator, EEG 251 Original Article Assessment of EEG as a Diagnostic and Prognostic Indicator Tool in the Febrile

More information

Overview: Idiopathic Generalized Epilepsies

Overview: Idiopathic Generalized Epilepsies Epilepsia, 44(Suppl. 2):2 6, 2003 Blackwell Publishing, Inc. 2003 International League Against Epilepsy Overview: Idiopathic Generalized Epilepsies Richard H. Mattson Department of Neurology, Yale University

More information

Children with Rolandic spikes and ictal vomiting: Rolandic epilepsy or Panayiotopoulos syndrome?

Children with Rolandic spikes and ictal vomiting: Rolandic epilepsy or Panayiotopoulos syndrome? Original article Epileptic Disord 2003; 5: 139-43 Children with Rolandic spikes and ictal vomiting: Rolandic epilepsy or Panayiotopoulos syndrome? Athanasios Covanis, Christina Lada, Konstantinos Skiadas

More information

EEG in Epileptic Syndrome

EEG in Epileptic Syndrome EEG in Epileptic Syndrome Surachai Likasitwattanakul, M.D. Division of Neurology, Department of Pediatrics Faculty of Medicine, Siriraj Hospital Mahidol University Epileptic syndrome Electroclinical syndrome

More information

Alarge body of evidence has accrued in recent years, allowing a more precise estimate

Alarge body of evidence has accrued in recent years, allowing a more precise estimate When to Start and Stop Anticonvulsant Therapy in Children Robert S. Greenwood, MD; Michael B. Tennison, MD NEUROLOGICAL REVIEW Alarge body of evidence has accrued in recent years, allowing a more precise

More information

Predictors of Intractable Childhood Epilepsy

Predictors of Intractable Childhood Epilepsy ORIGINAL ARTICLE Predictors of Intractable Childhood Epilepsy Muhammad Akbar Malik 1, Muhammad Haroon Hamid 2, Tahir Masood Ahmed 2 and Qurban Ali 3 ABSTRACT Objective: To determine the prognosis of seizures

More information

Seizure 18 (2009) Contents lists available at ScienceDirect. Seizure. journal homepage:

Seizure 18 (2009) Contents lists available at ScienceDirect. Seizure. journal homepage: Seizure 18 (2009) 251 256 Contents lists available at ScienceDirect Seizure journal homepage: www.elsevier.com/locate/yseiz Risk of recurrence after drug withdrawal in childhood epilepsy Akgun Olmez a,1,

More information

Considerations in the Treatment of a First Unprovoked Seizure

Considerations in the Treatment of a First Unprovoked Seizure Considerations in the Treatment of a First Unprovoked Seizure Sheryl R. Haut, M.D., 1,2 and Shlomo Shinnar, M.D., Ph.D. 1,2,3,4 ABSTRACT Treatment issues following a first unprovoked seizure are discussed,

More information

Distribution of Epilepsy Syndromes in a Cohort of Children Prospectively Monitored from the Time of Their First Unprovoked Seizure

Distribution of Epilepsy Syndromes in a Cohort of Children Prospectively Monitored from the Time of Their First Unprovoked Seizure Epilepsiu, 4( ):378-383, 999 Lippincott Williams & Wilkins, Inc., Philadelphia International League Against Epilepsy Clinical Research Distribution of Epilepsy Syndromes in a Cohort of Children Prospectively

More information

ICD-9 to ICD-10 Conversion of Epilepsy

ICD-9 to ICD-10 Conversion of Epilepsy ICD-9-CM 345.00 Generalized nonconvulsive epilepsy, without mention of ICD-10-CM G40.A01 Absence epileptic syndrome, not intractable, with status G40.A09 Absence epileptic syndrome, not intractable, without

More information

Special considerations for a first seizure in childhood and adolescence

Special considerations for a first seizure in childhood and adolescence SUPPLEMENT - MANAGEMENT OF A FIRST SEIZURE Special considerations for a first seizure in childhood and adolescence Peter Camfield and Carol Camfield Department of Pediatrics, Dalhousie University and the

More information

Epilepsy Specialist Symposium Treatment Algorithms in the Diagnosis and Treatment of Epilepsy

Epilepsy Specialist Symposium Treatment Algorithms in the Diagnosis and Treatment of Epilepsy Epilepsy Specialist Symposium Treatment Algorithms in the Diagnosis and Treatment of Epilepsy November 30, 2012 Fred Lado, MD, Chair Montefiore Medical Center Albert Einstein College of Medicine Bronx,

More information

CHILDHOOD OCCIPITAL EPILEPSY OF GASTAUT: A LONG-TERM PROSPECTIVE STUDY

CHILDHOOD OCCIPITAL EPILEPSY OF GASTAUT: A LONG-TERM PROSPECTIVE STUDY Acta Medica Mediterranea, 2017, 33: 1175 CHILDHOOD OCCIPITAL EPILEPSY OF GASTAUT: A LONG-TERM PROSPECTIVE STUDY MURAT GÖNEN ¹, EMRAH AYTAǹ, BÜLENT MÜNGEN¹ University of Fırat, Faculty of medicine, Neurology

More information

David Dredge, MD MGH Child Neurology CME Course September 9, 2017

David Dredge, MD MGH Child Neurology CME Course September 9, 2017 David Dredge, MD MGH Child Neurology CME Course September 9, 2017 } 25-40,000 children experience their first nonfebrile seizure each year } AAN/CNS guidelines developed in early 2000s and subsequently

More information

Seizure. Early prediction of refractory epilepsy in childhood. J. Ramos-Lizana *, P. Aguilera-López, J. Aguirre-Rodríguez, E.

Seizure. Early prediction of refractory epilepsy in childhood. J. Ramos-Lizana *, P. Aguilera-López, J. Aguirre-Rodríguez, E. Seizure 18 (2009) 412 416 Contents lists available at ScienceDirect Seizure journal homepage: www.elsevier.com/locate/yseiz Early prediction of refractory epilepsy in childhood J. Ramos-Lizana *, P. Aguilera-López,

More information

Staging of Seizures According to Current Classification Systems December 10, 2013

Staging of Seizures According to Current Classification Systems December 10, 2013 Staging of Seizures According to Current Classification Systems December 10, 2013 Elinor Ben-Menachem, M.D.,Ph.D, Instituet of Clinical Neuroscience and Physiology, Sahlgren Academy, Goteborg University,

More information

ROLE OF EEG IN EPILEPTIC SYNDROMES ASSOCIATED WITH MYOCLONUS

ROLE OF EEG IN EPILEPTIC SYNDROMES ASSOCIATED WITH MYOCLONUS Version 18 A Monthly Publication presented by Professor Yasser Metwally February 2010 ROLE OF EEG IN EPILEPTIC SYNDROMES ASSOCIATED WITH MYOCLONUS EEG is an essential component in the evaluation of epilepsy.

More information

ORIGINAL CONTRIBUTION

ORIGINAL CONTRIBUTION Epilepsy in Childhood An Audit of Clinical Practice ORIGINAL CONTRIBUTION Hans A. Carpay, MD; Willem F. M. Arts, MD, PhD; Ada T. Geerts, MSc; Hans Stroink, MD; Oebele F. Brouwer, MD, PhD; A. C. Boudewyn

More information

The Sleep-Deprived Electroencephalogram

The Sleep-Deprived Electroencephalogram SECTION EDITOR: DAVID E. PLEASURE, MD The Sleep-Deprived Electroencephalogram Evidence and Practice Thomas H. Glick, MD NEUROLOGICAL REVIEW Background: Sleep deprivation for the initial electroencephalogram

More information

Classification of Epilepsy: What s new? A/Professor Annie Bye

Classification of Epilepsy: What s new? A/Professor Annie Bye Classification of Epilepsy: What s new? A/Professor Annie Bye The following material on the new epilepsy classification is based on the following 3 papers: Scheffer et al. ILAE classification of the epilepsies:

More information

June 30 (Fri), Teaching Session 1. New definition & epilepsy classification. Chairs Won-Joo Kim Ran Lee

June 30 (Fri), Teaching Session 1. New definition & epilepsy classification. Chairs Won-Joo Kim Ran Lee June 30 (Fri), 2017 Teaching Session 1 New definition & epilepsy classification Chairs Won-Joo Kim Ran Lee Teaching Session 1 TS1-1 Introduction of new definition of epilepsy Sung Chul Lim Department of

More information

Course and prognosis of childhood epilepsy: 5-year follow-up of the Dutch study of epilepsy in childhood

Course and prognosis of childhood epilepsy: 5-year follow-up of the Dutch study of epilepsy in childhood Brain Advance Access published June 16, 2004 DOI: 10.1093/brain/awh200 Brain Page 1 of 11 Course and prognosis of childhood epilepsy: 5-year follow-up of the Dutch study of epilepsy in childhood Willem

More information

Epilepsy, defined as more than 1 unprovoked

Epilepsy, defined as more than 1 unprovoked TREATING EPILEPSY: DOES PRESENTATION MATTER? * Lionel Carmant, MD, FRCP (C) ABSTRACT The evidence supporting the use of antiepileptic drugs (AEDs) immediately after a first seizure is ambivalent. A Practice

More information

p ผศ.นพ.ร งสรรค ช ยเสว ก ล คณะแพทยศาสตร ศ ร ราชพยาบาล

p ผศ.นพ.ร งสรรค ช ยเสว ก ล คณะแพทยศาสตร ศ ร ราชพยาบาล Natural Course and Prognosis of Epilepsy p ผศ.นพ.ร งสรรค ช ยเสว ก ล คณะแพทยศาสตร ศ ร ราชพยาบาล Introduction Prognosis of epilepsy generally means probability of being seizure-free after starting treatment

More information

When to start, which drugs and when to stop

When to start, which drugs and when to stop When to start, which drugs and when to stop Dr. Suthida Yenjun, MD. PMK Epilepsy Annual Meeting 2016 The main factors to consider in making the decision The risk for recurrent seizures, which varies based

More information

Treatment Following a First Seizure

Treatment Following a First Seizure Treatment Following a First Seizure 6 year old developmentally normal child brought to the ED with a history of a 5 minute generalized tonic seizure in sleep. Seizure occurred about 60 minutes after falling

More information

Epilepsy 101. Russell P. Saneto, DO, PhD. Seattle Children s Hospital/University of Washington November 2011

Epilepsy 101. Russell P. Saneto, DO, PhD. Seattle Children s Hospital/University of Washington November 2011 Epilepsy 101 Russell P. Saneto, DO, PhD Seattle Children s Hospital/University of Washington November 2011 Specific Aims How do we define epilepsy? Do seizures equal epilepsy? What are seizures? Seizure

More information

CONVULSIONS - AFEBRILE

CONVULSIONS - AFEBRILE Incidence All Children require Management Recurrence Risk Indications for starting therapy Starting Anticonvulsant medication Criteria for Referral to Paediatric Neurology Useful links References Appendix

More information

Latency to first spike in the EEG of epilepsy patients

Latency to first spike in the EEG of epilepsy patients Seizure (2008) 17, 34 41 www.elsevier.com/locate/yseiz Latency to first spike in the EEG of epilepsy patients Jaishree T. Narayanan a,b, *, Douglas R. Labar a, Neil Schaul a a Comprehensive Epilepsy Center,

More information

All visits for patients with diagnosis of epilepsy. Denominator Statement Denominator Exceptions

All visits for patients with diagnosis of epilepsy. Denominator Statement Denominator Exceptions Measure 2: Etiology, Seizure Type, or Epilepsy Syndrome Measure Description Percent of all visits for patients with a diagnosis of with seizure type and etiology or syndrome documented OR testing* ordered

More information

Child-Youth Epilepsy Overview, epidemiology, terminology. Glen Fenton, MD Professor, Child Neurology and Epilepsy University of New Mexico

Child-Youth Epilepsy Overview, epidemiology, terminology. Glen Fenton, MD Professor, Child Neurology and Epilepsy University of New Mexico Child-Youth Epilepsy Overview, epidemiology, terminology Glen Fenton, MD Professor, Child Neurology and Epilepsy University of New Mexico New onset seizure case An 8-year-old girl has a witnessed seizure

More information

Idiopathic Epileptic Syndromes

Idiopathic Epileptic Syndromes Idiopathic Epileptic Syndromes Greek words idios = self, own and personal pathic = suffer Kamornwan Katanuwong MD Chiangmai University Hospital 1 st Epilepsy Camp, Hua Hin 20 th August 2010 Is a syndrome

More information

The Fitting Child. A/Prof Alex Tang

The Fitting Child. A/Prof Alex Tang The Fitting Child A/Prof Alex Tang Objective Define relevant history taking and physical examination Classify the types of epilepsy in children Demonstrate the usefulness of investigations Define treatment

More information

EEG in the Evaluation of Epilepsy. Douglas R. Nordli, Jr., MD

EEG in the Evaluation of Epilepsy. Douglas R. Nordli, Jr., MD EEG in the Evaluation of Epilepsy Douglas R. Nordli, Jr., MD Contents Epidemiology First seizure Positive predictive value Risk of recurrence Identifying epilepsy Type of epilepsy (background and IEDs)

More information

Q9. In adults and children with convulsive epilepsy in remission, when should treatment be discontinued?

Q9. In adults and children with convulsive epilepsy in remission, when should treatment be discontinued? updated 2012 When to discontinue antiepileptic drug treatment in adults and children Q9. In adults and children with convulsive epilepsy in remission, when should treatment be discontinued? Background

More information

Epilepsy: diagnosis and treatment. Sergiusz Jóźwiak Klinika Neurologii Dziecięcej WUM

Epilepsy: diagnosis and treatment. Sergiusz Jóźwiak Klinika Neurologii Dziecięcej WUM Epilepsy: diagnosis and treatment Sergiusz Jóźwiak Klinika Neurologii Dziecięcej WUM Definition: the clinical manifestation of an excessive excitation of a population of cortical neurons Neurotransmitters:

More information

CLINICAL AND ELECTROENCEPHALOGR APHIC PROFILE OF JUVENILE MYOCLONIC EPILEPSY IN A TERTIARY CARE CENTER. Abstract

CLINICAL AND ELECTROENCEPHALOGR APHIC PROFILE OF JUVENILE MYOCLONIC EPILEPSY IN A TERTIARY CARE CENTER. Abstract ORIGINAL ARTICLE - NEUROLOGY CLINICAL AND ELECTROENCEPHALOGR APHIC PROFILE OF JUVENILE MYOCLONIC EPILEPSY IN A TERTIARY CARE CENTER Raja K S (1), Malcolm Jeyaraj K (1), Sakthivelayutham S (1), Sowmini

More information

RISK OF RECURRENT SEIZURES AFTER TWO UNPROVOKED SEIZURES RISK OF RECURRENT SEIZURES AFTER TWO UNPROVOKED SEIZURES. Patients

RISK OF RECURRENT SEIZURES AFTER TWO UNPROVOKED SEIZURES RISK OF RECURRENT SEIZURES AFTER TWO UNPROVOKED SEIZURES. Patients RISK OF RECURRENT SEIZURES AFTER TWO UNPROVOKED SEIZURES RISK OF RECURRENT SEIZURES AFTER TWO UNPROVOKED SEIZURES W. ALLEN HAUSER, M.D., STEPHEN S. RICH, PH.D., JU R.-J. LEE, PH.D., JOHN F. ANNEGERS, PH.D.,

More information

Epileptic Seizures, Syndromes, and Classifications. Heidi Currier, MD Minnesota Epilepsy Group, PA St. Paul, MN

Epileptic Seizures, Syndromes, and Classifications. Heidi Currier, MD Minnesota Epilepsy Group, PA St. Paul, MN Epileptic Seizures, Syndromes, and Classifications Heidi Currier, MD Minnesota Epilepsy Group, PA St. Paul, MN Definitions Diagnosis of Seizures A seizure is a sudden surge of electrical activity in the

More information

Management of the first convulsive seizure

Management of the first convulsive seizure S14 Jornal de Pediatria - Vol. 78, Supl.1, 2002 0021-7557/02/78-Supl.1/S14 Jornal de Pediatria Copyright 2002 by Sociedade Brasileira de Pediatria REVIEW ARTICLE Management of the first convulsive seizure

More information

Epilepsy Syndromes: Where does Dravet Syndrome fit in?

Epilepsy Syndromes: Where does Dravet Syndrome fit in? Epilepsy Syndromes: Where does Dravet Syndrome fit in? Scott Demarest MD Assistant Professor, Departments of Pediatrics and Neurology University of Colorado School of Medicine Children's Hospital Colorado

More information

Diagnosis and Treatment of the First Epileptic Seizure: Guidelines of the Italian League Against Epilepsy

Diagnosis and Treatment of the First Epileptic Seizure: Guidelines of the Italian League Against Epilepsy Epilepsia, 47(Suppl. 5):2 8, 2006 Blackwell Publishing, Inc. C International League Against Epilepsy Diagnosis and Treatment of the First Epileptic Seizure: Guidelines of the Italian League Against Epilepsy

More information

Withdrawal of antiepileptic drug treatment in childhood epilepsy: factors related to age

Withdrawal of antiepileptic drug treatment in childhood epilepsy: factors related to age J7ournal of Neurology, Neurosurgery, and Psychiatry 199;9:477-481 Department of Pediatrics, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Toyama City, Japan M Murakami T Konishi Y

More information

Automatisms in Absence Seizures in Children With Idiopathic Generalized Epilepsy

Automatisms in Absence Seizures in Children With Idiopathic Generalized Epilepsy ORIGINAL CONTRIBUTION Automatisms in Absence Seizures in Children With Idiopathic Generalized Epilepsy Lynette G. Sadleir, MBChB, MD; Ingrid E. Scheffer, MBBS, PhD; Sherry Smith, RET, CNIM; Mary B. Connolly,

More information

S (17) Reference: YAJEM 57199

S (17) Reference: YAJEM 57199 Accepted Manuscript Should patients with complex febrile seizure be admitted for further management? Heather Olson, Tiffany Rudloe, Tobias Loddenkemper, Marvin B. Harper, Amir A. Kimia PII: S0735-6757(17)31061-6

More information

ORIGINAL ARTICLE. Prediction of Response to Treatment in Children with Epilepsy

ORIGINAL ARTICLE. Prediction of Response to Treatment in Children with Epilepsy ORIGINAL ARTICLE How to Cite This Article: Ghofrani M, Nasehi MM, Saket S, Mollamohammadi M, Taghdiri MM, Karimzadeh P, Tonekaboni SH, Javadzadeh M, Jafari N, Zavehzad A, Hasanvand Amouzadeh M, Beshrat

More information

Clinical course and seizure outcome of idiopathic childhood epilepsy: determinants of early and long-term prognosis

Clinical course and seizure outcome of idiopathic childhood epilepsy: determinants of early and long-term prognosis Dragoumi et al. BMC Neurology 2013, 13:206 RESEARCH ARTICLE Open Access Clinical course and seizure outcome of idiopathic childhood epilepsy: determinants of early and long-term prognosis Pinelopi Dragoumi

More information

of Eectroencephalograms in Paediatrics

of Eectroencephalograms in Paediatrics Uti~ity ~An of Eectroencephalograms in Paediatrics iatrics Analysis of 66 Records I H M I Hussain, MRCp, A It Mazidah, MD, Neurology Unit, Paediatric Institute, Hospital Kuala Lumpur Discovered by Hans

More information

ARTICLE. Treatment of Newly Diagnosed Pediatric Epilepsy. Anne T. Berg, PhD; Susan R. Levy, MD; Francine M. Testa, MD; Shlomo Shinnar, MD, PhD

ARTICLE. Treatment of Newly Diagnosed Pediatric Epilepsy. Anne T. Berg, PhD; Susan R. Levy, MD; Francine M. Testa, MD; Shlomo Shinnar, MD, PhD Treatment of Newly Diagnosed Pediatric Epilepsy A Community-Based Study ARTICLE Anne T. Berg, PhD; Susan R. Levy, MD; Francine M. Testa, MD; Shlomo Shinnar, MD, PhD Objective: To determine the patterns

More information

Laboratory Testing for First Nonfebrile Seizure - Critically Appraised Topic (CAT)

Laboratory Testing for First Nonfebrile Seizure - Critically Appraised Topic (CAT) Laboratory Testing for First Nonfebrile Seizure - Critically Appraised Topic (CAT) PICOT Question: For the child who presents to the emergency department (ED) after a first nonfebrile should laboratory

More information

Moving Beyond Ruling Out Epilepsy: It Is PNES!

Moving Beyond Ruling Out Epilepsy: It Is PNES! Moving Beyond Ruling Out Epilepsy: It Is PNES! Current Literature In Clinical Science Minimum Requirements for the Diagnosis of Psychogenic Nonepileptic Seizures: A Staged Approach. A Report From the International

More information

Clinical Policy Title: Ambulatory and video electroencephalography

Clinical Policy Title: Ambulatory and video electroencephalography Clinical Policy Title: Ambulatory and video Clinical Policy Number: 09.01.05 Effective Date: October 1, 2014 Initial Review Date: March 19, 2014 Most Recent Review Date: May 1, 2018 Next Review Date: May

More information

Clinical Policy: Digital EEG Spike Analysis

Clinical Policy: Digital EEG Spike Analysis Clinical Policy: Reference Number: CP.MP.105 Last Review Date: 01/18 Coding Implications Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description

More information

Risk of seizure recurrence after antiepileptic drug withdrawal, an Indian study

Risk of seizure recurrence after antiepileptic drug withdrawal, an Indian study Neurology Asia 2006; 11 : 19 23 Risk of seizure recurrence after antiepileptic drug withdrawal, an Indian study Archana VERMA DM (Neurology) MD, Surendra MISRA DM (Neurology) FRCP (Edin) Department of

More information

Idiopathic generalised epilepsy in adults manifested by phantom absences, generalised tonic-clonic seizures, and frequent absence status

Idiopathic generalised epilepsy in adults manifested by phantom absences, generalised tonic-clonic seizures, and frequent absence status 622 Department of Clinical Neurophysiology and Epilepsies, St Thomas Hospital, London SE1 7EH, UK C P Panayiotopoulos M Koutroumanidis S Giannakodimos A Agathonikou Correspondence to: Dr CP Panayiotopoulos,

More information

Idiopathic Photosensitive Occipital Lobe Epilepsy

Idiopathic Photosensitive Occipital Lobe Epilepsy Idiopathic Photosensitive Occipital Lobe Epilepsy 2 Idiopathic photosensitive occipital lobe epilepsy (IPOE) 5, 12, 73, 75, 109, 110 manifests with focal seizures of occipital lobe origin, which are elicited

More information

Significance of Epileptiform Discharges in Patients without Epilepsy in the Community

Significance of Epileptiform Discharges in Patients without Epilepsy in the Community Epilepsia, 42(10):1273 1278, 2001 Blackwell Science, Inc. International League Against Epilepsy Significance of Epileptiform Discharges in Patients without Epilepsy in the Community Maria C. Sam and Elson

More information

Idiopathic epilepsy syndromes

Idiopathic epilepsy syndromes 1 Idiopathic epilepsy syndromes PANISRA SUDACHAN, M.D. Pe diatric Neuro lo gis t Pediatric Neurology Department Pras at Neuro lo gic al Institute Epilepsy course 20 August 2016 Classification 2 1964 1970

More information

Diagnosing Epilepsy in Children and Adolescents

Diagnosing Epilepsy in Children and Adolescents 2019 Annual Epilepsy Pediatric Patient Care Conference Diagnosing Epilepsy in Children and Adolescents Korwyn Williams, MD, PhD Staff Epileptologist, BNI at PCH Clinical Assistant Professor, Department

More information

Seizure 18 (2009) Contents lists available at ScienceDirect. Seizure. journal homepage:

Seizure 18 (2009) Contents lists available at ScienceDirect. Seizure. journal homepage: Seizure 18 (2009) 620 624 Contents lists available at ScienceDirect Seizure journal homepage: www.elsevier.com/locate/yseiz Response to sequential treatment schedules in childhood epilepsy Risk for development

More information

Clinical Policy Title: Ambulatory and video electroencephalogram (AEEG, VEEG)

Clinical Policy Title: Ambulatory and video electroencephalogram (AEEG, VEEG) Clinical Policy Title: Ambulatory and video electroencephalogram (AEEG, VEEG) Clinical Policy Number: 09.01.05 Effective Date: October 1, 2014 Initial Review Date: March 19, 2014 Most Recent Review Date:

More information

Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial

Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial Prediction of risk of seizure recurrence after a single seizure and early epilepsy: further results from the MESS trial Lois G Kim, Tony L Johnson, Anthony G Marson, David W Chadwick on behalf of the MRC

More information

Classification of Status Epilepticus: A New Proposal Dan Lowenstein, M.D. University of California, San Francisco

Classification of Status Epilepticus: A New Proposal Dan Lowenstein, M.D. University of California, San Francisco Classification of Status Epilepticus: A New Proposal Dan Lowenstein, M.D. University of California, San Francisco for the ILAE Taskforce for Classification of Status Epilepticus: Eugen Trinka, Hannah Cock,

More information

Benign infantile focal epilepsy with midline spikes and waves during sleep: a new epileptic syndrome or a variant of benign focal epilepsy?

Benign infantile focal epilepsy with midline spikes and waves during sleep: a new epileptic syndrome or a variant of benign focal epilepsy? riginal article Epileptic Disord 2010; 12 (3): 205-11 Benign infantile focal epilepsy with midline spikes and waves during sleep: a new epileptic syndrome or a variant of benign focal epilepsy? Santiago

More information

Asian Epilepsy Academy (ASEPA) EEG Certification Examination

Asian Epilepsy Academy (ASEPA) EEG Certification Examination Asian Epilepsy Academy (ASEPA) EEG Certification Examination EEG Certification Examination Aims To set and improve the standard of practice of Electroencephalography (EEG) in the Asian Oceanian region

More information

Management of a child after a first afebrile seizure(s)

Management of a child after a first afebrile seizure(s) Management of a child after a first afebrile seizure(s) Colin Dunkley, Hemant Kulkarni, William Whitehouse, Children s Epilepsy Workstream in Trent (CEWT) Steering Group. (Based on an adaptation of Childhood

More information

Epilepsy management What, when and how?

Epilepsy management What, when and how? Epilepsy management What, when and how? J Helen Cross UCL-Institute of Child Health, Great Ormond Street Hospital for Children, London, & National Centre for Young People with Epilepsy, Lingfield, UK What

More information

Association of Interictal Epileptiform Discharges with Sleep and Anti-Epileptic Drugs

Association of Interictal Epileptiform Discharges with Sleep and Anti-Epileptic Drugs Research Article Received: January 19, 2016 Accepted: June 29, 2016 Published online: October 4, 2016 Association of Interictal Epileptiform Discharges with Sleep and Anti-Epileptic Drugs Latika Mohan

More information

Juvenile myoclonic epilepsy starting in the eighth decade

Juvenile myoclonic epilepsy starting in the eighth decade Clinical commentary Epileptic Disord 2007; 9 (3): 341-5 Juvenile myoclonic epilepsy starting in the eighth decade Vanda Tóth 1, György Rásonyi 2, András Fogarasi 3, Norbert Kovács 1, Tibor Auer 4, Jószef

More information

Idiopathic epilepsy syndromes

Idiopathic epilepsy syndromes Idiopathic epilepsy syndromes Kamornwan Katanyuwong MD. Chiangmai University Hospital EST, July 2009 Diagram Sylvie Nyugen The Tich, Yann Pereon Childhood absence epilepsy (CAE) Age : onset between 4-10

More information

Asian Epilepsy Academy (ASEPA) & ASEAN Neurological Association (ASNA) EEG Certification Examination

Asian Epilepsy Academy (ASEPA) & ASEAN Neurological Association (ASNA) EEG Certification Examination Asian Epilepsy Academy (ASEPA) & ASEAN Neurological Association (ASNA) EEG Certification Examination EEG Certification Examination Aims To set and improve the standard of practice of Electroencephalography

More information

Treatment outcome after failure of a first antiepileptic drug

Treatment outcome after failure of a first antiepileptic drug Treatment outcome after failure of a first antiepileptic drug Laura J. Bonnett, PhD Catrin Tudur Smith, PhD Sarah Donegan, PhD Anthony G. Marson, PhD Correspondence to Prof. Marson: A.G.Marson@liverpool.ac.uk

More information

EEG in Medical Practice

EEG in Medical Practice EEG in Medical Practice Dr. Md. Mahmudur Rahman Siddiqui MBBS, FCPS, FACP, FCCP Associate Professor, Dept. of Medicine Anwer Khan Modern Medical College What is the EEG? The brain normally produces tiny

More information

The epilepsies: pharmacological treatment by epilepsy syndrome

The epilepsies: pharmacological treatment by epilepsy syndrome The epilepsies: pharmacological treatment by epilepsy syndrome This table provides a summary reference guide to pharmacological treatment. Anti-epileptic drug (AED) options by epilepsy syndrome Childhood

More information

JMSCR Volume 03 Issue 05 Page May 2015

JMSCR Volume 03 Issue 05 Page May 2015 www.jmscr.igmpublication.org Impact Factor 3.79 ISSN (e)-2347-176x Practice Parameters for Managing Children with Febrile Convulsion Author Dr Anwar T Elgasseir Department of Paediatric, Misurata Teaching

More information

Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report

Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report Clinical commentary Epileptic Disord 2014; 16 (3): 370-4 Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report Myo Khaing 1,2, Kheng-Seang Lim 1, Chong-Tin Tan 1

More information

Seizure 19 (2010) Contents lists available at ScienceDirect. Seizure. journal homepage:

Seizure 19 (2010) Contents lists available at ScienceDirect. Seizure. journal homepage: Seizure 19 (2010) 501 506 Contents lists available at ScienceDirect Seizure journal homepage: www.elsevier.com/locate/yseiz Long term outcome of benign childhood epilepsy with centrotemporal spikes: Dutch

More information

A retrospective analysis of patients with febrile seizures followed by epilepsy

A retrospective analysis of patients with febrile seizures followed by epilepsy Seizure 2003; 12: 211 216 doi:10.1016/s1059 1311(02)00226-1 A retrospective analysis of patients with febrile seizures followed by epilepsy SEMA SALTIK, AYDAN ANGAY, ÇIGDEM ÖZKARA, VEYSI DEMİRBİLEK & AYSIN

More information

Diagnosing refractory epilepsy: response to sequential treatment schedules

Diagnosing refractory epilepsy: response to sequential treatment schedules European Journal of Neurology 6, 13: 277 282 Diagnosing refractory epilepsy: response to sequential treatment schedules R. Mohanraj and M. J. Brodie Epilepsy Unit, Division of Cardiovascular and Medical

More information

The Prevalence of Migraine and Tension Type Headaches among Epileptic Patients

The Prevalence of Migraine and Tension Type Headaches among Epileptic Patients Caspian Journal of Neurological Sciences http://cjns.gums.ac.ir The Prevalence of Migraine and Tension Type Headaches among Epileptic Patients Ashjazadeh Nahid (MD) 1,2*, Jowkar Hakimeh (MD) 1 A R T I

More information

Speciality: Neurosciences:

Speciality: Neurosciences: Afebrile Seizures Title of Guideline (must include the word Guideline (not protocol, policy, procedure etc) Contact Name and Job Title (author) Directorate & Speciality Date of submission July 2014 Date

More information

I diopathic generalised epilepsy (IGE) is a common form of

I diopathic generalised epilepsy (IGE) is a common form of 192 PAPER Idiopathic generalised epilepsy of adult onset: clinical syndromes and genetics C Marini, M A King, J S Archer, M R Newton, S F Berkovic... See Editorial Commentary p 147 See end of article for

More information

Defining refractory epilepsy

Defining refractory epilepsy Defining refractory epilepsy Pasiri S, PMK Hospital @ 8.30 9.00, 23/7/2015 Nomenclature Drug resistant epilepsy Medically refractory epilepsy Medical intractable epilepsy Pharmacoresistant epilepsy 1 Definition

More information

The EEG in focal epilepsy. Bassel Abou-Khalil, M.D. Vanderbilt University Medical Center

The EEG in focal epilepsy. Bassel Abou-Khalil, M.D. Vanderbilt University Medical Center The EEG in focal epilepsy Bassel Abou-Khalil, M.D. Vanderbilt University Medical Center I have no financial relationships to disclose that are relative to the content of my presentation Learning Objectives

More information

M. Sillanpää a, D. Schmidt b, * Received 27 January 2006; revised 28 February 2006; accepted 28 February 2006 Available online 17 April 2006

M. Sillanpää a, D. Schmidt b, * Received 27 January 2006; revised 28 February 2006; accepted 28 February 2006 Available online 17 April 2006 Epilepsy & Behavior 8 (2006) 713 719 www.elsevier.com/locate/yebeh Prognosis of seizure recurrence after stopping antiepileptic drugs in seizure-free patients: A long-term population-based study of childhood-onset

More information

RESEARCH ARTICLE EPILEPSY IN CHILDREN WITH CEREBRAL PALSY

RESEARCH ARTICLE EPILEPSY IN CHILDREN WITH CEREBRAL PALSY RESEARCH ARTICLE EPILEPSY IN CHILDREN WITH CEREBRAL PALSY S.Pour Ahmadi MD, M.Jafarzadeh MD, M. Abbas MD, J.Akhondian MD. Assistant Professor of Pediatrics, Mashad University of Medical Sciences. Associate

More information

A Study of 43 Patients with Panayiotopoulos Syndrome, a Common and Benign Childhood Seizure Susceptibility

A Study of 43 Patients with Panayiotopoulos Syndrome, a Common and Benign Childhood Seizure Susceptibility Epilepsia, 44(1):81 88, 2003 Blackwell Publishing, Inc. International League Against Epilepsy A Study of 43 Patients with Panayiotopoulos Syndrome, a Common and Benign Childhood Seizure Susceptibility

More information

Update in Pediatric Epilepsy

Update in Pediatric Epilepsy Update in Pediatric Epilepsy Cherie Herren, MD Assistant Professor OUHSC, Department of Neurology September 20, 2018 Disclosures None Objectives 1. Identify common pediatric epilepsy syndromes 2. Describe

More information

Seizure remission in adults with long-standing intractable epilepsy: An extended follow-up

Seizure remission in adults with long-standing intractable epilepsy: An extended follow-up Epilepsy Research (2010) xxx, xxx xxx journal homepage: www.elsevier.com/locate/epilepsyres Seizure remission in adults with long-standing intractable epilepsy: An extended follow-up Hyunmi Choi a,, Gary

More information

Epilepsy in a children's hospital: an out-patient survey

Epilepsy in a children's hospital: an out-patient survey Seizure 1995; 4:279-285 Epilepsy in a children's hospital: an out-patient survey A.P. HUGHES & R.E. APPLETON Roald Dahl E.E.G. Unit, Royal Liverpool Children's NHS Trust Address for correspondence: Dr

More information

Clinical Policy: Ambulatory Electroencephalography Reference Number: CP.MP.96

Clinical Policy: Ambulatory Electroencephalography Reference Number: CP.MP.96 Clinical Policy: Ambulatory Electroencephalography Reference Number: CP.MP.96 Effective Date: 09/15 Last Review Date: 09/17 See Important Reminder at the end of this policy for important regulatory and

More information

Adult Neurology Residency Training Program McGill University Rotation Specific Objectives. EEG/Epilepsy Rotation

Adult Neurology Residency Training Program McGill University Rotation Specific Objectives. EEG/Epilepsy Rotation Neurology Residency Program Department of Neurology & Neurosurgery Postal address: Montreal Neurological Institute 3801 University Street Montreal, PQ, Canada H3A 2B4 Tel.: (514) 398-1904 Fax: (514) 398-4621

More information

Prevention via Modifiable Risk Factors Saturday, June 23, 2012

Prevention via Modifiable Risk Factors Saturday, June 23, 2012 Prevention via Modifiable Risk Factors Saturday, June 23, 2012 Dale C Hesdorffer, PhD Gertrude H Sergievsky Center Department of Epidemiology Columbia University Partners Against Mortality in Epilepsy

More information

Clinical Course and EEG Findings of 25 Patients Initially Diagnosed with Childhood Absence Epilepsy

Clinical Course and EEG Findings of 25 Patients Initially Diagnosed with Childhood Absence Epilepsy Med. Bull. Fukuoka Univ.403/4105 1102013 Clinical Course and EEG Findings of 25 Patients Initially Diagnosed with Childhood Absence Epilepsy Noriko NAKAMURA, Sawa YASUMOTO, Takako FUJITA, Yuko TOMONOH,

More information

Disclosure Age Hauser, Epilepsia 33:1992

Disclosure Age Hauser, Epilepsia 33:1992 Pediatric Epilepsy Syndromes Gregory Neal Barnes MD/PhD Assistant Professor of Neurology and Pediatrics Director, Pediatric Epilepsy Monitoring Unit Vanderbilt University Medical Center Disclosure Investigator:

More information