MODELING MILK COMPOSITION. J.P. Cant Department of Animal and Poultry Science University of Guelph, Canada INTRODUCTION

Size: px
Start display at page:

Download "MODELING MILK COMPOSITION. J.P. Cant Department of Animal and Poultry Science University of Guelph, Canada INTRODUCTION"

Transcription

1 MODELING MILK COMPOSITION J.P. Cant Department of Animal and Poultry Science University of Guelph, Canada INTRODUCTION "Modeling" has taken on the status of a buzz word in the past few years but animal nutritionists have been using models since the inception of scientific ration formulation in 1858 (1). For this discussion, a model can be defined as a set of mathematical equations that attempt to truthfully represent nutrient utilization in a dairy cow in a simpler manner than actually occurs so that the important aspects of her nutrition can be concentrated upon. The division of nutrient use into maintenance and productive functions is a model representation of the cow (Figure 1) for which the maintenance component has been expressed mathematically as a function of body weight since its first appearance. This simple model stayed in place for a long time; the 1971 NRC committee still used it (2). Equations in the model essentially served as scaling mechanisms so that protein levels, for example, deemed adequate in feeding experiments could be applied to animals of different body weights or milk protein yields. The current NRC (3) model (Figure 2) differs from its predecessors in two respects: 1) that protein requirements are calculated as a summation of losses into feces, urine, scurf and lactation; and 2) that rumen-degradable and -undegradable protein in the diet provide absorbed protein in different ways. Essentially, though, the calculation of a balance between the amount of nutrient consumed and the amount Figure 1. Information flow in a maintenance/production model of nutrient utilization. Arrows carry information, circles represent a calculation, and inputs are ovalled (from 2, 4). Figure 2. Information flow in the NRC (3) absorbed protein model of nutrient utilization.

2 Arrows carry information, circles represent a calculation, and inputs are ovalled. predicted to be required from a set of performance inputs remains the same. This approach will not work to formulate rations for a desired protein and fat composition of milk because of the backwards nature of the animal component calculations and the lumping of milk precursors together according to their combustible energy content. As the illustrious energeticist Kleiber remarked in 1961 (5), "the study of milk formation [is] essentially a problem of chemistry rather than of energetics." And even in 1902, Henry (6) pointed out that "while it is important from a scientific standpoint to study the fuel values of rations, such use in compounding them for practical purposes is hardly warranted, since a statement of the several nutrients themselves is more explicit and satisfactory." In requirement model equations, NE requirements would be a function of milk composition, which is an unequivocally contestable position, but milk composition in a dairy cow is not a unique function of NE supply. So the NE requirement that one might calculate would be unlikely to result in the composition of milk desired. DePeters et al. (7) fed isocaloric and isonitrogenous high-forage, high-fat or low-forage, low-fat diets to cows and observed marked differences in milk fat and lactose yields and fat and protein percentages in milk. The results were not unexpected because of the difference in milk precursor supply from the different diets. Fat feeding would provide long-chain fatty acids for milk fat synthesis and forage:concentrate ratios would affect acetate, propionate and microbial amino acid supplies. The fact that milk composition is, in experiments, a function of milk precursor supply, and not NEL supply, must be taken into account in milk composition models. This can be accomplished if the model is forward-driven, calculating dairy cow performance from dietary inputs, and considers the precursors of milk fat, protein and lactose explicitly. I will review three models published in the scientific literature that have these characteristics. A MULTIPLE LINEAR REGRESSION MODEL Rook et al. (8) compiled milk component yield, feed intake and liveweight data from 8 experiments in which grass silage was fed ad lib and concentrate given at a constant daily rate. Weekly measures on 251 cows between weeks 4 and 13 of lactation were available. The regression equations that gave the best prediction are given in Table 1. All

3 component yields were related to DM intake which, incidentally, was a better predictor than DE intake. Fat yields were a function of fibre characteristics of the diet, probably through rumen VFA effects. Nitrogen intake was not important for milk protein prediction but digestible organic matter content of the silage was significant. Liveweight only entered into the lactose yield equation. It was concluded that predictive accuracy was poor and might be improved with more mechanistic descriptions of milk precursor supply (8). Table 1. Coefficients in linear regression models to predict milk component yields from measured variables (from 8). variable fat yield protein yield lactose yield constant silage DMI (kg/d) concentrate DMI (kg/d) total DMI (kg/d) liveweight (kg) parity silage N (g/kg) silage NDF (g/kg) silage digestible OM (g/kg) silage ph silage DM (g/kg as-fed) concentrate NDF (g/kg) R AN ADAPTIVE-PREDICTIVE MODEL Johnson and Tran (9) proposed a model of lactation in which ME intake, milk energy yield and maintenance/bodyweight change requirements were state variables governed by differential equations. In an application of this model to predicting milk component yields (10), milk energy was partitioned into fat, protein and lactose with time-dependent parameters γi: milk energy(t) = γ1fat(t) + γ2protein(t) + γ3lactose(t) A Kalman filter algorithm was used to correct predictions of milk composition for each week of lactation based on observations from the previous week. Results (Figure 3) show that the predictions tended to lag behind observed values so that as long as week-to-week changes were small, predictions were satisfactory. Although no consideration was given to the distinct mechanisms of milk fat, protein and lactose synthesis, the Kalman filter algorithm did provide an approach to correct predictions of performance as a cow's lactation progresses. Figure 3. Observations (solid lines) and predictions (dashed lines) of milk fat, protein and lactose from the adaptive-predictive model of Tran and Johnson (10).

4 A DYNAMIC, MECHANISTIC MODEL Forward-driven mechanistic elements have already been incorporated into the traditional requirement-type models. The CNCPS calculates metabolizable protein and energy supply from a simulation of rumen degradation and microbial synthesis (Figure 4). The value of this type of modeling derives not from the accuracy of animal requirement equations but from the ability to predict consequences of feeding a certain diet. If the absorption of nutrients in the gastrointestinal tract of a cow can be predicted from a chemical description of the feed, it is not much of a philosophical leap to say the production of milk and its components can also be predicted from diet inputs. And the dairy cow model of Baldwin et al., (11, 12) updated in 13 Figure 4. Information flow in the Cornell Net Carbohydrate and Protein System. Arrows carry information, circles represent a calculation, and inputs are ovalled (from 14, 15, 16).

5 does just that (Figure 5). One of the unique structural features of this type of model is that it includes an added dimension of time. There are many loops in the flow of information each box in the diagram represents a state variable that, as Figure 6 shows, contains such a loop. Additionally, the growth of rumen microbes, for instance, must be known to calculate soluble carbohydrate fermentation, which must be known to calculate growth of rumen microbes. Likewise, concentrations of glucose in the cow's body regulate catabolic and anabolic hormones which influence, among other things, the conversion of amino acids to glucose and, hence, glucose concentrations. This is not a level of complexity added for confusion but simply states exactly how we understand homeostasis the tendency for blood glucose concentration to remain constant, for example. Because of the circular flow of information, the entire model must be recalculated after all the equations have already been solved. After each iteration through the model, time is incremented slightly so that after many such iterations, a week of simulated time may have passed, or a month, or a full lactation. USING MATHEMATICAL MODELS IN FEEDING FOR MILK COMPOSITION To illustrate the use of a predictive model in making decisions related to feeding dairy cows in a multiple component pricing system, a ration was formulated according to NRC (3) "requirements" for a 650-kg cow of constant body weight producing 38 kg/d milk containing 4.0% fat. Then this ration was evaluated in the CNCPS which indicated a deficit in ME, rumen peptides and effective NDF. Dietary Figure 5. Information flow in the Baldwin (13) dairy cow model. Arrows carry information, circles represent a calculation, rectangles enclose state variables (see Figure 6) and inputs are ovalled.

6 Figure 6. Information flow in a state variable. fat sources were added, corn and alfalfa silage proportions adjusted, and protein supplements modified to balance ME, metabolizable protein, rumen nitrogenous compounds and effective NDF supplies against requirements (Table 2). The two rations are slightly different in chemical composition, most notably in energy supply from fat, so it is reasonable to expect a difference in milk production and composition as a result of choosing one diet over the other for feeding. Which is better? The requirement-type modelling does not assist but the forward-driven model of Baldwin (13), christened MOLLY, predicts that after 21 days on each of the two rations, cows will produce 33.1 and 32.8 kg/d milk. The second diet is more expensive to purchase so the expected return over feed cost is less. The modelling analysis indicates that the cheaper ration, although perhaps not meeting some of the arbitrary requirements for ME and rumen peptides, causes milk components to be produced in a more economical fashion. Table 2. Prediction with MOLLY (Baldwin, 13) of milk and milk component yield responses to diets formulated for 38 or 22 kg/d milk with NRC (3) or CNCPS models % fat % fat NRC CNCPS NRC CNCPS

7 ingredient composition of diets (% of DM) corn silage timothy silage alfalfa silage barley corn, high moisture fish meal soybean meal soybean meal brewers grains, wet corn, cracked soybeans, roasted tallow vit/min premix chemical composition of diets (% of DM) NEL (Mcal/kg) NEL (Mcal/kg) CP (% of DM) CP (% of DM) ADF (% of DM) ADF (% of DM) EE (% of DM) EE (% of DM) UIP (% of CP) UIP (% of CP) MOLLY yield (kg/d) milk milk fat fat protein protein lactose lactose milk price ($/d) milk price ($/d) feed cost ($/d) feed cost ($/d) income over feed ($/d) income over feed ($/d) The same cow, MOLLY, was fed two rations formulated for 22 kg/d milk with the NRC and CNCPS models (Table 2). Again, the NRC-constrained ration was deficient in ME and only marginally sufficient in rumen N according to the CNCPS. Metabolizable protein availability was also calculated to be 20% greater than necessary. MOLLY produced more milk and milk fat on the CNCPS ration but protein yields were less. Other economic indicators were not affected substantially by the diet change. Interestingly enough, the highforage, low-energy diets formulated for 22 kg/d resulted in about $1.20 less returned over feed cost than the more expensive rations that sustained a higher level of milk production. In a call for a change in livestock feeding systems in 1962, Blaxter (17) wrote that "what is needed is a method whereby the productive performance of an individual animal can be predicted with some precision from a knowledge of the quantities of the different foods which make up its ration, and of the conditions under which it is kept." Today, the power of computers and the knowledge of the physiological chemist have advanced to the point that the attempt to predict or calculate requirements can be abandoned in favour of a much more useful prediction of milk production response to diet, as Blaxter envisioned. REFERENCES 1. Wolff, E. v Farm Foods or, The Rational Feeding of Livestock. Translated by H. H. Cousins. Gurney & Jackson, London, UK. 2. NRC Nutrient Requirements of Domestic Animals. Number III. Nutrient Requirements of Dairy Cattle (4th Ed.). National Academy of Sciences, Washington, D.C.

8 3. NRC Nutrient Requirements of Dairy Cattle (6th Ed.). National Academy Press, Washington, D.C. 4. Armsby, H. P The Nutrition of Farm Animals. The MacMillan Co., New York, NY. 5. Kleiber, M The Fire of Life: An Introduction to Animal Energetics. John Wiley & Sons, New York, NY. 6. Henry, W. A Feeds and Feeding. 4th ed. W. A. Henry, Madison, WI. 7. DePeters, E.J., S.J. Taylor, and R.L. Baldwin Effect of dietary fat in isocaloric rations on the nitrogen content of milk from Holstein cows. J. Dairy Sci. 72: Rook, A.J., J.D. Sutton, and J. France Prediction of the yields of milk constituents in dairy cows offered silage ad libitum and concentrates at a flat rate. Anim. Prod. 54: Johnson, C.L., and C.L. Tran Rationale of feeding systems for lactating dairy cows. J. Dairy Res. 57: Tran, C.L., and C.L. Johnson Prediction of responses in milk constituents to changes in the nutrition of dairy cows. J. Dairy Res. 58: Baldwin, R.L., J. France, and M. Gill Metabolism of the lactating cow. I. Animal elements of a mechanistic model. J. Dairy Res. 54: Baldwin, R.L., J.H.M. Thornley, and D.E. Beever Metabolism of the lactating cow II. Digestive elements of a mechanistic model. J. Dairy Res. 54: Baldwin, R. L Modeling Ruminant Digestion and Metabolism. Chapman & Hall, London, UK. 14. Fox, D.G., C.J. Sniffen, J.D. O'Connor, J.B. Russell, and P.J. Van Soest A net carbohydrate and protein system for evaluating cattle diets: III. Cattle requirements and diet adequacy. J. Anim. Sci. 70: Russell, J.B., J.D. O'Connor, D.G. Fox, P.J. Van Soest, and C.J. Sniffen A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim. Sci. 70: Sniffen, C.J., J.D. O'Connor, P.J. Van Soest, D.G. Fox, and J.B. Russell A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J. Anim. Sci. 70: Blaxter, K. L The Energy Metabolism of Ruminants. Hutchinson & Co., London, UK.

Quick Start. Cornell Net Carbohydrate and Protein System for Sheep

Quick Start. Cornell Net Carbohydrate and Protein System for Sheep Quick Start Cornell Net Carbohydrate and Protein System for Sheep The Cornell Net Carbohydrate and Protein System (CNCPS) for Sheep is a feeding system derived from the CNCPS for cattle (Fox et al., 2003).

More information

A Comparison of MIN-AD to MgO and Limestone in Peripartum Nutrition

A Comparison of MIN-AD to MgO and Limestone in Peripartum Nutrition A Comparison of MIN-AD to MgO and Limestone in Peripartum Nutrition D-9.0-03/17 Introduction Recent research has linked subclinical hypocalcemia, which impacts 11-25% of first lactation heifers and 42-60%

More information

Reproductive efficiency Environment 120 Low P ( ) High P ( ) ays

Reproductive efficiency Environment 120 Low P ( ) High P ( ) ays The impact of P on absorbable P in dairy cattle rations Why the concern over P in dairy rations Reproductive efficiency Environment Phosphorus and Dairy Nutrition Perceived relationship of P content of

More information

Dietary Protein. Dr. Mark McGuire Dr. Jullie Wittman AVS Department University of Idaho

Dietary Protein. Dr. Mark McGuire Dr. Jullie Wittman AVS Department University of Idaho Dietary Protein Dr. Mark McGuire Dr. Jullie Wittman AVS Department University of Idaho Some slides adapted from Dairy Nutrition & Management (ANSCI 200/492), University of Illinois at Urbana-Champaign,

More information

Protein and Carbohydrate Utilization by Lactating Dairy Cows 1

Protein and Carbohydrate Utilization by Lactating Dairy Cows 1 Protein and Carbohydrate Utilization by Lactating Dairy Cows 1 Bill Weiss Department of Animal Sciences Ohio Agricultural Research and Development Center The Ohio State University, Wooster 44691 email:

More information

FACTORS AFFECTING MANURE EXCRETION BY DAIRY COWS 1

FACTORS AFFECTING MANURE EXCRETION BY DAIRY COWS 1 FACTORS AFFECTING MANURE EXCRETION BY DAIRY COWS 1 W. P. Weiss Department of Animal Sciences Ohio Agricultural Research and Development Center The Ohio State University Manure in an inevitable byproduct

More information

CHAMPION TOC INDEX. Protein Requirements of Feedlot Cattle. E. K. Okine, G. W. Mathison and R. R. Corbett. Take Home Message

CHAMPION TOC INDEX. Protein Requirements of Feedlot Cattle. E. K. Okine, G. W. Mathison and R. R. Corbett. Take Home Message TOC INDEX CHAMPION Feed Services Ltd. Protein Requirements of Feedlot Cattle E. K. Okine, G. W. Mathison and R. R. Corbett Take Home Message The new Nutrient Requirements (NRC) of Beef Cattle published

More information

Using Models on Dairy Farms How Well Do They Work? Larry E. Chase, Ph. D. Cornell University

Using Models on Dairy Farms How Well Do They Work? Larry E. Chase, Ph. D. Cornell University Using Models on Dairy Farms How Well Do They Work? Larry E. Chase, Ph. D. Cornell University Email: lec7@cornell.edu INTRODUCTION The use of computer models as a tool used by nutritionists to evaluate

More information

DIET DIGESTIBILITY AND RUMEN TRAITS IN RESPONSE TO FEEDING WET CORN GLUTEN FEED AND A PELLET CONSISTING OF RAW SOYBEAN HULLS AND CORN STEEP LIQUOR

DIET DIGESTIBILITY AND RUMEN TRAITS IN RESPONSE TO FEEDING WET CORN GLUTEN FEED AND A PELLET CONSISTING OF RAW SOYBEAN HULLS AND CORN STEEP LIQUOR Dairy Day 2002 DIET DIGESTIBILITY AND RUMEN TRAITS IN RESPONSE TO FEEDING WET CORN GLUTEN FEED AND A PELLET CONSISTING OF RAW SOYBEAN HULLS AND CORN STEEP LIQUOR E. E. Ferdinand, J. E. Shirley, E. C. Titgemeyer,

More information

Amino Acid Balancing in the Context of MP and RUP Requirements

Amino Acid Balancing in the Context of MP and RUP Requirements Amino Acid Balancing in the Context of MP and RUP Requirements Charles G. Schwab, Ryan S. Ordway, and Nancy L. Whitehouse Department of Animal and Nutritional Sciences University of New Hampshire Durham,

More information

IMPACT OF NUTRITION MODELS IN THE DAIRY INDUSTRY. William Chalupa and Ray Boston School of Veterinary Medicine University of Pennsylvania INTRODUCTION

IMPACT OF NUTRITION MODELS IN THE DAIRY INDUSTRY. William Chalupa and Ray Boston School of Veterinary Medicine University of Pennsylvania INTRODUCTION IMPACT OF NUTRITION MODELS IN THE DAIRY INDUSTRY William Chalupa and Ray Boston School of Veterinary Medicine University of Pennsylvania INTRODUCTION For some years now, it has been evident that dairy

More information

ESTIMATING THE ENERGY VALUE OF CORN SILAGE AND OTHER FORAGES. P.H. Robinson 1 ABSTRACT INTRODUCTION

ESTIMATING THE ENERGY VALUE OF CORN SILAGE AND OTHER FORAGES. P.H. Robinson 1 ABSTRACT INTRODUCTION ESTIMATING THE ENERGY VALUE OF CORN SILAGE AND OTHER FORAGES P.H. Robinson 1 ABSTRACT It is possible to estimate the energy value of ruminant feeds if some chemical assays of the feedstuffs, and the estimated

More information

Supplementation of High Corn Silage Diets for Dairy Cows. R. D. Shaver Professor and Extension Dairy Nutritionist

Supplementation of High Corn Silage Diets for Dairy Cows. R. D. Shaver Professor and Extension Dairy Nutritionist INTRODUCTION Supplementation of High Corn Silage Diets for Dairy Cows R. D. Shaver Professor and Extension Dairy Nutritionist Department of Dairy Science College of Agricultural and Life Sciences University

More information

Evaluation of Models for Balancing the Protein Requirements of Dairy Cows

Evaluation of Models for Balancing the Protein Requirements of Dairy Cows Evaluation of Models for Balancing the Protein Requirements of Dairy Cows R. A. KOHN,*,1 K. F. KALSCHEUR,* and M. HANIGAN *Department of Animal and Avian Sciences, University of Maryland, College Park

More information

BUILDING ON MILK PROTEIN

BUILDING ON MILK PROTEIN BUILDING ON MILK PROTEIN Michael F. Hutjens TAKE HOME MESSAGES Capturing the milk protein potential in a herd can increase milk value 30 to 50 cents per cwt (one hundred pounds). Amino acid balancing using

More information

Amino Acids in Dairy Nutrition Where Do They Fit?

Amino Acids in Dairy Nutrition Where Do They Fit? Amino Acids in Dairy Nutrition Where Do They Fit? T. R. Overton and L. E. Chase Department of Animal Science Cornell University As our understanding of the biology underlying specifics of protein nutrition

More information

Rumination or cud chewing consists of regurgitation, remastication, reinsalvation, and reswallowing.

Rumination or cud chewing consists of regurgitation, remastication, reinsalvation, and reswallowing. Nutrition 115 Midterm Exam 2 February 25, 2000 Name Please be sure to put your name at the top of each page. Any page without a name in the appropriate place will not be graded. Read each question carefully,

More information

COOPERATIVE EXTENSION UNIVERSITY OF CALIFORNIA, DAVIS

COOPERATIVE EXTENSION UNIVERSITY OF CALIFORNIA, DAVIS UC CE COOPERATIVE EXTENSION UNIVERSITY OF CALIFORNIA, DAVIS Dried Corn Distillers Grains in Dairy Cattle Feeding Part 2 Nutrient Profiles, Variability and Key Impacts on Cattle P.H. Robinson Cooperative

More information

Ration Formulation Models: Biological Reality vs. Models

Ration Formulation Models: Biological Reality vs. Models Ration Formulation Models: Biological Reality vs. Models H.A. Rossow, Ph.D. Veterinary Medicine Teaching and Research Center UC Davis School of Veterinary Medicine, Tulare, CA Email: heidi.rossow@gmail.com

More information

EFFECTS OF FEEDING WHOLE COTTONSEED COATED WITH STARCH, UREA, OR YEAST ON PERFORMANCE OF LACTATING DAIRY COWS

EFFECTS OF FEEDING WHOLE COTTONSEED COATED WITH STARCH, UREA, OR YEAST ON PERFORMANCE OF LACTATING DAIRY COWS EFFECTS OF FEEDING WHOLE COTTONSEED COATED WITH STARCH, UREA, OR YEAST ON PERFORMANCE OF LACTATING DAIRY COWS Kelly M. Cooke and John K. Bernard Animal and Dairy Science, University of Georgia, Tifton

More information

CHANGES IN RUMINAL MICROBIAL POPULATIONS IN TRANSITION DAIRY COWS

CHANGES IN RUMINAL MICROBIAL POPULATIONS IN TRANSITION DAIRY COWS Dairy Day 22 CHANGES IN RUMINAL MICROBIAL POPULATIONS IN TRANSITION DAIRY COWS A. F. Park, J. E. Shirley, E. C. Titgemeyer, R.C. Cochran, J. M. DeFrain, E. E. Ferdinand, N. Wallace, T. G. Nagaraja 1, and

More information

Introduction. Carbohydrate Nutrition. Microbial CHO Metabolism. Microbial CHO Metabolism. CHO Fractions. Fiber CHO (FC)

Introduction. Carbohydrate Nutrition. Microbial CHO Metabolism. Microbial CHO Metabolism. CHO Fractions. Fiber CHO (FC) Introduction Carbohydrate Nutrition Largest component of dairy rations CHO comprise to 80% of ration DM Major source of energy for milk production One-third of milk solids is lactose 4.9 lbs. of lactose

More information

Effects of Varying Rates of Tallgrass Prairie Hay and Wet Corn Gluten Feed on Productivity of Dairy Cows

Effects of Varying Rates of Tallgrass Prairie Hay and Wet Corn Gluten Feed on Productivity of Dairy Cows Effects of Varying Rates of Tallgrass Prairie Hay and Wet Corn Gluten Feed on Productivity of Dairy Cows D.J. Rezac, K.N. Grigsby, and B.J. Bradford Summary Productivity of lactating dairy cows was assessed

More information

Balancing Amino Acids An Example of a Reformulated Western Dairy Ration Brian Sloan, Ph.D.

Balancing Amino Acids An Example of a Reformulated Western Dairy Ration Brian Sloan, Ph.D. Balancing Amino Acids An Example of a Reformulated Western Dairy Ration Brian Sloan, Ph.D. To illustrate how to reduce nitrogen (N) excretion and still improve performance, a typical ration was formulated

More information

COMPLETE LACTATIONAL PERFORMANCE OF COWS FED WET CORN GLUTEN FEED AND PELLET CONSISTING OF RAW SOYBEAN HULLS AND CORN STEEP LIQUOR

COMPLETE LACTATIONAL PERFORMANCE OF COWS FED WET CORN GLUTEN FEED AND PELLET CONSISTING OF RAW SOYBEAN HULLS AND CORN STEEP LIQUOR Dairy Day 2002 COMPLETE LACTATIONAL PERFORMANCE OF COWS FED WET CORN GLUTEN FEED AND PELLET CONSISTING OF RAW SOYBEAN HULLS AND CORN STEEP LIQUOR E. E. Ferdinand, J. E. Shirley, E. C. Titgemeyer, J. M.

More information

THIS ARTICLE IS SPONSORED BY THE MINNESOTA DAIRY HEALTH CONFERENCE.

THIS ARTICLE IS SPONSORED BY THE MINNESOTA DAIRY HEALTH CONFERENCE. THIS ARTICLE IS SPONSORED BY THE MINNESOTA DAIRY HEALTH CONFERENCE. ST. PAUL, MINNESOTA UNITED STATES OF MINNESOTA Introduction Energy in the 2001 Dairy NRC: Understanding the System Jim Linn Department

More information

Production Costs. Learning Objectives. Essential Nutrients. The Marvels of Ruminant Digestion

Production Costs. Learning Objectives. Essential Nutrients. The Marvels of Ruminant Digestion Feeding for 2: Understanding How to Feed the Goat and her Rumen Robert Van Saun, DVM, MS, PhD Extension Veterinarian Department of Veterinary & Biomedical Sciences The Marvels of Ruminant Digestion This

More information

WHAT DO THE COWS HAVE TO SAY ABOUT NDF AND STARCH DIGESTION?

WHAT DO THE COWS HAVE TO SAY ABOUT NDF AND STARCH DIGESTION? WHAT DO THE COWS HAVE TO SAY ABOUT NDF AND STARCH DIGESTION? 2014 Ohio Nutrition Workshop Rock River Laboratory Dr. John Goeser, PAS & Dipl. ACAN Animal Nutrition and R&I Director Rock River Lab, Inc.

More information

BALANCING FOR RUMEN DEGRADABLE PROTEIN INTRODUCTION

BALANCING FOR RUMEN DEGRADABLE PROTEIN INTRODUCTION BALANCING FOR RUMEN DEGRADABLE PROTEIN C. J. Sniffen 1, W. H. Hoover 2, T. K. Miller-Webster 2, D. E. Putnam 3 and S. M. Emanuele. 1 Fencrest, LLC, 2 The Rumen Profiling Laboratory, West Virginia University,

More information

Effective Practices In Sheep Production Series

Effective Practices In Sheep Production Series Effective Practices In Sheep Production Series Understanding Feed Test Analysis Terms The key to accurate feed tests is correct sampling of your forages and grains. Equally important, is understanding

More information

TRANSITION COW NUTRITION AND MANAGEMENT. J.E. Shirley

TRANSITION COW NUTRITION AND MANAGEMENT. J.E. Shirley Dairy Day 2003 TRANSITION COW NUTRITION AND MANAGEMENT J.E. Shirley Summary Dairy cows are generally provided with a 60-day dry period. The first part of the dry period is called the far-off dry period

More information

Exercise 6 Ration Formulation II Balance for Three or More Nutrients 20 Points

Exercise 6 Ration Formulation II Balance for Three or More Nutrients 20 Points Exercise 6 Ration Formulation II Balance for Three or More Nutrients 20 Points This lab exercise progresses from balancing for two nutrients, as in Exercise 5, to balancing for three or more nutrients.

More information

Milk Protein Area of Opportunity?

Milk Protein Area of Opportunity? Nutrition and Milk Protein Production David R. Balbian, M.S. Thomas R. Overton, Ph.D. Cornell University and Cornell Cooperative Extension 2015 Winter Dairy Management Meetings Milk Protein Area of Opportunity?

More information

PROCESSING ADJUSTMENT FACTORS AND INTAKE DISCOUNTS Noah B. Litherland Oklahoma State University Stillwater, OK

PROCESSING ADJUSTMENT FACTORS AND INTAKE DISCOUNTS Noah B. Litherland Oklahoma State University Stillwater, OK PROCESSING ADJUSTMENT FACTORS AND INTAKE DISCOUNTS Noah B. Litherland Oklahoma State University Stillwater, OK noah.litherland@okstate.edu ABSTRACT Processing adjustment factors (PAF) and intake discounts

More information

Normand St-Pierre The Ohio State University. Copyright 2011 Normand St-Pierre, The Ohio State University

Normand St-Pierre The Ohio State University. Copyright 2011 Normand St-Pierre, The Ohio State University Normand St-Pierre The Ohio State University Forages are Feeds Animals do not require feeds! Feeds are packages of nutrients. The value of a feed is the sum of the values of the nutrients that it contains.

More information

Using the 2001 Dairy NRC to Optimize the Use of Dietary Protein for Milk Protein Production

Using the 2001 Dairy NRC to Optimize the Use of Dietary Protein for Milk Protein Production Using the 2001 Dairy NRC to Optimize the Use of Dietary Protein for Milk Protein Production Charles G. Schwab Department of Animal and Nutritional Sciences University of New Hampshire Durham, NH Introduction

More information

Nonstructural and Structural Carbohydrates in Dairy Cattle Rations 1

Nonstructural and Structural Carbohydrates in Dairy Cattle Rations 1 CIR1122 Nonstructural and Structural Carbohydrates in Dairy Cattle Rations 1 Barney Harris, Jr. 2 Carbohydrates are the largest component in the dairy ration and contribute 60 to 70% of the net energy

More information

INCLUSION OF FAT IN DIETS FOR EARLY LACTATING HOLSTEIN COWS. J. E. Shirley and M. E. Scheffel

INCLUSION OF FAT IN DIETS FOR EARLY LACTATING HOLSTEIN COWS. J. E. Shirley and M. E. Scheffel Dairy Day 1995 INCLUSION OF FAT IN DIETS FOR EARLY LACTATING HOLSTEIN COWS J. E. Shirley and M. E. Scheffel Summary Twenty-four Holstein cows were used to study the effect of dietary fat on milk production

More information

Efficient Use of Forages and Impact on Cost of Production

Efficient Use of Forages and Impact on Cost of Production Efficient Use of Forages and Impact on Cost of Production Karen A. Beauchemin 1 and Lyle Rode 2 1 Agriculture and Agri-Food Canada, Lethbridge Research Centre, 5403-1 st Ave South, Lethbridge, Alberta

More information

Effect of Feeding Dried Distiller s Grains Plus Solubles on Milk Yield and its Composition in Dairy Cattle

Effect of Feeding Dried Distiller s Grains Plus Solubles on Milk Yield and its Composition in Dairy Cattle International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 03 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.703.220

More information

Understanding Dairy Nutrition Terminology

Understanding Dairy Nutrition Terminology Understanding Dairy Nutrition Terminology Mat Haan, Penn State Dairy Educator, Berks County Lucas Mitchell, Penn State Department of Animal Science Dairy Cattle Nutrition Workshop November 15, 2017 Interpreting

More information

Dietary Protein 10/21/2010. Protein is Required for: Crude Protein Requirement. Rumen Degradable Protein (RDP)

Dietary Protein 10/21/2010. Protein is Required for: Crude Protein Requirement. Rumen Degradable Protein (RDP) Dietary Protein Dr. Mark McGuire VS Department University of Idaho Some slides adapted from Dairy Nutrition & Management (NSI 200/492), University of Illinois at Urbana-hampaign, Dr. Mike Hutjens & Jimmy

More information

EFFICIENCY OF N UTILIZATION FOLLOWING A DECREASED N SUPPLY IN DAIRY RATIONS : EFFECT OF THE ENERGY SOURCE

EFFICIENCY OF N UTILIZATION FOLLOWING A DECREASED N SUPPLY IN DAIRY RATIONS : EFFECT OF THE ENERGY SOURCE EFFICIENCY OF N UTILIZATION FOLLOWING A DECREASED N SUPPLY IN DAIRY RATIONS : EFFECT OF THE ENERGY SOURCE Cantalapiedra-Hijar G Fanchone A Nozière P Doreau M Ortigues-Marty I Herbivore Research Unit (Theix,

More information

Protein and Energy Needs of the Transition Cow

Protein and Energy Needs of the Transition Cow Protein and Energy Needs of the Transition Cow Gabriella A. Varga and Ryan S. Ordway Department of Dairy and Animal Science, Pennsylvania State University, University Park, PA 16802 USA E-mail: GVarga@das.psu.edu

More information

Effects of increasing the energy density of a lactating ewe diet by replacing grass hay with soybean hulls and dried distillers grains with solubles 1

Effects of increasing the energy density of a lactating ewe diet by replacing grass hay with soybean hulls and dried distillers grains with solubles 1 Effects of increasing the energy density of a lactating ewe diet by replacing grass hay with soybean hulls and dried distillers grains with solubles 1 Aimee Wertz-Lutz 2, Robert Zelinsky 3, and Jeffrey

More information

Maximizing Milk Components and Metabolizable Protein Utilization through Amino Acid Formulation

Maximizing Milk Components and Metabolizable Protein Utilization through Amino Acid Formulation Maximizing Milk Components and Metabolizable Protein Utilization through Amino Acid Formulation CHUCK SCHWAB PROFESSOR EMERITUS, ANIMAL SCIENCES UNIVERSITY OF NEW HAMPSHIRE PRE- CONFERENCE SYMPOSIUM 71

More information

STRIKING A BALANCE : PROTEIN FEEDING AND PERFORMANC E

STRIKING A BALANCE : PROTEIN FEEDING AND PERFORMANC E STRIKING A BALANCE : PROTEIN FEEDING AND PERFORMANC E by Mary Beth Hal Department of Dairy and Poultry Sciences University of Florida Gainesville, Florida Introduction One of the largest stumbling blocks

More information

MANAGING THE DAIRY COW DURING THE DRY PERIOD

MANAGING THE DAIRY COW DURING THE DRY PERIOD Department of Animal Science MANAGING THE DAIRY COW DURING THE DRY PERIOD Dairy Cattle Production 342-450A Page 1 of 11 Background The dry period is a critical period for the health, production and reproduction

More information

DAIRY COW RESPONSES TO SOURCES AND AMOUNTS OF SUPPLEMENTAL PROTEIN

DAIRY COW RESPONSES TO SOURCES AND AMOUNTS OF SUPPLEMENTAL PROTEIN DAIRY COW RESPONSES TO SOURCES AND AMOUNTS OF SUPPLEMENTAL PROTEIN Ignacio R. Ipharraguerre and Jimmy H. Clark TAKE HOME MESSAGES Milk production per unit of crude protein (CP) in the dietary dry matter

More information

Effect of supplementary concentrate type on milk yield and composition in early lactation dairy cows offered perennial ryegrass based pasture

Effect of supplementary concentrate type on milk yield and composition in early lactation dairy cows offered perennial ryegrass based pasture Session 30 Presentation 8, authors email: stephen.c.whelan@ucd.ie Effect of supplementary concentrate type on milk yield and composition in early lactation dairy cows offered perennial ryegrass based pasture

More information

Base ration components (forages and grains) will average about 3% fat. Use Supplemental Fats. Fat Feeding. Production Responses to Supplemental Fat

Base ration components (forages and grains) will average about 3% fat. Use Supplemental Fats. Fat Feeding. Production Responses to Supplemental Fat Fat Feeding Some slides adapted from Dairy Nutrition & Management (ANSCI 200/492), University of Illinois at Urbana-Champaign, Dr. Jim Drackley & Mike Hutjens Base ration components (forages and grains)

More information

Nitrogen, Ammonia Emissions and the Dairy Cow

Nitrogen, Ammonia Emissions and the Dairy Cow Nitrogen, Ammonia Emissions and the Dairy Cow Virginia Ishler Topics: Nitrogen from the farm to the environment Ration balancing to minimize nitrogen excretion Feeding management strategies to minimize

More information

Feed Management to Improve Nitrogen and Phosphorus Efficiency. Charles C. Stallings Professor and Extension Dairy Scientist Virginia Tech

Feed Management to Improve Nitrogen and Phosphorus Efficiency. Charles C. Stallings Professor and Extension Dairy Scientist Virginia Tech Feed Management to Improve Nitrogen and Phosphorus Efficiency Charles C. Stallings Professor and Extension Dairy Scientist Virginia Tech The two nutrients that have the greatest potential for negative

More information

The Rumen Inside & Out

The Rumen Inside & Out Livestock Management CDE Dairy: Nutritional Management K. J. Clark, Erin Marotz, and B.A. Reiling January 26, 2017 Nutritional Management Objectives Students should understand... Anatomy/Physiology Nutritionally

More information

Exercise 2 Feed Composition and Nutrient Requirements 20 Points

Exercise 2 Feed Composition and Nutrient Requirements 20 Points Exercise 2 Feed Composition and Nutrient Requirements 20 Points The objective of this laboratory exercise is to familiarize the student with the feed composition and nutrient requirement tables in the

More information

Setting Yourself Up for Success with Amino Acid Balancing

Setting Yourself Up for Success with Amino Acid Balancing Setting Yourself Up for Success with Amino Acid Balancing Jessica Tekippe 1 Ajinomoto Heartland Inc. Introduction - Why Protein Nutrition is Important Of the nitrogen fed to dairy cows, only 21 to 38 percent

More information

DDGS: An Evolving Commodity. Dr. Jerry Shurson University of Minnesota

DDGS: An Evolving Commodity. Dr. Jerry Shurson University of Minnesota DDGS: An Evolving Commodity Dr. Jerry Shurson University of Minnesota Animals Require Nutrients on a Daily Basis Feed Ingredients Supply Nutrients in Different Amounts and Forms Nutritionist s Job: Develop

More information

Balancing Rations to Optimize Milk Components. Goal of dairying: U.S. Dairy Forage Research Center USDA Agricultural Research Service 12/7/2016

Balancing Rations to Optimize Milk Components. Goal of dairying: U.S. Dairy Forage Research Center USDA Agricultural Research Service 12/7/2016 United States Department of Agriculture Balancing Rations to Optimize Milk Components Geoffrey Zanton U.S. Dairy Forage Research Center USDA Agricultural Research Service Goal of dairying: Produce a highly

More information

Know Your Feed Terms. When you are talking nutrition and feeds with your

Know Your Feed Terms. When you are talking nutrition and feeds with your Revised July 2006 Agdex 400/60-2 Know Your Feed Terms When you are talking nutrition and feeds with your feed salesperson, livestock nutritionist, veterinarian or neighbour, it is important that you both

More information

Evaluation of the Bioavailability of USA Lysine and MetiPEARL in Lactating Dairy Cows

Evaluation of the Bioavailability of USA Lysine and MetiPEARL in Lactating Dairy Cows Evaluation of the Bioavailability of USA Lysine and MetiPEARL in Lactating Dairy Cows USA Lysine and MetiPEARL are manufactured to have a precise specific gravity and particle size leading to rapid transit

More information

Targeted Feeding to Save Nutrients

Targeted Feeding to Save Nutrients Targeted Feeding to Save Nutrients Charles J. Sniffen, Ph.D. Fencrest, LLC fencrest@msn.com William Chalupa, Ph.D. University of Pennsylvania wmchalupa@aol.com Introduction There is increasing pressure

More information

DAIRY FOCUS AT ILLINOIS NEWSLETTER. Focus on Forages Volume 2, Number 1

DAIRY FOCUS AT ILLINOIS NEWSLETTER. Focus on Forages Volume 2, Number 1 Volume 2, Number 1 Focus on Forages 2015 Forages have always been an important source of nutrients for the dairy cow. Feeding high quality forages can increase dairy efficiency and help reduce the feed

More information

FEEDING and MANAGEMENT OF DAMASCUS GOATS CYPRUS EXPERIENCE By Miltiades Hadjipanayiotou

FEEDING and MANAGEMENT OF DAMASCUS GOATS CYPRUS EXPERIENCE By Miltiades Hadjipanayiotou DAMASCUS GOAT FEEDING and MANAGEMENT OF DAMASCUS GOATS CYPRUS EXPERIENCE By Miltiades Hadjipanayiotou Damascus goat is a breed originating from Syria, and is found as pure breed in many M.E. & N. African

More information

The four stomachs of a dairy cow

The four stomachs of a dairy cow The four stomachs of a dairy cow Left side view 1) Rumen 2) Reticulum 3) Omasum 4) Abomasum Reticulo-omasal orifice (reticulo-rumen exit) (on the right side of the cow) (on the right side of the cow) Esophagus

More information

Ruminal Metabolism and Intestinal Digestion of Fatty Acids. William Chalupa, Peter Moate and Ray Boston

Ruminal Metabolism and Intestinal Digestion of Fatty Acids. William Chalupa, Peter Moate and Ray Boston Ruminal Metabolism and Intestinal Digestion of Fatty Acids. William Chalupa, Peter Moate and Ray Boston School of Veterinary Medicine University of Pennsylvania Kennett Square Pa 19348 Summary A lipid

More information

COOPERATIVE EXTENSION UNIVERSITY OF CALIFORNIA, DAVIS. Rumen Escape Protein of some Dairy Feedstuffs

COOPERATIVE EXTENSION UNIVERSITY OF CALIFORNIA, DAVIS. Rumen Escape Protein of some Dairy Feedstuffs UC CE COOPERATIVE EXTENSION UNIVERSITY OF CALIFORNIA, DAVIS Rumen Escape Protein of some Dairy Feedstuffs P.H. Robinson Cooperative Extension Specialist University of California, Davis, CA 95616-8521 Dairy

More information

Evaluation of Distiller s Dried Grains with Solubles for Lactating Cows in Taiwan. Yuan-Kuo Chen, Ph.D.

Evaluation of Distiller s Dried Grains with Solubles for Lactating Cows in Taiwan. Yuan-Kuo Chen, Ph.D. Evaluation of Distiller s Dried Grains with Solubles for Lactating Cows in Taiwan Introduction Yuan-Kuo Chen, Ph.D. Distiller s dried grains with solubles (DDGS) has been fed to cattle for more than a

More information

Dry Cow Nutrition. Jersey conference Brazil

Dry Cow Nutrition. Jersey conference Brazil Dry Cow Nutrition Jersey conference Brazil Energy Dairy Cow Lactation Cycle Early Lactation Mid Lactation Late Lactation Dry Period Dry Matter Intake Milk Production Body Energy Reserves Calving BCS 3.5

More information

EFFECTS OF FOUR SOYBEAN MEAL PRODUCTS ON LACTATIONAL PERFORMANCE OF DAIRY COWS. M. S. Awawdeh, E. C. Titgemeyer, J. S. Drouillard, and J. E.

EFFECTS OF FOUR SOYBEAN MEAL PRODUCTS ON LACTATIONAL PERFORMANCE OF DAIRY COWS. M. S. Awawdeh, E. C. Titgemeyer, J. S. Drouillard, and J. E. Dairy Research 2006 EFFECTS OF FOUR SOYBEAN MEAL PRODUCTS ON LACTATIONAL PERFORMANCE OF DAIRY COWS M. S. Awawdeh, E. C. Titgemeyer, J. S. Drouillard, and J. E. Shirley Summary Thirty-two multiparous Holstein

More information

Evaluation of Models to Estimate Urinary Nitrogen and Expected Milk Urea Nitrogen 1

Evaluation of Models to Estimate Urinary Nitrogen and Expected Milk Urea Nitrogen 1 J. Dairy Sci. 85:227 233 American Dairy Science Association, 2002. Evaluation of Models to Estimate Urinary Nitrogen and Expected Milk Urea Nitrogen 1 R. A. Kohn, K. F. Kalscheur, 2 and E. Russek-Cohen

More information

EFFECT OF RYEGRASS SILAGE DRY MATTER CONTENT ON THE PERFORMANCE OF LACTATING HOLSTEIN COWS

EFFECT OF RYEGRASS SILAGE DRY MATTER CONTENT ON THE PERFORMANCE OF LACTATING HOLSTEIN COWS EFFECT OF RYEGRASS SILAGE DRY MATTER CONTENT ON THE PERFORMANCE OF LACTATING HOLSTEIN COWS J. JUAN CASTRO, NATASHA MULLIS, J. K. BERNARD, and J. W. WEST ABSTRACT Twenty-four lactating Holstein cows were

More information

Introduction to MUN. What is Urea

Introduction to MUN. What is Urea Introduction to MUN What is Urea Urea is a small organic molecule composed of carbon, nitrogen, oxygen, and hydrogen. Urea is a common constituent of blood and other body fluids. Urea is formed from ammonia

More information

FEEDING VALUE OF WET DISTILLERS GRAINS FOR LACTATING DAIRY COWS WHEN CO-ENSILED WITH CORN SILAGE OR HAYCROP SILAGE

FEEDING VALUE OF WET DISTILLERS GRAINS FOR LACTATING DAIRY COWS WHEN CO-ENSILED WITH CORN SILAGE OR HAYCROP SILAGE FEEDING VALUE OF WET DISTILLERS GRAINS FOR LACTATING DAIRY COWS WHEN CO-ENSILED WITH CORN SILAGE OR HAYCROP SILAGE BY: Nicole S. Schmelz 1, Scott Lake 1, Ron P. Lemenager 1 Dennis Buckmaster 2, Michael

More information

Optimizing Starch Concentrations in Dairy Rations

Optimizing Starch Concentrations in Dairy Rations 73 Optimizing Starch Concentrations in Dairy Rations Rick Grant 1 W. H. Miner Agricultural Research Institute Abstract Currently, many nutritionists consider only the total nonfiber carbohydrate (NFC)

More information

Nutritive Value of Feeds

Nutritive Value of Feeds Nutritive Value of Feeds Chapter 12 A working knowledge of the nutrient composition of available feeds is an integral part of a successful beef cattle operation. * The rumen fermentation process allows

More information

Choosing the Right Corn Hybrid for Silage 1. William P. Weiss

Choosing the Right Corn Hybrid for Silage 1. William P. Weiss 1. Take Home Message Choosing the Right Corn Hybrid for Silage 1 William P. Weiss Department of Animal Sciences Ohio Agricultural Research and Development Center The Ohio State University, Wooster, OH

More information

Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle 1,2

Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle 1,2 Utilization of distillers grains from the fermentation of sorghum or corn in diets for finishing beef and lactating dairy cattle 1,2 S. Al-Suwaiegh, K. C. Fanning, R. J. Grant 3, C. T. Milton 4, and T.

More information

INTERPRETING FORAGE QUALITY TEST REPORTS

INTERPRETING FORAGE QUALITY TEST REPORTS INTERPRETING FORAGE QUALITY TEST REPORTS Donna M. Amaral-Phillips, Ph.D. Department of Animal and Food Sciences University of Kentucky Forages are the foundation for building diets for beef and dairy cattle,

More information

Introduction. Use of undf240 as a benchmarking tool. Relationships between undigested and physically effective fiber in lactating dairy cows

Introduction. Use of undf240 as a benchmarking tool. Relationships between undigested and physically effective fiber in lactating dairy cows Relationships between undigested and physically effective fiber in lactating dairy cows R. Grant 1, W. Smith 1, M. Miller 1, K. Ishida 2, and A. Obata 2 1 William H. Miner Agricultural Research Institute,

More information

Efficient rumen conditioning for optimum productivity

Efficient rumen conditioning for optimum productivity Efficient rumen conditioning for optimum productivity Acid Buf - efficient rumen conditioning for optimum productivity The feeding of high concentrate diets to maximise productivity from dairy cows can

More information

Dairy Update. Issue 110 July 1992 ALTERNATIVE FEEDSTUFFS FOR DAIRY. Vern Oraskovich Agriculture Extension Agent Carver County

Dairy Update. Issue 110 July 1992 ALTERNATIVE FEEDSTUFFS FOR DAIRY. Vern Oraskovich Agriculture Extension Agent Carver County e, r1innesota EXTENSION SERVICE UNIVERSITY OF MINNESOTA ANIMAL SCIENCE EXTENSION Department of Animal Science 101 Haecker Hall 1364 Eckles Avenue St. Paul, Minnesota 55108 (612) 624 4995 FAX: (612) 625

More information

INTESTINAL DIGESTIBILITY OF PHOSPHORUS FROM RUMINAL MICROBES

INTESTINAL DIGESTIBILITY OF PHOSPHORUS FROM RUMINAL MICROBES AUGUST 2012 INTESTINAL DIGESTIBILITY OF PHOSPHORUS FROM RUMINAL MICROBES EAAP 2012, SESSION 21 JAKOB SEHESTED, PETER LUND AND HENRY JØRGENSEN DEPARTMENT OF ANIMAL SCIENCE præ TATION SEN 1 P UTILISATION

More information

Established Facts. Impact of Post Harvest Forage on the Rumen Function. Known Facts. Known Facts

Established Facts. Impact of Post Harvest Forage on the Rumen Function. Known Facts. Known Facts Impact of Post Harvest Forage on the Rumen Function Gbenga Ayangbile, Ph.D. Established Facts Most nutrients in fresh forages before harvesting are more available and efficiently utilized for productive

More information

Nutrient Requirements of Dairy Cattle 1

Nutrient Requirements of Dairy Cattle 1 DS38 Nutrient Requirements of Dairy Cattle 1 Barney Harris, Jr. 2 Proper feeding and good balanced rations remain the cornerstone of a successful dairy operation. Milk yield per cow and the cost of feed

More information

Fibre is complicated! NDFD, undfom in forage analysis reports NDF. Review. NDF is meant to measure Hemicellulose Celluose Lignin

Fibre is complicated! NDFD, undfom in forage analysis reports NDF. Review. NDF is meant to measure Hemicellulose Celluose Lignin Fibre is complicated! Understanding andf, andfom, NDFD, undfom in forage analysis reports T.P. Tylutki PhD Dpl ACAS CEO AMTS LLC Groton NY USA NDF NDF is meant to measure Hemicellulose Celluose Lignin

More information

The Cornell Value Discovery System Model. CVDS version 1.0 September Model Documentation. Luis O. Tedeschi, Danny G. Fox, and Michael J.

The Cornell Value Discovery System Model. CVDS version 1.0 September Model Documentation. Luis O. Tedeschi, Danny G. Fox, and Michael J. The Cornell Value Discovery System Model CVDS version 1.0 September 2003 Model Documentation Luis O. Tedeschi, Danny G. Fox, and Michael J. Baker Department of Animal Science, Cornell University 130 Morrison

More information

Control of Energy Intake Through Lactation

Control of Energy Intake Through Lactation Control of Energy Intake Through Lactation Michael S. Allen and B. J. Bradford 1 Department of Animal Science, Michigan State University, East Lansing 48824 Email: allenm@msu.edu Summary Feed intake is

More information

Feedstuff NE l content calculation 5 steps : STEP 1

Feedstuff NE l content calculation 5 steps : STEP 1 NRC energy evaluation system Eastridge, M.L. 2002. Energy in the New Dairy NRC. Department of Animal Sciences, The Ohio State t University, it pp. 7. NRC. 2001. Nutrient requirements of dairy cattle. Seventh

More information

Prospects of Palm Kernel Cake. use in Cattle Feed

Prospects of Palm Kernel Cake. use in Cattle Feed Prospects of Palm Kernel Cake use in Cattle Feed Dr. Tariq Mahmood D.V.M., M.Sc. Animal Nutrition M.S. Total Quality Management Diploma in Feed Technology and Formulation, NCSU, USA General Manager Operations

More information

Recent Applications of Liquid Supplements in Dairy Rations

Recent Applications of Liquid Supplements in Dairy Rations Recent Applications of Liquid Supplements in Dairy Rations R. D. Shaver, Ph.D., PAS Department of Dairy Science College of Agricultural & Life Sciences University of Wisconsin - Madison University of Wisconsin

More information

Studies on the biotin flow at the duodenum of dairy cows fed differently composed rations

Studies on the biotin flow at the duodenum of dairy cows fed differently composed rations Institute of Animal Nutrition P. Lebzien B. Schröder H. Abel G. Flachowsky Studies on the biotin flow at the duodenum of dairy cows fed differently composed rations Published in: Vitamine und Zusatzstoffe

More information

Challenges in ruminant nutrition: towards minimal nitrogen losses in cattle

Challenges in ruminant nutrition: towards minimal nitrogen losses in cattle Challenges in ruminant nutrition: towards minimal nitrogen losses in cattle Jan Dijkstra Wageningen, the Netherlands Efficiency of N utilization Proportion of feed N captured as milk and meat (N efficiency)

More information

Why Does the Dollar Value of Alfalfa Hay Not Continue to increase as its TDN Increases?

Why Does the Dollar Value of Alfalfa Hay Not Continue to increase as its TDN Increases? Why Does the Dollar Value of Alfalfa Hay Not Continue to increase as its TDN Increases? P.H. Robinson 1 and E.J. DePeters 2 1 Cooperative Extension Specialist and 2 Professor Department of Animal Science

More information

Strategies to Reduce the Crude Protein (Nitrogen) Intake of Dairy Cows for Economic and Environmental Goals. Introduction

Strategies to Reduce the Crude Protein (Nitrogen) Intake of Dairy Cows for Economic and Environmental Goals. Introduction Feed Management A Key Ingredient in Livestock and Poultry Nutrient Management Strategies to Reduce the Crude Protein (Nitrogen) Intake of Dairy Cows for Economic and Environmental Goals. R. L. Kincaid,

More information

Yeast Product Supplementation Influences Feeding Behavior and Measures of Immune Function in Transition Dairy Cows

Yeast Product Supplementation Influences Feeding Behavior and Measures of Immune Function in Transition Dairy Cows Yeast Product Supplementation Influences Feeding Behavior and Measures of Immune Function in Transition Dairy Cows K. Yuan, M. Muckey, L. Mendonça, L. Hulbert, and B. Bradford Summary Yeast supplementation

More information

MP use efficiency, kg/kg = (target milk true protein/bw 0.53 ), [1]

MP use efficiency, kg/kg = (target milk true protein/bw 0.53 ), [1] J. Dairy Sci. 100:2801 2806 https://doi.org/10.3168/jds.2016-11426 American Dairy Science Association, 2017. Short communication: Evaluation of the PREP10 energy-, protein-, and amino acid-allowable milk

More information

Oilseed Meal Processing and Feeding Trials. William Gibbons Michael Brown, Jill Anderson South Dakota State University

Oilseed Meal Processing and Feeding Trials. William Gibbons Michael Brown, Jill Anderson South Dakota State University Oilseed Meal Processing and Feeding Trials William Gibbons Michael Brown, Jill Anderson South Dakota State University Projects Oilseed meal processing Aquaculture trials Dairy cattle trials Oilseed Meal

More information

White paper. Amylase A radical innovation in dairy cow nutrition. Dr. Irmgard Immig Global Category Manager Ruminants at DSM

White paper. Amylase A radical innovation in dairy cow nutrition. Dr. Irmgard Immig Global Category Manager Ruminants at DSM White paper Amylase A radical innovation in dairy cow nutrition Dr. Irmgard Immig Global Category Manager Ruminants at DSM HEALTH NUTRITION MATERIALS Amylase A radical innovation in dairy cow nutrition

More information

Why Graze? Supplementing Lactating Cows Requires Different Thinking. Grazing when grazing wasn t cool!! WHY? Good Pasture WVU Circular 379 Early 50s

Why Graze? Supplementing Lactating Cows Requires Different Thinking. Grazing when grazing wasn t cool!! WHY? Good Pasture WVU Circular 379 Early 50s Supplementing Lactating Cows Requires Different Thinking Why Graze? Low cost feed source for seasonal dairy Least cost way to begin dairying Protein source for conventional dairy Carl E. Polan, Virginia

More information

Making Forage Analysis Work for You in Balancing Livestock Rations and Marketing Hay

Making Forage Analysis Work for You in Balancing Livestock Rations and Marketing Hay A3325 Making Forage Analysis Work for You in Balancing Livestock Rations and Marketing Hay Dan Undersander, W. Terry Howard, and Randy Shaver Forage and grain samples differ in their chemical composition

More information