Chromosome Analyses of Spermatozoa and Embryos Derived from Bulls Carrying the 7/21 Robertsonian Translocation

Size: px
Start display at page:

Download "Chromosome Analyses of Spermatozoa and Embryos Derived from Bulls Carrying the 7/21 Robertsonian Translocation"

Transcription

1 Chromosome Analyses of Spermatozoa and Embryos Derived from Bulls Carrying the 7/21 Robertsonian Translocation Hirofumi HANADA, Masaya GESHI* and Osamu SUZUKI** National Institute of Animal Industry, Tsukuba Norin Kenkyu Danchi, Ibaraki-ken 305 * Tohoku National Agricultural Experiment Station, Morioka-shi ** National Grassland Research Institute, Nishinasuno-machi Tochigi-ken (Received June 27, 1995) Abstract To investigate the effect of the 7/21 Robertsonian translocation on fertility in Japanese Black Cattle, sperm chromosomes of the carrier bulls were analyzed using an interspecific in vitro fertilization system with zona-free golden hamster oocytes. Further studies were performed on embryos at the 8-cell stage derived from bulls heterozygous for the 7/21 translocation. No chromosomally unbalanced spermatozoa, due to the 7/21 translocation, were observed in a homozygous bull. In bulls heterozygous for the 7/21 translocation, however, unbalanced spermatozoa resulting from adjacent meiotic segregation were detected but only at a rate of 3.4%. A few unbalanced embryos were also observed in chromosome analysis of embryos sired by bulls heterozygous for the 7/21 translocation. These results suggest that the 7/21 translocation in a heterozygous state causes only a slight reduction in fertility. Anim. Sci. Technol. (Jpn.) 66 (11): , 1995 Key words: cattle, 7/21 translocation, sperm chromosome, bovine embryo analysis The 7/21 Robertsonian translocation is an individual chromosome aberration observed only in Japanese Black Cattle4,8). Recently, it has been reported that bulls heterozygous for the 7/21 translocation produced chromosomally unbalanced spermatozoa12) and resulted in abnormal embryos6,7). This translocation apparently causes a reduction in reproductive efficiency due to the death of unbalanced embryos during gestation. The degree depends on the incidence of chromosomally abnormal embryos resulting from the fertilization of unbalanced gametes and the time of their loss. However, there are few data about the incidence of unbalanced gametes and embryos due to the technical difficulties in preparing chromosome slides from spermatozoa and the limited number of embryos available for chromosome analysis. To investigate the effect of the 7/21 translocation on fertility in detail, we carried out a chromosome analysis of spermatozoa of bulls carrying the 7/21 Robertsonian translocation, and embryos produced by in vitro fertilization Materials and Methods of the semen. Chromosome analysis of spermatozoa: Frozen semen samples from five Japanese Black bulls were used in this experiment. Of these bulls, two were heterozygotes with 59,

2 HANADA, GESHI and SUZUKI XY, t (7q 21q) and one was a homozygote with 58, XY, t (7q 21q) t (7q 21q). The remaining two bulls had a normal karyotype of 60, XY. Chromosome analysis of embryos: Results The results of chromosome analysis of spermatozoa are shown in Table 1. In normal bulls, 41 out of a total of 42 spermatozoa karyotyped had normal haploid chromosome complements, 30, Y and 30, X. The remaining one was sperm with 29, Y. Except for one with 28, X, t, all of the analyzable spermatozoa had balanced chromosome complements in the 7/21 Table 1. Segregation of sperm chromosomes in the normal and the 7/21 translocation carrier bulls

3 Analyses of Bull Spermatozoa and Embryos translocation homozygous bull. In bulls heterozygous for the 7/21 translocation, chromosome analysis was successfully carried out on a total of 118 spermatozoa, of which 59 had normal chromosome complements and 53 were balanced spermatozoa. Four out of the remaining six spermatozoa were hyperhaploids with 30, Y, t and 30, X, t (Fig.1) chromosome complements, and two were unbalanced spermatozoa with 29, X and 31, X. The results of chromosome analysis of embryos are shown in Table 2. In the group sired by normal bulls, all of the analyzable embryos showed normal chromosome complements, 60, XY and 60, XX. While, two (5.1%) out of 39 embryos sired by the 7/21 translocation heterozygous bulls were monosomy (Fig. 2a) and trisomy (Fig.2b). The incidence corresponds to that of unbalanced spermatozoa (5.1%). In normal bulls and the 7/21 translocation homozygous bull, only % of spermatozoa analyzed was chromosomally unbalanced cells resulting from nondisjunction of the other chromosomes unrelated to the 7/21 translocation at the first division. No abnormal embryos were also observed in the group sired by normal bulls. These results suggest that Table 2. Chromosome analysis of embryos sired by the normal and heterozygous bulls for the 7/21 translocation Fig.1. Chromosome plate and karyotype of an unbalanced sperm with n=30, X, t (7q21q). Fig.2. Chromosome metaphase spreads of embryos sired by bulls heterozygous for the 7/21 Robertsonian translocation. Arrow shows the translocation chromosome. a : Monosomic embryo with 2n=59, XX. b : Trisomic embryo with 2n=60, XX, t (7q21q).

4 HANADA, GESHI and SUZUKI malsegregation occur very rarely in normal bull and a homozygous bull. We have reported that bulls heterozygous for the 7/21 translocation produced aneuploid secondary spermatocytes with a higher incidence5). The percentage of nondisjunction was 7.9% in the heterozygous state versus 2.3% in the normal bulls. These aneuploid cells from adjacent segregation were thought to be eliminated during spermatogenesis in sheep, because no chromosomally unbalanced blastocysts had been found in chromosome analysis of embryos9). Whereas, bulls heterozygous for the 7/21 translocation produced chromosomally unbalanced spermatozoa as reported by Tateno et al.12). Further study of embryos apparently indicated that these spermatozoa were capable of fertilization and resulted in abnormal embryos. However, we have failed to find any significant difference in both the fertilization rate and proportion of embryos developed to the blastocyst stage between the normal and the 7/21 translocation heterozygous bulls3). This may be due to the fact that unbalanced embryos occurred only rarely and they mostly survived to develop at least to the blastocyst stage. Nullisomic and disomic spermatozoa must be produced in equal frequency in bulls heterozygous for the 7/21 translocation. However, no unbalanced nullisomic spermatozoa were observed in the previous study12). Similarly, presumptive nullisomic sperm was the only one with 29, X in our study, which may have resulted from nondisjunction of the other chromosomes unrelated to the 7/21 translocation. While, four spermatozoa were disomic cells with 30, Y, t and 30, X, t chromosome complements, presumably resulting from adjacent segregation of the trivalent chromosome. Until now, we have analyzed a total of 119 embryos including 80 embryos at the blastocyst stage in the previous studies6,7). Nevertheless, monosomy was the only one at the 8-cell stage. Whereas six out of seven embryos with unbalanced karyotypes were trisomies for either chromosome 7 or 21 resulting from the fertilization of normal ova by aneuploid spermatozoa. Some studies in mice and hamsters suggest that a nullisomic state results in reduced fertilizing capability of sperm and a failure in fertilization1,10,13). Though preferential selection against the nullisomic spermatozoa may take place in the 7/21 translocation, there were not enough to draw a conclusion. In conclusion, the 7/21 translocation in a heterozygous state may be associated with a reduction in reproductive efficiency. However, the unbalanced gametes from adjacent segregation and the subsequent abnormal embryos were very rare. Most spermatozoa in the 7/21 translocation carriers resulted from alternate segregation of a trivalent chromosome. The 7/21 translocation seemed to cause only a slight reduction in fertility. Acknowledgements The authors thank Dr. H. Tateno, Asahikawa Medical College, for suggestions on analysis of bovine sperm chromosomes. References 1) Aranha I, Martin-DeLeon PA. The murine Rb (6.16) translocation: evidence for sperm selection and modulating effect of aging. Hum. Genet., 87: ) Geshi M, Yonai M, Hanada H, Komiyama T, Takahashi M. Effect of serum on the in vitro development of bovine embryos derived from in vitro maturation and fertilization. Anim. Sci. Technol. (Jpn.), 64: ) Geshi M, Sakaguchi M, Yonai M, Nagai T, Suzuki O, Hanada H. Effects of the 7/21 Robertsonian translocation of bull on fertilization rates and early development of bovine embryos in vitro. Theriogenology, 41: ) Hanada H, Muramatsu S, Abe T, Fukushima T. Robertsonian chromosome polymorphism found in a local herd of the Japanese Black cattle. Ann. Genet. Sel. anim., 13: ) Hanada H, Muramatsu S. A study of meiotic

5 Analyses of Bull Spermatozoa and Embryos chromosomes in Japanese Black bulls carrying the 7/21 Robertsonian translocation. Jpn. J. Zootech. Sci., 60: ) Hanada H, Geshi M, Sakaguchi M, Yonai M. Chromosome analyses of embryos sired by bulls heterozygous for the 7/21 Robertsonian translocation. Anim. Sci. Technol. (Jpn.), 64: ) Hanada H, Geshi M, Suzuki O. Additional evidence of formation of unbalanced embryos in cattle with the 7/21 Robertsonian translocation. Theriogenology, 44: ) Masuda H, Takahashi T, Soejima A, Waide Y. Centric fusion of the chromosomes in a Japanese Black bull and his offsprings. Jpn. J. Zootech. Sci., 49: ) Scott ISA, Bruere AN. Distribution of heterozygous translocations and aneuploid spermatocyte frequency in domestic sheep. J. Hered., 78: ) Sonta S, Yamada M, Tsukasaki M. Failure of chromosomally abnormal sperm to participate in fertilization in the Chinese hamster. Cytogenet. Cell Genet:, 57: ) Tateno H, Mikamo K. A chromosome method to distinguish between X- and Y- bearing spermatozoa of the bull in zona-free hamster ova. J. Reprod. Fert., 81: , ) Tateno H, Miyake Y-I, Mori H, Kamiguchi Y, Mikamo K. Sperm chromosome study of two bulls heterozygous for two different Robertsonian translocation. Hereditas, 120: ) Zackowski JL, Martin-DeLeon PA. Segregation products of male mice doubly heterozygous for the Rb (6. 16) and Rb (16. 17) translocation: influence of sperm karyotype on fertilizing competence under varying mating frequencies. Gamete Res., 22:

Robertsonian chromosome polymorphism found in a local herd of the Japanese Black cattle

Robertsonian chromosome polymorphism found in a local herd of the Japanese Black cattle Robertsonian chromosome polymorphism found in a local herd of the Japanese Black cattle H. HANADA S. MURAMATSU T. ABE T. FUKUSHIMA Department of Animal Breeding and Genetics, National Institute of Animal

More information

Studies of Mice with a Balanced Complement of 36 Chromosomes Derived

Studies of Mice with a Balanced Complement of 36 Chromosomes Derived Proc. Nat. Acad. Sci. USA Vol. 69, No. 10, pp. 2757-2761, October 1972 Studies of Mice with a Balanced Complement of 36 Chromosomes Derived from F1 Hybrids of Tlih and TIAld Translocation Homozygotes (Robertsonian

More information

Effect of chromosomal translocations on the development of preimplantation human embryos in vitro

Effect of chromosomal translocations on the development of preimplantation human embryos in vitro FERTILITY AND STERILITY VOL. 74, NO. 4, OCTOBER 2000 Copyright 2000 American Society for Reproductive Medicine Published by Elsevier Science Inc. Printed on acid-free paper in U.S.A.,2 Effect of chromosomal

More information

Genetics - Problem Drill 06: Pedigree and Sex Determination

Genetics - Problem Drill 06: Pedigree and Sex Determination Genetics - Problem Drill 06: Pedigree and Sex Determination No. 1 of 10 1. The following is a pedigree of a human trait. Determine which trait this is. (A) Y-linked Trait (B) X-linked Dominant Trait (C)

More information

Chromosomal Aberrations

Chromosomal Aberrations Chromosomal Aberrations Chromosomal Aberrations Abnormalities of chromosomes may be either numerical or structural and may involve one or more autosomes, sex chromosomes, or both simultaneously. Numerical

More information

probably degenerate before sperm maturation.

probably degenerate before sperm maturation. THE FREQUENCY OF ANEUPLOIDY IN THE SECONDARY SPERMATOCYTES OF NORMAL AND ROBERTSONIAN TRANSLOCATION-CARRYING RAMS H. M. CHAPMAN and A. N. BRU\l=E`\RE Department of Veterinary Clinical Science, Massey University,

More information

Dual color fluorescence in situ hybridization to investigate aneuploidy in sperm from 33 normal males and a man with a t(2;4;8)(q23;q27; p21)*

Dual color fluorescence in situ hybridization to investigate aneuploidy in sperm from 33 normal males and a man with a t(2;4;8)(q23;q27; p21)* FERTILITY AND STERILITY Copyright" 1994 The American Fertility Society Printed on acid-free paper in U. S. A. Dual color fluorescence in situ hybridization to investigate aneuploidy in sperm from 33 normal

More information

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes

The form of cell division by which gametes, with half the number of chromosomes, are produced. Chromosomes & Karyotypes The form of cell division by which gametes, with half the number of chromosomes, are produced. Homologous Chromosomes Pair of chromosomes (maternal and paternal) that are similar in shape,

More information

CYTOGENETICS Dr. Mary Ann Perle

CYTOGENETICS Dr. Mary Ann Perle CYTOGENETICS Dr. Mary Ann Perle I) Mitosis and metaphase chromosomes A) Chromosomes are most fully condensed and clearly distinguishable during mitosis. B) Mitosis (M phase) takes 1 to 2 hrs and is divided

More information

The vagaries of non-traditional mendelian recessive inheritance in uniparental disomy: AA x Aa = aa!

The vagaries of non-traditional mendelian recessive inheritance in uniparental disomy: AA x Aa = aa! Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Deep Insight Section The vagaries of non-traditional mendelian recessive inheritance in uniparental disomy:

More information

Genetics 275 Examination February 10, 2003.

Genetics 275 Examination February 10, 2003. Genetics 275 Examination February 10, 2003. Do all questions in the spaces provided. The value for this examination is twenty marks (20% of the grade for the course). The value for individual questions

More information

Semester 2- Unit 2: Inheritance

Semester 2- Unit 2: Inheritance Semester 2- Unit 2: Inheritance heredity -characteristics passed from parent to offspring genetics -the scientific study of heredity trait - a specific characteristic of an individual genes -factors passed

More information

Assessment of Aneuploidy in the Human Female by Using Cytogenetics of IVF Failures

Assessment of Aneuploidy in the Human Female by Using Cytogenetics of IVF Failures Am. J. Hum. Genet. 42:274-283. 1988 Assessment of Aneuploidy in the Human Female by Using Cytogenetics of IVF Failures F. Pellestor and B. Sele Cytogenetic and Reproductive Biology Laboratory, Grenoble

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Lifestyle and aneuploidy: Is there a correlation?

Lifestyle and aneuploidy: Is there a correlation? Lifestyle and aneuploidy: Is there a correlation? Helen Tempest htempest@fiu.edu Chromosome aneuploidy Hallmark of human reproduction Leading cause: Pregnancy loss ~60-80% of conceptions ~4% clinically

More information

hamster ova A chromosomal method to distinguish between X- and Y-bearing spermatozoa of the bull in zona-free offspring.

hamster ova A chromosomal method to distinguish between X- and Y-bearing spermatozoa of the bull in zona-free offspring. A chromosomal method to distinguish between X- and Y-bearing spermatozoa of the bull in zona-free hamster ova H. Tateno and K. Mikamo Department of Biological Sciences, Asahikawa Medical College, Asahikawa,

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

The Chromosomal Basis Of Inheritance

The Chromosomal Basis Of Inheritance The Chromosomal Basis Of Inheritance Chapter 15 Objectives Explain the chromosomal theory of inheritance and its discovery. Explain why sex-linked diseases are more common in human males than females.

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 15 The Chromosomal Basis of Inheritance

More information

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes

Chapter 15 Notes 15.1: Mendelian inheritance chromosome theory of inheritance wild type 15.2: Sex-linked genes Chapter 15 Notes The Chromosomal Basis of Inheritance Mendel s hereditary factors were genes, though this wasn t known at the time Now we know that genes are located on The location of a particular gene

More information

Chromosome Theory & Sex-Linked Transmission

Chromosome Theory & Sex-Linked Transmission Chromosome Theory & Sex-Linked Transmission (CHAPTER 3 & 5- Brooker Text) Feb 14, 2006 BIO 184 Dr. Tom Peavy - Maturation of the sperm in the epididymis - Mammalian sperm become capable of fertilizing

More information

SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation carrier and normal blastocysts

SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation carrier and normal blastocysts J Assist Reprod Genet (2016) 33:1115 1119 DOI 10.1007/s10815-016-0734-0 TECHNOLOGICAL INNOVATIONS SNP array-based analyses of unbalanced embryos as a reference to distinguish between balanced translocation

More information

Medical Genetics. Nondisjunction Definition and Examples. Basic Structure of Chromosomes. See online here

Medical Genetics. Nondisjunction Definition and Examples. Basic Structure of Chromosomes. See online here Medical Genetics Nondisjunction Definition and Examples See online here Nondisjunction connotes failure of separation of homologous chromosomes during cell division. It has significant repercussions and

More information

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Mendelian Genetics. Gregor Mendel. Father of modern genetics Mendelian Genetics Gregor Mendel Father of modern genetics Objectives I can compare and contrast mitosis & meiosis. I can properly use the genetic vocabulary presented. I can differentiate and gather data

More information

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders Lecture 17: Human Genetics I. Types of Genetic Disorders A. Single gene disorders B. Multifactorial traits 1. Mutant alleles at several loci acting in concert C. Chromosomal abnormalities 1. Physical changes

More information

Chapter 4 meiosis. Task 1 (p. 28, ed. 2005), Questions and results 1 (p49, ed. 2009) here is a table from lecture that sums the asnwer up:

Chapter 4 meiosis. Task 1 (p. 28, ed. 2005), Questions and results 1 (p49, ed. 2009) here is a table from lecture that sums the asnwer up: There are some relatively large differences between editions in use, so 2005 is blue and 2009 red. Black is valid for both. Sorry for the Czech quotation marks, I forgot to switch languages. Chapter 4

More information

BIOLOGY. The Chromosomal Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. The Chromosomal Basis of Inheritance CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson 15 The Chromosomal Basis of Inheritance Lecture Presentation by Nicole Tunbridge and Kathleen Fitzpatrick Where are Mendel s hereditary

More information

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION Section I Chromosomes Formation of New Cells by Cell Division New cells are formed when old cells divide. 1. Cell division is the same as cell reproduction.

More information

Effect of Reciprocal Translocations on Phenotypic Abnormalities

Effect of Reciprocal Translocations on Phenotypic Abnormalities Kamla-Raj 2010 Int J Hum Genet, 10(1-3): 113-119 (2010) Effect of Reciprocal Translocations on Phenotypic Abnormalities Preetha Tilak Division of Human Genetics, Department of Anatomy, St. John s Medical

More information

Karyotypes Detect Chromosome Mutations

Karyotypes Detect Chromosome Mutations Karyotypes Detect Chromosome Mutations Chromosomes may become altered during meiosis. These mutations involve large sections that involve many genes. Chromosome may have sections deleted, duplicated, inverted,

More information

Articles Impact of parental gonosomal mosaicism detected in peripheral blood on preimplantation embryos

Articles Impact of parental gonosomal mosaicism detected in peripheral blood on preimplantation embryos RBMOnline - Vol 5. No 3. 306 312 Reproductive BioMedicine Online; www.rbmonline.com/article/699 on web 12 September Articles Impact of parental gonosomal mosaicism detected in peripheral blood on preimplantation

More information

Chromosome Abnormalities

Chromosome Abnormalities Chromosome Abnormalities Chromosomal abnormalities vs. molecular mutations Simply a matter of size Chromosomal abnormalities are big errors Two types of abnormalities 1. Constitutional problem present

More information

Effect of Leukemia Inhibiton Factor (LIF) on in vitro maturation and fertilization of matured cattle oocytes

Effect of Leukemia Inhibiton Factor (LIF) on in vitro maturation and fertilization of matured cattle oocytes Theriogenology Insight: 4(3): 17-111, December, 214 DOI Number: 1.98/2277-3371.214.74.2 Effect of Leukemia Inhibiton Factor (LIF) on in vitro maturation and fertilization of matured cattle oocytes K M

More information

Chapter 3 Chromosomal Aberrations

Chapter 3 Chromosomal Aberrations MEDICAL GENETICS Chapter 3 Chromosomal Aberrations Abnormalities of chromosomes may be either numerical or structural and may involve one or more autosomes, sex chromosomes, or both simultaneously. Numerical

More information

Chromosome pathology

Chromosome pathology Chromosome pathology S. Dahoun Department of Gynecology and Obstetrics, University Hospital of Geneva Cytogenetics is the study of chromosomes and the related disease states caused by abnormal chromosome

More information

Chapter 11 Patterns of Chromosomal Inheritance

Chapter 11 Patterns of Chromosomal Inheritance Inheritance of Chromosomes How many chromosomes did our parents gametes contain when we were conceived? 23, 22 autosomes, 1 sex chromosome Autosomes are identical in both male & female offspring For the

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lectures for Biology, Seventh Edition Neil Campbell and Jane Reece Lectures by Chris Romero Overview: Locating Genes on Chromosomes A century

More information

Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination. May 4, 2010

Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination. May 4, 2010 Canadian College of Medical Geneticists (CCMG) Cytogenetics Examination May 4, 2010 Examination Length = 3 hours Total Marks = 100 (7 questions) Total Pages = 8 (including cover sheet and 2 pages of prints)

More information

Triploidy and other chromosomal

Triploidy and other chromosomal Triploidy and other chromosomal abnormalities in a selected line of chickens MH Thorne, RK Collins, BL Sheldon CSIRO Division of Animal Production, Poultry Genetics, PO Box 184, North Ryde, NSW 211,!,

More information

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;)

MEIOSIS: Genetic Variation / Mistakes in Meiosis. (Sections 11-3,11-4;) MEIOSIS: Genetic Variation / Mistakes in Meiosis (Sections 11-3,11-4;) RECALL: Mitosis and Meiosis differ in several key ways: MITOSIS: MEIOSIS: 1 round of cell division 2 rounds of cell division Produces

More information

Effect of paternal age on human sperm chromosomes

Effect of paternal age on human sperm chromosomes FERTILITY AND STERILITY VOL. 76, NO. 6, DECEMBER 2001 Copyright 2001 American Society for Reproductive Medicine Published by Elsevier Science Inc. Printed on acid-free paper in U.S.A. Effect of paternal

More information

Chromosome translocations in couples with in-vitro fertilization implantation failure

Chromosome translocations in couples with in-vitro fertilization implantation failure Human Reproduction vol.14 no.8 pp.2097 2101, 1999 Chromosome translocations in couples with in-vitro fertilization implantation failure C.Stern 1,4, M.Pertile 2, H.Norris 1, L.Hale 1 and H.W.G.Baker 3

More information

Unit 5 Review Name: Period:

Unit 5 Review Name: Period: Unit 5 Review Name: Period: 1 4 5 6 7 & give an example of the following. Be able to apply their meanings: Homozygous Heterozygous Dominant Recessive Genotype Phenotype Haploid Diploid Sex chromosomes

More information

General Embryology. School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan

General Embryology. School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan General Embryology 2019 School of Medicine Department of Anatomy and Histology School of medicine The University of Jordan https://www.facebook.com/dramjad-shatarat What is embryology? Is the science that

More information

Chapter 5 Human Chromosomes and Chromosome Behavior

Chapter 5 Human Chromosomes and Chromosome Behavior Chapter 5 Human Chromosomes and Chromosome Behavior 1 Human Chromosomes Humans contain 46 chromosomes, including 22 pairs of homologous autosomes and two sex chromosomes Karyotype = stained and photographed

More information

(Received 7th December 1973)

(Received 7th December 1973) CHROMOSOME ABNORMALITIES IN RABBIT PREIMPLANTATION BLASTOCYSTS INDUCED BY SUPEROVULATION S. FUJIMOTO, N. PAHLAVAN and W. R. DUKELOW Endocrine Research Unit, Michigan State University, East Lansing, Michigan

More information

Exam #2 BSC Fall. NAME_Key correct answers in BOLD FORM A

Exam #2 BSC Fall. NAME_Key correct answers in BOLD FORM A Exam #2 BSC 2011 2004 Fall NAME_Key correct answers in BOLD FORM A Before you begin, please write your name and social security number on the computerized score sheet. Mark in the corresponding bubbles

More information

The Living Environment Unit 3 Genetics Unit 11 Complex Inheritance and Human Heredity-class key. Name: Class key. Period:

The Living Environment Unit 3 Genetics Unit 11 Complex Inheritance and Human Heredity-class key. Name: Class key. Period: Name: Class key Period: Chapter 11 assignments Pages/Sections Date Assigned Date Due Topic: Recessive Genetic Disorders Objective: Describe some recessive human genetic disorders. _recessive_ alleles are

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance Chapter 15 The Chromosomal Basis of Inheritance PowerPoint Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions

More information

Analysis of Aneuploidy in First-Cleavage

Analysis of Aneuploidy in First-Cleavage Environmental Health Perspectives Vol. 31, pp. 141-149, 1979 Analysis of Aneuploidy in First-Cleavage Mouse Embryos Fertilized in Vitro and in Vivo by Lynn R. Fraser* and Ian Maudlint First-cleavage mouse

More information

Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos

Meiotic outcomes in reciprocal translocation carriers ascertained in 3-day human embryos (2002) 10, 801 806 ª 2002 Nature Publishing Group All rights reserved 1018 4813/02 $25.00 www.nature.com/ejhg ARTICLE ascertained in 3-day human embryos Caroline Mackie Ogilvie*,1 and Paul N Scriven 1

More information

16 (2), DOI: /bjmg

16 (2), DOI: /bjmg 16 (2), 2013 23-28 DOI: 10.2478/bjmg-2013-0027 ORIGINAL ARTICLE THE INCIDENCE AND TYPE OF CHROMOSOMAL TRANSLOCATIONS FROM PRENATAL DIAGNOSIS OF 3800 PATIENTS IN THE REPUBLIC OF MACEDONIA Vasilevska M 1,*,

More information

Answers to Practice Items

Answers to Practice Items nswers to Practice Items Question 1 TEKS 6E In this sequence, two extra G bases appear in the middle of the sequence (after the fifth base of the original). This represents an insertion. In this sequence,

More information

CHROMOSOME. Chromosomes are act as factors which distinguished one species from another.

CHROMOSOME. Chromosomes are act as factors which distinguished one species from another. CHROMOSOMES The chromosome comes from Greek Chroma = color CHROMOSOME Soma= body (the colored body) Chromosomes are act as factors which distinguished one species from another. Chromosomes are formed of

More information

Chapter 2 Chromosomal Abnormalities in Pregnancy Failure

Chapter 2 Chromosomal Abnormalities in Pregnancy Failure Chapter 2 Chromosomal Abnormalities in Pregnancy Failure Rozana Oliveira Goncalves* 1, Marilda de souza Goncalves 1,2 and Olívia Lúcia Nunes Costa 2 1 Laboratory of Hematology, Genetics and Computational

More information

Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis

Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis Ye et al. / J Zhejiang Univ SCI 2004 5(10):1249-1254 1249 Journal of Zhejiang University SCIENCE ISSN 1009-3095 http://www.zju.edu.cn/jzus E-mail: jzus@zju.edu.cn Identification of embryonic chromosomal

More information

MULTIPLE CHOICE QUESTIONS

MULTIPLE CHOICE QUESTIONS SHORT ANSWER QUESTIONS-Please type your awesome answers on a separate sheet of paper. 1. What is an X-linked inheritance pattern? Use a specific example to explain the role of the father and mother in

More information

The Cell Life Cycle. S DNA replication, INTERPHASE. G 2 Protein. G 1 Normal THE CELL CYCLE. Indefinite period. synthesis. of histones.

The Cell Life Cycle. S DNA replication, INTERPHASE. G 2 Protein. G 1 Normal THE CELL CYCLE. Indefinite period. synthesis. of histones. Mitosis & Meiosis The Cell Life Cycle INTERPHASE G 1 Normal cell functions plus cell growth, duplication of organelles, protein synthesis S DNA replication, synthesis of histones THE CELL CYCLE M G 2 Protein

More information

Sperm analysis by FISH in a case of t(17; 22) (q11; q12) balanced translocation

Sperm analysis by FISH in a case of t(17; 22) (q11; q12) balanced translocation Human Reproduction Vol.17, No.2 pp. 325 331, 2002 CASE REPORT Sperm analysis by FISH in a case of t(17; 22) (q11; q12) balanced translocation Aimé Geneix 1,3, Benoît Schubert 2, André Force 2, Karen Rodet

More information

Double The Muscle: Genotype and Probability

Double The Muscle: Genotype and Probability Double The Muscle: Genotype and Probability Name Introduction to the Double Muscle Trait In some organisms, including cattle, a recessive genetic mutation will result in the inactivation of a gene that

More information

Chromosome Structure & Recombination

Chromosome Structure & Recombination Chromosome Structure & Recombination (CHAPTER 8- Brooker Text) April 4 & 9, 2007 BIO 184 Dr. Tom Peavy Genetic variation refers to differences between members of the same species or those of different

More information

A new Robertsonian translocation, 8/23, in cattle

A new Robertsonian translocation, 8/23, in cattle Note A new Robertsonian translocation, 8/23, in cattle L Biltueva, S Sharshova, A Sharshov, T Ladygina P Borodin A Graphodatsky Institute of Cytology and Genetics, Siberian Branch of the Academy of Sciences,

More information

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance

12.1 X-linked Inheritance in Humans. Units of Heredity: Chromosomes and Inheritance Ch. 12. X-linked Inheritance. X-linked Inheritance Units of Heredity: Chromosomes and Inheritance Ch. 12 12.1 in Humans X-chromosomes also have non genderspecific genes Called X-linked genes Vision Blood-clotting X-linked conditions Conditions caused by

More information

Patterns of Inheritance

Patterns of Inheritance Patterns of Inheritance Mendel the monk studied inheritance keys to his success: he picked pea plants he focused on easily categorized traits he used true-breeding populations parents always produced offspring

More information

Meiotic Mistakes and Abnormalities Learning Outcomes

Meiotic Mistakes and Abnormalities Learning Outcomes Meiotic Mistakes and Abnormalities Learning Outcomes 5.6 Explain how nondisjunction can result in whole chromosomal abnormalities. (Module 5.10) 5.7 Describe the inheritance patterns for strict dominant

More information

TEXT Introduction During evolutionary history of organisms, the genomes of organisms are continuously being rearranged and reshaped.

TEXT Introduction During evolutionary history of organisms, the genomes of organisms are continuously being rearranged and reshaped. TEXT Introduction During evolutionary history of organisms, the genomes of organisms are continuously being rearranged and reshaped. These rearrangements may change the position of a segment within a chromosome,

More information

The Chromosomal Basis of Inheritance

The Chromosomal Basis of Inheritance The Chromosomal Basis of Inheritance Factors and Genes Mendel s model of inheritance was based on the idea of factors that were independently assorted and segregated into gametes We now know that these

More information

Genes and Inheritance (11-12)

Genes and Inheritance (11-12) Genes and Inheritance (11-12) You are a unique combination of your two parents We all have two copies of each gene (one maternal and one paternal) Gametes produced via meiosis contain only one copy of

More information

BRIEF COMMUNICATION. Yoh-Ichi MIYAKE, T. ISHIKAWA, H. KANAGAWA and K. SATO* (Received for publication, October, )

BRIEF COMMUNICATION. Yoh-Ichi MIYAKE, T. ISHIKAWA, H. KANAGAWA and K. SATO* (Received for publication, October, ) Title A FIRST CASE OF XY/XYY MOSAIC BULL Author(s)MIYAKE, Yoh-Ichi; ISHIKAWA, T.; KANAGAWA, H.; SATO, CitationJapanese Journal of Veterinary Research, 29(3-4): 94 Issue Date 1981-12-05 DOI 10.14943/jjvr.29.3-4.94

More information

Meiosis & Sexual Reproduction. AP Biology

Meiosis & Sexual Reproduction. AP Biology Meiosis & Sexual Reproduction 2007-2008 Cell division / Asexual reproduction Mitosis produce cells with same information identical daughter cells exact copies clones same amount of DNA same number of chromosomes

More information

Meiosis and Genetics

Meiosis and Genetics Meiosis and Genetics Humans have chromosomes in each cell What pattern do you notice in the human karyotype (a technique that organizes chromosomes by type and size)? Humans are diploid 1 Gametes are produced

More information

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE !! www.clutchprep.com Chromosomal theory of inheritance: chromosomes are the carriers of genetic material. Independent Assortment alleles for different characters sort independently of each other during

More information

Animal Fertilization Technologies

Animal Fertilization Technologies Appendix II-C Animal Fertilization Technologies Sperm storage The freezing of semen to 196 C, storage for an indefinite time, followed by thawing and successful insemination. Conception rates at first

More information

Comprehensive Chromosome Screening Is NextGen Likely to be the Final Best Platform and What are its Advantages and Quirks?

Comprehensive Chromosome Screening Is NextGen Likely to be the Final Best Platform and What are its Advantages and Quirks? Comprehensive Chromosome Screening Is NextGen Likely to be the Final Best Platform and What are its Advantages and Quirks? Embryo 1 Embryo 2 combine samples for a single sequencing chip Barcode 1 CTAAGGTAAC

More information

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different

GENETIC VARIATION AND PATTERNS OF INHERITANCE. SOURCES OF GENETIC VARIATION How siblings / families can be so different 9/22/205 GENETIC VARIATION AND PATTERNS OF INHERITANCE SOURCES OF GENETIC VARIATION How siblings / families can be so different Independent orientation of chromosomes (metaphase I of meiosis) Random fertilization

More information

Azoospermia and paternal autosomal ring chromosomes: case report and literature review

Azoospermia and paternal autosomal ring chromosomes: case report and literature review Reproductive BioMedicine Online (2011) 23, 466 470 www.sciencedirect.com www.rbmonline.com ARTICLE Azoospermia and paternal autosomal ring chromosomes: case report and literature review Hemashree Rajesh

More information

Ch. 15 The Chromosomal Basis of Inheritance

Ch. 15 The Chromosomal Basis of Inheritance Ch. 15 The Chromosomal Basis of Inheritance Nov 12 12:58 PM 1 Essential Question: Are chromosomes the basis of inheritance? Nov 12 1:00 PM 2 1902 Walter S. Sutton, Theodor Boveri, et al Chromosome Theory

More information

Genetic Detection of Chromosomal Interchanges and its Consequence on Plant Breeding: a Review

Genetic Detection of Chromosomal Interchanges and its Consequence on Plant Breeding: a Review Journal of Recent Advances in agriculture Genetic Detection of Chromosomal Interchanges and its Consequence on Plant Breeding: a Review Govindaraj M. J Rec Adv Agri 2012, 1(3): 63-68 Online version is

More information

Biotechnological Advances in Livestock Reproduction

Biotechnological Advances in Livestock Reproduction Biotechnological Advances in Livestock Reproduction By W. M. N. MWENYA*, OTHMAN ABAS MAZNI and HIROSHI KANAGAWA Faculty of Veterinary Medicine, Hokkaido University (Sapporo, Hokkaido, 060 Japan) Introduction

More information

Chapter 28 Modern Mendelian Genetics

Chapter 28 Modern Mendelian Genetics Chapter 28 Modern Mendelian Genetics (I) Gene-Chromosome Theory Genes exist in a linear fashion on chromosomes Two genes associated with a specific characteristic are known as alleles and are located on

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Chapter 15 Chromosomal Basis for Inheritance AP Biology Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) When Thomas Hunt Morgan crossed

More information

Chapter 15: The Chromosomal Basis of Inheritance

Chapter 15: The Chromosomal Basis of Inheritance Name Chapter 15: The Chromosomal Basis of Inheritance 15.1 Mendelian inheritance has its physical basis in the behavior of chromosomes 1. What is the chromosome theory of inheritance? 2. Explain the law

More information

MUCOM Medical Genetics. Prepared by: Dr. Mohammed Hussein Assi M.B.Ch.B M.Sc DCH (UK) MRCPCH

MUCOM Medical Genetics. Prepared by: Dr. Mohammed Hussein Assi M.B.Ch.B M.Sc DCH (UK) MRCPCH MUCOM 2017-2018 Medical Genetics Prepared by: Dr. Mohammed Hussein Assi M.B.Ch.B M.Sc DCH (UK) MRCPCH Single-Gene Disorders Basic Definitions Chromosomes There are two types of chromosomes: autosomes (1-22)

More information

Disclosure. Dagan Wells University of Oxford Oxford, United Kingdom

Disclosure. Dagan Wells University of Oxford Oxford, United Kingdom Disclosure Dagan Wells University of Oxford Oxford, United Kingdom Disclosure Declared to be member of the advisory board, board of directors or other similar groups of Illumina Objectives Consider Aneuploidy

More information

Meiotic segregation of complex reciprocal translocations: direct analysis of the spermatozoa of a t(5;13;14) carrier

Meiotic segregation of complex reciprocal translocations: direct analysis of the spermatozoa of a t(5;13;14) carrier CASE REPORT Meiotic segregation of complex reciprocal translocations: direct analysis of the spermatozoa of a t(5;13;14) carrier Franck Pellestor, Ph.D., a,b Jacques Puechberty, M.D., b Anja Weise, Ph.D.,

More information

Genetic Analysis. Karyotyping, Pedigree and Gel Electrophoresis

Genetic Analysis. Karyotyping, Pedigree and Gel Electrophoresis Genetic Analysis Karyotyping, Pedigree and Gel Electrophoresis Vocabulary Karyotype Autosome Sex chromosome Nondisjunction Monosomy Trisomy Pedigree Carrier Restriction enzyme Restriction site Restriction

More information

SHORT COMMUNICATION CHICAGO, ILLINOIS. Visualization of Chromosomes in Single Human Blastomeres

SHORT COMMUNICATION CHICAGO, ILLINOIS. Visualization of Chromosomes in Single Human Blastomeres Journal of Assisted Reproduction and Genetics, Vol. 16, No. 3, 1999 SHORT COMMUNICATION CHICAGO, ILLINOIS Visualization of Chromosomes in Single Human Blastomeres The present work describes our results

More information

Pre-AP Biology Unit 7 Genetics Review Outline

Pre-AP Biology Unit 7 Genetics Review Outline Unit 7 Genetics Review Outline Pre-AP Biology 2017-2018 LT 1 - I can explain the relationships among alleles, genes, chromosomes, genotypes, and phenotypes. This target covers application of the vocabulary

More information

Evolution of chromosomes and genomes

Evolution of chromosomes and genomes volution of chromosomes and genomes oe Felsenstein GNOM 453, Autumn 2011 volution of chromosomes and genomes p.1/36 Chromosome rearrangements Inversion Translocation Transposition Tetraploidy flip move

More information

Abstracts for the KSAR and JSAR Joint Symposium. Fertility control in female domestic animals: From basic understanding to application

Abstracts for the KSAR and JSAR Joint Symposium. Fertility control in female domestic animals: From basic understanding to application Abstracts for the KSAR and JSAR Joint Symposium Fertility control in female domestic animals: From basic understanding to application Current Research Orientation in Livestock Reproduction in Korea Choong-Saeng

More information

The effect of sperm-oocyte incubation time on in vitro embryo development using sperm from a tetraparental chimeric bull

The effect of sperm-oocyte incubation time on in vitro embryo development using sperm from a tetraparental chimeric bull ELSEVIER Animal Reproduction Science 48 (1997) 187-195 REPEON SCIENCE The effect of sperm-oocyte incubation time on in vitro embryo development using sperm from a tetraparental chimeric bull C. Sumantri

More information

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance

Section Objectives: Pedigrees illustrate inheritance. Pedigrees illustrate inheritance What You ll Learn You will compare the inheritance of recessive and dominant traits in humans. You will analyze the inheritance patterns of traits with incomplete dominance and codominance. You will determine

More information

MALE FACTOR. Baylor College of Medicine, Houston, Texas

MALE FACTOR. Baylor College of Medicine, Houston, Texas FERTILITY AND STERILITY VOL. 76, NO. 5, NOVEMBER 2001 Copyright 2001 American Society for Reproductive Medicine Published by Elsevier Science Inc. Printed on acid-free paper in U.S.A. MALE FACTOR Increased

More information

A Retrospective Cytogenetic Study of Chromosomal Abnormalities in Infertile Couples of Indian Origin

A Retrospective Cytogenetic Study of Chromosomal Abnormalities in Infertile Couples of Indian Origin Available online at www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2017, 9 [4]:44-56 [http://scholarsresearchlibrary.com/archive.html] ISSN 0975-5071 USA CODEN: DPLEB4

More information

B) Is Wolbachia an example of cytoplasmic inheritance? Justify your answer.

B) Is Wolbachia an example of cytoplasmic inheritance? Justify your answer. GENETICS 603 EXAM 3, Dec. 1, 2006 NAME 1. Retinoblastoma in humans was long considered to be a dominant trait with reduced penetrance, since not every child who inherited the gene developed the cancer.

More information

Polar Body Approach to PGD. Anver KULIEV. Reproductive Genetics Institute

Polar Body Approach to PGD. Anver KULIEV. Reproductive Genetics Institute Polar Body Approach to PGD Anver KULIEV Reproductive Genetics Institute DISCLOSURE othing to disclose 14 History of Polar Body Approach 14 First proposed in World Health Organization s Document Perspectives

More information

Genes and Inheritance

Genes and Inheritance Genes and Inheritance Variation Causes of Variation Variation No two people are exactly the same The differences between people is called VARIATION. This variation comes from two sources: Genetic cause

More information