Protein S as Cofactor for TFPI

Size: px
Start display at page:

Download "Protein S as Cofactor for TFPI"

Transcription

1 ATVB In Focus Tissue Factor: Past, Present, and Future Series Editor: Nigel Mackman and Mark B. Taubman Protein S as Cofactor for TFPI Tilman M. Hackeng, Jan Rosing Abstract In the last decades evidence was obtained that protein S not only acts as cofactor of activated protein C (APC) in the downregulation of coagulation, but also expresses anticoagulant activity in the absence of APC. The search for the mechanism(s) underlying the APC-independent anticoagulant activity of protein S was hampered by the fact that protein S exhibited 2 seemingly identical anticoagulant activities in model systems and in plasma. Later it was shown that the anticoagulant activity of purified protein S in model systems was dependent on the concentration of phospholipid vesicles and was explained by low amounts of protein S multimers generated during purification that effectively inhibited phospholipid-dependent coagulation reactions via competition for phospholipid binding sites. Plasma does not contain multimers, and the anticoagulant activity of protein S in plasma was not affected by the phospholipid concentration but was dependent on the amount of tissue factor (TF) used for initiation of thrombin generation. This led to the discovery that protein S acts as cofactor of tissue factor pathway inhibitor (TFPI) which stimulates the inhibition of factor Xa by TFPI 10-fold. The current review describes the background of the TFPI-cofactor activity of protein S as well as the rationale for the observation that the TFPI/protein S system particularly inhibits the TF pathway at low procoagulant stimuli. (Arterioscler Thromb Vasc Biol. 2009;29: ) Key Words: TFPI proteins thrombin generation extrinsic pathway anticoagulant mechanisms Anticoagulant Activities Protein S Protein S is a vitamin K-dependent plasma protein (Mr 75 kda) that is synthesized in the liver and in endothelial cells and which circulates in plasma both in a free form (150 nmol/l) and in complex with C4b-binding protein (200 nmol/l; for a review see 1 ). It is well known that protein S acts as a cofactor of activated protein C (APC) in the proteolytic inactivation of blood coagulation factors Va and VIIIa, thus providing a negative feedback on coagulation and making the APC/protein S pathway essential for normal hemostasis. 2 5 Homozygous deficiencies in either protein C or protein S result in severe neonatal procoagulant phenotypes, whereas heterozygous deficiencies are associated with a 10-fold increased risk of venous thrombosis. 6 8 More recently it has been shown that protein S also effectively inhibits thrombin generation in plasma in the absence of APC. 9 This anticoagulant property of protein S was especially observed at low TF concentrations ( 1 pmol/l) leading to the concept that protein S took part in regulating the initiation phase of coagulation and effectively counteracts ongoing procoagulant processes in the circulation. 10 Interestingly, protein S had no effect on thrombin generation when coagulation was initiated through the intrinsic route, regardless of the amount of trigger used. 5 Because of the dependence of the anticoagulant activity of protein S on the TF concentration, a new role of protein S was identified as a cofactor for TFPI in the inhibition of FXa. 11 In contrast to investigations in plasma, many studies were performed in model systems using purified protein S preparations that also led to reports about APC-independent anticoagulant properties of protein S Although the anticoagulant activities in plasma and in model systems containing purified proteins initially looked mechanistically similar, the activity of purified protein S in model systems could for the greater part be allotted to in vitro generated protein S multimers. Protein S multimers are absent in plasma 17,18 and hence are not involved in the APC-independent anticoagulant activity of protein S in plasma. Intermezzo: Protein S Multimers When protein S was first reported to exhibit anticoagulant activity in the absence of APC, 19 subsequent experiments supporting this observation were performed in model systems using purified proteins At that time, the anticoagulant effect of protein S was explained by direct interactions of protein S with the components of the prothrombinase complex: FVa, FXa, or phospholipids that resulted in inhibition of prothrombin activation Soon the problem arose that the APC-independent anticoagulant activity was difficult to reproduce, and that protein S preparations purified by different purification procedures had different APC-independent anticoagulant activities (Figure 1). It was observed that the activity of protein S Received June 26, 2009; revision accepted July 29, From the Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, The Netherlands. Correspondence to Prof Dr Jan Rosing, Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University Maastricht, Maastricht, 6200 MD, The Netherlands. j.rosing@bioch.unimaas.nl 2009 American Heart Association, Inc. Arterioscler Thromb Vasc Biol is available at DOI: /ATVBAHA

2 2016 Arterioscler Thromb Vasc Biol December 2009 Figure 1. Inhibition of prothrombin activation by protein S multimers depends on the phospholipid concentration. FVa, FXa, and phospholipid vesicles (20/80 DOPS/DOPC) were incubated with or without purified protein S in 50 mmol/l Hepes buffered saline ph 7.4 containing 3 mmol/l CaCl 2 and 5 mg/ml BSA for 15 minutes at 37 C. Prothrombin was added and thrombin formation was followed with chromogenic substrate. 18 Final concentrations were 10 pmol/l FVa, 10 pmol/l FXa, 1.5 mol/l prothrombin, 0 nmol/l (100%), or 100 nmol/l protein S and 0.2 to 50 mol/l phospholipid vesicles. Inhibition of prothrombin activation by protein S1 (F) and protein S2 (E) is presented as function of the phospholipid concentration. No inhibition of prothrombin activation by protein S was observed at 50 mol/l phospholipids. At 1 mol/l phospholipid, protein S1 inhibited thrombin generation 40%, and protein S2 inhibited 90%. Inset, Western blot of native PAGE 17 of protein S1 (F) and protein S2 (E) showing comparable protein S monomers (Mo) in protein S1 and protein S2, but more protein S multimers (Mx) in protein S2 (E). Table. Kinetic Constants for the Inhibition of FXa by TFPI With or Without Protein S TFPI K i (nmol/l) K i * (nmol/l) PL/Ca 2 TFPI fl ; ; PL/Ca 2 protein S TFPI fl PL/Ca 2 TFPI PL/Ca 2 protein S TFPI PL indicates phospholipid vesicles 20/60/20 DOPS/DOPC/DOPE; TFPI fl, full-length TFPI; TFPI 1 161, TFPI that lacks the third Kunitz domain and the C terminus. preparations correlated with the affinity of protein S for phospholipid surfaces, 20 and eventually modified protein S forms (stable multimers) were identified which were formed in protein S preparations as result of the use of ion-exchange and affinity chromatography during purification. 17,18 The multimers represented between 2% to 5% of total purified protein S and were responsible for the observed APC-independent anticoagulant activity of protein S in model systems. Protein S multimers were reported to bind to negatively-charged phospholipid surfaces with a much higher affinity (K D 0.5 nmol/l) than protein S monomers (K D 250 nmol/l), and the APC-independent activity of protein S preparations was explained by competition between protein S multimers and components of the prothrombinase complex for phospholipid binding sites. 17 Hence, the anticoagulant activity of purified protein S could be overcome by addition of high concentrations of phospholipid vesicles (Figure 1). Furthermore, differences in activities between purified protein S preparations were explained by different protein S multimer content. 17 APC-independent anticoagulant activity of protein S was also observed in plasma in which protein S was neutralized by monoclonal antibodies. 9 At first it was assumed that the mechanistic basis of anticoagulant activities of protein S in model systems and in plasma was identical, but later this was shown not to be the case. In the first place, we were not able to detect protein S multimers in plasma, 17,18 although this is subject to debate. 21 Furthermore, the anticoagulant activity of protein S (multimers) in model systems containing purified proteins was dependent on the phospholipid concentration, and was completely abolished at high phospholipid concentrations (ie, conditions at which sufficient phospholipid surface was available for both protein S multimer binding and prothrombin activation 15,18 ; Figure 1). In contrast, the APCindependent anticoagulant activity of protein S in plasma was not affected by the phospholipid concentration, 10 but was strongly dependent on the TF-concentration and was particularly observed at low TF concentrations. 10 This eventually pointed us in the direction of the TFPI-cofactor activity of protein S. 11 TFPI TFPI is a 276-aa Kunitz-type inhibitor (Mr 42 kda) consisting of a negatively charged N terminus, 3 consecutive Kunitz domains, and a positively charged C-terminal tail. 22 The main site of synthesis of TFPI is the endothelium. 23 The first Kunitz domain binds to and inhibits FVIIa, the second binds to and inhibits FXa, and the C-terminal tail was proposed to bind to heparin-like structures on the vessel wall. 24 Kunitz-3 contains a heparin binding site, 25 the function of which is unknown. However, in various truncated forms of TFPI, Kunitz-3 is involved in cross-disulfide bonding between TFPI and low-density lipoprotein. 26 Of total TFPI, 80% is attached to the vessel wall, whereas 20% circulates in plasma (review 27 ). From the 20% plasma TFPI, 80% is bound to various lipoproteins and only 10% ( 0.25 nmol/l) circulates as free full-length TFPI. TF activity is regulated by TFPI via a 2-step feedback mechanism which involves formation of a bimolecular FXa/ TFPI complex that subsequently interacts with TF/FVIIa, yielding an inactive quaternary complex and resulting in termination of TF/FVIIa-catalyzed FX activation. 24,28 The fact that full-length TFPI is most effective in this reaction is attributable to an intact C-terminal basic tail that interacts with anionic membrane surfaces. 29,30 In this negative feedback mechanism, the initial formation a binary TFPI-FXa complex is a prerequisite for the inhibition of TF/FVIIa by TFPI. 24 The concentration of full-length free TFPI in plasma is low (10% of total plasma TFPI: 0.25 nmol/l), 31 and because TFPI is a slow tight binding inhibitor of which the K i of the initial inhibitory complex with FXa (4 to 15 nmol/l 32 ; Table) is much higher than the plasma TFPI concentration, this would imply that TFPI theoretically would be a weak inhibitor of TF-induced thrombin generation in plasma. Dependence of TFPI on Protein S In 2006 we reported that protein S acts as cofactor of TFPI 11 and that the TFPI cofactor activity explains the APC-

3 Hackeng and Rosing Protein S as Cofactor for TFPI 2017 Figure 2. TFPI anticoagulant activity during thrombin generation and its dependence of protein S. Thrombin generation in TFPI-depleted plasma was initiated with 1.4 pmol/l TF, 10 mol/l phospholipid vesicles, and 16 mmol/l CaCl 2 (final concentrations) in the presence of 30 g/ml corn trypsin inhibitor (CTI, Hematologic Technologies) and followed with the fluorogenic substrate Z-Gly-Gly-Arg-AMC.HCl. 11 A, Reconstitution of full-length TFPI in TFPIdepleted plasma at indicated final concentrations (0 to 3.2 nmol/l). B, Reconstitution of full-length TFPI in TFPI-depleted plasma to which inhibitory antiprotein S antibodies (Zebra Bioscience, Enschede) were added. independent anticoagulant activity of protein S in plasma. This discovery was based on the following observations: (1) in the absence of APC, protein S inhibited thrombin generation initiated via the extrinsic pathway, but not via the intrinsic pathway, (2) protein S only expressed APCindependent anticoagulant activity at low TF concentrations, (3) protein S did not express APC-independent anticoagulant activity in TFPI-deficient plasma, and (4) the anticoagulant activity of TFPI was greatly impaired in protein S-deficient plasma. The discovery that protein S acts as a cofactor for full-length TFPI in the formation of the initial bimolecular FXa/TFPI complex explains why TFPI is an effective inhibitor in plasma. 11 It was shown that protein S decreased the K i for FXa/TFPI complex formation from 4.5 to 0.5 nmol/l. Thus, protein S makes TFPI a more efficient inhibitor by bringing the K i of FXa inhibition in the range of the plasma concentration of full-length TFPI. 11 It was concluded that through stimulation of TFPI/FXa complex formation, protein S would also enhance the formation of the quaternary TF/FVIIa/TFPI/FXa complex. 11 However, more recently it was suggested that the TFPI-cofactor activity of protein S is only relevant for inhibition of free factor Xa, and not for the inhibition of TF/FVIIa by TFPI/FXa (ie, not for quaternary complex formation 33 ; see also below). It was reported that C-terminally truncated TFPI was a weak inhibitor of factor Xa 30,34 (Table). In addition, truncated TFPI (1 161) was not stimulated by protein S. 11 This strongly suggests that the interaction between protein S and TFPI is mediated through TFPI Kunitz-3 and the C-terminal tail. For both protein S and full-length TFPI activity it is crucial that they can bind to negatively charged phospholipids through their Gla domain and C-terminal tail, respectively. 13,29,35 In addition, FXaprotein S interactions have been reported. 36,37 Together with the observation that the C terminus of TFPI directly interacts with the Gla domain of FXa, 38 this implies that during inhibition of FXa by TFPI/protein S at a certain moment a trimolecular complex between FXa, TFPI, and protein S on phospholipids will exist. In this review, the abbreviation TFPI will be used for full-length TFPI, unless otherwise indicated. Supporting evidence for direct interactions between TFPI and protein S is the observation by Castoldi and coworkers that protein S and TFPI circulate as a complex in plasma (Castoldi, Simioni, Tormene, Rosing, and Hackeng, unpublished data, 2009), which could explain the covariance of protein S and TFPI in normals 39 and the low levels of TFPI in protein S-deficient patients (Castoldi et al, ISTH 2009, abstract # 2338). An illustrative example of the importance of the TFPI cofactor activity of protein S is shown in Figure 2 in which the effect of TFPI on thrombin generation in TFPI-deficient plasma and in combined TFPI-protein S-deficient plasma were compared. Reconstitution of TFPI-depleted plasma with TFPI shows a dose-dependent inhibition of thrombin generation, which is fully inhibited at 3.2 nmol/l TFPI. However, when protein S is neutralized by addition of antibodies against protein S, TFPI anticoagulant activity is severely impaired resulting in substantial thrombin generation ( 50%) at 3.2 nmol/l TFPI (Figure 2). TFPI is a Slow Tight Binding Inhibitor Inhibition of FXa by TPFI proceeds through a 2-step process. In the first step, rapidly a small amount of loose complex between Kunitz-2 of TFPI and FXa is formed (FXa TFPI, equation a) which results in rapid inactivation of part of the FXa. A subsequent slow rearrangement results in formation of the final tight enzyme-inhibitor complex 24 (FXa TFPI*, equation a). The dissociation constant of the first rapid equilibrium is represented by K i (K i k -1 /k 1 [FXa].[TFPI]/[FXa TFPI]) and after the subsequent slow isomerization has taken place the overall equilibrium constant becomes K i *(K i * [FXa].[TFPI]/{[FXa TFPI] [FXa TFPI*]}), which is several orders of magnitude lower than K i (Table). The fact that TFPI is a slow inhibitor of FXa has important implications for the downregulation of the TF pathway by TFPI in plasma. TFPI anticoagulant activity in thrombin generation was only observed at low concentrations of TF

4 2018 Arterioscler Thromb Vasc Biol December 2009 Figure 3. Effect of full-length TFPI on thrombin generation in the absence (A) and presence (B) of APC. Thrombin generation in recalcified citrated plasma was continuously followed with fluorogenic substrate I-1140 (Z-Gly-Gly-Arg-AMC.HCl) in the presence of 20 mol/l phospholipids vesicles (20/60/20 DOPS/DOPC/ DOPE), 16 mmol/l CaCl 2 (final concentrations), and 30 g/ml corn trypsin inhibitor (CTI, Hematologic Technologies). Thrombin generation was initiated with 14 pmol/l TF in the absence (A) or presence of 20 nmol/l APC (B) in protein S and TFPI-depleted plasma reconstituted with (F) 350 nmol/l protein S, or (E) 350 nmol/l protein S and 0.5 nmol/l full-length TFPI. Averages of duplicate measurements are shown. Adapted with permission from Hackeng et al. 27 ( 1 pmol/l), whereas at high concentrations of TF ( 10 pmol/l) thrombin generation was not effectively regulated by TFPI anymore. 10 Consequently, the TFPI-cofactor activity of protein S was also lost and hence, protein S does not express APC-independent anticoagulant activity at high TF concentrations. 10 However, at 14 pmol/l of TF the plasma concentration of free full-length TFPI (0.3 nmol/l) is still in 20-fold excess of TF. As the Ki* for FXa-inhibition by TFPI was reported to be 0.05 nmol/l (Table), 11,32 one would also expect efficient inhibition of FXa and thrombin generation by TFPI at TF concentrations as high as 14 pmol/l. That this is not the case is caused by the fact that TFPI is not only a tight but also a slow-binding inhibitor of factor Xa. 40 In other words, only when FXa formation is low and slow does TFPI get sufficient time to block the TF pathway before thrombin generation and clotting can occur. At high TF concentrations, the rate of FX activation becomes so high that the threshold concentration of FXa required for prothrombin activation and clotting is exceeded within the time frame that TFPI requires to shut down the TF pathway. Interestingly, there are a few examples of effective modulation of procoagulant responses by TFPI/protein S at high TF concentrations. One of these is the modulation of the effect of APC on thrombin generation at high TF-concentrations. In 1997 a thrombin generation-based APC resistance test was published 41 which appeared to be very sensitive for both hereditary (FV Leiden ) and acquired APC resistance (eg, oral contraceptive use). In this assay thrombin generation was measured at a high TF concentration in the absence and presence of APC. Thrombin generation in the absence of APC was not affected by TFPI, whereas TFPI appeared to be a major determinant of thrombin generation in the presence of APC. 42,43 This is illustrated by Figure 3 which shows that TFPI in the absence of APC has no effect on thrombin generation at high TF (14 pmol/l; Figure 3A), but significantly decreases thrombin generation in the presence of APC (Figure 3B). Because of the downregulation of thrombin generation by APC/protein S, an appreciable part of the reduction of thrombin generation by APC (shown by the gray area) is actually caused by the TFPI/protein S pathway. 27 Hence, in the presence of APC the TFPI/protein S system regains a grip on FXa-regulation even at high TF. A second example of TFPI activity at high TF is the observation that the APC-independent activity of protein S in clotting plasma, which we now know represents the ability of protein S to enhance the anticoagulant activity of TFPI, became particularly apparent in the presence of heparin. 44 These two examples share a common denominator, which is that both APC and heparin delay the onset of coagulation and hence give TFPI ample time to inhibit TF-FVII and downregulate thrombin formation. These observations suggest that the contribution of TFPI to the downregulation of coagulation also becomes more important in patients receiving anticoagulant treatment. TFPI: FXa Inhibitor, TF-FVIIa Inhibitor, or Both? TFPI is an inhibitor of coagulation that has 2 targets, FXa and TF-FVIIa, and theoretically it is possible that the TFPI/ protein S system downregulates thrombin formation and coagulation at 2 levels (ie, FXa and TF-FVIIa). It is generally accepted that inhibition of TF-FVIIa by TFPI is physiologically important, whereas virtually no information is available as to whether inhibition of FXa by TFPI also contributes to the downregulation of thrombin formation by TFPI. Although incorporation of FXa into a phospholipid-bound FX-FVa (prothrombinase) complex had no effect on the inhibition of FXa by TFPI in the absence of prothrombin, 31 TFPI appeared to be a poor inhibitor of the prothrombinase complex in the presence of physiological concentrations prothrombin. 45 As such, TFPI is not different from other anticoagulant proteins (antithrombin and APC) whose anticoagulant activities are also greatly reduced when their targets (FXa and FVa) are incorporated into the prothrombinase complex. 46,47 However, TFPI appeared to be an effective inhibitor of prothrombin activation in model systems when FVa was substituted by FV 45 (ie, when FV had to be activated by FXa or traces of thrombin before the onset of prothrombin activation). Of course a possible contribution of direct inhibition of FXa by TFPI to the downregulation of thrombin formation should be put in the perspective of other FXa inhibitors in plasma (eg, antithrombin). At the plasma antithrombin concentration of 2.5 mol/l 48 and a rate constant of FXa inhibition 47 of M 1 sec 1, antithrombin requires 1.3 minutes (t 2) to inhibit 50% of the FXa formed. Using 1 rate constants and K i s reported by Hackeng et al 11 it can be calculated that at the plasma-free TFPI concentration (0.25 nmol/l) the t 1 2 for inhibition of FXa by TFPI drops from 5

5 Hackeng and Rosing Protein S as Cofactor for TFPI 2019 believe that further studies are needed to unravel the precise mechanisms by which the TFPI/protein S system downregulates blood coagulation. Figure 4. Protein S dependent anticoagulant pathways of blood coagulation. Exposed TF binds FVIIa from the circulation to generate the transient TF/FVIIa complex, the physiological initiator of blood coagulation. (1) TF/FVIIa activates FX, and FXa will bind to its cofactor FVa on negatively charged phospholipid surfaces (ie, activated platelets) to generate the prothrombinase complex. Early thrombin generation will activate platelets, activate cofactors V and VIII, and in addition activates FXI from the propagation loop. (2) FXIa can activate FIX. FIXa and cofactor FVIIIa assemble on negatively charged phospholipids, and activate additional FX for participation in prothrombin activation and thus form sufficient thrombin to generate insoluble fibrin polymers to stabilize the primary platelet plug. Thrombin generation is tightly regulated by 2 protein S dependent feedback mechanisms (3, 4) and protease inhibitors that scavenge coagulation enzymes at large (5). The TFPI/protein S pathway inactivates FXa and subsequently shuts down TF/FVIIa. (3) Thrombomodulin-bound thrombin activates protein C, after which the APC/protein S pathway inactivates FVa and FVIIIa (4), both protein S-dependent pathways together limiting generation of the components of the prothrombinase complex, FXa and FVa. minutes in the absence of protein S to 1.1 minute in the presence of protein S, which is approximately the same as the t 1 2 of FXa inhibition by antithrombin. Hence, in the presence of protein S TFPI is as good as antithrombin in inhibiting the first FXa molecules that are formed during coagulation. However, it should be emphasized that because of its low plasma concentration, TFPI will not significantly contribute to FXa inhibition in the case of formation of large amounts of FXa. Two years after we reported that protein S is a cofactor of TFPI, 11 Ndonwi and Broze 33 confirmed that protein S enhances the inhibition of FXa by TFPI. However, they also showed that protein S does not stimulate the inhibition of TF-FVIIa by TFPI or by the TFPI-FXa complex and they proposed that the predominant pathway of inhibition of TF-FVIIa by TFPI involves the interaction of TFPI with a tertiary TF-FVIIa-FXa complex produced during FX activation. As the latter reaction sequence is not affected by protein S it was further hypothesized that the enhancing effect of protein S on FXa inhibition by TFPI is probably most important for the inhibition of FXa that escapes FVIIa-TF-Xa inhibition by TFPI. 33 This implies that the stimulatory effect of protein S in the inhibition of thrombin formation by TFPI is attributable to inhibition of FXa that has dissociated from the TF-FVIIa complex and that on its way to the prothrombinase complex is inhibited by TFPI. However, if this mechanism would apply, one would expect that the TFPI/ protein S system also inhibits intrinsically triggered thrombin formation, which appears not to be the case. 5 Hence, we Conclusions Novel insights in protein S anticoagulant activity resulted in the perception of a protein S dependent double-barrel negative feedback system that is constitutively active and that is aimed at limitation of prothrombinase activity (Figure 4). On one side protein S stimulates TFPI to inhibit FXa generation by TF/FVIIa, and on the other side protein S enhances the activity of (basal levels 49 of) APC in FVa inactivation, which in conjunction with other protease inhibitors leads to effective attenuation of coagulation. None. Disclosures References 1. Dahlbäck B. The tale of protein S and C4b-binding protein, a story of affection. Thromb Haemost. 2007;98: Rosing J, Hoekema L, Nicolaes GA, Thomassen MC, Hemker HC, Varadi K, Schwarz HP, Tans G. Effects of protein S and factor Xa on peptide bond cleavages during inactivation of factor Va and factor VaR506Q by activated protein C. J Biol Chem. 1995;270: O Brien LM, Mastri M, Fay PJ. Regulation of factor VIIIa by human activated protein C and protein S: inactivation of cofactor in the intrinsic factor Xase. Blood. 2000;95: Maurissen LF, Thomassen MC, Nicolaes GA, Dahlbäck B, Tans G, Rosing J, Hackeng TM. Re-evaluation of the role of the protein S-C4b binding protein complex in activated protein C-catalyzed factor Va-inactivation. Blood. 2008;111: Castoldi E, Hackeng TM. Regulation of coagulation by protein S. Curr Opin Hematol. 2008;15: Comp PC, Esmon CT. Recurrent venous thromboembolism in patients with a partial deficiency of protein S. N Engl J Med. 1984;311: Schwarz HP, Fischer M, Hopmeier P, Batard MA, Griffin JH. Plasma protein S deficiency in familial thrombotic disease. Blood. 1984;64: García de Frutos P, Fuentes-Prior P, Hurtado B, Sala N. Molecular basis of protein S deficiency. Thromb Haemost. 2007;98: Vantveer C, Hackeng TM, Biesbroeck D, Sixma JJ, Bouma BN. Increased prothrombin activation in protein S-deficient plasma under flow conditions on endothelial-cell matrix - an independent anticoagulant function of protein-s in plasma. Blood. 1995;85: Seré KM, Rosing J, Hackeng TM. Inhibition of thrombin generation by protein S at low procoagulant stimuli: implications for maintenance of the hemostatic balance. Blood. 2004;104: Hackeng TM, Seré KM, Tans G, Rosing J. Protein S stimulates inhibition of the tissue factor pathway by tissue factor pathway inhibitor. Proc Natl Acad Sci U S A. 2006;103: Heeb MJ, Mesters RM, Tans G, Rosing J, Griffin JH. Binding of protein S to factor Va associated with inhibition of prothrombinase that is independent of activated protein C. J Biol Chem. 1993;268: Hackeng TM, van t Veer C, Meijers JC, Bouma BN. Human protein S inhibits prothrombinase complex activity on endothelial cells and platelets via direct interactions with factors Va and Xa. J Biol Chem. 1994; 269: Heeb MJ, Rosing J, Bakker HM, Fernandez JA, Tans G, Griffin JH. Protein S binds to and inhibits factor Xa. Proc Natl Acad Sci U S A. 1994;91: van t Veer C, Butenas S, Golden NJ, Mann KG. Regulation of prothrombinase activity by protein S. Thromb Haemost. 1999;82:80 87.

6 2020 Arterioscler Thromb Vasc Biol December Heeb MJ, Schuck P, Xu X. Protein S multimers and monomers each have direct anticoagulant activity. J Thromb Haemost. 2006;4: Sere KM, Janssen MP, Willems GM, Tans G, Rosing J, Hackeng TM. Purified protein S contains multimeric forms with increased APCindependent anticoagulant activity. Biochemistry. 2001;40: Sere KM, Willems GM, Rosing J, Hackeng TM. Protein S multimers are generated in vitro and affect protein S structure-function analyses. Semin Hematol. 2006;43:S111 S Mitchell CA, Kelemen SM, Salem HH. The anticoagulant properties of a modified form of protein S. Thromb Haemost. 1988;60: vanwijnen M, Stam JG, vantveer C, Meijers JCM, Reitsma PH, Bertina RM, Bouma BN. The interaction of protein S with the phospholipid surface is essential for the activated protein C-independent activity of protein S. Thromb Haemost. 1996;76: Heeb MJ, Radtke KP, Fernandez JA, Tonnu L. Plasma contains protein S monomers and multimers with similar direct anticoagulant activity. J Thromb Haemost. 2006;4: Wun TC, Kretzmer KK, Girard TJ, Miletich JP, Broze GJ. Cloning and characterization of a CDNA coding for the lipoprotein-associated coagulation inhibitor shows that it consists of 3 tandem Kunitz-type inhibitory domains. J Biol Chem. 1988;263: Bajaj MS, Kuppuswamy MN, Saito H, Spitzer SG, Bajaj SP. Cultured normal human hepatocytes do not synthesize lipoprotein-associated coagulation inhibitor - evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci U S A. 1990;87: Girard TJ, Warren LA, Novotny WF, Likert KM, Brown SG, Miletich JP, Broze GJ Jr. Functional significance of the Kunitz-type inhibitory domains of lipoprotein-associated coagulation inhibitor. Nature. 1989; 338: Wesselschmidt R, Likert K, Huang Z, MacPhail L, Broze GJ Jr. Structural requirements for tissue factor pathway inhibitor interactions with factor Xa and heparin. Blood Coagul Fibrinol. 1993;4: Broze GJ, Lange GW, Duffin KL, Macphail L. Heterogeneity of Plasma Tissue Factor Pathway Inhibitor. Blood Coagul Fibrinol. 1994;5: Hackeng TM, Maurissen LFA, Castoldi E, Rosing J. Regulation of TFPI function by protein S. J Thromb Haemost. 2009;7: Broze GJ, Warren LA, Novotny WF, Higuchi DA, Girard JJ, Miletich JP. The lipoprotein-associated coagulation inhibitor that inhibits the factor- VII-tissue factor complex also inhibits factor Xa - insight into its possible mechanism of action. Blood. 1988;71: Nordfang O, Bjorn SE, Valentin S, Nielsen LS, Wildgoose P, Beck TC, Hedner U. The C-terminus of tissue factor pathway inhibitor is essential to its anticoagulant activity. Biochemistry. 1991;30: Wesselschmidt R, Likert K, Girard T, Wun TC, Broze GJ Jr. Tissue factor pathway inhibitor: the carboxy-terminus is required for optimal inhibition of factor Xa. Blood. 1992;79: Novotny WF, Brown SG, Miletich JP, Rader DJ, Broze GJ. Plasma antigen levels of the lipoprotein-associated coagulation inhibitor in patient samples. Blood. 1991;78: Huang ZF, Wun TC, Broze GJ. Kinetics of factor-xa inhibition by tissue factor pathway Inhibitor. J Biol Chem. 1993;268: Ndonwi M, Broze GJ Jr. Protein S enhances the TFPI inhibition of factor Xa but not its inhibition of factor VIIa/tissue factor. J Thromb Haemost. In press. 34. Vantveer C, Hackeng TM, Delahaye C, Sixma JJ, Bouma BN. Activated factor-x and thrombin formation triggered by tissue factor on endothelial-cell matrix in a flow model - effect of the tissue factor pathway inhibitor. Blood. 1994;84: Hackeng TM, Hessing M, van t Veer C, Meijer-Huizinga F, Meijers JC, de Groot PG, van Mourik JA, Bouma BN. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C. J Biol Chem. 1993;268: Stenberg Y, Muranyi A, Steen C, Thulin E, Drakenberg T, Stenflo J. EGF-like module pair 3-4 in vitamin K-dependent protein S: Modulation of calcium affinity of module 4 by module 3, and interaction with factor X. J Mol Biol. 1999;293: Yegneswaran S, Hackeng TM, Dawson PE, Griffin JH. The thrombinsensitive region of protein S mediates phospholipid-dependent interaction with factor Xa. J Biol Chem. 2008;283: Lockett JM, Mast AE. Contribution of regions distal to glycine-160 to the anticoagulant activity of tissue factor pathway inhibitor. Biochemistry. 2002;41: Dahm AE, Sandset PM, Rosendaal FR. The association between protein S levels and anticoagulant activity of tissue factor pathway inhibitor type 1. J Thromb Haemost. 2008;6: Broze GJ, Girard TJ, Novotny WF. Regulation of Coagulation by a Multivalent Kunitz-Type Inhibitor. Biochemistry. 1990;29: Nicolaes GA, Thomassen MC, Tans G, Rosing J, Hemker HC. Effect of activated protein C on thrombin generation and on the thrombin potential in plasma of normal and APC-resistant individuals. Blood Coagul Fibrinolysis. 1997;8: De Visser MCH, Vlieg AV, Tans G, Rosing J, Dahm AEA, Sandset PM, Rosendaal FR, Bertina RM. Determinants of the APTT- and ETP-based APC sensitivity tests. J Thromb Haemost. 2005;3: Dielis AWJH, Castoldi E, Spronk HMH, Van Oerle R, Hamulyak K, Ten Cate H, Rosing J. Coagulation factors and the protein C system as determinants of thrombin generation in a normal population. J Thromb Haemost. 2008;6: van Wijnen M, van t Veer C, Meijers JC, Bertina RM, Bouma BN. A plasma coagulation assay for an activated protein C-independent anticoagulant activity of protein S. Thromb Haemost. 1998;80: Mast AE, Broze GJ Jr. Physiological concentrations of tissue factor pathway inhibitor do not inhibit prothrombinase. Blood. 1996;87: Solymoss S, Tucker MM, Tracy PB. Kinetics of inactivation of membrane-bound factor Va by activated protein C. Protein S modulates factor Xa protection. J Biol Chem. 1988;263: Brufatto N, Nesheim ME. The use of prothrombin(s525c) labeled with fluorescein to directly study the inhibition of prothrombinase by antithrombin during prothrombin activation. J Biol Chem. 2001;276: Conard J, Brosstad F, Lie Larsen M, Samama M, Abildgaard U. Molar antithrombin concentration in normal human plasma. Haemostasis. 1983; 13: Gruber A, Griffin JH. Direct detection of activated protein-c in blood from human-subjects. Blood. 1992;79:

Determinants of the APTT- and ETP-based APC sensitivity tests

Determinants of the APTT- and ETP-based APC sensitivity tests Journal of Thrombosis and Haemostasis, 3: 1488 1494 ORIGINAL ARTICLE Determinants of the APTT- and ETP-based APC sensitivity tests M. C. H. DE VISSER,* A. VAN HYLCKAMA VLIEG,* G. TANS,à J. ROSING,à A.

More information

The APC-independent anticoagulant activity of protein S in plasma is decreased by elevated prothrombin levels due to the prothrombin G20210A mutation

The APC-independent anticoagulant activity of protein S in plasma is decreased by elevated prothrombin levels due to the prothrombin G20210A mutation HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY The APC-independent anticoagulant activity of protein S in plasma is decreased by elevated prothrombin levels due to the prothrombin G20210A mutation Rory R.

More information

Continuing Medical Education

Continuing Medical Education Continuing Medical Education WHY DO HEMOPHILIACS BLEED? B.R. Agarwal Z.E. Currimbhoy Deficiency of coagulation factor VIII (antihemophilic factor) and coagulation factor IX (Christmas factor) result in

More information

Blood coagulation and fibrinolysis. Blood clotting (HAP unit 5 th )

Blood coagulation and fibrinolysis. Blood clotting (HAP unit 5 th ) Blood coagulation and fibrinolysis Blood clotting (HAP unit 5 th ) Vessel injury Antithrombogenic (Favors fluid blood) Thrombogenic (Favors clotting) 3 Major systems involved Vessel wall Endothelium ECM

More information

The anticoagulant function of coagulation factor V

The anticoagulant function of coagulation factor V Review Article Schattauer 2012 15 The anticoagulant function of coagulation factor V Thomas J. Cramer; Andrew J. Gale Department of Molecular and Experimental Medicine, The Scripps Research Institute,

More information

COPYRIGHTED MATERIAL. Overview of h emostasis. Kathleen Brummel Ziedins and Kenneth G. Mann University of Vermont, College of Medicine, VT, USA

COPYRIGHTED MATERIAL. Overview of h emostasis. Kathleen Brummel Ziedins and Kenneth G. Mann University of Vermont, College of Medicine, VT, USA 1 Overview of h emostasis Kathleen Brummel Ziedins and Kenneth G. Mann University of Vermont, College of Medicine, VT, USA Introduction The maintenance of blood fluidity and protection from blood leakage

More information

COAGULATION INHIBITORS LABORATORY DIAGNOSIS OF PROTHROMBOTIC STATES REGULATION OF. ANTICOAGULANT PROTEIN DEFICIENCY Disease entities COAGULATION

COAGULATION INHIBITORS LABORATORY DIAGNOSIS OF PROTHROMBOTIC STATES REGULATION OF. ANTICOAGULANT PROTEIN DEFICIENCY Disease entities COAGULATION LABORATORY DIAGNOSIS OF PROTHROMBOTIC COAGULATION INHIBITORS Tissue Factor Pathway Inhibitor (TFPI) Lipoprotein Associated Coagulation Inhibitor (LACI) Extrinsic Pathway Inhibitor (EPI) Complexes with

More information

Part IV Antithrombotics, Anticoagulants and Fibrinolytics

Part IV Antithrombotics, Anticoagulants and Fibrinolytics Part IV Antithrombotics, Anticoagulants and Fibrinolytics "The meaning of good and bad, of better and worse, is simply helping or hurting" Emerson Chapter 16: Blood Coagulation and Fibrinolytic System

More information

Chapter 1. General introduction

Chapter 1. General introduction Chapter 1 General introduction 8 Haemostasis All organs and tissues of higher organisms are provided with nutrients and oxygen through the bloodstream. The bloodstream is an extensive vascular system that

More information

Received 26 November 1996; accepted for publication 10 February 1997 RAPID PAPER

Received 26 November 1996; accepted for publication 10 February 1997 RAPID PAPER British Journal of Haematology, 1997, 97, 233 238 RAPID PAPER Oral contraceptives and venous thrombosis: different sensitivities to activated protein C in women using second- and third-generation oral

More information

Modeling of human factor Va inactivation by activated protein C

Modeling of human factor Va inactivation by activated protein C Bravo et al. BMC Systems Biology 2012, 6:45 RESEARCH ARTICLE Modeling of human factor Va inactivation by activated protein C Maria Cristina Bravo 1, Thomas Orfeo 2, Kenneth G Mann 2 and Stephen J Everse

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction There are several disorders which carry an increased risk of thrombosis, clots that interfere with normal circulation, including: venous thromboembolism (VTE), comprising both deep

More information

Primary Exam Physiology lecture 5. Haemostasis

Primary Exam Physiology lecture 5. Haemostasis Primary Exam Physiology lecture 5 Haemostasis Haemostasis Body s response for the prevention and cessation of bleeding. Broadly consists of: Primary Haemostasis - vascular spasm and platlet plug formation

More information

Protein S (PS) 1 is a vitamin K dependent anticoagulant

Protein S (PS) 1 is a vitamin K dependent anticoagulant Protein S Is a Cofactor for Platelet and Endothelial Tissue Factor Pathway Inhibitor-α but Not for Cell Surface Associated Tissue Factor Pathway Inhibitor Jeremy P. Wood, Paul E. R. Ellery, Susan A. Maroney,

More information

Blood clotting. Subsequent covalent cross-linking of fibrin by a transglutaminase (factor XIII) further stabilizes the thrombus.

Blood clotting. Subsequent covalent cross-linking of fibrin by a transglutaminase (factor XIII) further stabilizes the thrombus. Blood clotting It is the conversion, catalyzed by thrombin, of the soluble plasma protein fibrinogen (factor I) into polymeric fibrin, which is deposited as a fibrous network in the primary thrombus. Thrombin

More information

REVIEW. Blood Coagulation. S. Butenas and K. G. Mann*

REVIEW. Blood Coagulation. S. Butenas and K. G. Mann* Biochemistry (Moscow), Vol. 67, No.,, pp. -. Translated from Biokhimiya, Vol. 67, No.,, pp. 5-5. Original Russian Text Copyright by Butenas, Mann. REVIEW Blood Coagulation S. Butenas and K. G. Mann* University

More information

Factor Xa Cleavage of Tissue Factor Pathway Inhibitor Is Associated with Loss of Anticoagulant Activity*

Factor Xa Cleavage of Tissue Factor Pathway Inhibitor Is Associated with Loss of Anticoagulant Activity* 1998 Schattauer Verlag, Stuttgart Thromb Haemost 1998; 80: 273 80 Factor Xa Cleavage of Tissue Factor Pathway Inhibitor Is Associated with Loss of Anticoagulant Activity* Irene Salemink 1, Jo Franssen

More information

Introduction to coagulation and laboratory tests

Introduction to coagulation and laboratory tests Introduction to coagulation and laboratory tests Marc Jacquemin Special Haemostasis Laboratory Center for Molecular and Vascular Biology University of Leuven Coagulation in a blood vessel: fibrin stabilises

More information

The role of Ca² + ions in the complex assembling of protein Z and Z-dependent protease inhibitor: A structure and dynamics investigation

The role of Ca² + ions in the complex assembling of protein Z and Z-dependent protease inhibitor: A structure and dynamics investigation www.bioinformation.net Hypothesis Volume 8(9) The role of Ca² + ions in the complex assembling of protein Z and Z-dependent protease inhibitor: A structure and dynamics investigation Zahra Karimi 1 *,

More information

Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitora, and protein S

Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway inhibitora, and protein S Journal of Thrombosis and Haemostasis, 15: 1241 1250 DOI: 10.1111/jth.13665 STATE OF THE ART ISTH2017 BERLIN Novel insights into the regulation of coagulation by factor V isoforms, tissue factor pathway

More information

Tilman M. HACKENG*, Guido TANS, Stefan J. KOPPELMAN*, Philip G. DE GROOT*, Jan ROSING and Bonno N. BOUMA* INTRODUCTION

Tilman M. HACKENG*, Guido TANS, Stefan J. KOPPELMAN*, Philip G. DE GROOT*, Jan ROSING and Bonno N. BOUMA* INTRODUCTION Biochem. J. (1996) 319, 399 405 (Printed in Great Britain) 399 Protein C activation on endothelial cells by prothrombin activation products generated in situ: meizothrombin is a better protein C activator

More information

PHASES OF HAEMOSTASIS

PHASES OF HAEMOSTASIS HAEMOSTASIS Maintains the integrity of a closed, highpressure circulatory system after vascular damage Vessel Wall Injury events in the vessel wall and in the blood which seal breach Delicate balance exists

More information

Diagnosis of hypercoagulability is by. Molecular markers

Diagnosis of hypercoagulability is by. Molecular markers Agenda limitations of clinical laboratories to evaluate hypercoagulability and the underlying cause for thrombosis what is the INR the lupus anticoagulant and the antiphospholipid antibody syndrome hassouna

More information

Ch. 45 Blood Plasma proteins, Coagulation and Fibrinolysis Student Learning Outcomes: Describe basic components of plasma

Ch. 45 Blood Plasma proteins, Coagulation and Fibrinolysis Student Learning Outcomes: Describe basic components of plasma Chapt. 45 Ch. 45 Blood Plasma proteins, Coagulation and Fibrinolysis Student Learning Outcomes: Describe basic components of plasma Inheritance of X-linked gene for Factor VIII hemophilia A Explain the

More information

Thrombophilia. Diagnosis and Management. Kevin P. Hubbard, DO, FACOI

Thrombophilia. Diagnosis and Management. Kevin P. Hubbard, DO, FACOI Thrombophilia Diagnosis and Management Kevin P. Hubbard, DO, FACOI Clinical Professor of Medicine Kansas City University of Medicine and Biosciences-College of Osteopathic Medicine Kansas City, Missouri

More information

Thursday, February 26, :00 am. Regulation of Coagulation/Disseminated Intravascular Coagulation HEMOSTASIS/THROMBOSIS III

Thursday, February 26, :00 am. Regulation of Coagulation/Disseminated Intravascular Coagulation HEMOSTASIS/THROMBOSIS III REGULATION OF COAGULATION Introduction HEMOSTASIS/THROMBOSIS III Regulation of Coagulation/Disseminated Coagulation necessary for maintenance of vascular integrity Enough fibrinogen to clot all vessels

More information

Cofactor Control of a Vital Enzymatic Reaction;the Effect of Factor Va on Thrombin Formation During Blood Coagulation

Cofactor Control of a Vital Enzymatic Reaction;the Effect of Factor Va on Thrombin Formation During Blood Coagulation Cleveland State University EngagedScholarship@CSU ETD Archive 2009 Cofactor Control of a Vital Enzymatic Reaction;the Effect of Factor Va on Thrombin Formation During Blood Coagulation Jamila Hirbawi Cleveland

More information

This slide belongs to iron lecture and it is to clarify the iron cycle in the body and the effect of hypoxia on erythropoitein secretion

This slide belongs to iron lecture and it is to clarify the iron cycle in the body and the effect of hypoxia on erythropoitein secretion This slide belongs to iron lecture and it is to clarify the iron cycle in the body and the effect of hypoxia on erythropoitein secretion Topics of today lectures: Hemostasis Meaning of hemostasis Mechanisms

More information

Coagulation factor and protease pathways in thrombosis and cardiovascular disease

Coagulation factor and protease pathways in thrombosis and cardiovascular disease 60 th Anniversary 1265 Coagulation factor and protease pathways in thrombosis and cardiovascular disease Hugo ten Cate 1,3 ; Tilman M. Hackeng 2 ; Pablo García de Frutos 4 1 Department of Internal Medicine,

More information

Biochemical Reaction Networks and Blood Clotting

Biochemical Reaction Networks and Blood Clotting Biochemical Reaction Networks and Blood Clotting Yasmeen Hussain, Aaron Fogelson Abstract Following an injury to the walls of a blood vessel, platelet aggregation and blood coagulation are induced. Through

More information

THROMBOTIC DISORDERS: The Final Frontier

THROMBOTIC DISORDERS: The Final Frontier THROMBOTIC DISORDERS: The Final Frontier Jeffrey I. Weitz, MD, FRCP(C), FACP Professor of Medicine and Biochemistry McMaster University Canada Research Chair in Thrombosis Heart & Stroke Foundation/ J.F.

More information

Laboratory Evaluation of Venous Thrombosis Risk

Laboratory Evaluation of Venous Thrombosis Risk Laboratory Evaluation of Venous Thrombosis Risk Dorothy M. Adcock, MD Volume 17, Number 12 December 2003 Objective: The reader will be able to discuss the concepts of risk factor, risk potential and thrombotic

More information

The assembly of the factor X-activating complex on activated human platelets

The assembly of the factor X-activating complex on activated human platelets Journal of Thrombosis and Haemostasis, 1: 48 59 REVIEW The assembly of the factor X-activating complex on activated human platelets S. S. AHMAD,* F. S. LONDON* and P. N. WALSH*y *The Sol Sherry Thrombosis

More information

Rethinking events in the haemostatic process: role of factor V and TFPI

Rethinking events in the haemostatic process: role of factor V and TFPI Haemophilia (2016), 22 (Suppl. 5), 3 8 DOI: 10.1111/hae.13004 REVIEW ARTICLE Rethinking events in the haemostatic process: role of factor V and TFPI R. M. CAMIRE Division of Hematology, Department of Pediatrics,

More information

On a Minimal Mathematical Model for Regulation of Factor Va by Activated Protein C

On a Minimal Mathematical Model for Regulation of Factor Va by Activated Protein C UNIVERSITY OF VERMONT DEPARTMENT OF MATHEMATICS AND STATISTICS On a Minimal Mathematical Model for Regulation of Factor Va by Activated Protein C Laura B. Balzer Advisor: Daniel Bentil, Ph.D. Please Note:

More information

Advances in understanding pathogenic mechanisms of thrombophilic disorders

Advances in understanding pathogenic mechanisms of thrombophilic disorders ASH 50th anniversary review Advances in understanding pathogenic mechanisms of thrombophilic disorders Björn Dahlbäck 1 1 Department of Laboratory Medicine, Section of Clinical Chemistry, Lund University,

More information

Hemostasis. Learning objectives Dr. Mária Dux. Components: blood vessel wall thrombocytes (platelets) plasma proteins

Hemostasis. Learning objectives Dr. Mária Dux. Components: blood vessel wall thrombocytes (platelets) plasma proteins Hemostasis Learning objectives 14-16 Dr. Mária Dux Components: blood vessel wall thrombocytes (platelets) plasma proteins Hemostatic balance! procoagulating activity anticoagulating activity 1 Thrombocytes

More information

Approach to Thrombosis

Approach to Thrombosis Approach to Thrombosis Theera Ruchutrakool, M.D. Division of Hematology Department of Medicine Siriraj Hospital Faculty of Medicine Mahidol University Approach to Thrombosis Thrombosis: thrombus formation

More information

The anticoagulant protein C pathway

The anticoagulant protein C pathway FEBS Letters 579 (2005) 3310 3316 FEBS 29417 Minireview The anticoagulant protein C pathway Björn Dahlbäck a, *, Bruno O Villoutreix b a Department of Laboratory Medicine, Clinical Chemistry, Lund University,

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle   holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/37409 holds various files of this Leiden University dissertation Author: Engbers, Marissa Title: Conventional and age-specific risk factors for venous thrombosis

More information

Hormone-induced Changes in the Coagulation System

Hormone-induced Changes in the Coagulation System Hormone-induced Changes in the Coagulation System Hormone-induced Changes in the Coagulation System ISBN 978 90 5278 895 1 Layout and cover by Svetlana N. Tchaikovski Printed by Datawyse BV Universitaire

More information

JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH

JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH JOURNAL OF CLINICAL AND DIAGNOSTIC RESEARCH How to cite this article: CHOWTA NITHYANANDA K, ARUN S, BIPIN P, FAZIL A. CHRONIC THROMBOEMBOLIC PULMONARY ARTERY HYPERTENSION WITH DEEP VEIN THROMBOSIS DUE

More information

Reprinted in the IVIS website with the permission of the ACVP and ASVCP

Reprinted in the IVIS website with the permission of the ACVP and ASVCP Proceedings of the Annual Meeting of the American College of Veterinary Pathologists and American Society for Veterinary Clinical Pathology - Tucson, Arizona 2006 - Reprinted in the IVIS website with the

More information

Inhibition by Human Thrombomodulin of Factor Xa-mediated Cleavage of Prothrombin

Inhibition by Human Thrombomodulin of Factor Xa-mediated Cleavage of Prothrombin Inhibition by Human Thrombomodulin of Factor Xa-mediated Cleavage of Prothrombin E. Anne Thompson and Hatem H. Salem Department ofmedicine, Monash Medical School, Prahran, 3181, Victoria, Australia Abstract

More information

Determination of APTT factor sensitivity the misguiding guideline

Determination of APTT factor sensitivity the misguiding guideline International Journal of Laboratory Hematology ORIGINAL ARTICLE The Official journal of the International Society for Laboratory Hematology INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY Determination

More information

Studies of Coagulation and Fibrinolysis

Studies of Coagulation and Fibrinolysis Studies of Coagulation and Fibrinolysis by Paul Y. Kim A thesis submitted to the Department of Biochemistry in conformity with the requirements for the degree of Doctor of Philosophy Queen s University

More information

Molecular mechanisms & clinical consequences. of prothrombin mutations. A.J. Hauer

Molecular mechanisms & clinical consequences. of prothrombin mutations. A.J. Hauer Molecular mechanisms & clinical consequences of prothrombin mutations A.J. Hauer 07-12-2018 Prothrombin & the coagulation cascade Coagulation factor II, thrombin. Prothrombin is synthesized in the liver

More information

Supplementary Appendix

Supplementary Appendix Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: Shima M, Hanabusa H, Taki M, et al. Factor VIII mimetic function

More information

The anticoagulant protein C pathway.

The anticoagulant protein C pathway. The anticoagulant protein C pathway. Dahlbäck, Björn; Villoutreix, Bruno O Published in: FEBS Letters DOI: 10.1016/j.febslet.2005.03.001 Published: 2005-01-01 Link to publication Citation for published

More information

APC-PCI complex concentration is higher in patients with previous venous thromboembolism with Factor V Leiden.

APC-PCI complex concentration is higher in patients with previous venous thromboembolism with Factor V Leiden. APC-PCI complex concentration is higher in patients with previous venous thromboembolism with Factor V Leiden. Strandberg, Karin; Stenflo, Johan; Nilsson, C; Svensson, Peter Published in: Journal of Thrombosis

More information

THROMBIN REGULATION IN NEWBORN INFANTS

THROMBIN REGULATION IN NEWBORN INFANTS THROMBIN REGULATION IN NEWBORN INFANTS Satu Långström Pediatric Graduate School Hospital for Children and Adolescents University of Helsinki Helsinki, Finland ACADEMIC DISSERTATION To be publicly discussed,

More information

protein C (blood clotting/factor V/clotting inhibitors)

protein C (blood clotting/factor V/clotting inhibitors) Proc. Nati Acad. Sci. USA Vol. 80, pp. 1584-1588, March 1983 Biochemistry Human coagulation factor Va is a cofactor for the activation of protein C (blood clotting/factor V/clotting inhibitors) HATEM H.

More information

PART I. Introduction COPYRIGHTED MATERIAL

PART I. Introduction COPYRIGHTED MATERIAL PART I Introduction COPYRIGHTED MERIAL CHAPTER 1 Overview of h emostasis Kathleen Brummel Ziedins and Kenneth G. Mann University of Vermont, College of Medicine, VT, USA Introduction The maintenance of

More information

Inherited Thrombophilia Testing. George Rodgers, MD, PhD Kristi Smock MD

Inherited Thrombophilia Testing. George Rodgers, MD, PhD Kristi Smock MD Inherited Thrombophilia Testing George Rodgers, MD, PhD Kristi Smock MD Prevalence and risk associated with inherited thrombotic disorders Inherited Risk Factor % General Population % Patients w/ Thrombosis

More information

NIH Public Access Author Manuscript Transfus Apher Sci. Author manuscript; available in PMC 2009 February 1.

NIH Public Access Author Manuscript Transfus Apher Sci. Author manuscript; available in PMC 2009 February 1. NIH Public Access Author Manuscript Published in final edited form as: Transfus Apher Sci. 2008 February ; 38(1): 9 14. doi:10.1016/j.transci.2007.12.001. Expression of Tissue Factor Pathway Inhibitor

More information

A comparative study of functional assays for tissue factor pathway inhibitor using normal plasma and clinical samples

A comparative study of functional assays for tissue factor pathway inhibitor using normal plasma and clinical samples Blood Coagulation and Fibrinolysis 2000, 11:327±333 A comparative study of functional assays for tissue factor pathway inhibitor using normal plasma and clinical samples M. J. Adams and R. Oostryck (Received

More information

Isolation of a protein Z-dependent plasma protease inhibitor

Isolation of a protein Z-dependent plasma protease inhibitor Proc. Natl. Acad. Sci. USA Vol. 95, pp. 9250 9255, August 1998 Biochemistry Isolation of a protein Z-dependent plasma protease inhibitor XIN HAN, RYAN FIEHLER, AND GEORGE J. BROZE, JR.* Division of Hematology,

More information

The New England Journal of Medicine HIGH LEVELS OF COAGULATION FACTOR XI AS A RISK FACTOR FOR VENOUS THROMBOSIS

The New England Journal of Medicine HIGH LEVELS OF COAGULATION FACTOR XI AS A RISK FACTOR FOR VENOUS THROMBOSIS HIGH LEVELS OF COAGULATION FACTOR XI AS A RISK FACTOR FOR VENOUS THROMBOSIS JOOST C.M. MEIJERS, PH.D., WINNIE L.H. TEKELENBURG, M.SC., BONNO N. BOUMA, PH.D., ROGIER M. BERTINA, PH.D., AND FRITS R. ROSENDAAL,

More information

UNIT VI. Chapter 37: Platelets Hemostasis and Blood Coagulation Presented by Dr. Diksha Yadav. Copyright 2011 by Saunders, an imprint of Elsevier Inc.

UNIT VI. Chapter 37: Platelets Hemostasis and Blood Coagulation Presented by Dr. Diksha Yadav. Copyright 2011 by Saunders, an imprint of Elsevier Inc. UNIT VI Chapter 37: Platelets Hemostasis and Blood Coagulation Presented by Dr. Diksha Yadav Hemostasis: Prevention of Blood Loss Vascular constriction Formation of a platelet plug Formation of a blood

More information

Recent experimental and clinical studies have shown that

Recent experimental and clinical studies have shown that Ability of Recombinant Factor VIIa to Generate Thrombin During Inhibition of Tissue Factor in Human Subjects Philip W. Friederich, MD; Marcel Levi, MD; Kenneth A. Bauer, MD; George P. Vlasuk, PhD; William

More information

The effect of the direct oral anticoagulants (DOACs) on haemostasis tests.

The effect of the direct oral anticoagulants (DOACs) on haemostasis tests. The effect of the direct oral anticoagulants (DOACs) on haemostasis tests. Emmanuel J Favaloro, Haematology, ICPMR, Pathology West, Sydney Centres for Thrombosis and Haemostasis, Westmead Hospital (with

More information

THROMBOPHILIA SCREENING

THROMBOPHILIA SCREENING THROMBOPHILIA SCREENING Introduction The regulation of haemostasis Normally, when a clot occurs, it exactly occurs where it has to be and does not grow more than necessary due to the action of the haemostasis

More information

Chapter 3. Haemostatic abnormalities in patients with liver disease

Chapter 3. Haemostatic abnormalities in patients with liver disease Chapter 3 Haemostatic abnormalities in patients with liver disease Ton Lisman, Frank W.G. Leebeek 1, and Philip G. de Groot Thrombosis and Haemostasis Laboratory, Department of Haematology, University

More information

PICT ANTICOAGULANT MONITORING 1. PEFAKIT PICT. Clotting Assay. PEFAKIT PiCT. PEFAKIT PICT Calibrators UFH. PEFAKIT PICT Controls UFH

PICT ANTICOAGULANT MONITORING 1. PEFAKIT PICT. Clotting Assay. PEFAKIT PiCT. PEFAKIT PICT Calibrators UFH. PEFAKIT PICT Controls UFH 1 2 3 4 PEFAKIT PiCT PEFAKIT PICT Calibrators UFH PEFAKIT PICT Controls UFH PEFAKIT PICT Calibrators LMWH Clotting Assay PICT 1. PEFAKIT PICT Package size 8-505-01 kit 80 3 vials of PiCT Activator (2mL)

More information

DISSEMINATED INTRAVASCULAR COAGULATION (DIC) Pichika Chantrathammachart MD Division of Hematology, Department of Medicine Ramathibodi Hospital

DISSEMINATED INTRAVASCULAR COAGULATION (DIC) Pichika Chantrathammachart MD Division of Hematology, Department of Medicine Ramathibodi Hospital DISSEMINATED INTRAVASCULAR COAGULATION (DIC) Pichika Chantrathammachart MD Division of Hematology, Department of Medicine Ramathibodi Hospital Disseminated intravascular coagulation (DIC) Disseminated

More information

^ J a n e t K a l l o. ^ J u n e CLINICAL UTILITY OF PLASMA PROTEIN C MEASUREMENT

^ J a n e t K a l l o. ^ J u n e CLINICAL UTILITY OF PLASMA PROTEIN C MEASUREMENT ^ J a n e t K a l l o ^ J u n e 1 9 8 8 CLINICAL UTILITY OF PLASMA PROTEIN C MEASUREMENT TEST Plasma protein C, antigenic and functional activity measurement BACKGROUND Protein C is one of several known

More information

Factor Va Directs Catalysis by Factor Xa During Prothrombin Activation

Factor Va Directs Catalysis by Factor Xa During Prothrombin Activation Cleveland State University EngagedScholarship@CSU ETD Archive 2008 Factor Va Directs Catalysis by Factor Xa During Prothrombin Activation Michael Anthony Bukys Cleveland State University Follow this and

More information

High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C

High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C John H. Griffin,, Linda K. Curtiss, José A. Fernández J Clin Invest. 1999;103(2):219-227. https://doi.org/10.1172/jci5006.

More information

Disseminated Intravascular Coagulation. M.Bahmanpour MD Assistant professor IUMS

Disseminated Intravascular Coagulation. M.Bahmanpour MD Assistant professor IUMS به نام خدا Disseminated Intravascular Coagulation M.Bahmanpour MD Assistant professor IUMS Algorithm for Diagnosis of DIC DIC Score factor score Presence of known underlying disorder No= 0 yes=2 Coagolation

More information

The inventory of molecular components and the presumed

The inventory of molecular components and the presumed The Dynamics of Thrombin Formation Kenneth G. Mann, Saulius Butenas, Kathleen Brummel Abstract The central event of the hemostatic process is the generation of thrombin through the tissue factor pathway.

More information

Elucidating the interaction between the Fragment 2 domain of Prothrombin and Factor Va

Elucidating the interaction between the Fragment 2 domain of Prothrombin and Factor Va Elucidating the interaction between the Fragment 2 domain of Prothrombin and Factor Va by Joanne Elizza Berridge A thesis submitted to the Graduate Program in Biochemistry in the Department of Biomedical

More information

Hemostatic mechanisms have evolved to protect. Theories of Blood Coagulation. Overview of Hemostasis

Hemostatic mechanisms have evolved to protect. Theories of Blood Coagulation. Overview of Hemostasis James P. Riddel Jr, MS, RN, CPNP Bradley E. Aouizerat, PhD Christine Miaskowski, RN, PhD David P. Lillicrap, MD, FRCPC Although the concept of the coagulation cascade represented a significant advance

More information

Consultative Coagulation How to Effectively Answer Common Questions About Hemostasis Testing Session #5000

Consultative Coagulation How to Effectively Answer Common Questions About Hemostasis Testing Session #5000 Consultative Coagulation How to Effectively Answer Common Questions About Hemostasis Testing Session #5000 Dorothy M. (Adcock) Funk, M.D. Karen A. Moser, M.D. Esoterix Coagulation September 20, 2013 Disclosures

More information

Tissue Factor expression

Tissue Factor expression Dip. Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano and Centro Cardiologico Monzino IRCCS, Milano Platelet activation and Tissue Factor expression Marina Camera Conflict of interest:

More information

Jeanet M. Kemmeren, Ale Algra, Joost C. M. Meijers, Guido Tans, Bonno N. Bouma, Joyce Curvers, Jan Rosing, and Diederick E.

Jeanet M. Kemmeren, Ale Algra, Joost C. M. Meijers, Guido Tans, Bonno N. Bouma, Joyce Curvers, Jan Rosing, and Diederick E. HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Effect of second- and third-generation oral contraceptives on the protein C system in the absence or presence of the factor V Leiden mutation: a randomized

More information

Tissue factor pathway inhibitor: from unknown coagulation inhibitor to major antithrombotic principle

Tissue factor pathway inhibitor: from unknown coagulation inhibitor to major antithrombotic principle 286 Ž. Cardiovascular Research 33 1997 286 291 Cardiovascular Mystery Series Series Editor: Karl T. Weber Review Tissue factor pathway inhibitor: from unknown coagulation inhibitor to major antithrombotic

More information

Factor VIIa-Antithrombin complex levels and Factor Xa generation in CAD patients

Factor VIIa-Antithrombin complex levels and Factor Xa generation in CAD patients Factor VIIa-Antithrombin complex levels and Factor Xa generation in CAD patients Israel Society of Thrombosis and Hemostasis - Autumn Symposium Ramot Hotel September 14-16, 2017 Francesco Bernardi University

More information

Coagulation under Flow: The Influence of Flow-Mediated Transport on the Initiation and Inhibition of Coagulation

Coagulation under Flow: The Influence of Flow-Mediated Transport on the Initiation and Inhibition of Coagulation Pathophysiol Haemost Thromb 25,34:91 18 DOI: 1.1159/8993 Coagulation under Flow: The Influence of Flow-Mediated Transport on the Initiation and Inhibition of Coagulation a, b a Aaron L. Fogelson Nessy

More information

Topics of today lectures: Hemostasis

Topics of today lectures: Hemostasis Topics of today lectures: Hemostasis Meaning of hemostasis Mechanisms of hemostasis - Vascular contraction - Platelets plug - Blood coagulation (clotting) - Structure and functions of platelets - Blood

More information

SUPPLEMENTAL INFORMATION

SUPPLEMENTAL INFORMATION SUPPLEMENTAL INFORMATION EXPERIMENTAL PROCEDURES Tryptic digestion protection experiments - PCSK9 with Ab-3D5 (1:1 molar ratio) in 50 mm Tris, ph 8.0, 150 mm NaCl was incubated overnight at 4 o C. The

More information

What are blood clots?

What are blood clots? What are blood clots? Dr Matthew Fay GP Principal The Willows Medical Practice- Queensbury GPwSI and Co-Founder Westcliffe Cardiology Service GP Partner Westcliffe Medical Group Created 5/31/18 Dr. Matthew

More information

Systemic blood coagulation activation in acute coronary syndromes

Systemic blood coagulation activation in acute coronary syndromes THROMBOSIS AND HEMOSTASIS Systemic blood coagulation activation in acute coronary syndromes Anetta Undas, 1 Konstanty Szułdrzyński, 2 Kathleen E. Brummel-Ziedins, 3 Wiesława Tracz, 1 Krzysztof Zmudka,

More information

Inhibition of the Anticoagulant Activity of Protein S by Prothrombin

Inhibition of the Anticoagulant Activity of Protein S by Prothrombin Inhibition of the Anticoagulant Activity of Protein S by Prothrombin C. A. Mitchell, S. M. Jane, and H. H. Salem Department ofmedicine, Monash Medical School, Prahran, Melbourne, Victoria, Australia Abstract

More information

Physiology of. The Blood hemostasis. By prof. Israa f. jaafar

Physiology of. The Blood hemostasis. By prof. Israa f. jaafar Physiology of The Blood hemostasis By prof. Israa f. jaafar Learning objectives Understand the Platelet structure and function Explane the Platelet production Understand the phases of hemostasis: vascular

More information

1 Introduction Hemostasis Blood Coagulation Modulation of Coagulation Factor Levels Present Investigation...

1 Introduction Hemostasis Blood Coagulation Modulation of Coagulation Factor Levels Present Investigation... Contents 1 Introduction 1 1.1 Hemostasis................................... 2 1.2 Blood Coagulation............................... 2 1.3 Modulation of Coagulation Factor Levels.................. 8 1.4

More information

The intrinsic factor Xase, a complex enzyme composed of

The intrinsic factor Xase, a complex enzyme composed of Thrombosis Influence of Factor VIIa and Phospholipids on Coagulation in Acquired Hemophilia Saulius Butenas, Kathleen E. Brummel, Sara G. Paradis, Kenneth G. Mann Objective This study was performed to

More information

Haemostasis, thrombosis risk and hormone replacement therapy

Haemostasis, thrombosis risk and hormone replacement therapy Haemostasis, thrombosis risk and hormone replacement therapy Serge Motte Brussels 13.05.17 - MY TALK TODAY The coagulation cascade and its regulation Effects of hormone replacement therapy on haemostasis

More information

Mathematical Model of Serine Protease Inhibition in the Tissue Factor Pathway to Thrombin*

Mathematical Model of Serine Protease Inhibition in the Tissue Factor Pathway to Thrombin* THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 270, No. 43, Issue of October 27, pp. 25383 25387, 1995 1995 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Mathematical

More information

Identification of new protein-protein interactions between factor Va and factor Xa by sulfo-sbed cross-linking

Identification of new protein-protein interactions between factor Va and factor Xa by sulfo-sbed cross-linking Identification of new protein-protein interactions between factor Va and factor Xa by sulfo-sbed cross-linking Khine Win 2 nd year medical student University of Vermont College of Medicine Faculty Mentor:

More information

Hemostasis and Thrombosis

Hemostasis and Thrombosis Hemostasis Hemostasis and Thrombosis Normal hemostasis is a consequence of tightly regulated processes that maintain blood in a fluid state in normal vessels, yet also permit the rapid formation of a hemostatic

More information

G20210A prothrombin gene mutation identified in patients with venous leg ulcers

G20210A prothrombin gene mutation identified in patients with venous leg ulcers J.Cell.Mol.Med. Vol 5, No 4, 2001 pp. 397-401 G20210A prothrombin gene mutation identified in patients with venous leg ulcers Gh. Jebeleanu, Lucia Procopciuc * Department of Medical Biochemistry, University

More information

Positive Feedback Loops for Factor V and Factor VII Activation Supply Sensitivity to Local Surface Tissue Factor Density During Blood Coagulation

Positive Feedback Loops for Factor V and Factor VII Activation Supply Sensitivity to Local Surface Tissue Factor Density During Blood Coagulation 1816 Biophysical Journal Volume 101 October 2011 1816 1824 Positive Feedback Loops for Factor V and Factor VII Activation Supply Sensitivity to Local Surface Tissue Factor Density During Blood Coagulation

More information

Thrombosis. By Dr. Sara Mohamed Abuelgasim

Thrombosis. By Dr. Sara Mohamed Abuelgasim Thrombosis By Dr. Sara Mohamed Abuelgasim 1 Thrombosis Unchecked, blood coagulation would lead to dangerous occlusion of blood vessels if the protective mechanisms of coagulation factor inhibitors, blood

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/28736 holds various files of this Leiden University dissertation. Author: Debeij, Jan Title: The effect of thyroid hormone on haemostasis and thrombosis

More information

NQO1: Candidate gene in a quantitative trait locus affecting factor V and prothrombin levels

NQO1: Candidate gene in a quantitative trait locus affecting factor V and prothrombin levels NQO1: Candidate gene in a quantitative trait locus affecting factor V and prothrombin levels NQO1: Candidate gene in a quantitative trait locus affecting factor V and prothrombin levels Sara Roshani, Marieke

More information

Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex

Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex Factor VIIIa regulates substrate delivery to the intrinsic factor X-activating complex Mikhail A. Panteleev 1,2, Natalya M. Ananyeva 1, *, Nicholas J. Greco 1,, Fazoil I. Ataullakhanov 2,3,4 and Evgueni

More information

Please note that the uses described in the following page(s) have not been approved or cleared by FDA, with respect to the described assay or test.

Please note that the uses described in the following page(s) have not been approved or cleared by FDA, with respect to the described assay or test. Please note that the uses described in the following page(s) have not been approved or cleared by FDA, with respect to the described assay or test. In the US, the product is intended For Research Use Only.

More information

Menopausal Hormone Therapy & Haemostasis

Menopausal Hormone Therapy & Haemostasis Menopausal Hormone Therapy & Haemostasis The Haematologist Perspective Dr. Batia Roth-Yelinek Coagulation unit Hadassah MC Menopausal Hormone Therapy & Hemostasis Hemostatic mechanism Mechanism of estrogen

More information

Hemostasis and. Blood Coagulation

Hemostasis and. Blood Coagulation Hemostasis and Blood Coagulation Events in Hemostasis The term hemostasis means prevention of blood loss. Whenever a vessel is severed or ruptured, hemostasis is achieved by several mechanisms: (1) vascular

More information

Hemostatic risk factors for pregnancy-related venous thrombosis

Hemostatic risk factors for pregnancy-related venous thrombosis Hemostatic risk factors for pregnancy-related venous thrombosis Astrid Bergrem, MD Department of Haematology, Oslo University Hospital, Oslo, Norway Institute of Clinical Medicine, University of Oslo,

More information