IN VITRO FERTILIZATION OF RABBIT EGGS IN OVIDUCT SECRETIONS FROM DIFFERENT DAYS BEFORE AND AFTER OVULATION*

Size: px
Start display at page:

Download "IN VITRO FERTILIZATION OF RABBIT EGGS IN OVIDUCT SECRETIONS FROM DIFFERENT DAYS BEFORE AND AFTER OVULATION*"

Transcription

1 FERTILITY AND STERILITY Copyright~ 1975 The American Fertility Society Vol. 26, No.7, July 1975 Printed in U.SA. IN VITRO FERTILIZATION OF RABBIT EGGS IN OVIDUCT SECRETIONS FROM DIFFERENT DAYS BEFORE AND AFTER OVULATION* RAYMOND D. LAMBERT, PH. D.,t AND CHARLES E. HAMNER, D.V.M., PH.D. Division of Reproductive Biology, Department of Obstetrics and Gynecology, University of Virginia School of Medicine, Charlottesville, Virginia In vitro fertilization of rabbit eggs has been achieved in several different media. L 2 It is interesting that only a few studies of in vitro fertilization in oviduct secretions have been reported, 3 4 since in most mammalian species fertilization occurs in the fallopian tube. The purpose of this investigation was to explore the influence of tubal secretions from different parts of the rabbit oviduct (ampulla and whole oviduct), collected on different days before and after ovulation, on the in vitro fertilization process. MATERIALS AND METHODS Collection of Oviduct Fluid. New Zealand White rabbits weighing 4 to 5 kg were used for collection of the tubal fluid with the continuous collection flask of Hamner and Williams. 5 6 The fluid was collected every 24 hours and stored at -20 C until used. Ovulation was induced in estrus rabbits by an intravenous injection of 75 IU of human chorionic gonadotropin (HCG) (Follutein; E. R. Squibb and Sons, Princeton, N. J.). Capacitation of Sperm. Semen was collected from mature Dutch Belted and New Received July 25, *Supported by United States Public Health Service Grant HD06573 from the National Institute of Child Health and Human Development, Research Career Development Award HD12760, and the World Health Organization. tpresent address: Department of Obstetrics and Gynecology, Universite Laval, Ste-Foy, Quebec, Canada. 660 Zealand White rabbits by artificial vagina and was filtered through two layers of cheesecloth, pooled, and diluted one time with saline (0.9% NaCl) at 37 C. This sperm preparation was used to artificially inseminate an estrus rabbit which had received an intravenous injection of 75 IU of HCG just prior to the insemination. Sixteen hours after the estrus doe was artificially inseminated, the uterine horns were flushed with 2.0 ml of Brackett's medium 7 or with centrifuged (1000 x g for 2 minutes) oviduct fluid to recover the capacitated sperm. The culture medium used did not contain glucose or bovine serum albumin but contained 20% rabbit blood serum heated to 56 C for 30 minutes (HBS). These sperm suspensions were kept at 37 C under paraffin oil (125/ 135 viscosity) until used. Collection of Ova for in Vitro Fertilization. Ova were recovered from estrus does, 14 hours after an intravenous injection of HCG (75 IU), by flushing the oviducts under oil with Brackett's medium containing 20% HBS. The eggs in cumulus were covered with paraffin oil and treated with hyaluronidase (200 IU/mg) for 10 minutes before being transferred to the capacitated sperm suspension in a volume as small as possible. The eggs were incubated with the capacitated sperm for a period of 5 hours. At the end of the 5-hour period, the in vitro-fertilized eggs were transferred to an incubation medium of either heated rabbit blood serum or oviduct fluid.

2 Vol. 26, No. 7 IN VITRO FERTILIZATION BEFORE AND AFTER OVULATION 661 TABLE 1. In Vitro Fertilization in Oviduct Secretions from Different Days before and after Ovulation in the Rabbit Ova studied No. of Fertilization medium experiments % P,' P' Total Fertilized Fertilized SD ' Brackett's medium + 20% HBSC <0.005 Oviduct fluid Estrus < day PSPa <0.05 NSe 2-14 days PSP NS <0.001 "P,, probability from t-test when compared with Brackett's medium+ 20% HBS. bp2, probability from t-test when compared with oviduct fluid collected during the estrous period. chbs, rabbit blood serum heated to 56" C for 30 minutes. apsp, pseudopregnant. ens, not significant. All of the fluid (HBS and oviduct fluid) and paraffin oil used were equilibrated with 5% C0 2, 8% 0 2, and 87% N 2 and kept at 37 C. In all of the experiments described, the sperm had good motility before, and at the end of, incubation. Our general criteria for fertilization were the appearance of the pronuclei and the occurrence of normal cleavage, as L-.! '--~,:.:....:_....:... _ i::l~\,;~.1-lli::l.lj..l~u uy.lj..l.l\,;.lu~v}ju,.; CA.CJ.J..l.l.l.l.lQ.l.t.lV.l.l (X 40 to X 250). RESULTS The results of in vitro fertilization in the oviduct secretions from different days before and after ovulation are presented in Table 1. Although sperm were able to penetrate the egg, the success rate for pronuclei formation and cleavage into two cells was very low in oviduct secretions from the estrous cycle (preovulation) and day 1 of the pseudopregnancy cycle (first 24 hours after the HCG injection; contained 10 hours' secretion of preovulatory fluid). Even with a very high standa-rrl rl.,n7latlnn tho -ra.anlta a.,..o al m,.iflpant lu "......,...,... _......, o... J different (p < 0.05) when compared with the results obtained in Brackett's medium. Fertilization rates were also significantly lower (P < 0.01) in oviduct fluid from the estrus secretions than they TABLE 2. Comparison of In Vitro Fertilization in Whole Oviduct Secretions with Secretions from the Ampulla Portion of the Oviduct Ova studied Fertilization No. of P," P./ P{ medium experiments % Total Fertilized Fertilized SD Estrus Oviduct fluid NSd Ampulla fluid NS NS 1 day PSP' Oviduct fluid NS NS Ampulla fluid NS NS NS 2-14 days PSP Oviduct fluid <0.025 <0.05 Ampulla fluid NS <0.01 <0.05 "P, probability when the results obtained in the ampulla portion of the oviduct are compared with the results obtained with whole oviduct secretions. bp 2, probability when compared with estrous oviduct fluid. cp 3, probability when compared with estrous ampulla fluid. dns, not significant. cpsp, pseudopregnant.

3 662 LAMBERT AND HAMNER July 1975 TABLE 3. In Vitro Fertilization in Brackett's Medium Containing 17{3-Estradiol or Progesterone Eggs recovered Fertilization No. of mediuma experiments % Total Fertilized Fertilized 17 {3-Estradiol, ~-tglml Progesterone, ~-tglml a consisted of Brackett's medium plus 20% HBS. were in oviduct fluid from days 2 through 14 of pseudopregnancy. A comparison of fertilization levels in the secretions from the whole oviduct and the ampulla portion of the oviduct (ampulla fluid) did not indicate any significant difference (Table 2). However, the percentage of fertilization was significantly lower in fluids from both the ampulla and the whole oviduct during the estrous period of the cycle than it was during days 2 to 14 of pseudopregnancy. To determine whether the effect on the fertilization process of oviduct secretions from the estrous period of the cycle was due to the estrogen or progesterone level in the oviduct secretions, 8 we did the vitro fertilization in Brackett's medium plus 20% HBS to which 17{3- estradiol or progesterone had been added at pharmacologic levels (Table 3). Under those conditions and at concentrations as high as 10 J.tg/ml of 17{3-estradiol and 5 J.tg/ml of progesterone, the fertilization rates were 92 and 85%, respectively. DISCUSSION Fertilization can occur in the oviduct during the entire pseudopregnant period in the rabbit Reduced fertilization rate in pseudopregnant rabbits has been attributed to failure of sperm transport,9 10 to rapid egg transport,tl 12 and to the production of an environment in the female reproductive tract which is hostile to the sperm and embryo However, the oviduct environment appears to be less hostile to the sperm than is the uterus during mid-pseudopregnancy or progestin treatment, 13 since capacitation is not inhibited in the rabbit oviduct Results from in vitro fertilization in the oviduct secretions from psuedopregnant animals indicate that a very high percentage of fertilization can be obtained. The use of an in vitro system in the study of fertilization has the advantage of eliminating the problem of sperm or egg transport. These results support the assertion of Chang, Bedford, 16 and Brown and Hamner13 that the failure of fertilization in the oviduct during mid-pseudopregnancy is due to the effect on gamete transport. On the other hand, our results concerning the significant inhibition of the appearance of the pronuclei in the rabbit embryos or inhibition of normal cleavage, when in vitro fertilization was carried out in oviduct secretions from estrus rabbits, are surprising (Tables 1 and 2). The fact that sperm motility remains good 18 hours after the end of in vitro fertilization indicates that the estrous oviduct secretions are favorable media for sperm survival. In eggs considered unfertilized we could see sperm in the perivitelline space. Consequently, it seems likely that the inhibition noted during estrus is not due to some effect on the sperm. It is important to realize that, with the oviduct fluid collection technique utilized, the products of ovulation are excluded from the fluid collected. One must wonder how important a role these products may play in pronuclear development and early cleavage of the embryo. The effect could be due to the hormone level in the oviduct fluid, but steroids are not known to act directly on the process of fertilization The present results with in vitro fertilization in Brackett's medium containing 17{3-estradiol or progesterone are in agreement with that finding. These hormones, at levels as high as 10 J.tg/ml for 17{3-estradiol and 5 J.tg/ml for progesterone (which in both cases represent

4 Vol. 26, No. 7 IN VITRO FERTILIZATION BEFORE AND AFI'ER OVULATION 663 pharmacologic doses 8 ), did not inhibit fertilization. The results indicate that, under the estrous endocrine state, something is present in the oviduct fluid that is not favorable to the sperm-ovum relation during the process of fertilization and cleavage. It has already been shown that the oviduct secretions collected during the estrous period in the rabbit are much less favorable to the development of one-cell embryos than are the fluids collected from the first half of the pseudopregnancy period. 19 Preliminary research in this laboratory indicates that a specific protein factor can be extracted from the oviduct secretions collected during estrus and day 1 of pseudopregnancy. This protein factor was not found later in pseudopregnancy. Our preliminary results indicate that this factor may inhibit both the formation of the pronuclei when added to the in vitro fertilization medium and embryo development when added to the culture medium. 20 Because sperm wt:n.~e observed on the vitelline membrane, in eggs classified as unfertilized, this observation strengthens the conclusion that estrous oviduct secretions primarily affect the egg during the process of fertilization and early cleavage. SUMMARY In vitro fertilization of rabbit eggs in oviduct secretions has been studied through different days of the pseudopregnant cycle. The appearance of the pronuclei and cleavage into two cells, which were the criteria of fertilization, occurred significantly less frequently when in vitro fertilization was attempted in the oviduct secretions obtained during the estrous (preovulatory) period of the cycle than it was in the secretions obtained during pseudopregnancy or in Brackett's medium plus 20% heated rabbit blood serum. Whether fertilization was attempted in ampulla secretions or in whole oviduct secretions had no effect on the success rate. The effect of oviduct secretions from the estrous period of the cycle is probably due mainly to an effect on the egg, involving the very first development processes during and after fertilization. REFERENCES 1. Bedford JM: Techniques and criteria used in the study of fertilization. In Methods in Mammalian Embryology, Edited by JC Daniel. San Francisco, W H Freeman and Co, 1971, p37 2. Brackett BG, Williams WL: In vitro fertilization of rabbit ova. J Exp Zool 160:271, Suzuki S, Mastroianni L: In vitro fertilization of rabbit ova in tubal fluid. Am J Obstet Gynecol 93:465, Suzuki S, Mastroianni L: In vitro fertilization of rabbit follicular oocytes in tubal fluid. Fertil Steril 19:716, Hamner CE, Williams WL: Effect of the female reproductive tract on sperm metabolism in the rabbit and fowl. J Reprod Fertil 5:143, Hamner CE, Williams WL: Composition of rabbit oviduct secretions. Fertil Steril 16:170, Brackett BG: In vitro fertilization in mammalian ova. In Advances in Biosciences, Vol 4, Edited by G Raspe. New York, Pergamon Press, 1970, p Hilliard J, Eaton LWM: Estradiol-17/3, progesterone and 20-a-hydroxypregn-4-en-3-one in the rabbit ovarian venous plasma. ll. From mating through implantation. Endocrinology 89:522, Austin CR: Fertilization and the transport of gametes in the pseudopregnant rabbit. J Endocrinol 6:63, Murphee RL, Black WG, Otto G, Casida LE: Effect of insemination upon the fertility of gonadotrophin-treated rabbits of different reproductive stages. Endocrinology 49:474, Chang MC: Effects of progesterone and related compounds on fertilization, transportation and development of rabbit eggs. Endocrinology 81:1251, Chang MC: Fertilization, transportation and degeneration of eggs in pseudopregnant or progesterone-treated rabbits. Endocrinology 84:356, Brown SM, Hamner CE: Capacitation of sperm in the female reproductive tract of the rabbit during estrus and pseudopregnancy. Fertil Steril 22:92, 1971

5 664 LAMBERT AND HAMNER July Hamner CE, Wilson LA: Inhibition of capacitation in the rabbit. Fertil Steril 23:196, Chang MC: Capacitation of rabbit spermatozoa in the uterus with special reference to the reproductive phase of the female. Endocrinology 63:619, Bedford JM: The influence of oestrogen and progesterone on sperm capacitation in the reproductive tract of the female rabbit. J Endocrinol 46:191, Jackson H: Antifertility substances. Pharmacol Rev 11:135, Saunders EJ: Effects of sex steroids and related compounds on pregnancy and on development of the young. Physiol Rev 48:601, Kille JW, Hamner CE: The influence of oviduct fluid on the development of one-cell rabbit embryos in vitro. J Reprod Fertil 35:415, Lambert RD, Stone SL, Hamner CE: Protein fractionation of the oviductal secretion from the rabbit before and after ovulation with special reference to an estrus modulated protein. In preparation

Follicular Oocytes in Tubal Fluid

Follicular Oocytes in Tubal Fluid In-Vitro Fertilization of Rabbit Follicular Oocytes in Tubal Fluid SHUETU SUZUKI, M.D., and LUIGI MASTROIANNI, JR., M.D. SINCE THE FIRST ATTEMPT at in-vitro fertilization in 1878,24 various approaches

More information

In Vitro Cultivation of Rabbit Ova Following In Vitro Fertilization in Tubal Fluid1

In Vitro Cultivation of Rabbit Ova Following In Vitro Fertilization in Tubal Fluid1 416 Cytologia 31 In Vitro Cultivation of Rabbit Ova Following In Vitro Fertilization in Tubal Fluid1 Shuetu Suzuki2 Division of Reproductive Biology, Department of Obstetrics and Gynecology, School of

More information

10.7 The Reproductive Hormones

10.7 The Reproductive Hormones 10.7 The Reproductive Hormones December 10, 2013. Website survey?? QUESTION: Who is more complicated: men or women? The Female Reproductive System ovaries: produce gametes (eggs) produce estrogen (steroid

More information

Female Reproductive System. Lesson 10

Female Reproductive System. Lesson 10 Female Reproductive System Lesson 10 Learning Goals 1. What are the five hormones involved in the female reproductive system? 2. Understand the four phases of the menstrual cycle. Human Reproductive System

More information

(Received 8th October 1973)

(Received 8th October 1973) THE INFLUENCE OF A CANNULA IN THE RABBIT OVIDUCT II. EFFECT ON EMBRYO SURVIVAL M. H. SLOAN, S. L. COLEY and A. D. JOHNSON Animal Science Department, Livestock-Poultry Building, University of Georgia, Athens,

More information

F ertilizability of Rabbit Ova after Removal of the Corona Radiata

F ertilizability of Rabbit Ova after Removal of the Corona Radiata F ertilizability of Rabbit Ova after Removal of the Corona Radiata M. C. CHANG, Ph.D., and J. M. BEDFORD, M.R.C.V.S." FRESHLY ovulated rabbit ova are surrounded by a mass of follicular cells in a mucous

More information

Small Ruminant Reproductive Management Workshop

Small Ruminant Reproductive Management Workshop Small Ruminant Reproductive Management Workshop Animal Nutrition and Physiology Center, North Dakota State University Sponsors: American Sheep and Goat Center, North Dakota State University, University

More information

(FITC) or rhodamine blue isothiocyanate (RBITC) for use in mixed egg-transfer experiments. Both FITC and RBITC bind to the zona pellucida

(FITC) or rhodamine blue isothiocyanate (RBITC) for use in mixed egg-transfer experiments. Both FITC and RBITC bind to the zona pellucida THE LABELLING OF LIVING RABBIT OVA WITH FLUORESCENT DYES J. W. OVERSTREET Department of Anatomy and International Institute for the Study of Human Reproduction, Columbia University, College of Physicians

More information

The Use of Zona-Free Animal Ova as a Test-System for the

The Use of Zona-Free Animal Ova as a Test-System for the BIOLOGY OF REPRODUCTION 15, 471-476 (1976) The Use of Zona-Free Animal Ova as a Test-System for the Assessment of the Fertilizing Capacity of Human Spermatozoa R. YANAGIMACHI, H. YANAGIMACHI and B. J.

More information

CLEAVAGE OF HUMAN OVA IN VITRO*

CLEAVAGE OF HUMAN OVA IN VITRO* FERTILITY AND STERn.1TY Copyright., 1971 by The WiUiams & Wilkins Co. Vol. 22, No.4, April 1971 Printed in U.S.A. CLEAVAGE OF HUMAN OVA IN VITRO* H. M. SEITZ, JR., M.D., G. ROCHA, M.D., B. G. BRACKETI,

More information

Animal Reproduction Chapter 46. Fission. Budding. Parthenogenesis. Fragmentation 11/27/2017

Animal Reproduction Chapter 46. Fission. Budding. Parthenogenesis. Fragmentation 11/27/2017 Animal Reproduction Chapter 46 Both asexual and sexual reproduction occur in the animal kingdom Sexual reproduction is the creation of an offspring by fusion of a male gamete (sperm) and female gamete

More information

STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t

STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t FERTILITY AND STERILITY Copyright @ 1973 by The Williams & Wilkins Co. Vol. 24, No.8, August 1973 Printed in U.S.A. STUDIES OF THE HUMAN UNFERTILIZED TUBAL OVUM*t C. NORIEGA, M.D., AND C. OBERTI, M.D.

More information

The Time of Cortical Granule Breakdown and Sperm Penetration in Mouse and Hamster Eggs Inseminated in vitro

The Time of Cortical Granule Breakdown and Sperm Penetration in Mouse and Hamster Eggs Inseminated in vitro BIOLOGY OF REPRODUTION 19, 261-266 (1978) The Time of ortical Granule Breakdown and Sperm Penetration in Mouse and Hamster Eggs Inseminated in vitro Y. FUKUDA1 and M.. HANG2 Worcester Foundation for Experimental

More information

Robert W. McGaughey, Ph.D.

Robert W. McGaughey, Ph.D. Robert W. McGaughey, Ph.D. Robert W. McGaughey, Ph.D. ART Laboratory Director Arizona Center for Fertility Studies EDUCATION: Augustana College B.A. 1963 University of Colorado M.A. 1965 Boston University

More information

Induction of the human sperm acrosome reaction by human oocytes*

Induction of the human sperm acrosome reaction by human oocytes* FERTILITY AND STERILITY Copyright C> 1988 The American Fertility Society Vol. 50, No.6, December 1988 Printed in U.S.A. Induction of the human sperm acrosome reaction by human oocytes* Christopher J. De

More information

Chapter 14 Reproduction Review Assignment

Chapter 14 Reproduction Review Assignment Date: Mark: _/45 Chapter 14 Reproduction Review Assignment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Use the diagram above to answer the next question.

More information

Acupuncture Treatment For Infertile Women Undergoing Intracytoplasmic Sperm injection

Acupuncture Treatment For Infertile Women Undergoing Intracytoplasmic Sperm injection Acupuncture Treatment For Infertile Women Undergoing Intracytoplasmic Sperm injection Sandra L. Emmons, MD Phillip Patton, MD Source: Medical Acupuncture, A Journal For Physicians By Physicians Spring

More information

Summary. Mouse eggs were fertilized in vitro, in the presence and

Summary. Mouse eggs were fertilized in vitro, in the presence and THE R\l=O^\LEOF CUMULUS CELLS AND THE ZONA PELLUCIDA IN FERTILIZATION OF MOUSE EGGS IN VITRO A. PAVLOK and ANNE McLAREN Czechoslovak Academy of Sciences, Laboratory of Animal Genetics, Libechov, Czechoslovakia,

More information

REPRODUCCIÓN. La idea fija. Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings

REPRODUCCIÓN. La idea fija. Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings REPRODUCCIÓN La idea fija How male and female reproductive systems differentiate The reproductive organs and how they work How gametes are produced and fertilized Pregnancy, stages of development, birth

More information

Influence of genetic factors on the fertilization of mouse ova in vitro

Influence of genetic factors on the fertilization of mouse ova in vitro Influence of genetic factors on the fertilization of mouse ova in vitro El\l=z:\b\l=i:\etaKaleta Department of Genetics and Evolution, Institute of Zoology, Jagellonian University, Krupnicza 50, 30-060

More information

REPRODUCTION & GENETICS. Hormones

REPRODUCTION & GENETICS. Hormones REPRODUCTION & GENETICS Hormones http://www.youtube.com/watch?v=np0wfu_mgzo Objectives 2 Define what hormones are; Compare and contrast the male and female hormones; Explain what each hormone in the mail

More information

Female and Male Reproductive Systems

Female and Male Reproductive Systems Female and Male Reproductive Systems Reproductive System: Organs that make possible the production of offspring. Female Reproductive System Female Reproductive System: Words to be familiar with ESTROGEN

More information

Biology of fertility control. Higher Human Biology

Biology of fertility control. Higher Human Biology Biology of fertility control Higher Human Biology Learning Intention Compare fertile periods in females and males What is infertility? Infertility is the inability of a sexually active, non-contracepting

More information

In-vitro fertilization in the mouse and the relevance of different sperm/egg concentrations and volumes

In-vitro fertilization in the mouse and the relevance of different sperm/egg concentrations and volumes In-vitro fertilization in the mouse and the relevance of different sperm/egg concentrations and volumes A. K. S. Siddiquey and J. Cohen Department ofobstetrics and Gynaecology, Birmingham Maternity Hospital,

More information

9.4 Regulating the Reproductive System

9.4 Regulating the Reproductive System 9.4 Regulating the Reproductive System The Reproductive System to unite a single reproductive cell from a female with a single reproductive cell from a male Both male and female reproductive systems include

More information

CARD HyperOva (Superovulation Reagent for mouse)

CARD HyperOva (Superovulation Reagent for mouse) Product manual (Superovulation Reagent for mouse) Cat. No. KYD-010-EX -X5 Size: 5 1 ML Origin Serum of goat, Horse-derived villus gonatropin. Composition 1. Inhibin antiserum (Goat). 2. Equine chorionic

More information

Sample Provincial exam Q s: Reproduction

Sample Provincial exam Q s: Reproduction Sample Provincial exam Q s: Reproduction 11. Functions Testosterone Makes the male sex organs function normally, and also inhibits hypothalamus s release of GnRH and thus LH & FSH and thus testosterone

More information

Microinsemination (Intracytoplasmic Sperm Injection) Microinsemination schedule. 1. Preparation of mediums

Microinsemination (Intracytoplasmic Sperm Injection) Microinsemination schedule. 1. Preparation of mediums Microinsemination (Intracytoplasmic Sperm Injection) Masumi Hirabayashi Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, National

More information

Male Reproduction Organs. 1. Testes 2. Epididymis 3. Vas deferens 4. Urethra 5. Penis 6. Prostate 7. Seminal vesicles 8. Bulbourethral glands

Male Reproduction Organs. 1. Testes 2. Epididymis 3. Vas deferens 4. Urethra 5. Penis 6. Prostate 7. Seminal vesicles 8. Bulbourethral glands Outline Terminology Human Reproduction Biol 105 Lecture Packet 21 Chapter 17 I. Male Reproduction A. Reproductive organs B. Sperm development II. Female Reproduction A. Reproductive organs B. Egg development

More information

Female Reproductive Physiology. Dr Raelia Lew CREI, FRANZCOG, PhD, MMed, MBBS Fertility Specialist, Melbourne IVF

Female Reproductive Physiology. Dr Raelia Lew CREI, FRANZCOG, PhD, MMed, MBBS Fertility Specialist, Melbourne IVF Female Reproductive Physiology Dr Raelia Lew CREI, FRANZCOG, PhD, MMed, MBBS Fertility Specialist, Melbourne IVF REFERENCE Lew, R, Natural History of ovarian function including assessment of ovarian reserve

More information

Reproductive System. Testes. Accessory reproductive organs. gametogenesis hormones. Reproductive tract & Glands

Reproductive System. Testes. Accessory reproductive organs. gametogenesis hormones. Reproductive tract & Glands Reproductive System Testes gametogenesis hormones Accessory reproductive organs Reproductive tract & Glands transport gametes provide nourishment for gametes Hormonal regulation in men Hypothalamus - puberty

More information

Superovulation of Beef Heifers with Follicle Stimulating Hormone or Human Menopausal Gonadotropin: Acute Effects on Hormone Secretion

Superovulation of Beef Heifers with Follicle Stimulating Hormone or Human Menopausal Gonadotropin: Acute Effects on Hormone Secretion Superovulation of Beef Heifers with Follicle Stimulating Hormone or Human Menopausal Gonadotropin: Acute Effects on Hormone Secretion A.S. Leaflet R1362 Acacia A. Alcivar, graduate research assistant,

More information

Reproductive Endocrinology. Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007

Reproductive Endocrinology. Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007 Reproductive Endocrinology Isabel Hwang Department of Physiology Faculty of Medicine University of Hong Kong Hong Kong May2007 isabelss@hkucc.hku.hk A 3-hormone chain of command controls reproduction with

More information

Hormonal Control of Human Reproduction

Hormonal Control of Human Reproduction Hormonal Control of Human Reproduction Bởi: OpenStaxCollege The human male and female reproductive cycles are controlled by the interaction of hormones from the hypothalamus and anterior pituitary with

More information

IN THE course of our studv of the hormonal factors involved in miosis and

IN THE course of our studv of the hormonal factors involved in miosis and Arrival of Fertilizing Sperm at the Follicular Cell of the Secondary Oocyte A Study of the Rat R. Moricard and J. Bossu IN THE course of our studv of the hormonal factors involved in miosis and "' fertilization

More information

Chapter 46 ~ Animal Reproduction

Chapter 46 ~ Animal Reproduction Chapter 46 ~ Animal Reproduction Overview Asexual (one parent) fission (parent separation) budding (corals) fragmentation & regeneration (inverts) parthenogenesis Sexual (fusion of haploid gametes) gametes

More information

Human Spermatozoa Attach to Trypsin-treated Hamster Zonae Pellucidae but do not Undergo Acrosome Reactions

Human Spermatozoa Attach to Trypsin-treated Hamster Zonae Pellucidae but do not Undergo Acrosome Reactions Hiroshima J. Med. Sci. Vol.44, No.2, 47~51, June, 1995 HIJM 44-8 47 Human Spermatozoa Attach to Trypsin-treated Hamster Zonae Pellucidae but do not Undergo Acrosome Reactions Masatoshi KUMAGAI, Katsunori

More information

Reproductive System:

Reproductive System: Reproductive System: Purpose: The reproductive system combines genetic information from both parents (in most animals) to produce new life forms. This system produces sex cells (gametes), delivers them,

More information

ANOTHER LOOK AT TIMING OF A I

ANOTHER LOOK AT TIMING OF A I ANOTHER LOOK AT TIMING OF A I Ray L. Nebe l Department of Dairy Scienc e Virginia Polytechnic Institute and State Universit y Blacksburg, Virgini a Adoption by dairy producers of Al has made it one of

More information

Ovulation and fertilization rates. Materials and Methods. Animals. Morphological examination of fertilization

Ovulation and fertilization rates. Materials and Methods. Animals. Morphological examination of fertilization 16 SUZUKI et al. remains fertilizable for longer than it retains the capacity to develop to a normal embryo, the synchronization of ovulation and fertilization is of utmost importance for normal development

More information

Sperm production. Sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete

Sperm production. Sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete Sperm production Ductus deferens Epididymis The cells of Leydig in testes secrete Seminiferous testosterone (T) tubules T secreted at puberty produces 2 o sex characteristics, spermatogenesis, & maintain

More information

Sperm production. Sperm production. Controlling sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete

Sperm production. Sperm production. Controlling sperm production. Meiosis. Mitosis. The cells of Leydig in testes secrete Ductus deferens Sperm production Epididymis The cells of Leydig in testes secrete Seminiferous testosterone (T) tubules T secreted at puberty produces 2 o sex characteristics, spermatogenesis, & maintain

More information

Reproduction and Development. Female Reproductive System

Reproduction and Development. Female Reproductive System Reproduction and Development Female Reproductive System Outcomes 5. Identify the structures in the human female reproductive system and describe their functions. Ovaries, Fallopian tubes, Uterus, Endometrium,

More information

SISTEMA REPRODUCTOR (LA IDEA FIJA) Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings

SISTEMA REPRODUCTOR (LA IDEA FIJA) Copyright 2004 Pearson Education, Inc., publishing as Benjamin Cummings SISTEMA REPRODUCTOR (LA IDEA FIJA) How male and female reproductive systems differentiate The reproductive organs and how they work How gametes are produced and fertilized Pregnancy, stages of development,

More information

Female Reproductive System

Female Reproductive System Female Reproductive System (Part A-1) Module 10 -Chapter 12 Overview Female reproductive organs Ovaries Fallopian tubes Uterus and vagina Mammary glands Menstrual cycle Pregnancy Labor and childbirth Menopause

More information

Superovulation of Beef Heifers with Follicle Stimulating Hormone or Human Menopausal Gonadotropin: Acute Effects on Hormone Secretion

Superovulation of Beef Heifers with Follicle Stimulating Hormone or Human Menopausal Gonadotropin: Acute Effects on Hormone Secretion Beef Research Report, 1996 Animal Science Research Reports 1997 Superovulation of Beef Heifers with Follicle Stimulating Hormone or Human Menopausal Gonadotropin: Acute Effects on Hormone Secretion Acacia

More information

Chapter 36 Active Reading Guide Reproduction and Development

Chapter 36 Active Reading Guide Reproduction and Development Name: AP Biology Mr. Croft Chapter 36 Active Reading Guide Reproduction and Development Section 1 1. Distinguish between sexual reproduction and asexual reproduction. 2. Which form of reproduction: a.

More information

Female reproductive cycle: A Comprehensive Review Rachel Ledden Paper for Bachelors in Science January 20, 2018

Female reproductive cycle: A Comprehensive Review Rachel Ledden Paper for Bachelors in Science January 20, 2018 Running head: 1 Female reproductive cycle: A Comprehensive Review Rachel Ledden Paper for Bachelors in Science January 20, 2018 Female reproductive cycle: A Comprehensive Review 2 The reproductive cycle

More information

Unit B Understanding Animal Body Systems. Lesson 6 Anatomy and Physiology of Animal Reproduction Systems

Unit B Understanding Animal Body Systems. Lesson 6 Anatomy and Physiology of Animal Reproduction Systems Unit B Understanding Animal Body Systems Lesson 6 Anatomy and Physiology of Animal Reproduction Systems 1 Terms Alimentary canal Bladder Cervix Clitoris Cloaca Copulation Cowper s gland Epididymis Fallopian

More information

1. Be able to characterize the menstrual cycle from the perspective of the ovary a. Follicular phase b. Luteal phase

1. Be able to characterize the menstrual cycle from the perspective of the ovary a. Follicular phase b. Luteal phase Human Sexuality Exam II Review Material Gametogenesis: Oogenesis 1. Be able to characterize the menstrual cycle from the perspective of the ovary a. Follicular phase b. Luteal phase 2. Know the relative

More information

Scanning Electron Microscopic Observations on the Sperm Penetration through the Zona Pellucida of Mouse Oocytes Fertilized in vitro

Scanning Electron Microscopic Observations on the Sperm Penetration through the Zona Pellucida of Mouse Oocytes Fertilized in vitro Scanning Electron Microscopic Observations on the Sperm Penetration through the Zona Pellucida of Mouse Oocytes Fertilized in vitro Masatsugu MOTOMURA and Yutaka TOYODA School of Veterinary Medicine and

More information

emphasized both the need for an adequate amount of fsh and an adequate COMPARISON OF SUPEROVULATION IN THE IMMATURE MOUSE AND RAT

emphasized both the need for an adequate amount of fsh and an adequate COMPARISON OF SUPEROVULATION IN THE IMMATURE MOUSE AND RAT COMPARISON OF SUPEROVULATION IN THE IMMATURE MOUSE AND RAT EVERETT D. WILSON* and M. X. ZARROW Department of Biological Sciences, Purdue University, Lafayette, Indiana, U.S.A. (Received 26th May 1961)

More information

different ratios of PMSG and HCG on the occurrence of follicular haemorrhage THE induction of ovulation with PMSG and HCG in the rat has been studied

different ratios of PMSG and HCG on the occurrence of follicular haemorrhage THE induction of ovulation with PMSG and HCG in the rat has been studied Q. Jl exp. Physiol. (1968) 53, 129-135 THE INDUCTION OF OVULATION IN IMMATURE RATS TREATED WITH PREGNANT MARE'S SERUM GONADOTROPHIN AND HUMAN CHORIONIC GONADOTROPHIN. By S. F. LUNN and E. T. BELL. From

More information

FERTILIZATION AND EMBRYONIC DEVELOPMENT IN VITRO

FERTILIZATION AND EMBRYONIC DEVELOPMENT IN VITRO FERTILIZATION AND EMBRYONIC DEVELOPMENT IN VITRO FERTILIZATION AND EMBRYONIC DEVELOPMENT IN VITRO Edited by Luigi Mastroianni, Jr. University of Pennsylvania Philadelphia, Pennsylvania and John D. Biggers

More information

AP Biology Ch ANIMAL REPRODUCTION. Using only what you already know (you cannot look up anything) complete the chart below.

AP Biology Ch ANIMAL REPRODUCTION. Using only what you already know (you cannot look up anything) complete the chart below. AP Biology Ch. 46 - ANIMAL REPRODUCTION Using only what you already know (you cannot look up anything) complete the chart below. I. Overview of Animal Reproduction A. Both asexual and sexual reproduction

More information

Successful fertilization in vitro of fresh intact oocytes by perivitelline (acrosome-reacted) spermatozoa of the rabbit*

Successful fertilization in vitro of fresh intact oocytes by perivitelline (acrosome-reacted) spermatozoa of the rabbit* FERTILITY AND STERILITY Copyright 1984 The American Fertility Society Vol. 41, 5, May 1984 Printed in U.8A. Successful fertilization in vitro of fresh intact oocytes by perivitelline (acrosome-reacted)

More information

Viability and Freezing Ability of Rabbit Collected in the Vagina after Prostaglandin Treatment

Viability and Freezing Ability of Rabbit Collected in the Vagina after Prostaglandin Treatment Technical Note Japanese Journal of Physiology, 38, 585-589, 1988 Viability and Freezing Ability of Rabbit Collected in the Vagina after Prostaglandin Treatment Embryos Vlviane GARNIER, Jean Paul RENARD,

More information

SPERM TRANSPORT AND DISTRIBUTION IN THE REPRODUCTIVE TRACT OF THE FEMALE RABBIT AFTER INTRAPERITONEAL INSEMINATION*

SPERM TRANSPORT AND DISTRIBUTION IN THE REPRODUCTIVE TRACT OF THE FEMALE RABBIT AFTER INTRAPERITONEAL INSEMINATION* FERTLTY AND STERLTY Copyright 1974 The American Fertility Society Vol. 25, No. 12, December 1974 Printed in U.s.A. SPERM TRANSPORT AND DSTRBUTON N THE REPRODUCTVE TRACT OF THE FEMALE RABBT AFTER NTRAPERTONEAL

More information

Molecular BASIS OF FERTILIZATION

Molecular BASIS OF FERTILIZATION COLLEGE OF HEALTH SCIENCE DEPARTMENT OF PHYSIOLOGY PRESENTATION ON: Molecular BASIS OF FERTILIZATION By TEKETEL ERISTU Kediso 1 Presentation Outline Introduction Fertilization Types of Fertilization Cellular

More information

ONTARIO PORK RESEARCH PROPOSAL FINAL REPORT

ONTARIO PORK RESEARCH PROPOSAL FINAL REPORT PROPOSAL # 04/16 ONTARIO PORK RESEARCH PROPOSAL FINAL REPORT Project Leader: R.N. Kirkwood/ R.M. Friendship Project Title: Effect of addition of seminal plasma to thawed semen on sow fertility Objectives

More information

Penetration of Zona-Free Eggs by Spermatozoa of

Penetration of Zona-Free Eggs by Spermatozoa of BIOLOGY OF REPRODUCTION 6, 300-309 (1972) Penetration of Zona-Free Eggs by Spermatozoa of Different Species A. HANADA AND M. C. CHANG2 Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts

More information

Characterization of Anti-Hamster ZP-0 Monoclonal Antibody

Characterization of Anti-Hamster ZP-0 Monoclonal Antibody Characterization of Anti-Hamster ZP-0 Monoclonal Antibody K. Ookata (1), K.Takagishi (1), S. Konno (2) and T. Oikawa(1,2) (1) Developmental and Reproductive Biology Center, Yamagata 990, Japan and (2)

More information

Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature

Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature REPRODUCTION Testes (male gonads) -Produce sperm -Produce sex hormones -Found in a sac called the scrotum -Suspended outside of the body cavity for temperature reduction -Testes wall made of fibrous connective

More information

Effect of Leukemia Inhibiton Factor (LIF) on in vitro maturation and fertilization of matured cattle oocytes

Effect of Leukemia Inhibiton Factor (LIF) on in vitro maturation and fertilization of matured cattle oocytes Theriogenology Insight: 4(3): 17-111, December, 214 DOI Number: 1.98/2277-3371.214.74.2 Effect of Leukemia Inhibiton Factor (LIF) on in vitro maturation and fertilization of matured cattle oocytes K M

More information

Sperm populations in the female genital tract

Sperm populations in the female genital tract Sperm populations in the female genital tract of the rabbit J. Cohen and K. R. Tyler Department ofzoology and Comparative Physiology, and Department ofphysiology, University ofbirmingham, P.O. Box 363,

More information

Study Guide Answer Key Reproductive System

Study Guide Answer Key Reproductive System Biology 12 Human Biology Textbook: BC Biology 12 Study Guide Answer Key Reproductive System 1. Distinguish between a gamete and a gonad using specific examples from the male and female systems. Gonads

More information

Timing of A.I. Swine AI 9/6/12

Timing of A.I. Swine AI 9/6/12 Breeding Herd Education Series 20 Timely, relevant & convenient learning Thank you for participating in SowBridge 20. To start this presentation, advance one slide by pressing enter or the down or right

More information

Female Reproductive System. Justin D. Vidal

Female Reproductive System. Justin D. Vidal Female Reproductive System Justin D. Vidal If you cannot identify the tissue, then it is probably part of the female reproductive system! Introduction The female reproductive system is constantly changing,

More information

Relation between the Number and Size of Follicles in Ovulation Induction and the Rate of Pregnancy

Relation between the Number and Size of Follicles in Ovulation Induction and the Rate of Pregnancy Relation between the Number and Size of Follicles in Ovulation Induction and the Rate of Pregnancy Aseel Mosa Jabber M.SC.G.O. The department of Obstetrics and Gynecology, Faculty of Medicine Thi-qar university

More information

Infertility treatment

Infertility treatment In the name of God Infertility treatment Treatment options The optimal treatment is one that provide an acceptable success rate, has minimal risk and is costeffective. The treatment options are: 1- Ovulation

More information

The effect of albumi~ gradients and human serum on the longevity and fertilizing capacity of human spermatozoa in the hamster ova penetration assay*

The effect of albumi~ gradients and human serum on the longevity and fertilizing capacity of human spermatozoa in the hamster ova penetration assay* FERTn.1TY AND STERIL1TY Copyright c 1982 The American Fertility Society Vol. 38, No.2, August 1982 Printed in U.SA. The effect of albumi~ gradients and human serum on the longevity and fertilizing capacity

More information

Health Science: the structures & functions of the reproductive system

Health Science: the structures & functions of the reproductive system Health Science: the structures & functions of the reproductive BELLWORK 1. List (4) careers that are r/t the Reproductive, Urinary, and Endocrine Systems 2. Copy down the following terms: -ologist = one

More information

Capacitation of Large Numbers of Hamster Sperm in Vitro

Capacitation of Large Numbers of Hamster Sperm in Vitro BIOLOGY OF REPRODUCTION 9, 356-360 (1973) Capacitation of Large Numbers of Hamster Sperm in Vitro BRUCE MORTON, B. J. ROGERS, AND T. S. K. CHANG Department of Biochemistry and Biophysics, University of

More information

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor)

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Indifferent ducts of embryo Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Y chromosome present Y chromosome absent Phenotypic sex is depends on development of external

More information

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor)

Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Indifferent ducts of embryo Y chromosome present Y chromosome absent Male Female penis ovary uterus vagina testis Biology of gender Sex chromosomes determine gonadal sex (testis-determining factor) Phenotypic

More information

Effects of Label-Dose Permethrin Administration on Reproductive Function and Embryo Quality on Superovulated Beef Heifers

Effects of Label-Dose Permethrin Administration on Reproductive Function and Embryo Quality on Superovulated Beef Heifers Animal Industry Report AS 662 ASL R3050 2016 Effects of Label-Dose Permethrin Administration on Reproductive Function and Embryo Quality on Superovulated Beef Heifers Tyler M. Dohlman Iowa State University,

More information

Lecture 14: Conception, Fertility, Early Fetal Loss. provera. Depo-provera. Early Fetal Loss. Implanon. Norplant. Nuva Ring.

Lecture 14: Conception, Fertility, Early Fetal Loss. provera. Depo-provera. Early Fetal Loss. Implanon. Norplant. Nuva Ring. Lecture 14: Conception, Fertility, Early Fetal Loss Birth Control (cont.) Conception What Influences Probability of Conception? Early Fetal Loss Infertility Fertility Enhancement Depo-provera provera Injectable

More information

Chapter 14 The Reproductive System

Chapter 14 The Reproductive System Biology 12 Name: Reproductive System Per: Date: Chapter 14 The Reproductive System Complete using BC Biology 12, page 436-467 14. 1 Male Reproductive System pages 440-443 1. Distinguish between gametes

More information

LIFE SCIENCES Grade 12 REPRODUCTION 30 JUNE 2014

LIFE SCIENCES Grade 12 REPRODUCTION 30 JUNE 2014 REPRODUCTION 30 JUNE 2014 Checklist Make sure you Can describe different reproductive strategies of vertebrates Are able to identify the structure and function of the male and female reproductive organs

More information

Induced Ovulation in the Mouse and the Measurement of Its Inhibition

Induced Ovulation in the Mouse and the Measurement of Its Inhibition Induced Ovulation in the Mouse and the Measurement of Its Inhibition t' NATESAIER PURSHOTTAM, ~ MARCUS M. MASON, AND GREGORY PINCUS RUNNER has shown that the immature mouse ovary responds by superovulation

More information

Interval between PMSG Priming and hcg Injection in Superovulation of the Mongolian Gerbil

Interval between PMSG Priming and hcg Injection in Superovulation of the Mongolian Gerbil J. Mamm. Ova Res. Vol. 21, 105 109, 2004 105 Original Interval between PMSG Priming and hcg Injection in Superovulation of the Mongolian Gerbil Yuichi Kameyama 1 *, Kaori Arai 1 and Yoshiro Ishijima 1

More information

EMBRYO TRANSFER ANIMAL SCIENCE 8818-B INTRODUCTION

EMBRYO TRANSFER ANIMAL SCIENCE 8818-B INTRODUCTION ANIMAL SCIENCE 8818-B EMBRYO TRANSFER INTRODUCTION Embryo transfer* is a process by which an embryo is collected from a donor female and then transferred into a recipient female where the embryo completes

More information

HORMONES & REPRODUCTION OUTLINE

HORMONES & REPRODUCTION OUTLINE 1 HORMONES & REPRODUCTION Dr. Steinmetz OUTLINE 2 The Endocrine System Sexual Reproduction Hormonal Role in Sexual Differentiation Gender Differences and Gender Identity Characterizing Complex Behaviors

More information

A Tale of Three Hormones: hcg, Progesterone and AMH

A Tale of Three Hormones: hcg, Progesterone and AMH A Tale of Three Hormones: hcg, Progesterone and AMH Download the Ferring AR ipad/iphone app from the Apple Store: http://bit.ly/1okk74m Interpreting Follicular Phase Progesterone Ernesto Bosch IVI Valencia,

More information

Reproductive Hormones

Reproductive Hormones Reproductive Hormones Male gonads: testes produce male sex cells! sperm Female gonads: ovaries produce female sex cells! ovum The union of male and female sex cells during fertilization produces a zygote

More information

capacitation hyperactivation acrosome hyperactivation AR bovine serum albumin BSA non-genomic effect isothiocyanate; FITC PR mrna P hyperactivation HA

capacitation hyperactivation acrosome hyperactivation AR bovine serum albumin BSA non-genomic effect isothiocyanate; FITC PR mrna P hyperactivation HA 17 2 47 54 2002 P PRP total RNA cdna PCR primer set PR mrna P hyperactivation HA AR Ca PR P HA AR P Ca PR mrna P DNA C PR PR P P HA AR Ca mrna capacitation hyperactivation acrosome reaction; AR hyperactivation

More information

( 12 ) United States Patent

( 12 ) United States Patent ( 12 ) United States Patent Scarpellini et al. ( 54 ) USE OF G - CSF IN IN VITRO EMBRYO CULTURE ( 71 ) Applicants : Fabio Scarpellini, Rome ( IT ) ; Marco @ Sbracia, Rome ( IT ) @( 72 ) Inventors : Fabio

More information

Web Activity: Simulation Structures of the Female Reproductive System

Web Activity: Simulation Structures of the Female Reproductive System differentiate. The epididymis is a coiled tube found along the outer edge of the testis where the sperm mature. 3. Testosterone is a male sex hormone produced in the interstitial cells of the testes. It

More information

Human sperm penetration assay as an indicator of sperm function in human in vitro fertilization

Human sperm penetration assay as an indicator of sperm function in human in vitro fertilization FERTILITY AND STERILITY Copyright., 1987 The American Fertility Society Vol. 48, No. 2, August 1987 Printed in U.S.A. Human sperm penetration assay as an indicator of sperm function in human in vitro fertilization

More information

The Human Menstrual Cycle

The Human Menstrual Cycle The Human Menstrual Cycle Name: The female human s menstrual cycle is broken into two phases: the Follicular Phase and the Luteal Phase. These two phases are separated by an event called ovulation. (1)

More information

1. Both asexual and sexual reproduction occur in the animal kingdom

1. Both asexual and sexual reproduction occur in the animal kingdom 1. Both asexual and sexual reproduction occur in the animal kingdom Asexual reproduction involves the formation of individuals whose genes all come from one parent. There is no fusion of sperm and egg.

More information

THE EFFECT OF COPPER IMPLANTS IN THE REMINAL VESICLES ON FERTILITY OF THE RAT, RABBIT, AND HAMSTER*

THE EFFECT OF COPPER IMPLANTS IN THE REMINAL VESICLES ON FERTILITY OF THE RAT, RABBIT, AND HAMSTER* FERTILITY A(\O Sn:HILIT'l Copyright 1973 by The Williams & Wilkins Co. Vol. 24, :-';0. 1..January 1973 Printed in U.S.A. THE EFFECT OF COPPER IMPLANTS IN THE REMINAL VESICLES ON FERTILITY OF THE RAT, RABBIT,

More information

Human and Bovine Sperm Migration

Human and Bovine Sperm Migration Human and Bovine Sperm Migration K. S. MOGHSS, M.D. SPERM MGRATON may be accomplished by intrinsic sperm activity, uterotubal contractions, ciliary motions of tubal epithelium, or a combination of these

More information

Basic Reproduction & Genetics. Steve Pritchard UNL Extension Educator Boone-Nance Counties

Basic Reproduction & Genetics. Steve Pritchard UNL Extension Educator Boone-Nance Counties Basic Reproduction & Genetics Steve Pritchard UNL Extension Educator Boone-Nance Counties Hormonal Regulation of the Estrous Cycle Several hormones regulate the estrous cycle Changes in the concentrations

More information

Internal Fertilization

Internal Fertilization Internal Fertilization Fertilization which takes place inside the female body is called internal fertilization(the union of the gametes within the female body after insemination) Occurs in the widest part

More information

INFRAFRONTIER-I3 - Cryopreservation training course. Hosted by the Frozen Embryo and Sperm Archive, MRC - Harwell

INFRAFRONTIER-I3 - Cryopreservation training course. Hosted by the Frozen Embryo and Sperm Archive, MRC - Harwell Hosted by the Frozen Embryo and Sperm Archive, MRC - Harwell IVF recovery procedure incorporting methyl-β-cyclodextrin and reduced glutathione This protocol is based on the work published by Takeo et al.,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following hormones controls the release of anterior pituitary gonadotropins? A) LH

More information

Reproduction Worksheet

Reproduction Worksheet Name: Date: Reproduction Worksheet Directions: Base your answers to questions 1-4 on the diagram below and your knowledge of biology. 1. Identify the structure in which sperm is produced. What is the name

More information

Male Reproductive System

Male Reproductive System Male Reproductive System The male reproductive system consists of a number of sex organs that are part of the reproductive process. The following sections describe the function of each part of the male

More information

Assisted reproductive technology

Assisted reproductive technology Assisted reproductive technology FERTILITY AND STERILITY Vol. 60, No.2, August 1993 Copyright 'c; 199:~ The American Fertility Society Printed on acid-free paper in U. S. A. Natural cycle in vitro fertilization-embryo

More information