STREPTOCOCCUS & ENTEROCOCCUS

Size: px
Start display at page:

Download "STREPTOCOCCUS & ENTEROCOCCUS"

Transcription

1

2 STREPTOCOCCUS & ENTEROCOCCUS

3 REVIEW Bacterial Cell Morphology Gram Stain Cytoplasmic (plasma) membrane Cell wall structure Bacterial cell shapes

4

5 Common Cell Membrane

6 Gram-Positive Cell Wall

7 Peptidoglycan Gram-Neg ative Gram-P ositive

8 Gram-Positive Cell Wall Teichoic Acid

9 Gram-Negative Cell Wall

10 Gram-Negative Cell Wall

11

12

13

14

15 Genus Streptococcus Commensals or Parasites of man & animals or Saprophytes of decaying matter Morphology Gram-Positive Cocci in Pairs or Chains

16 Gram-Positive Streptococcus

17 Genus Streptococcus Physiology & Metabolism Facultative Anaerobes Fastidious Growth Requirements Fermentative Metabolism of Carbohydrates: Lactic acid, ethanol, acetate endproducts produced; No gas Catalase Negative (2H2O2 ---> O2 + 2H2O) Separation of streptococci from staphylococci Oxidase Negative (oxidoreductase oxidizes substrate w/ O2) Beta, Alpha, or Gamma Hemolysis on blood agar

18

19

20

21 Genus Streptococcus Rebecca Lancefield Developed useful serogrouping system Classification of beta-hemolytic streptococci by group-specific cell wall carbohydrate (CHO) antigen As of 1992, Serogroups A to H and K to V Groups A, B, C, D, and G are most comonly associated with human disease Viridans streptococci and Streptococcus pneumoniae have no group-specific antigen

22 Antigenic Structure Streptococcus pyogenes (Group A) Lancefield Group-specific antigen (C polysaccharide) Complex polysaccharide in cell wall Proteins: Two major classes, M & T antigens Two minor classes, R & F M-Protein: Type-specific antigen Fimbriae-like, hairy extensions Resistant to heat and acid Trypsin Sensitive Specific adherence by lipoteichoic acid and M-protein (LTA-M) complexes

23

24 Antigenic Structure Streptococcus pyogenes (Group A) Lancefield Group-specific antigen (C polysaccharide) Complex polysaccharide in cell wall Proteins: Two major classes, M & T antigens Two minor classes, R & F M-Protein: Type-specific antigen Fimbriae-like, hairy extensions Resistant to heat and acid Trypsin Sensitive Specific adherence by lipoteichoic acid and M-protein (LTA-M) complexes T Antigens (not virulence factor) Resistant to trypsin, heat and acid; Adjunct to M-typing; Routine surveillance Others

25 Antigenic Structure (cont.) Streptococcus pyogenes (Group A) Capsular Polysaccharide: Hyaluronic acid Not present in all strains Same as host hyaluronic acid (cartilage,skin etc) Nonimmunogenic Antiphagocytic Hyaluronidase (cell wall division) during late growth Lipoteichoic Acid

26 Lancefield Serogroup Classification of Beta-Hemolytic Streptococci Important in Human Disease Group A Streptococci: Streptococcus pyogenes One of Most Important Human Pathogens Suppurative Diseases: Pharyngitis; Scarlet Fever; Cutaneous & Soft Tissue Infections Systemic Disease Non-Suppurative Sequelae:ARF,RHD,AG

27 Streptococcus pyogenes (Phase Contrast)

28 Lancefield Serogroup Classification of Beta-Hemolytic Streptococci Important in Human Disease (cont.) Group B Streptococci: Streptococcus agalactiae Neonatal disease & obstetric complications Systemic, Cutaneous, UTI's

29 Streptococcus agalactiae

30 Lancefield Classification of Beta-Hemolytic Streptococci (cont.) Group C Streptococci: Pharyngitis Enterococcus & Group D Streptococci Genitourinary Tract Infections (UTIs) Endocarditis Group G Streptococci: S.anginosus-milleri grp; Streptococcus spp. Pharyngitis Non-Lancefield Group Streptococci Viridans Streptococci Dental Caries: Streptococcus mutans Streptococcus sanguis; Streptococcus salivarius; Streptococcus mitis Streptococcus pneumoniae

31 Major Human Diseases of Beta-Hemolytic Streptococci Group A Streptococcus (S. pyogenes): Diverse group of acute suppurative (pus-forming) & nonsuppurative diseases Suppurative Streptococcal Diseases Pharyngitis (& tonsilitis): Scarlet fever: Complication of streptococcal pharyngitis when infecting strain is lysogenized; Frequently develop scarletina rash on upper chest spreading to extremities Cutaneous & Soft Tissue Infxns. Pyoderma (Impetigo: contagious pyoderma with superficial yellow weeping lesions) Erysipelas: Acute superficial cellulitis of skin with lymphatic involvement; face and lower extremities, skin and subcutaneous tissues

32 Erysipelas NOTE: erythema bullae

33 Major Human Diseases of Beta-Hemolytic Streptococci (cont.) Group A Streptococcus (S. pyogenes) Suppurative Streptococcal Diseases Cutaneous & Soft Tissue Infxns(cont.) Cellulitis: Involvement of deeper subcutaneous tissues; Deeper invasion with systemic symptoms Necrotizing fasciitis: (a.k.a., flesh-eating bacteria ): Infection deep in subcutaneous tissues that spreads along fascial planes, destroying muscle and fat; Initially cellulitis followed by bullae (fluid filled blisters; bulla is singular), gangrene, systemic toxicity, multiorgan failure and mortality in more than 50% of patients Wound Infections

34 Suppurative Streptococcal Diseases Group A Streptococcus (cont.) Other Suppurative Diseases Puerperal & neonatal sepsis Lymphangitis: Inflammation of lymphatic vessel(s) Pneumonia Systemic Disease Streptococcal Toxic Shock Syndrome (TSS): Multisystem toxicity following soft tissue infection progressing to shock and organ failure (not to be confused with Staphylococcal Toxic Shock Syndrome where hyperabsorbent tampons have been identified as an important risk factor) Bacteremia

35 Group A Streptococcal Diseases (cont.) Nonsuppurative Sequelae Post-infection complications of Group A streptococcal disease; Serious complications in pre-antibiotic era; still important in developing countries Acute rheumatic fever (ARF): Inflammation of heart, joints, blood vessels, sub-cutaneous tissues Rheumatic heart disease (RHD): Chronic, progressive heart valve damage Acute glomerulonephritis (AG): Acute inflammation of renal (kidney) glomeruli Foodborne Disease

36 Epidemiology of Acute Streptococcal Infection Predilection for upper respiratory tract or skin Group A commonly colonize oropharynx of healthy children M-types of strains colonizing throat differ from those on skin Rapidly killed after phagocytosis, but cell walls not digested and may lead to chronic inflammatory lesions Pharyngitis transmitted by droplets from respiratory secretions Crowding increases risk (e.g., classrooms, day care facilities) Pyoderma transmitted by direct contact with infectious lesions

37 Nonsuppurative Sequelae of Acute Group A Streptococcal Infection Acute Rheumatic Fever (ARF) Inflammatory reaction characterized by arthritis, carditis, chorea (disorder of CNS with involuntary spastic movements), erythema marginatum (skin redness with defined margin), or subcutaneous nodules Within 2-3 weeks following pharyngitis Epidemic pharyngitis: ARF in as many as 3% Sporadic pharyngitis: ARF in 1 per 1000 Morbidity & mortality linked to subsequent disease of heart valve (Rheumatic Heart Disease) Poorly understood pathogenesis with several proposed theories including cross-reactivity of heart tissues & strep AGNs?? (Type?? II hypersensitivity, exotoxins, direct invasion)

38 Nonsuppurative Sequelae of Acute Group A Streptococcal Infection (cont.) Acute Glomerulonephritis Follows either respiratory (pharyngitis) or cutaneous (pyoderma) streptococcal infection Associated with well-defined group of M-types Incidence varies from <1% to 10-15% Most often seen in children manifesting as dark, smoky urine with RBC's, RBC casts, white blood cells, depressed serum complement, decreased glomerular filtration rate Latent period: 1-2 weeks after skin infection and 2-3 weeks after pharyngitis Granular accumulations of immunoglobulin due to deposition of immune complexes within the kidney (Type?? III Hypersensitivity)

39

40 Determinants of Pathogenicity Cellular Virulence Factors Capsule Antiphagocytic; Nonspecific adherence Hyaluronic acid (polysaccharide) mimics animal tissue Lipoteichoic Acid Cytotoxic for wide variety of cells Adherence: Complexes with M protein (LTA-M) and binds to fibronectin on epithelial cells M-Protein LTA-M protein is adhesin Antiphagocytic Inhibits alternate C pathway and opsonization M-like Proteins: bind IgM and IgG F Protein: mediates adherence

41 Extracellular Virulence Factors Exotoxins: Streptolysin O (SLO): Hemolytic and Cytolytic Prototype of oxygen-labile and thiol-activated cytolytic exotoxins (e.g., Streptococcus, Bacillus, Clostridium, Listeria) Lytic for variety of cells: bind to cholesterol-containing membranes and form arc- or ring- shaped oligomers that make cell leaky (RBC's, WBC s, PMN's, platelets, etc.) Causes sub-surface hemolysis on BAP Stimulate release of lysosomal enzymes SLO titer indicates recent infection ( in pediatric populations)

42 Extracellellular Virulence Factors (cont.) Exotoxins (cont.): Streptolysin S (SLS): Hemolytic and Cytolytic Oxygen stable, non-antigenic Lytic for red and white blood cells and wall-less forms (protoplast, L- forms) Causes surface hemolysis on BAP Lysogeny: Lysogenized bacteriophages play key role in directing synthesis of various Group A streptococcal enzymes and toxins Pyrogenic Exotoxin (erythrogenic toxin) Phage-associated muralysins (lyse cell walls) produced by both Groups A and C

43 Extracellular Virulence Factors (cont.) Exotoxins (cont): Pyrogenic (Erythrogenic) Exotoxins (Types A, B &C) Produced by more than 90% of Grp A strep Lysogeny: Structural gene is carried by temperate bacteriophage, as is the case with diphtheria toxin Mediate pyrogenicity (fever) Causes scarlet fever (scarletiniform) rash Increase susceptibility to endotoxic shock Type C toxin increases permeability of blood-brain barrier Enhance DTH Mitogenic for T lymphocytes (cause cell division), myocardial and hepatic necrosis, decrease in antibody synthesis Immunomodulators (superantigens): stimulate T cells to release cytokines Cardiohepatic toxin

44 Extracellular Virulence Factors (cont.) Enzymes: Nucleases: Four antigenic types (A,B,C,D) Facilitate liquefication of pus generating growth substrates Nucleases A, C have DNase activity Nucleases B, D also have RNase activity Streptokinases: Two different forms Lyse blood clots: catalyze conversion of plasminogen to plasmin, leading to digestion of fibrin C5a Peptidase: destroys C chemotactic signals (C5a) Hyaluronidase: hydrolyzes hyaluronic acid Others: Proteinase, NADase, ATPase, phosphatase, etc.

45 Lab Identification of S. pyogenes (Group A) Primary culture by pour or streak plate Domed,grayish/opalescent colonies Encapsulated cells produce mucoid colonies Beta-hemolytic Zone several times greater than diameter of colony

46 TSA S. pyogenes

47 Lab Identification of S. pyogenes (Group A) (cont.) Catalase Negative: Differentiates from Staphylococcus Bacitracin test: presumptively distinguishing between Group A beta-hemolytic streptococci (bacitracin POS) and other beta-hemolytic streptococci that are isolated from pharyngeal swabs (95% sensitivity for Grp A strep) Rapid Identification Tests: Based on extraction of Group A carbohydrate directly from throat swabs ELISA, Coagglutination, Fluorescent Antibody

48

49 Group B Streptococcus Streptococcus agalactiae

50 Group B Streptococcal Infections

51 Grp B Streptococcal Infections (cont.)

52 Age-Specific Attack Rates of Group B Streptococcal Disease

53 Epidemiology of Neonatal Group B Streptococcal Disease

54 Group B Streptococcus S. agalactiae Diagnostic Laboratory Tests CAMP factor positive Hippurase positive

55 CAMP Factor Test Group B Streptococcus S. aureus (Spingomyelinase C) (CAMP Factor) Group A Streptococcus Enhanced Zone of Hemolysis

56 Hippurase NEG

57 Grp B Streptococci and Campylobacter Hippurase POS

58

59 Streptococcus pneumoniae Commonly referred to as pneumococcus Formerly Diplococcus pneumoniae

60 Streptococcus pneumoniae Infections

61 Pneumococcal Infections (cont.) Epidemiology (cont.)

62 S. pneumoniae Diplococcus

63 S. pneumoniae: lancet-shaped diplococcus

64 S. pneumoniae Virulence Factors

65 S. pneumoniae Seasonal Incidence

66 Comparison of Morbidity & Mortality for Bacterial Meningitis

67 Genetic Variation (Mutation)

68 Beginning of Molecular Genetics

69 Transformation (In vivo) (Griffith)

70 Streptococcus pneumoniae Diagnostic Laboratory Tests Optochin sensitivity (Taxo P disc)

71 Optochin Sensitivity Taxo P Streptococcus pneumoniae

72

73 Enterococcus faecalis Enterococcus faecium GI tract of humans and animals Group D carbohydrate cell wall antigen Formerly Streptococcus

74 Enterococcal Infections

75 Enterococcal Infections (cont.)

76 Important nosocomial pathogen Vancomycin resistant Enterococcus (VRE)

77 Enterococcus Diagnostic Laboratory Tests Resistant to bile Esculin hydrolysis BEA media

78 Enterococcus Group D Streptococcus Bile Esculin Agar Bile Esculin Agar NEG POS

79 Esculin Bile Assay

80

81 REVIEW

82 Lancefield Serogroup Classification of Beta-Hemolytic Streptococci Important in Human Disease Group A Streptococci: Streptococcus pyogenes One of Most Important Human Pathogens Suppurative Diseases: Pharyngitis; Scarlet Fever; Cutaneous & Soft Tissue Infections; Systemic Disease Non-Suppurative Sequelae:ARF,RHD,AG Group B Streptococci: Streptococcus agalactiae Systemic, Cutaneous, UTI's Neonatal disease Obstetric Complications REVIEW

83 Nonsuppurative Sequelae of Acute Group A Streptococcal Infection Acute Rheumatic Fever (ARF) Inflammatory reaction characterized by arthritis, carditis, chorea (disorder of CNS with involuntary spastic movements), erythema marginatum (skin redness with defined margin), or subcutaneous nodules Within 2-3 weeks following pharyngitis Epidemic pharyngitis: ARF in as many as 3% Sporadic pharyngitis: ARF in 1 per 1000 Morbidity & mortality linked to subsequent disease of heart valve (Rheumatic Heart Disease) Poorly understood pathogenesis with several proposed theories including cross-reactivity of heart tissues & strep AGNs?? (Type?? II hypersensitivity, exotoxins, direct invasion) REVIEW

84 Nonsuppurative Sequelae of Acute Group A Streptococcal Infection (cont.) Acute Glomerulonephritis Follows either respiratory (pharyngitis) or cutaneous (pyoderma) streptococcal infection Associated with well-defined group of M-types Incidence varies from <1% to 10-15% Most often seen in children manifesting as dark, smoky urine with RBC's, RBC casts, white blood cells, depressed serum complement, decreased glomerular filtration rate Latent period: 1-2 weeks after skin infection and 2-3 weeks after pharyngitis Granular accumulations of immunoglobulin due to deposition of immune complexes within the kidney (Type?? III Hypersensitivity) REVIEW

85 Determinants of Pathogenicity Cellular Virulence Factors Capsule Antiphagocytic; Nonspecific adherence Hyaluronic acid (polysaccharide) mimics animal tissue Lipoteichoic Acid Cytotoxic for wide variety of cells Adherence: Complexes with M protein (LTA-M) and binds to fibronectin on epithelial cells M-Protein LTA-M protein is adhesin Antiphagocytic Inhibits alternate C pathway and opsonization M-like Proteins: bind IgM and IgG F Protein: mediates adherence REVIEW

86 Extracellular Virulence Factors Exotoxins: Streptolysin O (SLO): Hemolytic and Cytolytic Prototype of oxygen-labile and thiol-activated cytolytic exotoxins (e.g., Streptococcus, Bacillus, Clostridium, Listeria) Lytic for variety of cells: bind to cholesterol-containing membranes and form arc- or ring- shaped oligomers that make cell leaky (RBC's, WBC s, PMN's, platelets, etc.) Causes sub-surface hemolysis on BAP Stimulate release of lysosomal enzymes SLO titer indicates recent infection ( in pediatric populations) REVIEW

87 Extracellellular Virulence Factors (cont.) Exotoxins (cont.): Streptolysin S (SLS): Hemolytic and Cytolytic Oxygen stable, non-antigenic Lytic for red and white blood cells and wall-less forms (protoplast, L- forms) Causes surface hemolysis on BAP REVIEW

88 Extracellular Virulence Factors (cont.) Exotoxins (cont): Pyrogenic (Erythrogenic) Exotoxins (Types A, B &C) Produced by more than 90% of Grp A strep Lysogeny: Structural gene is carried by temperate bacteriophage, as is the case with diphtheria toxin Mediate pyrogenicity (fever) Causes scarlet fever (scarletiniform) rash Increase susceptibility to endotoxic shock Type C toxin increases permeability of blood-brain barrier Enhance DTH Mitogenic for T lymphocytes (cause cell division), myocardial and hepatic necrosis, decrease in antibody synthesis Immunomodulators (superantigens): stimulate T cells to release cytokines Cardiohepatic toxin REVIEW

89 Extracellular Virulence Factors (cont.) Enzymes: Nucleases: Four antigenic types (A,B,C,D) Facilitate liquefication of pus generating growth substrates Nucleases A, C have DNase activity Nucleases B, D also have RNase activity Streptokinases: Two different forms Lyse blood clots: catalyze conversion of plasminogen to plasmin, leading to digestion of fibrin C5a Peptidase: destroys C chemotactic signals (C5a) Hyaluronidase: hydrolyzes hyaluronic acid Others: Proteinase, NADase, ATPase, phosphatase, etc. REVIEW

90 Epidemiology of Neonatal Group B Streptococcal Disease REVIEW

91 REVIEW

92 Streptococcus pneumoniae Infections Infections from endogenous spread from naso- or orapharynx Pneumonia; sinusitis; otitis media; bacteremia; meningitis Colonization highest in children Antecedent viral respiratory tract disease increases risk Most common in cold months Polyvalent vaccine available (newly available for children) REVIEW

93 S.pneumoniae Virulence Factors REVIEW

94 Comparison of Morbidity & Mortality for Bacterial Meningitis REVIEW

95 Genetic Variation (Mutation) REVIEW

96 Beginning of Molecular Genetics REVIEW

97 Transformation (In vivo) (Griffith) REVIEW

98 Enterococcal Infections Group D cell wall antigen Enterococcus faecalis; Enterococcus faecium GI tract of humans and animals UTI most common; wound infections; bacteremia; endocarditis Most infections from endogenous source Prolonged hospitalization and broad-spectrum antibiotics increase risk Antibiotic resistance (VRE) REVIEW

99

Streptococcus(gram positive coccus) Dr. Hala Al Daghistani

Streptococcus(gram positive coccus) Dr. Hala Al Daghistani Streptococcus(gram positive coccus) Dr. Hala Al Daghistani Streptococci Facultative anaerobe Gram-positive usually chains (sometimes pairs) Catalase negative Non motile Hemolysins Lancefield Groups (C-carbohydrate

More information

Streptococcus (gram positive coccus)

Streptococcus (gram positive coccus) #13 made by : aseel al-waked corrected by Shatha Khtoum date : 6/11/2016 Streptococcus (gram positive coccus) Slide 2 (56:00): Streptococci Facultative anaerobe Gram-positive usually chains (sometimes

More information

Objectives, Upon completion of this lecture, the student will:

Objectives, Upon completion of this lecture, the student will: Lec.2 Dr.Sarmad Zeiny 2013-2014 BCM Genus Streptococci Objectives, Upon completion of this lecture, the student will: Outline the medically important streptococci species. Classification of genus streptococci.

More information

Chapter 19. Pathogenic Gram-Positive Bacteria. Staphylococcus & Streptococcus

Chapter 19. Pathogenic Gram-Positive Bacteria. Staphylococcus & Streptococcus Chapter 19 Pathogenic Gram-Positive Bacteria Staphylococcus & Streptococcus Staphylococcus Normal members of every human's microbiota Can be opportunistic pathogens Facultative anaerobes Cells occur in

More information

Medical Bacteriology- Lecture: 6

Medical Bacteriology- Lecture: 6 Medical Bacteriology- Lecture: 6 Gram Positive Cocci Streptococcal Disease Streptococcus pyogenes Classification of Streptococci based on (1- Hemolysis reactions on blood agar) (Brown in 1903) The type

More information

Streptococci and Other Streptococci-like Organisms. By:Dr. Aghaei

Streptococci and Other Streptococci-like Organisms. By:Dr. Aghaei Streptococci and Other Streptococci-like Organisms By:Dr. Aghaei Case Study 9-year-old boy complains of fever and sore throat On examination, his pharynx is red and his tonsils are swollen His cervical

More information

PHARMACEUTICAL MICROBIOLOGY -1I PHT 313. Dr. Rasheeda Hamid Abdalla Assistant Professor tmail.com

PHARMACEUTICAL MICROBIOLOGY -1I PHT 313. Dr. Rasheeda Hamid Abdalla Assistant Professor  tmail.com PHARMACEUTICAL MICROBIOLOGY -1I PHT 313 Dr. Rasheeda Hamid Abdalla Assistant Professor E-mail rasheedahamed12@ho tmail.com General Characteristics of Streptococci Gram-positive spherical/ovoid cocci arranged

More information

The Streptococci. Diverse collection of cocci. Gram-positive Chains or pairs significant pathogens

The Streptococci. Diverse collection of cocci. Gram-positive Chains or pairs significant pathogens The Streptococci Diverse collection of cocci. Gram-positive Chains or pairs significant pathogens Strong fermenters Facultative anaerobes Non-motile Catalase Negative 1 Classification 1 2 Classification

More information

Streptococcus pyogenes

Streptococcus pyogenes Streptococcus pyogenes From Wikipedia, the free encyclopedia Streptococcus pyogenes S. pyogenes bacteria at 900x magnification. Scientific classification Kingdom: Eubacteria Phylum: Firmicutes Class: Cocci

More information

II- Streptococci. Practical 3. Objective: Required materials: Classification of Streptococci: Streptococci can be classified according to:

II- Streptococci. Practical 3. Objective: Required materials: Classification of Streptococci: Streptococci can be classified according to: Practical 3 II- Streptococci Objective: 1. Use of blood agar to differentiate between,, and hemolytic streptococci. 2. To know Gram reaction, shape and arrangement of streptococci. 3. To differentiate

More information

Medical Bacteriology- Lecture 6

Medical Bacteriology- Lecture 6 Medical Bacteriology- Lecture 6 Streptococci 1 Classification of Streptococci based on (1) - Hemolysis reactions on blood agar) (Brown in 1903) The type of hemolytic reaction on blood agar has long been

More information

Streptococci and Enterococci. Subjects to be Covered. Streptococci/Enterococci - General Description. Species of Streptococci

Streptococci and Enterococci. Subjects to be Covered. Streptococci/Enterococci - General Description. Species of Streptococci Streptococci and Enterococci Subjects to be Covered General description of streptococci and enterococci Classification and laboratory identification of the streptococci and enterococci Group A β hemolytic

More information

Streptococci and Enterococci

Streptococci and Enterococci Streptococci and Enterococci Subjects to be Covered General description of streptococci and enterococci Classification and laboratory identification of the streptococci and enterococci Group A β hemolytic

More information

Streptococci facultative anaerobe

Streptococci facultative anaerobe THE GENUS STREPTOCOCCUS The genus Streptococcus obtains Gram-positive cocci, nonmotile, nonsporeforming, arranged mostly in chains or in pairs. Most species are facultative anaerobes. Some of streptococci

More information

Streptococci and Enterococci

Streptococci and Enterococci Streptococci and Enterococci Subjects to be Covered General description of streptococci and enterococci Classification and laboratory identification of the streptococci and enterococci Group A β hemolytic

More information

Genus Streptococcus General criteria:

Genus Streptococcus General criteria: Genus Streptococcus Mostly commensals but may cause opportunistic infections (S.viridans) - Few are primary pathogens causing wide range of infections and can trigger immunologic disorders (S.pyogenes,

More information

Streptococcus pyogenes and Streptococcal Disease

Streptococcus pyogenes and Streptococcal Disease Streptococcus pyogenes and Streptococcal Disease Introduction Streptococcus pyogenes (Group A streptococcus) is a Gram-positive, nonmotile, nonsporeforming coccus that occurs in chains or in pairs of cells.

More information

number Done by Corrected by Doctor Hamed Al-Zoubi

number Done by Corrected by Doctor Hamed Al-Zoubi m number 10 Done by Mohammad Sinnokrot Corrected by Doctor Hamed Al-Zoubi Gram Positive Cocci (Staphylococcus, Streptococcus and Enterococcus) Last lecture we talked about Staphylococcus, today we will

More information

Chapter 18 The Gram-Positive Cocci of Medical Importance

Chapter 18 The Gram-Positive Cocci of Medical Importance Chapter 18 The Gram-Positive Cocci of Medical Importance Staphylococci general characteristics Common inhabitant of the skin and mucous membranes Gram-positive spherical cells arranged in irregular clusters

More information

Bacterial infections of the Respiratory Tract 1. By: Nader Alaridah MD, PhD

Bacterial infections of the Respiratory Tract 1. By: Nader Alaridah MD, PhD Bacterial infections of the Respiratory Tract 1 By: Nader Alaridah MD, PhD Introduction The respiratory tract is the most common site of body acquired infection by pathogens and opportunistic pathogens.

More information

Chapter 14-15, all tables and figures taken from this chapter

Chapter 14-15, all tables and figures taken from this chapter Levinson, W., Review of medical microbiology and immunology. Fourteenth edition. ed. 2016, New York: McGraw-Hill Education. ix, 821 pages. Chapter 14-15, all tables and figures taken from this chapter

More information

Staphylococcus. Also important cause of intoxications such as:

Staphylococcus. Also important cause of intoxications such as: 23 من 1 الصفحة 2 ) الملف رقم 2 ( ميكروبيولوجي 313 صيد Staphylococcus OBJECTIVES: Staphylococci. General Characteristics of Staphylococci. Staphylococcus aureus Staphylococcus epidermidis Staphylococcus

More information

Staphylococci and streptococci

Staphylococci and streptococci Staphylococci and streptococci Prof. Marianna Murdjeva, MD, PhD Dept. Microbiology and Immunology Medical University Plovdiv Lecture course in microbiology for English-speaking medical students Staphylococci

More information

Foundations in Microbiology Seventh Edition

Foundations in Microbiology Seventh Edition Lecture PowerPoint to accompany Foundations in Microbiology Seventh Edition Talaro Chapter 18 The Cocci of Medical Importance Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Foundations in Microbiology

Foundations in Microbiology Foundations in Microbiology Fifth Edition Talaro Chapter 18 Cocci of Medical Importance Chapter 18 2 Cocci of Interest Staphylococcus aureus S. epidermidis, S. hominis, S. capitis S. saprophyticus Streptococcus

More information

Gram Positive Coccus Staphylococci Dr. Hala Al Daghistani

Gram Positive Coccus Staphylococci Dr. Hala Al Daghistani Medical bacteriology Gram Positive Coccus Staphylococci Dr. Hala Al Daghistani The Staphylococci are gram-positive spherical cells, nonmotile, usually arranged in grapelike irregular clusters. Some are

More information

Pathogens of the Respiratory System

Pathogens of the Respiratory System Pathogens of the Respiratory System Chapter 21, Pages 531-567 1. Respiratory System Introduction A. Anatomy (Pages 532-534) i. Upper Respiratory Track a. Nasal Hairs b. Paranasal Sinuses c. Nasal Chonchae

More information

Streptococcus pneumonia

Streptococcus pneumonia Streptococcus pneumonia The pneumococci (S. pneumoniae) are gram-positive diplococci. Often lancet shaped or arranged in chains, possessing a capsule of polysaccharide that permits typing with specific

More information

Streptococcus, Enterococcus and other Gram-positive cocci. Doç Dr Nevriye Gönüllü

Streptococcus, Enterococcus and other Gram-positive cocci. Doç Dr Nevriye Gönüllü Streptococcus, Enterococcus and other Gram-positive cocci Doç Dr Nevriye Gönüllü Streptococcus Gram positive Grow pattern pairs, chains Most species are facultatively anaerobes Some grow only in atmosphere

More information

Podcast (Video Recorded Lecture Series): Soft Tissue Infections for the USMLE Step One Exam

Podcast (Video Recorded Lecture Series): Soft Tissue Infections for the USMLE Step One Exam Podcast (Video Recorded Lecture Series): Soft Tissue Infections for the USMLE Step One Exam Howard J. Sachs, MD www.12daysinmarch.com Email: Howard@12daysinmarch.com MSK Infections Bone and Joint Infections

More information

Medical Microbiology

Medical Microbiology Lecture 5!!!!!!ƒš!!Œ!!! š!!œ!! Œ!!!! Dr. Ismail I. Daood Medical Microbiology!! Systematic Bacteriology Gram-Positive Cocci : GENUS : Staphylococcus : The general properties of Staphylococcus are Gram-

More information

Staphylococci. What s to be Covered. Clinical Scenario #1

Staphylococci. What s to be Covered. Clinical Scenario #1 Staphylococci Micrococcus, which, when limited in its extent and activity, causes acute suppurative inflammation (phlegmon), produces, when more extensive and intense in its action on the human system,

More information

What s to be Covered. Microbiology of staphylococci Epidemiology of S. aureus infections Pathogenesis of S. aureus infections

What s to be Covered. Microbiology of staphylococci Epidemiology of S. aureus infections Pathogenesis of S. aureus infections Staphylococci Micrococcus, which, when limited in its extent and activity, causes acute suppurative inflammation (phlegmon), produces, when more extensive and intense in its action on the human system,

More information

Microbial Mechanisms of Pathogenicity

Microbial Mechanisms of Pathogenicity Microbial Mechanisms of Pathogenicity Portals of Entry Mucous membranes Conjunctiva Respiratory tract: Droplet inhalation of moisture and dust particles. Most common portal of entry. GI tract: food, water,

More information

Pyogenic cocci (Staph&Strep) Stijn van der Veen

Pyogenic cocci (Staph&Strep) Stijn van der Veen Pyogenic cocci (Staph&Strep) Stijn van der Veen Pyogenic cocci Spherical-shaped bacteria that are able to cause purulent inflammation of the mucous membranes of serous cavities (abdomen, pleura, pericardium)

More information

This patient had acute pharyngitis, the painful inflammation of the pharynx and surrounding lymphoid tissues.

This patient had acute pharyngitis, the painful inflammation of the pharynx and surrounding lymphoid tissues. CASE ONE 1.1. PATIENT HISTORY Boy with Acute Pharyngitis The patient was a 6 year-old male who had been in good health with no significant medical problems. In late September he presented to his pediatrician

More information

Cocci 5 pathogenic cocci/ pyogenic cocci

Cocci 5 pathogenic cocci/ pyogenic cocci Cocci Cocci 5 pathogenic cocci/ pyogenic cocci - G+: staphylococcus S. aureus streptococcus S. pyogenes, S. pneumoniae -G-:Neisseria N. meningitidis, N. gonorrhea (I) Staphylococcus Staphylococcus Primary

More information

Streptococci - Overview of Detection, Identification, Differentiation and Cultivation Techniques

Streptococci - Overview of Detection, Identification, Differentiation and Cultivation Techniques Return to Web Version Streptococci - Overview of Detection, Identification, Differentiation and Cultivation Techniques By: By Jvo Siegrist, Product Manager Microbiology, ivo.siegrist@sial.com, AnalytiX

More information

EDUCATIONAL COMMENTARY THROAT CULTURES LEARNING OUTCOMES. Upon completion of this exercise, the participant should be able to:

EDUCATIONAL COMMENTARY THROAT CULTURES LEARNING OUTCOMES. Upon completion of this exercise, the participant should be able to: EDUCATIONAL COMMENTARY THROAT CULTURES LEARNING OUTCOMES Upon completion of this exercise, the participant should be able to: distinguish three types of hemolysis produced by bacterial colonies. discuss

More information

PATHOGENICITY OF MICROORGANISMS

PATHOGENICITY OF MICROORGANISMS PATHOGENICITY OF MICROORGANISMS Some microorganisms are : 1- Harmless microorganism, as normal flora 2- Harmfull microorganism, as pathogenic. A pathogenic microorganism is defined as one that causes or

More information

Medical Bacteriology- Lecture 13 Gram Negative Coccobacilli Haemophilus Bordetella

Medical Bacteriology- Lecture 13 Gram Negative Coccobacilli Haemophilus Bordetella Medical Bacteriology- Lecture 13 Gram Negative Coccobacilli Haemophilus Bordetella 1 Haemophilus "loves heme" Small gram-negative coccobacilli Non-spore forming Non-motile Growth is enhanced in CO2 Present

More information

Microbial Mechanisms of Pathogenicity & Innate Immunity: Nonspecific Defenses of the Host

Microbial Mechanisms of Pathogenicity & Innate Immunity: Nonspecific Defenses of the Host Microbial Mechanisms of Pathogenicity & Innate Immunity: Nonspecific Defenses of the Host Microbial Mechanisms of Pathogenicity Pathogenicity: Virulence: The extent of pathogenicity. - function of: - infectivity

More information

UPPER RESPIRATORY TRACT INFECTIONS

UPPER RESPIRATORY TRACT INFECTIONS UPPER RESPIRATORY TRACT INFECTIONS M. Jackson Page 1 of 21 Introduction I. Variety of organisms colonize oropharynx & upper respiratory tract A. Many commensals colonize upper respiratory tract B. Respiratory

More information

Shapes and Genera of cocci-shaped organisms:

Shapes and Genera of cocci-shaped organisms: BIO230 Microbiology 19: Pathogenic Gram-Positive Cocci and Bacilli 1. Gram-positive pathogens Color reaction Shapes and Genera of cocci-shaped organisms: Genera of bacilli-shaped organisms: 2. Staphylococcus

More information

INTRODUCTION TO UPPER RESPIRATORY TRACT DISEASES

INTRODUCTION TO UPPER RESPIRATORY TRACT DISEASES Upper Respiratory Tract Infections Return to Syllabus INTRODUCTION TO UPPER RESPIRATORY TRACT DISEASES General Goal: To know the major mechanisms of defense in the URT, the major mechanisms invaders use

More information

Chapter 15. Microbial Mechanisms of Pathogenicity

Chapter 15. Microbial Mechanisms of Pathogenicity Chapter 15 Microbial Mechanisms of Pathogenicity I. Entry of a Microorganism into the Host A. Portals of Entry 1. Mucous Membranes Conjunctiva, respiratory, gastrointestinal, and genitourinary tracts Important

More information

BACTERIAL PATHOGENESIS

BACTERIAL PATHOGENESIS BACTERIAL PATHOGENESIS A pathogen is a microorganism that is able to cause disease. Pathogenicity is the ability to produce disease in a host organism. Virulence a term which refers to the degree of pathogenicity

More information

Staphylococcus aureus Staphylococcus epidermidis Staphylococcus hominis Staphylococcus haemolyticus Staphylococcus saprophyticus others

Staphylococcus aureus Staphylococcus epidermidis Staphylococcus hominis Staphylococcus haemolyticus Staphylococcus saprophyticus others THE GENUS STAPHYLOCOCCUS The genus Staphylococcus contains about 50 species and subspecies today Only some of them are important as human pathogens: Staphylococcus aureus Staphylococcus epidermidis Staphylococcus

More information

Upper respiratory tract infections

Upper respiratory tract infections Upper respiratory tract infections Pharyngitis Pharyngitis is an acute infection of the oropharynx or nasopharynx 60-70% pharyngitis is viral Streptococcus sore throat(phyringitis) Streptococcus pyogenes

More information

All are microbes except in red Phylogenic tree

All are microbes except in red Phylogenic tree 19 Pathogenic Gram-Positive Cocci and Bacilli http://www.healthmap.org/en The Three Domains of Life All are microbes except in red Phylogenic tree Domain characteristics 1 prokaryotes Figure 11.9 - Overview

More information

Medical Bacteriology- Lecture: 5. Bacterial Pathogens and Diseases of Humans

Medical Bacteriology- Lecture: 5. Bacterial Pathogens and Diseases of Humans Medical Bacteriology Lecture: 5 Bacterial Pathogens and Diseases of Humans Gram Positive Cocci Staphylococci Micrococcaceae Staphylococcus: Pathogenic or commensal Micrococcus: Freeliving saprophytes Staphylococci

More information

HEMOPOIETIC SYSTEM INFECTIONS BACTERIAL INFECTIONS OF THE BLOODSTREAM Reading Assignment: Chapters 50 & 63

HEMOPOIETIC SYSTEM INFECTIONS BACTERIAL INFECTIONS OF THE BLOODSTREAM Reading Assignment: Chapters 50 & 63 HEMOPOIETIC SYSTEM INFECTIONS BACTERIAL INFECTIONS OF THE BLOODSTREAM Reading Assignment: Chapters 50 & 63 Definitions I. Bacteremia: Viable bacteria in the blood as demonstrated by a positive blood culture

More information

Mechanisms of Bacterial Pathogenesis

Mechanisms of Bacterial Pathogenesis Mechanisms of Bacterial Pathogenesis Pin Ling ( 凌斌 ), Ph.D. Department of Microbiology & Immunology, NCKU ext 5632 lingpin@mail.ncku.edu.tw References: 1. Chapter 19 in Medical Microbiology (Murray, P.

More information

MICROBIOLOGY ROBERT W. BAUMAN. Chapter 14. Pathogenicity

MICROBIOLOGY ROBERT W. BAUMAN. Chapter 14. Pathogenicity MICROBIOLOGY ROBERT W. BAUMAN Chapter 14 Pathogenicity Microbial Mechanisms of Pathogenicity Pathogenicity -The ability to cause disease Virulence - The extent of pathogenicity Virulence Factors Adhesion

More information

Unit II Problem 2 Microbiology Lab: Pneumonia

Unit II Problem 2 Microbiology Lab: Pneumonia Unit II Problem 2 Microbiology Lab: Pneumonia - What are the steps needed to obtain a proper sputum specimen? You need the following: A wide-mouth labeled container. Gloves. Water. Mouth wash + tissues.

More information

Unit One Pathogenesis of Bacterial Infection Pathogenesis of bacterial infection includes the mechanisms that lead to the development of signs and

Unit One Pathogenesis of Bacterial Infection Pathogenesis of bacterial infection includes the mechanisms that lead to the development of signs and Unit One Pathogenesis of Bacterial Infection Pathogenesis of bacterial infection includes the mechanisms that lead to the development of signs and symptoms of disease. Characteristics of bacteria that

More information

Burton's Microbiology for the Health Sciences

Burton's Microbiology for the Health Sciences Burton's Microbiology for the Health Sciences Section VII. Pathogenesis and Host Defense Mechanisms Burton's Microbiology for the Health Sciences Chapter 14. Pathogenesis of Infectious Diseases 1 Chapter

More information

Bacterial Diseases IMMUNITY TO BACTERIAL INFECTIONS. Gram Positive Bacteria. Gram Negative Bacteria. Many Infectious agents and many diseases

Bacterial Diseases IMMUNITY TO BACTERIAL INFECTIONS. Gram Positive Bacteria. Gram Negative Bacteria. Many Infectious agents and many diseases IMMUNITY TO BACTERIAL INFECTIONS Chapter 18 Bacterial Diseases Many Infectious agents and many diseases Bacteria can Infect any part of the body Cause disease due to Growth of the microbe in a tissue Produce

More information

Bio Microbiology - Spring 2010 Study Guide 21

Bio Microbiology - Spring 2010 Study Guide 21 Bio 230 - Microbiology - Spring 2010 Study Guide 21 Factors in Microbial Disease Host Parasite Interactions are Dynamic Evolution effects both Parasite and Host Pathogenic Properties of Bacteria Microorganisms

More information

Staphylococci. Gram stain: gram positive cocci arranged in clusters.

Staphylococci. Gram stain: gram positive cocci arranged in clusters. Microbiology lab Respiratory system Third medical year Lab contents: Gram positive bacteria (Staphylococcus and Streptococcus spp), two types of filamentous fungi (Aspergillus and Penicillium spp), and

More information

1. Which of the following statements concerning Plasmodium vivax is TRUE?

1. Which of the following statements concerning Plasmodium vivax is TRUE? 1 Microm 301 Final Exam 2012 Practice Questions and Key 1. Which of the following statements concerning Plasmodium vivax is TRUE? A. It infects all stages of erythrocytes (immature, mature, and senescent).

More information

Mechanisms of Pathogenicity

Mechanisms of Pathogenicity Mechanisms of Pathogenicity The Microbes Fight Back Medically important bacteria Salmonella Bacillus anthracis Shigella dysenteriae Campylobacter Shigella sonnei Clostridium botulinum Staphylococcus aureus

More information

Infective endocarditis (IE) By Assis. Prof. Nader Alaridah MD, PhD

Infective endocarditis (IE) By Assis. Prof. Nader Alaridah MD, PhD Infective endocarditis (IE) By Assis. Prof. Nader Alaridah MD, PhD Infective endocarditis (IE) is an inflammation of the endocardium.. inner of the heart muscle & the epithelial lining of heart valves.

More information

MICROBIOLOGY - An Overview

MICROBIOLOGY - An Overview MICROBIOLOGY - An Overview Hieucam Phan, MD Pediatrics St. Luke s Hospital San Francisco, CA Microbiology 6/01 1 Introduction Major Achievements of Medical Sciences in the 20th Century Microbiology DNA

More information

Group B streptococcal infection;. Bacteremia without a focus occurs in 80-85%,. July has been recognised as Group B Strep Awareness Month,.

Group B streptococcal infection;. Bacteremia without a focus occurs in 80-85%,. July has been recognised as Group B Strep Awareness Month,. Group B streptococcal infection;. Bacteremia without a focus occurs in 80-85%,. July has been recognised as Group B Strep Awareness Month,. 12-10-2017 Group B streptococci are uniformly sensitive to penicillin

More information

PATHOGENIC COCCI GRAM-NEGATIVE INTESTINAL PATHOGENS. Manual for practical lessons

PATHOGENIC COCCI GRAM-NEGATIVE INTESTINAL PATHOGENS. Manual for practical lessons Composed by Hancho O.V. PATHOGENIC COCCI GRAM-NEGATIVE INTESTINAL PATHOGENS Manual for practical lessons Poltava - 2006 Comp. by Hancho O.V. Pathogenic cocci. Gram-negative intestinal pathogens. Manual

More information

First: The doctor spoke about how to study for the exam you should. Returning back to our topic, Gram +ve cocci

First: The doctor spoke about how to study for the exam you should. Returning back to our topic, Gram +ve cocci Page1 Few notes before we start : 1. During the lecture, the DR. explained few examples, mentioned some cases, but not within the required material as he said.. Therefore I have not inserted and you can

More information

Infective endocarditis

Infective endocarditis Infective endocarditis Today's lecture is about infective endocarditis, the Dr started the lecture by asking what are the most common causative agents of infective endocarditis? 1-Group A streptococci

More information

Pathogenesis of Group A Streptococcal Infections

Pathogenesis of Group A Streptococcal Infections CLINICAL MICROBIOLOGY REVIEWS, July 2000, p. 470 511 Vol. 13, No. 3 0893-8512/00/$04.00 0 Copyright 2000, American Society for Microbiology. All Rights Reserved. Pathogenesis of Group A Streptococcal Infections

More information

Bacteria causing respiratory tract infections

Bacteria causing respiratory tract infections Editing file Bacteria causing respiratory tract infections Objectives : Recognize signs & symptoms of different bacterial respiratory tract infections Be able to come up with a short differential to relevant

More information

Scarlet Fever. Tracey Johnson Infection Control Nurse Specialist

Scarlet Fever. Tracey Johnson Infection Control Nurse Specialist Scarlet Fever Tracey Johnson Infection Control Nurse Specialist What is Scarlet Fever? Scarlet fever is a bacterial illness that mainly affects children. It causes a distinctive pink-red rash. The illness

More information

Medical Bacteriology Lecture 15

Medical Bacteriology Lecture 15 Medical Bacteriology Lecture 15 Gram Negative Coccobacilli Haemophilus Bordetella pertussis Haemophilus "loves heme" small gram-negative coccobacilli, non-spore forming, non-motile, require enriched media

More information

4. The most common cause of traveller s diarrheoa is a. Rotavirus b. E coli c. Shigella d. Giardia e. Salmonella

4. The most common cause of traveller s diarrheoa is a. Rotavirus b. E coli c. Shigella d. Giardia e. Salmonella INFECTIOUS DISEASE 1. Mumps virus is a a. Adenovirus b. Herpes virus c. Paramyxovirus d. Pox virus e. Picornavirus 2. All of the following cause a clinical effect via the production of exotoxin except

More information

Host Parasite Relationship. Prof. Hanan Habib Department of Pathology, College of Medicine,KSU

Host Parasite Relationship. Prof. Hanan Habib Department of Pathology, College of Medicine,KSU Host Parasite Relationship Prof. Hanan Habib Department of Pathology, College of Medicine,KSU OBJECTIVES Define core terms important in host-parasite relationship. Know host response to parasite invasion

More information

Characteristic. Course of disease:short Days--one month Changes : Alteration, exudation Tissue destruction Inflammation cells: major neutrophils

Characteristic. Course of disease:short Days--one month Changes : Alteration, exudation Tissue destruction Inflammation cells: major neutrophils ACUTE INFLAMMATION Characteristic Course of disease:short Days--one month Changes : Alteration, exudation Tissue destruction Inflammation cells: major neutrophils TYPES Serous Inflammation Fibrinous Inflammation

More information

Staphylococcal Food Poisoning

Staphylococcal Food Poisoning Staphylococcal Food Poisoning Pyogenic Cocci Staphylococcus gram-positive Streptococcus gram-positive Neisseria gram-negative Stapylococcus and related organisms S. aureus: major pathogen for humans, may

More information

List of teams: Practice question: Which of the following individuals was among the first to recognize the importance of handwashing?

List of teams: Practice question: Which of the following individuals was among the first to recognize the importance of handwashing? List of teams: 1. Group 1 - Room 304 - Dr. Dobkin 2. Group 2 - Room 306 - Dr. Yin 3. Group 3 - Room 308 - Dr. Lowy 4. Group 4 - Room 310 - Dr. Neu 5. Group 5 - Room 316 - Dr. Prince 6. Group 6 - Room 320

More information

Bacterial Mechanisms of Pathogenicity. 2 nd Lecture

Bacterial Mechanisms of Pathogenicity. 2 nd Lecture Bacterial Mechanisms of Pathogenicity 2 nd Lecture Preferred Portal of Entry Just because a pathogen enters your body it does not mean it s going to cause disease. pathogens - preferred portal of entry

More information

STREPTOCOCCUS ANGINOSUS

STREPTOCOCCUS ANGINOSUS STREPTOCOCCUS ANGINOSUS Streptococcus anginosus Group Bacteria: No longer a Case of Mistaken Identity Ralph K. Funckerstorff et al. Article Review by Andrea Prinzi INTRODUCTION In 1906, two scientists

More information

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases

محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases محاضرة مناعت مدرس المادة :ا.م. هدى عبدالهادي علي النصراوي Immunity to Infectious Diseases Immunity to infection depends on a combination of innate mechanisms (phagocytosis, complement, etc.) and antigen

More information

Bacterial Respiratory Infection (3 rd Year Medicine) Prof. Dr. Asem Shehabi Faculty of Medicine University of Jordan

Bacterial Respiratory Infection (3 rd Year Medicine) Prof. Dr. Asem Shehabi Faculty of Medicine University of Jordan Bacterial Respiratory Infection (3 rd Year Medicine) Prof. Dr. Asem Shehabi Faculty of Medicine University of Jordan Introduction The respiratory tract is the most common site of body exposed for infection

More information

A clinical syndrome, composed mainly of:

A clinical syndrome, composed mainly of: Nephritic syndrome We will discuss: 1)Nephritic syndrome: -Acute postinfectious (poststreptococcal) GN -IgA nephropathy -Hereditary nephritis 2)Rapidly progressive GN (RPGN) A clinical syndrome, composed

More information

Lecture (14) Amiedi Ph.D.Microbiology

Lecture (14) Amiedi Ph.D.Microbiology AEROBIC BACILLUS Lecture (14) Dr. Baha,H,AL-Amiedi Amiedi Ph.D.Microbiology General Characteristics of Bacillus 60 species; Gram-positive or Gram-variable bacilli Large (0.5 x 1.2 to 2.5 x 10 um) Most

More information

CH 11. Interaction between Microbes and Humans

CH 11. Interaction between Microbes and Humans CH 11 Interaction between Microbes and Humans SLOs 1. Differentiate among the terms colonization, infection, and disease. 2. Enumerate the sites where normal biota is found in humans. 3. Discuss how the

More information

Ch 15. Microbial Mechanisms of Pathogenicity

Ch 15. Microbial Mechanisms of Pathogenicity Ch 15 Microbial Mechanisms of Pathogenicity Student Learning Outcomes Identify the principal portals of entry and exit. Using examples, explain how microbes adhere to host cells. Explain how capsules and

More information

CLINICAL MICROBIOLOGY AND IMMUNOLOGY. Microbial Mechanisms of Pathogenicity

CLINICAL MICROBIOLOGY AND IMMUNOLOGY. Microbial Mechanisms of Pathogenicity CLINICAL MICROBIOLOGY AND IMMUNOLOGY Microbial Mechanisms of Pathogenicity -Pathogenicity - ability of pathogen to cause disease by overcoming the defenses of the host -Virulence - degree of pathogenicity

More information

CNS Infections. GBS Streptococcus agalactiae. Meningitis - Neonate

CNS Infections. GBS Streptococcus agalactiae. Meningitis - Neonate CNS Infections GBS Streptococcus agalactiae Bacterial meningitis - Pathophysiology - general Specific organisms - Age Hosts Treatment/Prevention Distinguish from viral disease Common commensal flora childbearing

More information

Firmicutes: The Low G + C Gram-Positive Bacteria

Firmicutes: The Low G + C Gram-Positive Bacteria 23 Firmicutes: The Low G + C Gram-Positive Bacteria Copyright McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display. 1 Great practical importance Genus Clostridium

More information

ARF & RHD Primordial and Primary Prevention

ARF & RHD Primordial and Primary Prevention ARF & RHD Primordial and Primary Prevention Bart Currie Infectious Diseases Department, Royal Darwin Hospital Global and Tropical Health Division, Menzies Northern Territory Medical Program, Flinders &

More information

Veterinary Bacteriology and Mycology

Veterinary Bacteriology and Mycology Veterinary Bacteriology and Mycology PJL:2011 Bacterial Overview: Morphology, Structure, Jargon General Features Domain Bacteria Proteobacteria Spirochaetes Firmicutes Actinobacteria No nuclear membrane

More information

Microbiology / Active Lecture Questions Chapter 15 / Microbial Mechanisms of Pathogenicity 1 Chapter 15 / Microbial Mechanisms of Pathogenicity

Microbiology / Active Lecture Questions Chapter 15 / Microbial Mechanisms of Pathogenicity 1 Chapter 15 / Microbial Mechanisms of Pathogenicity 1 2 The removal of plasmids reduces virulence in which of the following organisms? a. Clostridium tetani b. Escherichia coli c. Staphylococcus aureus d. Streptococcus mutans e. Clostridium botulinum 3

More information

16 Innate Immunity: M I C R O B I O L O G Y. Nonspecific Defenses of the Host. a n i n t r o d u c t i o n

16 Innate Immunity: M I C R O B I O L O G Y. Nonspecific Defenses of the Host. a n i n t r o d u c t i o n ninth edition TORTORA FUNKE CASE M I C R O B I O L O G Y a n i n t r o d u c t i o n 16 Innate Immunity: Nonspecific Defenses of the Host PowerPoint Lecture Slide Presentation prepared by Christine L.

More information

Yersinia pestis. Yersinia and plague. Dr. Hala Al Daghistani

Yersinia pestis. Yersinia and plague. Dr. Hala Al Daghistani Yersinia pestis Dr. Hala Al Daghistani Yersinia species Short, pleomorphic gram-negative rods that can exhibit bipolar staining. Catalase positive, and microaerophilic or facultatively anaerobic. Animals

More information

STREPTOCOCCOSIS. PATHOGENICITY OF STREPTOCOOUS PYOGENES A. Infection by the organism

STREPTOCOCCOSIS. PATHOGENICITY OF STREPTOCOOUS PYOGENES A. Infection by the organism DEFINITION A number of clinical syndromes caused by streptococcal infection. Form a part of the normal flora of man and animals Many species are pathogenic to man STREPTOCOCCOSIS Classified on the basis

More information

Guidelines for workup of Throat and Genital Cultures

Guidelines for workup of Throat and Genital Cultures Guidelines for workup of Throat and Genital Cultures 1 Acute Pharyngitis By far the most common infection of the upper respiratory tract Viral infection is by far the most common cause of pharyngitis The

More information

Rheumatic heart disease

Rheumatic heart disease Rheumatic heart disease What will we discuss today? Etiology and epidemiology of rheumatic heart disease Pathogenesis of rheumatic heart disease Morphological changes in rheumatic heart disease Clinical

More information

Elements for a Public Summary

Elements for a Public Summary VI.2 VI.2.1 Elements for a Public Summary Overview of disease epidemiology Rapenin (phenoxymethylpenicillin potassium) is indicated for the treatment of infections caused by penicillin-sensitive bacteria.

More information

Upper Respiratory Infections. Mehreen Arshad, MD Assistant Professor Pediatric Infectious Diseases Duke University

Upper Respiratory Infections. Mehreen Arshad, MD Assistant Professor Pediatric Infectious Diseases Duke University Upper Respiratory Infections Mehreen Arshad, MD Assistant Professor Pediatric Infectious Diseases Duke University Disclosures None Objectives Know the common age- and season-specific causes of pharyngitis

More information

Anaphylactic response in rabbit Part II

Anaphylactic response in rabbit Part II Anaphylactic response in rabbit Part II Introduction Four types of hypersensitivity reactions: Type I: allergy Type II: antibodies Type III: immune complex Type IV: T-cells Type I Hypersensitivity ALLERGY

More information