Lecture 4: 8/26. CHAPTER 4 Protein Three Dimensional Structure

Size: px
Start display at page:

Download "Lecture 4: 8/26. CHAPTER 4 Protein Three Dimensional Structure"

Transcription

1 Lecture 4: 8/26 CHAPTER 4 Protein Three Dimensional Structure

2 Summary of the Lecture 3 There are 20 amino acids and only the L isomer amino acid exist in proteins Each amino acid consists of a central alpha carbon that is bonded by an amino group, a carboxyl group, a hydrogen atom and distinctive side chain or R group Amino acid can be classified based on the chemical properties of the side chains: 1. Hydrophobic amino acids 2. Polar amino acids 3. Positively charged amino acids 4. Negatively charged amino acids Essential amino acids (9 of them) must be obtained through diet and they are required for healthy growth and development 8/24/2016 2

3 Chapter 4 Outline

4 Polypeptides consist of amino acids linked by a peptide bond. The peptide bond is also called an amide bond. Each amino acid in a protein is called a residue.

5 Peptide bond formation The linking of two amino acids is accompanied by the loss of a molecule of water

6 A polypeptide bond has directionality. The amino terminal end is taken as the beginning of the polypeptide chain. The carboxyl terminal end is the end of the polypeptide chain. The primary structure is always written from the amino terminal to the carboxyl terminal, or left to right.

7 Amino acid sequences have direction Pentapeptide: Tyr Gly Gly Phe Leu (YGGFL) This pentapeptide, Leu enkephalin, is an opioid peptide that modulates the perception of pain.

8 The polypeptide consist of a repeating part called the main chain or backbone and a variable part consisting of the distinctive amino acid side chains. The backbone has hydrogen bonding potential because of the carbonyl groups and hydrogen atoms that are bonded to the nitrogen of the amine group. Most proteins consist of 50 to 2000 amino acids. The mean molecular weight for an amino acid is 110 g mol 1.

9 Components of a polypeptide chain A polypeptide chain consists of a constant backbone (shown in black) and variable side chains (shown in green). Can you identify peptide bound in this polypeptide?

10 In some proteins, the polypeptide chain can be cross linked by disulfide bonds. Disulfide bonds form by the oxidation of two cysteines. The resulting unit of two linked cysteines is called cystine.

11 Cross links between two cysteine amino acids The formation of a disulfide bond between two cysteine residues is an oxidation reaction

12 Amino acid sequence of bovine insulin Genes specify or code amino acid sequences in proteins (hint: central dogma)

13 Quick Quiz What is the amino terminus of a tripeptide Gyl Ala Asp? What is the approximate molecular weight of a protein composed of 300 amino acids? Approximately how many amino acid are required to form a protein with a molecular weight of 10,000?

14 Polypeptide Chains Are Flexible Yet Conformationally Restricted The peptide bond is essentially planar. Six atoms (C α, C, O, N, H, and C α ) lie in a plane. The peptide bond has partial double bond character because of resonance, and thus rotation about the bond is prohibited. Peptide bonds are planar The peptide bond is uncharged.

15 Typical bond lengths within a peptide unit

16 Polypeptide Chains Are Flexible Yet Conformationally Restricted Most peptide bonds are in the trans configuration so as to minimize steric clashes between neighboring R groups.

17 Polypeptide Chains Are Flexible Yet Conformationally Restricted Rotation is permitted about the N C α bond (the phi (Φ )bond) and about C α carbonyl bond (the psi ( ψ) bond.) The rotation about the Φ and ψ bonds, called the torsion angle, determines the path of the polypeptide chain. Not all torsion angles are permitted.

18 Rotation about bonds in a polypeptide

19 A Ramachandran diagram showing the values of Φ and ψ

20 Secondary structure is the three dimensional structure formed by hydrogen bonds between peptide NH and CO groups of amino acids that are near one another in the primary structure. The α helix, β sheets and turns are prominent examples of secondary structure.

21 The Alpha Helix Is a Coiled Structure Stabilized by Intrachain Hydrogen Bonds The α helix is a tightly coiled rod like structure, with the R groups bristling out from the axis of the helix. All of the backbone CO and NH groups form hydrogen bonds except those at the end of the helix. Essentially all α helices found in proteins are right handed.

22 The structure of the a helix

23 The hydrogen bonding scheme for an α helix In the α helix, the CO group of residue i forms a hydrogen bond with the NH group of residue i + 4.

24 Schematic views of a helices (A) A ribbon depiction. (B) A cylindrical depiction.

25 A largely α helical protein Ferritin, an iron storage protein, is built from a bundle of α helices.

26 Beta Sheets Are Stabilized by Hydrogen Bonding Between Polypeptide Strands The β sheet is another common form of secondary structure. Beta sheets are formed by adjacent β strands. In contrast to an α helix, the polypeptide in a β strand is fully extended.

27 The structure of a strand The side chains (green) are alternatively above and below the plane of the strand. The bar shows the distance between two residues.

28 Beta Sheets Are Stabilized by Hydrogen Bonding Between Polypeptide Strands Hydrogen bonds link the strands in a β sheet. The strands of a β sheet may be parallel, antiparallel, or mixed. β sheets may be flat or adopt a twisted conformation.

29 Antiparallel and parallel β sheets Antiparallel β sheets Antiparallel β sheets Parallel β sheets

30 Antiparallel β sheets Adjacent β strands run in opposite directions. Hydrogen bonds (green dashes) between NH and CO groups connect each amino acid to a single amino acid on an adjacent strand, stabilizing the structure.

31 Parallel β sheets Adjacent β strands run in the same direction. Hydrogen bonds connect each amino acid on one strand with two different amino acids on the adjacent strand.

32 The structure of a mixed β sheets

33 A twisted β sheet (A) A schematic model. (B) The schematic view rotated by 90 degrees to illustrate the twist more clearly.

34 A protein rich in β sheet The structure of a fatty acid binding protein

35 Polypeptide Chains Can Change Direction by Making Reverse Turns and Loops The structure of a reverse turn A) The CO group of residue i of the polypeptide chain is hydrogen bonded to the NH group of residue i + 3 to stabilize the turn. B) (B) A part of an antibody molecule has surface loops (shown in red).

36 Fibrous Proteins Provide Structural Support for Cells and Tissues α Keratin, a structural protein found in wool and hair, is composed of two right handed α helices intertwined to form a left handed super helix called a coiled coil. The helices interact with ionic bonds or van der Waals interactions. α Keratin is a member of a superfamily of structural proteins called coiled coil proteins. Other members of the family include some cytoskeleton proteins and muscle proteins.

37 An α helical coiled coil (A) Space filling model. (B) Ribbon diagram. The two helices wind around each other to form a superhelix. Such structures are found in many proteins, including keratin in hair, quills, claws, and horns.

38 Fibrous Proteins Provide Structural Support for Cells and Tissues Collagen is a structural protein that is a component of skin, bone, tendons, cartilage, and teeth. Collagen consists of three intertwined helical polypeptide chains that form a superhelical cable. The helical polypeptide chains of collagen are not α helices. Glycine appears at every third residue and the sequence gly pro pro is common.

39 The amino acid sequence of a part of a collagen chain Every third residue is glycine. Proline and hydroxyproline also are abundant.

40 The conformation of a single strand of a collagen triple helix

41 Fibrous Proteins Provide Structural Support for Cells and Tissues The helices in collagen are not stabilized by hydrogen bonds. Rather, they are stabilized by steric repulsion of the pyrrolidine rings of proline. The three intertwined chains interact with one another with hydrogen bonds. The interior of the superhelical cable is crowded, and only glycine can fit in the interior.

42 The structure of the protein collagen Space filling model of collagen Cross section of a model of collagen

43 Osteogenesis imperfecta, or brittle bone disease, occurs if a mutation results in the substitution of another amino acid in place of glycine.

44 Hydroxyproline, a modified version of proline in which a hydroxyl group replaces a hydrogen, is important for the stabilization of collagen. Vitamin C is required for the formation of hydroxyproline. A lack of vitamin C results in scurvy.

45

46 Tertiary structure refers to the spatial arrangement of amino acids that are far apart in the primary structure and to the pattern of disulfide bond formation.

47 Myoglobin Illustrates the Principles of Tertiary Structure Globular proteins, such as myoglobin, form complicated three dimensional structures. Globular proteins are very compact. There is little or no empty space in the interior of globular proteins. The interior of globular proteins consists mainly of hydrophobic amino acids. The exterior of globular proteins consists of charged and polar amino acids.

48 The three dimensional structure of myoglobin A ribbon diagram A space filling model

49

50 The Tertiary Structure of Many Proteins Can Be Divided into Structural and Functional Units Motifs, or supersecondary structure, are combinations of secondary structure that are found in many proteins. Some proteins have two or more similar or identical compact structures called domains.

51 The helix turn helix motif, a supersecondary structural element Helix turn helix motifs are found in many DNA binding proteins

52 Protein domains The cell surface protein CD4 consists of four similar domains.

53 Many proteins are composed of multiple polypeptide chains called subunits. Such proteins are said to display quaternary structure. Quaternary structure can be as simple as two identical polypeptide chains or as complex as dozens of different polypeptide chains.

54 Quaternary structure The Cro protein of bacteriophage λ is a dimer of identical subunits.

55 The 2 β 2 tetramer of human hemoglobin The ribbon diagram shows that they are composed mainly of helices. The space filling model illustrates the close packing of the atoms and shows that the heme groups (gray) occupy crevices in the protein.

56 Christian Anfinsen placed the enzyme ribonuclease, which degrades RNA, in a solution containing urea and β mercaptoethanol. Urea destroyed all noncovalent bonds, while the β mercaptoethanol destroyed the disulfide bonds. The ribonuclease was denatured. The enzyme displayed no enzymatic activity and existed only as a random coil. When the urea and β mercaptoethanol were slowly removed, the enzyme regained its structure and its activity. Ribonuclease was renatured and attained its normal or native state. These results demonstrated that the information required for a polypeptide chain to fold into a functional protein with a defined threedimensional structure is inherent in the primary structure.

57 Amino acid sequence of bovine ribonuclease The four disulfide bonds are shown in color

58 The role of β mercaptoethanol in reducing disulfide bonds As the disulfides are reduced, the β mercaptoethanol is oxidized and forms dimers

59 The reduction and denaturation of ribonuclease

60 Proteins Fold by the Progressive Stabilization of Intermediates Rather Than by Random Search A monkey randomly poking at a key board could type a sentence from Shakespeare in a few thousand keystrokes if the correct letters are retained, a process called cumulative selection.

61 Proteins Fold by the Progressive Stabilization of Intermediates Rather Than by Random Search Protein folding is often represented as a folding funnel. The protein has maximum entropy and minimal structure at the top of the funnel. The folded protein exists at the bottom of the funnel. Folding funnel: The folding funnel depicts the thermodynamics of protein folding

62 Some Proteins Are Inherently Unstructured and Can Exist in Multiple Conformations Intrinsically unstructured proteins (IUP) do not have a defined structure under physiological conditions until they interact with other molecules. Metamorphic proteins exist in an ensemble of structures of approximately equal energies that are in equilibrium. Lymphotactin exists in two conformations, which are in equilibrium

63 Amyloidoses are diseases that result from the formation of protein aggregates, called amyloid fibrils or plaques. Alzheimer disease is an example of an amyloidosis. PET scan of the brain of a normal person PET scan of the brain of Alzheimer patient Colored positron emission tomography (PET) scans of the brain of a normal person (left) and that of a patient who has Alzheimer disease (right). Color coding: high brain activity (red and yellow); low activity (blue and black). The Alzheimer patient s scan shows severe deterioration of brain activity.

64 Some infectious neurological diseases are caused by infectious proteins called prions. Prions exist in two states, one α helix rich (PrP) and the other β sheet rich (PrP SC ). PrP SC forms aggregates that disrupt cell function. The protein only model for prion disease transmission A nucleus consisting of proteins in an abnormal conformation grows by the addition of proteins from the normal pool.

65 Summary of the Lecture 4 Primary structure: Amino acids (aa) are linked by peptide bond or amide bond to form polypeptide chains Peptide bonds form between the carboxyl group (the H bond acceptor) of one aa and the amino group (the H bond donor) of the next aa. Significance: (a) Peptide bond is resistant to hydrolysis, and thus proteins are remarkably stable. (b) Each polypeptide bond has both a H bond donor (the NH group) and a H bond acceptor (the CO group) Proteins are sequence of amino acids and the sequences are written from the amino (NH) to the carboxyl (CO) terminus Secondary Structure: Polypeptide can fold into regular structures The a helix and b strand are the two major elements of the secondary structure. In the helix, polypeptide chain twists into tightly packed rod. Within the a helix, the CO group of each aa is H bonded to the NH group of the aa In the b strand, the polypeptide chain is nearly fully extended. Two or more b strand connected by NH to CO hydrogen bond come together to form b sheets. The strand of b sheets can be parallel, antiparallel, or mixed

66 Summary of the Lecture 4 (Continued) Tertiary structure: Water soluble proteins fold into compact structure. Amino acids with hydrophobic side chains are located in interior of the structure. Amino acids with hydrophilic side chains are largely located in surface of the structure and interact with aqueous environment The driving force of the formation of tertiary structure of water soluble proteins is the hydrophobic interaction between the interior residues Quaternary Structure: two or more polypeptide chains can assemble into a single protein. Each individual polypeptide is called a subunit. Subunit held together by noncovalent bonds The amino acid sequence of a protein determines its 3 D structure. The sequences of the bases in a DNA molecules determine the aa sequence of a protein Proper folding of a protein is important its intended function. Improper proper protein folding can cause diseases such Alzheimer disease

The three important structural features of proteins:

The three important structural features of proteins: The three important structural features of proteins: a. Primary (1 o ) The amino acid sequence (coded by genes) b. Secondary (2 o ) The interaction of amino acids that are close together or far apart in

More information

Protein Secondary Structure

Protein Secondary Structure Protein Secondary Structure Reading: Berg, Tymoczko & Stryer, 6th ed., Chapter 2, pp. 37-45 Problems in textbook: chapter 2, pp. 63-64, #1,5,9 Directory of Jmol structures of proteins: http://www.biochem.arizona.edu/classes/bioc462/462a/jmol/routines/routines.html

More information

Proteins consist of joined amino acids They are joined by a Also called an Amide Bond

Proteins consist of joined amino acids They are joined by a Also called an Amide Bond Lecture Two: Peptide Bond & Protein Structure [Chapter 2 Berg, Tymoczko & Stryer] (Figures in Red are for the 7th Edition) (Figures in Blue are for the 8th Edition) Proteins consist of joined amino acids

More information

Chem Lecture 2 Protein Structure

Chem Lecture 2 Protein Structure Chem 452 - Lecture 2 Protein Structure 110923 Proteins are the workhorses of a living cell and involve themselves in nearly all of the activities that take place in a cell. Their wide range of structures

More information

Structure of proteins

Structure of proteins Structure of proteins Presented by Dr. Mohammad Saadeh The requirements for the Pharmaceutical Biochemistry I Philadelphia University Faculty of pharmacy Structure of proteins The 20 a.a commonly found

More information

Protein structure. Dr. Mamoun Ahram Summer semester,

Protein structure. Dr. Mamoun Ahram Summer semester, Protein structure Dr. Mamoun Ahram Summer semester, 2017-2018 Overview of proteins Proteins have different structures and some have repeating inner structures, other do not. A protein may have gazillion

More information

Proteins and their structure

Proteins and their structure Proteins and their structure Proteins are the most abundant biological macromolecules, occurring in all cells and all parts of cells. Proteins also occur in great variety; thousands of different kinds,

More information

Levels of Protein Structure:

Levels of Protein Structure: Levels of Protein Structure: PRIMARY STRUCTURE (1 ) - Defined, non-random sequence of amino acids along the peptide backbone o Described in two ways: Amino acid composition Amino acid sequence M-L-D-G-C-G

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Protein conformation Many conformations are possible for proteins due to flexibility of amino acids linked by peptide

More information

Protein Structure and Function

Protein Structure and Function Protein Structure and Function Protein Structure Classification of Proteins Based on Components Simple proteins - Proteins containing only polypeptides Conjugated proteins - Proteins containing nonpolypeptide

More information

Proteins are linear polymers built of monomer units called amino acids. Proteins contain a wide range of functional groups.

Proteins are linear polymers built of monomer units called amino acids. Proteins contain a wide range of functional groups. Chapter 2: Protein Structure and Function Proteins arevery versatile with regards to functions for the cell Uses? Proteins are linear polymers built of monomer units called amino acids. One dimensional

More information

Chemistry 20 Chapter 14 Proteins

Chemistry 20 Chapter 14 Proteins Chapter 14 Proteins Proteins: all proteins in humans are polymers made up from 20 different amino acids. Proteins provide structure in membranes, build cartilage, muscles, hair, nails, and connective tissue

More information

Sheet #5 Dr. Mamoun Ahram 8/7/2014

Sheet #5 Dr. Mamoun Ahram 8/7/2014 P a g e 1 Protein Structure Quick revision - Levels of protein structure: primary, secondary, tertiary & quaternary. - Primary structure is the sequence of amino acids residues. It determines the other

More information

!"#$%&' (#%) /&'(2+"( /&3&4,, ! " #$% - &'()!% *-sheet -(!-Helix - &'(&') +,(-. - &'()&+) /&%.(0&+(! - &'(1&2%( Basic amino acids

!#$%&' (#%) /&'(2+( /&3&4,, !  #$% - &'()!% *-sheet -(!-Helix - &'(&') +,(-. - &'()&+) /&%.(0&+(! - &'(1&2%( Basic amino acids Basic amino acids pk ~ 10.5 pk ~ 12.5 pk ~ 6.0 Polar 25!"#$%&' (#%)! " #$% - &'()!% *-sheet -(!-Helix - &'(&') +,(-. - &'()&+) /&%.(0&+(! - &'(1&2%( /&'(2+"( /&3&4,, :++55 ('&.! 6($.(" 40 > 3&4,, ('&.!

More information

BIO 311C Spring Lecture 15 Friday 26 Feb. 1

BIO 311C Spring Lecture 15 Friday 26 Feb. 1 BIO 311C Spring 2010 Lecture 15 Friday 26 Feb. 1 Illustration of a Polypeptide amino acids peptide bonds Review Polypeptide (chain) See textbook, Fig 5.21, p. 82 for a more clear illustration Folding and

More information

4. THE THREE-DIMENSIONAL STRUCTURE OF PROTEINS

4. THE THREE-DIMENSIONAL STRUCTURE OF PROTEINS 4. THE THREE-DIMENSIONAL STRUCTURE OF PROTEINS 4.1 Proteins Structures and Function Levels of Structure in Proteins Native conformation - Biological activity - Random structure: no obvious regular repeating

More information

BCH Graduate Survey of Biochemistry

BCH Graduate Survey of Biochemistry BCH 5045 Graduate Survey of Biochemistry Instructor: Charles Guy Producer: Ron Thomas Director: Glen Graham Lecture 10 Slide sets available at: http://hort.ifas.ufl.edu/teach/guyweb/bch5045/index.html

More information

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22

Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Biochemistry 210 Chapter 22 Amino Acids and Proteins Hamad Ali Yaseen, PhD MLS Department, FAHS, HSC, KU Hamad.ali@hsc.edu.kw Biochemistry 210 Chapter 22 Importance of Proteins Main catalysts in biochemistry: enzymes (involved in

More information

SRTUCTURE OF PROTEINS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU

SRTUCTURE OF PROTEINS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU SRTUCTURE OF PROTEINS DR. A. TARAB DEPT. OF BIOCHEMISTRY HKMU I. OVERVIEW The twenty amino acids commonly found in proteins are joined together by peptide bonds The linear sequence of the linked amino

More information

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Key Concepts: The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5 Proteins include a diversity of structures, resulting in a wide range of functions Proteins Enzymatic s

More information

Multiple-Choice Questions Answer ALL 20 multiple-choice questions on the Scantron Card in PENCIL

Multiple-Choice Questions Answer ALL 20 multiple-choice questions on the Scantron Card in PENCIL Multiple-Choice Questions Answer ALL 20 multiple-choice questions on the Scantron Card in PENCIL For Questions 1-10 choose ONE INCORRECT answer. 1. Which ONE of the following statements concerning the

More information

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi Review I: Protein Structure Rajan Munshi BBSI @ Pitt 2005 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2005 Amino Acids Building blocks of proteins 20 amino acids

More information

Organic Molecules: Proteins

Organic Molecules: Proteins Organic Molecules: Proteins Proteins Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport

More information

Q1: Circle the best correct answer: (15 marks)

Q1: Circle the best correct answer: (15 marks) Q1: Circle the best correct answer: (15 marks) 1. Which one of the following incorrectly pairs an amino acid with a valid chemical characteristic a. Glycine, is chiral b. Tyrosine and tryptophan; at neutral

More information

Lecture 15. Membrane Proteins I

Lecture 15. Membrane Proteins I Lecture 15 Membrane Proteins I Introduction What are membrane proteins and where do they exist? Proteins consist of three main classes which are classified as globular, fibrous and membrane proteins. A

More information

Peptides. The two amino acids are joined through a dehydration reaction.

Peptides. The two amino acids are joined through a dehydration reaction. Peptides Peptides The two amino acids are joined through a dehydration reaction. Peptides The Peptide Bond The peptide bond is usually drawn as a single bond, but actually has considerable double bond

More information

Copyright Mark Brandt, Ph.D. 46

Copyright Mark Brandt, Ph.D. 46 Examples of tein Structures tein types teins fall into three general classes, based on their overall three-dimensional structure and on their functional role: fibrous, membrane, and globular. Fibrous proteins

More information

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 5.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 50% of the dry mass of most cells Protein functions include structural support, storage,

More information

Protein Classification based upon Biological functions

Protein Classification based upon Biological functions PROTEINS (a) The light produced by fireflies is the result of a reaction involving the protein luciferin and ATP, catalyzed by the enzyme luciferase. (b) Erythrocytes contain large amounts of the oxygen-transporting

More information

Ch5: Macromolecules. Proteins

Ch5: Macromolecules. Proteins Ch5: Macromolecules Proteins Essential Knowledge 4.A.1 The subcomponents of biological molecules and their sequence determine the properties of that molecule A. Structure and function of polymers are derived

More information

Ionization of amino acids

Ionization of amino acids Amino Acids 20 common amino acids there are others found naturally but much less frequently Common structure for amino acid COOH, -NH 2, H and R functional groups all attached to the a carbon Ionization

More information

Bioinformatics for molecular biology

Bioinformatics for molecular biology Bioinformatics for molecular biology Structural bioinformatics tools, predictors, and 3D modeling Structural Biology Review Dr Research Scientist Department of Microbiology, Oslo University Hospital -

More information

Raghad Abu Jebbeh. Amani Nofal. Mamoon Ahram

Raghad Abu Jebbeh. Amani Nofal. Mamoon Ahram ... 14 Raghad Abu Jebbeh Amani Nofal Mamoon Ahram This sheet includes part of lec.13 + lec.14. Amino acid peptide protein Terminology: 1- Residue: a subunit that is a part of a large molecule. 2- Dipeptide:

More information

Amino Acids and Proteins (2) Professor Dr. Raid M. H. Al-Salih

Amino Acids and Proteins (2) Professor Dr. Raid M. H. Al-Salih Amino Acids and Proteins (2) Professor Dr. Raid M. H. Al-Salih 1 Some important biologically active peptides 2 Proteins The word protein is derived from Greek word, proteios which means primary. As the

More information

The Basics: A general review of molecular biology:

The Basics: A general review of molecular biology: The Basics: A general review of molecular biology: DNA Transcription RNA Translation Proteins DNA (deoxy-ribonucleic acid) is the genetic material It is an informational super polymer -think of it as the

More information

CS612 - Algorithms in Bioinformatics

CS612 - Algorithms in Bioinformatics Spring 2016 Protein Structure February 7, 2016 Introduction to Protein Structure A protein is a linear chain of organic molecular building blocks called amino acids. Introduction to Protein Structure Amine

More information

! Proteins are involved functionally in almost everything: " Receptor Proteins - Respond to external stimuli. " Storage Proteins - Storing amino acids

! Proteins are involved functionally in almost everything:  Receptor Proteins - Respond to external stimuli.  Storage Proteins - Storing amino acids Proteins Most structurally & functionally diverse group! Proteins are involved functionally in almost everything: Proteins Multi-purpose molecules 2007-2008 Enzymatic proteins - Speed up chemical reactions!

More information

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions. Chapter 9: Proteins Molecular Biology replication general transfer: occurs normally in cells transcription special transfer: occurs only in the laboratory in specific conditions translation unknown transfer:

More information

Biology 5A Fall 2010 Macromolecules Chapter 5

Biology 5A Fall 2010 Macromolecules Chapter 5 Learning Outcomes: Macromolecules List and describe the four major classes of molecules Describe the formation of a glycosidic linkage and distinguish between monosaccharides, disaccharides, and polysaccharides

More information

Proteins: Structure and Function 2/8/2017 1

Proteins: Structure and Function 2/8/2017 1 Proteins: Structure and Function 2/8/2017 1 outline Protein functions hemistry of amino acids Protein Structure; Primary structure Secondary structure Tertiary structure Quaternary structure 2/8/2017 2

More information

The Structure and Func.on of Macromolecules Proteins GRU1L6

The Structure and Func.on of Macromolecules Proteins GRU1L6 The Structure and Func.on of Macromolecules Proteins GRU1L6 Proteins Proteins Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush Types of proteins Proteins can be divided into two groups according to structure: Fibrous (fiber-like with a uniform secondary-structure

More information

Objective: You will be able to explain how the subcomponents of

Objective: You will be able to explain how the subcomponents of Objective: You will be able to explain how the subcomponents of nucleic acids determine the properties of that polymer. Do Now: Read the first two paragraphs from enduring understanding 4.A Essential knowledge:

More information

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points.

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points. MBB 407/511 Molecular Biology and Biochemistry First Examination - October 1, 2002 Name Social Security Number This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is

More information

H C. C α. Proteins perform a vast array of biological function including: Side chain

H C. C α. Proteins perform a vast array of biological function including: Side chain Topics The topics: basic concepts of molecular biology elements on Python overview of the field biological databases and database searching sequence alignments phylogenetic trees microarray data analysis

More information

Proteins. (b) Protein Structure and Conformational Change

Proteins. (b) Protein Structure and Conformational Change Proteins (b) Protein Structure and Conformational Change Protein Structure and Conformational Change Proteins contain the elements carbon (C), hydrogen (H), oxygen (O2) and nitrogen (N2) Some may also

More information

Biochemistry by Mary K. Campbell & Shawn O. Farrell

Biochemistry by Mary K. Campbell & Shawn O. Farrell 4 Biochemistry by Mary K. Campbell & Shawn O. Farrell 4-1 4 The ThreeDimensional Structure of Proteins 4-2 4 Learning Objectives 1. How does the Structure of Proteins Determine Their Function? 2. What

More information

AP Bio. Protiens Chapter 5 1

AP Bio. Protiens Chapter 5 1 Concept.4: Proteins have many structures, resulting in a wide range of functions Proteins account for more than 0% of the dry mass of most cells Protein functions include structural support, storage, transport,

More information

Polypeptides and Proteins

Polypeptides and Proteins Polypeptides and Proteins These molecules are composed, at least in part, of chains of amino acids. Each amino acid is joined to the next one through an amide or peptide bond from the carbonyl carbon of

More information

Chapter 20 and GHW#10 Questions. Proteins

Chapter 20 and GHW#10 Questions. Proteins Chapter 20 and GHW#10 Questions Proteins Proteins Naturally occurring bioorganic polyamide polymers containing a sequence of various combinations of 20 amino acids. Amino acids contain the elements carbon,

More information

Sheet #8 Dr. Nafeth Abu-Tarboush 13/07/2014

Sheet #8 Dr. Nafeth Abu-Tarboush 13/07/2014 Done by 1 Ali Khresat Structure-function relationship of proteins we have talked about proteins, the structure of proteins and features of proteins now we will talk about how this structure is related

More information

Introduction to proteins and protein structure

Introduction to proteins and protein structure Introduction to proteins and protein structure The questions and answers below constitute an introduction to the fundamental principles of protein structure. They are all available at [link]. What are

More information

Lecture 5. Secondary Structure of Proteins. "-Pleated Sheet. !-Helix. Examples of Protein Structures

Lecture 5. Secondary Structure of Proteins. -Pleated Sheet. !-Helix. Examples of Protein Structures econdary tructure of Proteins Lecture 5 Proteins- tructure and Properties Chapter 21 ections 7-11! There are two main aspects of 2 o structure!the type of fold or bend in the protein chain!the types of

More information

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A Homework Watch the Bozeman video called, Biological Molecules Objective:

More information

BIOB111 - Tutorial activity for Session 14

BIOB111 - Tutorial activity for Session 14 BIOB111 - Tutorial activity for Session 14 General topics for week 7 Session 14 Amino acids and proteins Students review the concepts learnt and answer the selected questions from the textbook. General

More information

Biology 2E- Zimmer Protein structure- amino acid kit

Biology 2E- Zimmer Protein structure- amino acid kit Biology 2E- Zimmer Protein structure- amino acid kit Name: This activity will use a physical model to investigate protein shape and develop key concepts that govern how proteins fold into their final three-dimensional

More information

Introduction to Proteomics Dr. Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology - Bombay

Introduction to Proteomics Dr. Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology - Bombay Introduction to Proteomics Dr. Sanjeeva Srivastava Department of Biosciences and Bioengineering Indian Institute of Technology - Bombay Lecture 01 Introduction to Amino Acids Welcome to the proteomic course.

More information

Chemistry B11 Chapters 16 Proteins and Enzymes

Chemistry B11 Chapters 16 Proteins and Enzymes Chapters 16 Proteins and Enzymes Proteins: all proteins in humans are polymers made up from 20 different amino acids. Proteins provide structure in membranes, build cartilage, muscles, hair, nails, and

More information

The Structure and Function of Macromolecules

The Structure and Function of Macromolecules The Structure and Function of Macromolecules Macromolecules are polymers Polymer long molecule consisting of many similar building blocks. Monomer the small building block molecules. Carbohydrates, proteins

More information

Biomolecules: amino acids

Biomolecules: amino acids Biomolecules: amino acids Amino acids Amino acids are the building blocks of proteins They are also part of hormones, neurotransmitters and metabolic intermediates There are 20 different amino acids in

More information

Secondary Structure. by hydrogen bonds

Secondary Structure. by hydrogen bonds Secondary Structure In the previous protein folding activity, you created a hypothetical 15-amino acid protein and learned that basic principles of chemistry determine how each protein spontaneously folds

More information

Nafith Abu Tarboush DDS, MSc, PhD

Nafith Abu Tarboush DDS, MSc, PhD Nafith Abu Tarboush DDS, MSc, PhD natarboush@ju.edu.jo www.facebook.com/natarboush http://eacademic.ju.edu.jo/n.abutarboush/material/forms/allitems.aspx Biological Functions of Proteins Enzymes--catalysts

More information

Globular proteins Proteins globular fibrous

Globular proteins Proteins globular fibrous Globular proteins Globular proteins Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form in a biologically functional way. Globular

More information

Biochemistry 15 Doctor /7/2012

Biochemistry 15 Doctor /7/2012 Heme The Heme is a chemical structure that diffracts by light to give a red color. This chemical structure is introduced to more than one protein. So, a protein containing this heme will appear red in

More information

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation

Paper No. 01. Paper Title: Food Chemistry. Module-16: Protein Structure & Denaturation Paper No. 01 Paper Title: Food Chemistry Module-16: Protein Structure & Denaturation The order of amino acids in a protein molecule is genetically determined. This primary sequence of amino acids must

More information

Macromolecules Structure and Function

Macromolecules Structure and Function Macromolecules Structure and Function Within cells, small organic molecules (monomers) are joined together to form larger molecules (polymers). Macromolecules are large molecules composed of thousands

More information

Chapter 6 - Proteins: Three Dimensional Structure

Chapter 6 - Proteins: Three Dimensional Structure Chapter 6 - Proteins: Three Dimensional Structure Introduction: The first x-ray structure for a protein was that for myoglobin in 1958 and indicated an apparent lack of regularity in the structure. Although

More information

Secondary Structure North 72nd Street, Wauwatosa, WI Phone: (414) Fax: (414) dmoleculardesigns.com

Secondary Structure North 72nd Street, Wauwatosa, WI Phone: (414) Fax: (414) dmoleculardesigns.com Secondary Structure In the previous protein folding activity, you created a generic or hypothetical 15-amino acid protein and learned that basic principles of chemistry determine how each protein spontaneously

More information

Structural Bioinformatics (C3210) Protein Structure

Structural Bioinformatics (C3210) Protein Structure Structural Bioinformatics (C3210) Protein Structure Great Diversity of Protein Biological Functions The primary responsibility of proteins is to execute the tasks directed by genomic information. The proteins

More information

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist NAME: OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK Tyrone R.L. John, Chartered Biologist 1 Tyrone R.L. John, Chartered Biologist 2 Instructions REVISION CHECKLIST AND ASSESSMENT OBJECTIVES Regular

More information

paper and beads don t fall off. Then, place the beads in the following order on the pipe cleaner:

paper and beads don t fall off. Then, place the beads in the following order on the pipe cleaner: Beady Pipe Cleaner Proteins Background: Proteins are the molecules that carry out most of the cell s dayto-day functions. While the DNA in the nucleus is "the boss" and controls the activities of the cell,

More information

Chapter 5 Structure and Function Of Large Biomolecules

Chapter 5 Structure and Function Of Large Biomolecules Formation of Macromolecules Monomers Polymers Macromolecules Smaller larger Chapter 5 Structure and Function Of Large Biomolecules monomer: single unit dimer: two monomers polymer: three or more monomers

More information

Review II: The Molecules of Life

Review II: The Molecules of Life Review II: The Molecules of Life Judy Wieber BBSI @ Pitt 2007 Department of Computational Biology University of Pittsburgh School of Medicine May 24, 2007 Outline Introduction Proteins Carbohydrates Lipids

More information

Methionine (Met or M)

Methionine (Met or M) Fig. 5-17 Nonpolar Fig. 5-17a Nonpolar Glycine (Gly or G) Alanine (Ala or A) Valine (Val or V) Leucine (Leu or L) Isoleucine (Ile or I) Methionine (Met or M) Phenylalanine (Phe or F) Polar Trypotphan (Trp

More information

Understand how protein is formed by amino acids

Understand how protein is formed by amino acids Identify between fibrous and globular proteins Understand how protein is formed by amino acids Describe the structure of proteins using specific examples Functions of proteins Fibrous proteins Globular

More information

Amino acids & Protein Structure Chemwiki: Chapter , with most emphasis on 16.3, 16.4 and 16.6

Amino acids & Protein Structure Chemwiki: Chapter , with most emphasis on 16.3, 16.4 and 16.6 Amino acids & Protein Structure Chemwiki: Chapter 16. 16.1, 16.3-16.9 with most emphasis on 16.3, 16.4 and 16.6 1 1. Most jobs (except information storage) in cells are performed by proteins. 2. Proteins

More information

a) The statement is true for X = 400, but false for X = 300; b) The statement is true for X = 300, but false for X = 200;

a) The statement is true for X = 400, but false for X = 300; b) The statement is true for X = 300, but false for X = 200; 1. Consider the following statement. To produce one molecule of each possible kind of polypeptide chain, X amino acids in length, would require more atoms than exist in the universe. Given the size of

More information

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins Chemical Nature of the Amino Acids All peptides and polypeptides are polymers of alpha-amino acids. There are 20 a- amino acids that are relevant to the make-up of mammalian proteins (see below). Several

More information

BIRKBECK COLLEGE (University of London)

BIRKBECK COLLEGE (University of London) BIRKBECK COLLEGE (University of London) SCHOOL OF BIOLOGICAL SCIENCES M.Sc. EXAMINATION FOR INTERNAL STUDENTS ON: Postgraduate Certificate in Principles of Protein Structure MSc Structural Molecular Biology

More information

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka Proteins Amino acids, structure and function The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka O O HO N N HN OH Ser65-Tyr66-Gly67 The Nobel prize in chemistry 2008 Osamu Shimomura,

More information

Chapter 21 Lecture Outline

Chapter 21 Lecture Outline Chapter 21 Lecture Outline Amino Acids, Proteins, and Enzymes! Introduction! Proteins are biomolecules that contain many amide bonds, formed by joining amino acids. Prepared by Andrea D. Leonard University

More information

Judy Wieber. Department of Computational Biology. May 27, 2008

Judy Wieber. Department of Computational Biology. May 27, 2008 Review II: The Molecules of Life Judy Wieber BBSI @ Pitt 2008 Department of Computational Biology University it of Pittsburgh School of Medicine i May 27, 2008 Outline Introduction Proteins Carbohydrates

More information

1. Structure, classification, functions, properties of proteins

1. Structure, classification, functions, properties of proteins 1. Structure, classification, functions, properties of proteins Proteins are the major components of living organisms and perform a wide range of essential functions in cells. Proteins regulate metabolic

More information

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY

PHAR3316 Pharmacy biochemistry Exam #2 Fall 2010 KEY 1. How many protons is(are) lost when the amino acid Asparagine is titrated from its fully protonated state to a fully deprotonated state? A. 0 B. 1 * C. 2 D. 3 E. none Correct Answer: C (this question

More information

Macromolecules of Life -3 Amino Acids & Proteins

Macromolecules of Life -3 Amino Acids & Proteins Macromolecules of Life -3 Amino Acids & Proteins Shu-Ping Lin, Ph.D. Institute of Biomedical Engineering E-mail: splin@dragon.nchu.edu.tw Website: http://web.nchu.edu.tw/pweb/users/splin/ Amino Acids Proteins

More information

BIOCHEMISTRY Amino Acids and Proteins

BIOCHEMISTRY Amino Acids and Proteins BIOCHEMISTRY Amino Acids and Proteins BIOB111 CHEMISTRY & BIOCHEMISTRY Session 14 Session Plan Characteristics of Proteins Amino Acids: Building Blocks for Proteins Essential Amino Acids Properties of

More information

AMINO ACIDS AND PROTEINS. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University

AMINO ACIDS AND PROTEINS. HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University AMINO ACIDS AND PROTEINS HLeeYu Jsuico Junsay Department of Chemistry School of Science and Engineering Ateneo de Manila University 1 Proteins serves as the cell s machinery as well as an organism s other

More information

Proteins. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Multipurpose molecules.

Proteins. Proteins. Proteins. Proteins. Effect of different R groups: Nonpolar amino acids. Amino acids H C OH H R. Multipurpose molecules. Multipurpose molecules 2008-2009 Most structurally & functionally diverse group Function: involved in almost everything enzymes (pepsin, DNA polymerase) structure (keratin, collagen) carriers & transport

More information

THE UNIVERSITY OF MANITOBA. DATE: Oct. 22, 2002 Midterm EXAMINATION. PAPER NO.: PAGE NO.: 1of 6 DEPARTMENT & COURSE NO.: 2.277/60.

THE UNIVERSITY OF MANITOBA. DATE: Oct. 22, 2002 Midterm EXAMINATION. PAPER NO.: PAGE NO.: 1of 6 DEPARTMENT & COURSE NO.: 2.277/60. PAPER NO.: PAGE NO.: 1of 6 GENERAL INSTRUCTIONS You must mark the answer sheet with pencil (not pen). Put your name and enter your student number on the answer sheet. The examination consists of multiple

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

Lecture 10 More about proteins

Lecture 10 More about proteins Lecture 10 More about proteins Today we're going to extend our discussion of protein structure. This may seem far-removed from gene cloning, but it is the path to understanding the genes that we are cloning.

More information

Lecture Series 2 Macromolecules: Their Structure and Function

Lecture Series 2 Macromolecules: Their Structure and Function Lecture Series 2 Macromolecules: Their Structure and Function Reading Assignments Read Chapter 4 (Protein structure & Function) Biological Substances found in Living Tissues The big four in terms of macromolecules

More information

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist

OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK. Tyrone R.L. John, Chartered Biologist NAME: OPTION GROUP: BIOLOGICAL MOLECULES 3 PROTEINS WORKBOOK Tyrone R.L. John, Chartered Biologist 1 Tyrone R.L. John, Chartered Biologist 2 Instructions REVISION CHECKLIST AND ASSESSMENT OBJECTIVES Regular

More information

PROTEINS. Amino acids are the building blocks of proteins. Acid L-form * * Lecture 6 Macromolecules #2 O = N -C -C-O.

PROTEINS. Amino acids are the building blocks of proteins. Acid L-form * * Lecture 6 Macromolecules #2 O = N -C -C-O. Proteins: Linear polymers of amino acids workhorses of the cell tools, machines & scaffolds Lecture 6 Macromolecules #2 PRTEINS 1 Enzymes catalysts that mediate reactions, increase reaction rate Structural

More information

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3 H HO H Short polymer Dehydration removes a water molecule, forming a new bond Unlinked monomer H 2 O HO 1 2 3 4 H Longer polymer (a) Dehydration reaction in the synthesis of a polymer HO 1 2 3

More information

What are the molecules of life?

What are the molecules of life? Molecules of Life What are the molecules of life? Organic Compounds Complex Carbohydrates Lipids Proteins Nucleic Acids Organic Compounds Carbon- hydrogen based molecules From Structure to Function Ø Carbon

More information

Chapter 5: Outline. Protein Function. Proteins by Shape-2. Proteins by Shape-1. Proteins by Composition

Chapter 5: Outline. Protein Function. Proteins by Shape-2. Proteins by Shape-1. Proteins by Composition hapter 5: utline Amino Acids Amino acid classes Bioactive AA Modified AA Peptides Proteins (We are here) Protein structure Fibrous proteins Globular proteins tereoisomers Titration of AA AA reactions 5P2-1

More information

Lesson 5 Proteins Levels of Protein Structure

Lesson 5 Proteins Levels of Protein Structure Lesson 5 Proteins Levels of Protein Structure Primary 1º Structure The primary structure is simply the sequence of amino acids in a protein. Chains of amino acids are written from the amino terminus (N-terminus)

More information

UNIT 2 Amino acids and Proteins

UNIT 2 Amino acids and Proteins UNIT 2 Amino acids and Proteins Significance of Proteins 1. Keep the cells and tissues growing, renewing and mending 2. Take part in some kinds of important physiological activities 3. Oxidation and supply

More information

Chemistry 121 Winter 17

Chemistry 121 Winter 17 Chemistry 121 Winter 17 Introduction to Organic Chemistry and Biochemistry Instructor Dr. Upali Siriwardane (Ph.D. Ohio State) E-mail: upali@latech.edu Office: 311 Carson Taylor Hall ; Phone: 318-257-4941;

More information