OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: EDWIN M. STONE, MD, PHD

Size: px
Start display at page:

Download "OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: EDWIN M. STONE, MD, PHD"

Transcription

1 OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: EDWIN M. STONE, MD, PHD Molecular Characterization and Ophthalmic Investigation of a Large Family With Type 2A von Hippel Lindau Disease Richard C. Allen, MD, PhD; Andrew R. Webster, MA, FRCOphth, MD; Ruifang Sui, MD; Jeremiah Brown, MD, MS; Christine M. Taylor, BS; Edwin M. Stone, MD, PhD Background: Von Hippel Lindau (VHL) disease is a dominantly inherited cancer syndrome. Since the identification of the VHL gene, at least 3 clinical-genetic subtypes of the disease have been recognized. Objectives: To identify the specific abnormality in the VHL gene and to correlate it with the prevalence and severity of ocular involvement in a large family with VHL disease. Methods: A longitudinal clinical study and DNA analysis of 24 family members. Results: All 14 affected family members exhibited a thymine-to-cysteine change at nucleotide 505 (T505C) in exon 1 of the VHL gene, consistent with the clinical diagnosis of VHL disease subtype 2A. Two asymptomatic gene carriers were also identified. Seventy-five percent (12/16) of the gene carriers had 1 or more ocular angiomas. The mean number of ocular angiomas per gene carrier was 3.3. Six eyes had optic disc angioma. Five gene carriers (31%) had lost vision because of angiomatosis. Cerebellar hemangioblastomas were present in 4 patients (25%) and pheochromocytomas in 11 (69%). No patient was found to have a renal cell carcinoma. Conclusions: The family shows a low susceptibility to renal carcinoma consistent with the clinical diagnosis of VHL disease type 2A. The prevalence and severity of ocular angiomatosis in this subtype do not significantly differ from those of the other more common subtypes of VHL. Recognition of the VHL disease 2A phenotype suggests the presence of a specific mutation (T505C) in the VHL gene. Confirmation of this genotype increases the clinician s ability to provide favorable prognostic information to affected family members. Arch Ophthalmol. 2001;119: From the Cullen Eye Institute, Baylor College of Medicine, Houston, Tex (Dr Allen); Moorfields Eye Hospital, London, England (Dr Webster); Department of Ophthalmology and Visual Sciences, The University of Iowa College of Medicine, Iowa City (Drs Sui and Stone and Ms Taylor); and Walter Reed Army Institute of Research, San Antonio, Tex (Dr Brown). VON HIPPEL LINDAU (VHL) disease is a dominantly inherited cancer syndrome characterized by susceptibility to ocular angiomas, pheochromocytomas, renal cysts, renal carcinomas, hemangioblastomas of the subtentorial central nervous system, pancreatic cysts, pancreatic tumors, and cystadenomas of the epididymis. The ocular angiomas lie on the surface of the retina (Figure 1) or optic disc (Figure 2). Retinal lesions always exhibit feeder vessels and hyperfluoresce on fluorescein angiography. These frequently cause visual loss through intraretinal exudation, exudative retinal detachment, hemorrhage, and epiretinal fibrosis. 1-4 Heterozygosity for a disease-causing sequence variation in the VHL gene occurs approximately once in live births, and the overall penetrance is 97% by age 60 years. 5,6 Renal cell carcinoma is the most common cause of death, and the overall median survival is only 49 years. 6 Since ocular lesions occur so frequently and so early in the course of VHL disease, ophthalmologists play a central role in the diagnosis, screening, and management of the disorder. Early (especially presymptomatic) detection of VHL lesions reduces the morbidity and mortality associated with the disease, and, for this reason, defined screening protocols for affected patients and their at-risk relatives have been developed. 6-8 The disease was linked to chromosome 3p25-26 in 1988, 9 and the VHL gene was identified in This 3-exon gene encodes a novel protein of 213 amino acids and is ubiquitously expressed in fetal and adult human tissues. Germline mutations can be identified in the majority of VHL kindreds and range from deletions of all or part of the VHL gene to small intragenic insertions and deletions and even single base substitutions In keeping with its role as a tumor suppressor gene, somatic inactivation of the gene has been found in tumors from patients with VHL disease, 15 sporadic (ie, non-vhl) clear cell 1659

2 PATIENTS AND METHODS PATIENTS A computer search of the records of the Molecular Ophthalmology Laboratory at The University of Iowa Hospitals and Clinics, Iowa City, disclosed a total of 74 individuals who were suspected to have or at risk for having VHL disease. Of these, 34 individuals were confirmed to have VHL disease, and 14 were found to belong to a single large family that is the basis of this investigation. Patients were diagnosed as having VHL disease if they had 2 or more hemangioblastomas (including ocular lesions), 1 major VHL disease complication, and a family history of hemangioblastoma or 2 major VHL disease complications as previously described. 6,28 All individuals gave informed consent for participation in this study according to the principles outlined in the Universal Declaration of Helsinki. Case notes were available for all family members who were found to be gene carriers, and these documented a mean period of follow-up of 21 years (range, 2-42 years). All patients had been regularly screened for ocular and systemic VHL disease lesions, including annual clinical examination and blood pressure measurement, annual abdominal ultrasonography, twice-yearly abdominal magnetic resonance imaging (from age 15 years), baseline brain magnetic resonance imaging with further neuroradiologic investigation of neurologic symptoms or headache, annual urinary vanillylmandelic acid analysis, and annual ocular examination. In some cases, fluorescein angiography was used to confirm the diagnosis of ocular angiomatous lesions. All retinal angiomas had been treated with argon laser or cryotherapy as needed to inactivate the lesion. All patients had been examined in The University of Iowa Hospitals and Clinics ophthalmology clinic within 1 year of this study. DNA ANALYSIS Blood specimens were obtained from all affected members of the family as well as asymptomatic relatives at 50% risk. Genomic DNA was extracted by means of standard procedures. Because of the clinical findings consistent with VHL disease type 2A, the polymerase chain reaction (PCR) was used to amplify nucleotides 397 to 553 of exon 1, which surrounds the T505C (Tyr98His) mutation. The following primers were used: forward 5 -GTGCTGCGCTCGGT- GAACTC and reverse 5 -ACCCTGGATGTGTCCTGCCT- CAA. Fragments were amplified in a 48-well thermal cycler (PerkinElmer Cetus, Wellesley, Mass) in 30-µL reaction volumes consisting of 1mM magnesium chloride, 0.2mM deoxyribonucleoside 5 -triphosphates (datp, dgtp, dttp, and dctp), 0.4 U of Taq polymerase, 0.8mM concentrations of each primer, and 100 ng of genomic DNA as a template. Thirty-five cycles of amplification (1 minute at 94 C, 1 minute at 62 C, and 1 minute at 72 C) were performed with a terminal extension of 5 minutes. The PCR product was purified by means of purification columns (Qiagen, Bothell, Wash) as recommended by the manufacturer. Ten microliters of nonpurified PCR product was denatured at 94 C for 3 minutes before loading on a 6% polyacrylamide, 5% glycerol gel for single-strand conformation analysis as previously described. 29 Single-strand conformational polymorphism (SSCP) gels were stained with silver nitrate and developed by means of sodium carbonate formamide. In addition, 2 µl of the purified amplification product was used as template with each of the above primers for sequencing on an automated sequencer (ABI 373 Fluroescent DNA Sequencer; Applied Biosystems, San Jose, Calif). Normal control DNA samples were run in parallel during SSCP analysis and also were sequenced and compared with study samples by means of Sequencher software (Gene Codes Corporation, Ann Arbor, Mich). renal carcinomas, sporadic cerebellar hemangioblastomas, 19 and sporadic cystadenomas of the epididymis. 20 Since the gene s discovery, it has been determined that there is a reciprocal relationship between the presence of VHL protein and vascular endothelial growth factor in cultured cells 21 and that VHL protein interacts with proteins that affect transcription 22,23 and the cell cycle. 24,25 The germline mutations that occur in families with VHL disease are extremely varied, and many specific mutations have been found in only 1 or 2 families. 26 As a result, in many cases the entire VHL gene must be carefully screened (with multiple screening modalities), which is a relatively laborious and, hence, expensive task. However, a few clear genotype-phenotype correlations have been identified that can suggest specific mutations to look for in specific families and shed light on some of the important functional regions of the gene. 11,12 Families with VHL disease without pheochromocytomas (classified as type 1) typically have germline VHL deletions or protein-truncating mutations, while families with VHL disease in which 1 or more family members exhibit pheochromocytomas (classified as type 2) typically have germline missense mutations. Families with VHL disease type 2 can be further classified into those in which some members are affected by renal carcinoma (in addition to their ocular, cerebellar, and renal lesions; type 2B) and those in which renal carcinoma is very rare (type 2A). Types 1 and 2B are the most common subtypes and appear to show a similar susceptibility to ocular angiomatosis. 4,11,12 Type 2A has been described in a number of families from Germany and the United States and is associated with a thymine-to-cysteine change at nucleotide 505 (T505C), which results in a tyrosine-to-histidine change at codon 98 (Tyr98His). There is evidence that these families share a common ancestor. 27 However, the ocular phenotype in this subtype of VHL disease has not been studied in detail, and it is not known whether the susceptibility to ocular lesions differs from that seen in the other types of VHL disease. In this study, we investigated a large family with VHL disease from Iowa at both the clinical and molecular levels. The clinical diagnosis of VHL disease subtype 2A led to a rapid determination of the family s VHL germline mutation, and this, in turn, allowed us to perform a clinical study of the ocular phenotype of this least common subtype of the disease. 1660

3 Figure 1. Stereo fundus photograph of the right eye of a 49-year-old woman with a tyrosine-to-histidine change at codon 98 (Tyr98His) in the VHL gene. A large retinal angioma with a prominent feeding arteriole and draining venule is present in the superotemporal quadrant. Figure 2. Stereo fundus photograph of the right eye of a 23-year-old woman with a tyrosine-to-histidine change at codon 98 (Tyr98His) mutation in the VHL gene. An elevated optic disc angioma involves more than three fourths of the optic disc. RESULTS DNA ANALYSIS The SSCP analysis disclosed 16 individuals from the pedigree (Figure 3) to harbor an identical band shift when compared with control samples. Direct sequencing of the PCR product showed a heterozygous T to C change at nucleotide 505. This change is identical to the mutation reported previously for type 2A VHL disease in families who trace their lineage to the Black Forest region of Germany. 27 CLINICAL ANALYSIS Family history investigation of several affected individuals allowed several small VHL kindreds from Iowa to be assembled into a single large pedigree with an extensive history of VHL (Figure 3). More than 250 individuals were ultimately identified who shared a common ancestor who had immigrated to Iowa from Baden-Baden, Germany, in Twelve (75%) of 16 gene carriers were found to have ocular hemangioblastomas (Figures 1 and 2), and 7 of these had bilateral disease (Table 1). The mean number of angiomas was 3.3. However, 1 individual had 22 angiomas, most of which were in an area of previous exudative retinal detachment (see the Comment section) (Table 2). Exclusion of this individual resulted in a mean number of angiomas of 2.1. Six eyes had optic disc angiomas (Figure 2). Six of the 19 eyes with ocular hemangioblastomas had visual acuity less than 20/40. Two patients had no light perception in one or both eyes. The average age at diagnosis of ocular angiomatosis was 37 years. Eleven (69%) of 16 gene carriers were diagnosed as having adrenal pheochromocytomas, and 4 of these patients had bilateral disease (Table 1). The average age at 1661

4 I II III IV V VI VII VIII Figure 3. Pedigree structure of the family. Affected individuals are represented by solid symbols; unaffected individuals, by open symbols. Shaded symbols represent individuals with an unknown clinical diagnosis. Table 1. Phenotype of Patients With the Tyr98His Mutation* Patient No. Age at Diagnosis, y Age at First Pheochromocytoma, y Age at First Ocular Angioma, y Most Recent Visual Acuity Age at First CNS Lesion, y /20 OU NA 2 24 NA NA 20/20 OU NA 3 39 NA NA 20/20 OU NA /20 OD, NLP OS /20 OU NA /250 OD, 20/20 OS NA 7 42 NA 41 20/20 OU NA 8 59 NA 58 20/20 OU NA /20 OU NA NA 20/20 OU NA /20 OU NA /40 OD, 20/50 OS NA /40 OD, CF OS NA 56 20/20 OU NA 20/20 OU NA NLP OU 46 *Tyr98His indicates a tyrosine-to-histidine change at codon 98; CNS, central nervous system; NA, not applicable; NLP, no light perception; and CF, counting fingers. Bilateral. diagnosis of pheochromocytoma was 31 years. Four (25%) of 16 gene carriers were found to have central nervous system hemangioblastomas, with an average age at diagnosis of 40 years. None of the gene carriers was diagnosed as having renal cell carcinoma. We compared the degree and severity of ocular angiomatosis in this cohort of patients with type 2A VHL disease with cohorts of patients with types 1 and 2B VHL disease, described by Webster et al. 4 In the latter study, 183 VHL gene carriers were systematically examined with methods that were the same as those of the present study. None of the 183 patients carried the Tyr98His mutation, and none of the families was suggestive of the type 2A phenotype. The 2 studies had a similar median age at examination (38.5 years in this study, 34 years in the study by Webster et al). In addition, the prevalence of angiomatosis in the 2 studies was very similar (75% this study, 68% in the study by Webster et al). Finally, the median number of angiomas was not significantly different with or without inclusion of the patient in the present study with 22 angiomas (Wilcoxon rank-sum test: P=.57 including the outlying patient, P=.87 excluding him). However, because of the small sample of patients in this study, we cannot exclude subtle differences in the susceptibility to angiomatosis in these 2 categories of VHL disease (type 2A vs types 1 and 2B). 1662

5 Table 2. Ocular Phenotype of Patients With the Tyr98His Mutation* No. Peripheral Angiomas Optic Nerve Angiomas Patient No. Total Ocular Angiomas, No. OD OS OD OS Complications Surgery (11) 1 (11) 1 (11) NA NA 1 (16) NA NA NA NA (19) 1 (19) 0 0 Ex RD OS NA 6 (32) (20) 1 (24) 0 0 NA NA (49) Macular hole OD NA (41) NA NA (58) 0 0 NA NA (29) 1 (29) 0 0 NA NA NA NA (45) NA NA (37) 3 (37) 1 (37) 0 NA NA 13? 0? (54) 0 0 RD OS SBP (56) 3 (56) 0 0 NA NA NA NA (20) 1 (20) 1 (20) NVG OS, RD OD Enucleation OS *Tyr98His indicates tyrosine-to-histidine change at codon 98; surgery, procedure other than photocoagulation or cryotherapy; NA, not applicable; Ex, exudative; RD, retinal detachment; SBP, scleral buckling procedure; and NVG, neovascular glaucoma. Numbers in parentheses indicate the age (years) at which each lesion was diagnosed. Patient 13 had an exudative retinal detachment in the left eye at diagnosis, making it difficult to assess the number of angiomas present. COMMENT The characterization of the VHL gene was an important contribution to the understanding of the molecular pathologic features of inherited and sporadic tumors. However, because of the wide spectrum of different mutations that can give rise to the VHL phenotype, identification of the underlying germline mutation in most affected families is not straightforward. Previous work, using a battery of molecular genetic techniques including pulse-field gel electrophoresis, Southern blot analysis, SSCP, and direct sequencing, achieved a sensitivity of 80% in the detection of mutations in known VHL disease pedigrees. 30 More recently, the inclusion of a quantitative Southern analysis technique has increased this sensitivity further. 31 In some cases, recognized correlations between certain genotypes and phenotypes allow us to direct the molecular genetic testing of a family on the basis of the clinical phenotype that they exhibit. In the case of the family in this study, the absence of renal disease among 16 clinically affected individuals strongly suggested the presence of the Tyr98His mutation. Similarly, the most appropriate initial investigation for a family with a low rate of pheochromocytoma (type 1 VHL disease) would be Southern analysis, as this single test has a high sensitivity in families with this phenotype. 11,12,30 Finally, a family with a high rate of both renal and adrenal disease (type 2B VHL disease) would be most appropriately studied by a PCR-based restriction enzyme assay (or other allele-specific assay) for a mutation at codon 167, the specific mutation most commonly associated with this phenotype. 11,12,30 Further subtle phenotype-genotype relationships may yet remain to be discovered in VHL disease. Such discoveries may allow clinicians to increase the efficiency of the molecular screening even further. The phenotype exhibited by the family in this study is similar to that previously reported for families with the same underlying mutation in which the most striking feature is a very low risk of renal carcinoma. 27 There are 2 potential explanations for the apparent organ-specific effect of this specific mutation. First, the mutation might cause a general reduction in the penetrance of disease, in which all susceptible organs are less prone to tumorigenesis. This effect might be reasonably expected to manifest itself clinically as a relative absence of the tumor that occurs latest in the course of disease renal carcinoma. Such low-penetrance mutations have been described previously in another ophthalmic inherited cancer syndrome, retinoblastoma, 32 and the low level of function of the protein product of these specific low-penetrance retinoblastoma alleles has been confirmed by in vitro studies. 33 However, our study provides some evidence against this hypothesis. When studied in detail, ocular angiomas in this subtype of VHL disease are no less prevalent or severe than that seen in other families with VHL disease, suggesting that this mutation does not have a globally lower penetrance than other disease-causing mutations. The second and more likely explanation is that the VHL gene has organ-specific functions, and that these can be selectively abrogated when a specific domain of the VHL gene product is altered in a specific fashion. Such tissue- or organ-specific functions are not explained by selective expression of the gene, as it has been found to be expressed in all adult and fetal human tissues that have been tested. 34,35 Since the families with the Tyr98His mu- 1663

6 Table 3. Distribution of Tumors Among Organs* Patient No. No. of Ocular Angiomas No. of Pheochromocytomas No. of CNS Angiomas No. of Organs Affected Total No. of Tumors 1 4 (11) 1 (11) (19) 2 (24) 1 (29) (20) 2 (20) (49) 1 (49) (41) (58) (29) 1 (29) (13) (45) 1 (45) (37) 1 (9) (54) 1 (69) 1 (29) (56) 0 1 (56) (23) (20) 2 (53) 1 (46) 5 6 *Numbers in parentheses indicate the age (years) at which each type of lesion was first diagnosed. Each eye and each adrenal count as 1 organ. CNS indicates central nervous system. tation appear to share a common ancestor, and, by genealogy, the family in this report seems likely to share this same ancestor, it is possible that another DNA change, for example in a control region of the gene, exists in phase with the Tyr98His substitution and is responsible for these organ-specific effects. The accessibility of the ocular tissues to noninvasive examination facilitated the detailed assessment of this specific VHL manifestation in this family. We found the mean number of angiomas per individual and the prevalence of ocular angiomatosis to be similar to those previously reported for other clinical subtypes of VHL disease. 4,28,30 As noted previously, 4 the optic disc appears to be highly susceptible and the macula relatively resistant to tumorigenesis, when the relative areas of these structures are taken into account. It is also of interest that the most severely affected patients in this family presented at a relatively early age (younger than 20 years) compared with the less severely affected members, supporting the trend seen in a previous study. 4 This underscores the need for ophthalmoscopic screening at a young age so that angiomas can be detected when they are small and therefore more effectively treatable. This study suggests that the ocular phenotype is not helpful in predicting a specific class of mutation in the VHL gene. However, there is evidence to suggest that the severity of the ocular disease is positively correlated with the severity of central nervous system and renal involvement. 36 Our family was not large enough to confirm this correlation (Table 3). One individual was observed to have 22 angiomas in one eye. The concentration of the angiomas was in an area of previous exudative retinal detachment. Webster et al 4 previously observed that areas of previous retinal injury (ie, photocoagulation, cryotherapy, retinal detachment, etc) in a patient with VHL disease are susceptible to an increased number of retinal angiomas. The mechanism by which this has been postulated to occur is that areas of injury induce retinal endothelial and/or other vascular cell mitosis. 4 This increases the chance of somatic mutations in the VHL gene, thereby increasing the chance of retinal angioma formation. This explanation is related to the theory that the number of angiomas a given patient with VHL disease will develop is determined at an early age. When retinal development is complete, mitoses are infrequent. This is supported by the observation of one individual in our pedigree who was 93 years old and free of retinal angiomatosis. The observation that renal carcinoma is less prevalent in this subtype of VHL disease might suggest a modification of the standard screening protocols for families with the Tyr98His mutation. However, the chief complication of this subtype of VHL disease is adrenal pheochromocytoma, and these patients therefore require regular annual abdominal screening. Thus, simultaneous imaging of the kidneys is of little further inconvenience to the patients and is probably warranted given the deadly consequences of missing an early renal cell carcinoma. This is the third family in the United States in which the Tyr98His mutation has been reported; the other 2 were ascertained in Pennsylvania. 27 This raises the possibility that this mutation might be fairly prevalent in the United States. Of 34 individuals seen in our clinic with confirmed VHL, 14 were found to be members of the family described in this article. It is likely that patients with VHL disease with the Tyr98His mutation have a greater reproductive fitness than other patients with VHL disease, given that renal cell carcinoma is the prime cause of mortality in VHL disease overall. The increased fitness of this VHL subtype would explain why a founder effect is so prominent for the Tyr98His mutation, while most other VHL disease pedigrees are rather small and not related to one another. 37 The correlation between the VHL disease type 2A phenotype and the Tyr98His genotype is useful in both directions. That is, the recognition of the 2A phenotype helped streamline the determination of the specific mutation in this family with VHL disease. However, the confirmation of the Tyr98His genotype allowed us also to give known gene carriers useful and reassuring prognos- 1664

7 tic information. Only by future careful and parallel genetic and clinical studies will further genotypephenotype relationships in VHL disease and other genetic diseases become apparent. The discovery and characterization of this specific subtype of VHL disease also suggest directions for further research. Patients with type 2A VHL disease are clearly better off than those with other subtypes. By further study of the specific VHL disease type 2A allele, we might be able to determine why renal carcinoma is rare, which may in turn suggest treatment strategies to convert general VHL disease into a clinical course that resembles that of subtype 2A. Accepted for publication May 3, This study was supported in part by the Foundation Fighting Blindness (Owings Mills, Md), the Carver Endowment for Molecular Ophthalmology (Iowa City, Iowa), the Helen Keller Foundation for Research and Education (Birmingham, Ala), and an unrestricted grant from Research to Prevent Blindness Inc (New York, NY). We thank Heidi Haines, MS, and Paula Moore for their excellent technical assistance. Corresponding author and reprints: Edwin M. Stone, MD, PhD, Department of Ophthalmology and Visual Sciences, The University of Iowa Hospitals and Clinics, 200 Hawkins Dr, Iowa City, IA ( REFERENCES 1. Goldberg MF, Duke JR. Von Hippel Lindau disease: histopathologic findings in a treated and untreated eye. Am J Ophthalmol. 1968;66: Welch RB. Von Hippel Lindau disease: the recognition and treatment of early angiomatosis retinae and the use of cryosurgery as an adjunct to therapy. Trans Am Ophthalmol Soc. 1970;68: Ridley M, Green J, Johnson G. Retinal angiomatosis: the ocular manifestations of von Hippel Lindau disease. Can J Ophthalmol. 1986;7: Webster AR, Maher ER, Moore AT. Clinical characteristics of ocular angiomatosis in von Hippel Lindau disease and correlation with germline mutation. Arch Ophthalmol. 1999;117: Maher ER, Iselius L, Yates JRW, et al. Von Hippel Lindau disease: a genetic study. J Med Genet. 1991;28: Maher ER, Yates JR, Harries R, et al. Clinical features and natural history of von Hippel Lindau disease. Q J Med. 1990;77: Huson SM, Harper PS, Hourihan MD, Cole G, Weeks RD, Compston DA. Cerebellar haemangioblastoma and von Hippel Lindau disease. Brain. 1986;109: Webster AR, Maher ER, Bird AC, Gregor ZJ, Moore AT. A clinical and molecular genetic analysis of solitary ocular angioma. Ophthalmology. 1999;106: Seizinger BR, Rouleau GA, Ozelius LJ, et al. Von Hippel Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature. 1988; 332: Latif F, Tory K, Gnarra J, et al. Identification of the von Hippel Lindau disease tumor suppressor gene. Science. 1993;260: Crossey PA, Richards FM, Foster K, et al. Identification of intragenic mutations in the von Hippel Lindau disease tumor suppressor gene and correlation with disease phenotype. Hum Mol Genet. 1994;3: Chen F, Kishida T, Yao M, et al. Germline mutations in the von Hippel Lindau disease tumor suppressor gene: correlations with phenotype. Hum Mutat. 1995; 5: Whaley JM, Naglich J, Gelbert L, et al. Germ-line mutations in the von Hippel Lindau tumor suppressor gene are similar to somatic von Hippel Lindau aberrations in sporadic renal cell carcinoma. Am J Hum Genet. 1994;55: Clinical Research Group for VHL in Japan. Germline mutations in the von Hippel Lindau disease (VHL) gene in Japanese VHL. Hum Mol Genet. 1995;4: Prowse AH, Webster AR, Richards FM, et al. Somatic inactivation of the VHL gene in von Hippel Lindau disease tumors. Am J Hum Genet. 1997;60: Gnarra JR, Tory K, Weng Y, et al. Mutations of the VHL tumor suppressor gene in renal carcinoma. Nat Genet. 1994;7: Herman JG, Latif F, Weng YK, et al. Silencing of the VHL tumor suppressor gene by DNA methylation in renal carcinomas. Proc Natl Acad Sci USA. 1994;91: Foster K, Prowse A, van den Berg A, et al. Somatic mutations of the von Hippel Lindau disease tumor suppressor gene in nonfamilial clear cell renal carcinoma. Hum Mol Genet. 1994;3: Kanno H, Kondo K, Ito S, et al. Somatic mutations of the von Hippel Lindau tumor suppressor gene in sporadic central nervous system hemangioblastomas. Cancer Res. 1994;54: Gilcrease MZ, Schmidt L, Zbar B, Truong L, Rutledge M, Wheeler TM. Somatic von Hippel-Lindau mutation in clear cell papillary cystadenoma of the epididymis. Hum Pathol. 1995;26: Iliopoulos O, Levy AP, Jiang C, Kaelin WG Jr, Goldberg MA. Negative regulation of hypoxia-inducible genes by the von Hippel-Lindau protein. Proc Natl Acad Sci USA. 1996;93: Duan DR, Pause A, Burgess WH, et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science. 1995;269: Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr. Binding of the von Hippel- Lindau tumor suppressor protein to elongin B and C. Science. 1995;269: Pause A, Lee S, Worrell RA, et al. The von Hippel Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc Natl Acad Sci U S A. 1997;94: Pause A, Lee S, Lonergan KM, Klausner RD. The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. Proc Natl Acad Sci U S A. 1998;95: Zbar B, Kishida T, Chen F, et al. Germline mutations in the von Hippel Lindau disease (VHL) gene in families from North America, Europe and Japan. Hum Mutat. 1996;8: Brauch H, Kishida T, Glavac D, et al. Von Hippel Lindau disease with pheochromocytoma in the Black Forest region of Germany: evidence for a founder effect. Hum Genet. 1995;95: Lamiell JM, Salazar FG, Hsia YE. Von Hippel Lindau disease affecting 43 members of a single kindred. Medicine. 1989;68: Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989;5: Maher ER, Webster AR, Richards FM, et al. Phenotypic expression in von Hippel Lindau disease: correlations with germline VHL gene mutations. J Med Genet. 1996;33: Stolle C, Glenn G, Zbar B, et al. Improved detection of germline mutations in the von Hippel-Lindau disease tumor suppressor gene. Hum Mutat. 1998;12: Dryja TP, Rapaport J, McGee TL, Nork TM, Schwartz TL. Molecular etiology of low-penetrance retinoblastoma in two pedigrees. Am J Hum Genet. 1993;52: Sakai T, Ohtani N, McGee TL, Robbins PD, Dryja TP. Oncogenic germ-line mutations in Sp1 and ATF sites in the human retinoblastoma gene. Nature. 1991; 353: Kessler PM, Vasavada SP, Rackley RR, et al. Expression of the von Hippel Lindau tumor suppressor gene, VHL, in human fetal kidney and during mouse embryogenesis. Mol Med. 1995;1: Richards FM, Schofield PN, Fleming S, Maher ER. Expression of the von Hippel- Lindau disease tumour suppressor gene during human embryogenesis. Hum Mol Genet. 1996;5: Webster AR, Richards FM, MacRonald FE, Moore AT, Maher ER. An analysis of phenotypic variation in the familial cancer syndrome von Hippel Lindau disease: evidence for modifier effects. Am J Hum Genet. 1998;63: Richards FM, Payne SJ, Zbar B, Affara NA, Ferguson-Smith MA, Maher ER. Molecular analysis of de novo germline mutations in the von Hippel-Lindau disease gene. Hum Mol Genet. 1995;4:

Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome

Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome Identification of a novel duplication mutation in the VHL gene in a large Chinese family with Von Hippel-Lindau (VHL) syndrome L.H. Cao 1, B.H. Kuang 2, C. Chen 1, C. Hu 2, Z. Sun 1, H. Chen 2, S.S. Wang

More information

OPHTHALMIC MOLECULAR GENETICS

OPHTHALMIC MOLECULAR GENETICS OPHTHALMIC MOLECULAR GENETICS Genotype-Phenotype Correlation in von Hippel-Lindau Disease With Retinal Angiomatosis Wai T. Wong, MD, PhD; Elvira Agrón, MS; Hanna R. Coleman, MD; George F. Reed, PhD; Karl

More information

OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: EDWIN M. STONE, MD, PHD

OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: EDWIN M. STONE, MD, PHD OPHTHALMIC MOLECULAR GENETICS SECTION EDITOR: EDWIN M. STONE, MD, PHD Clinical Characteristics of Ocular Angiomatosis in von Hippel-Lindau Disease and Correlation With Germline Mutation Andrew R. Webster,

More information

18 (2), DOI: /bjmg

18 (2), DOI: /bjmg 18 (2), 2015 65-70 DOI: 10.1515/bjmg-2015-0087 CASE REPORT VON HIPPEL-LINDAU DISEASE: THE CLINICAL MANIFESTATIONS AND GENETIC ANALYSIS RESULTS OF TWO CASES FROM A SINGLE FAMILY Kinyas S 1, Ozal SA 1,*,

More information

A Random Approach to the Determination of Amino Acid Pairs in Von Hippel-Lindau Disease Tumor Suppressor (G7 Protein)

A Random Approach to the Determination of Amino Acid Pairs in Von Hippel-Lindau Disease Tumor Suppressor (G7 Protein) A Random Approach to the Determination of Amino Acid Pairs in Von Hippel-Lindau Disease Tumor Suppressor (G7 Protein) G. Wu, MD, PhD S-M. Yan, MD, PhD DreamSciTech Consulting Co. Ltd., Shenzhen, Guangdong

More information

A novel mutation links to von Hippel-Lindau syndrome in a Chinese family with hemangioblastoma

A novel mutation links to von Hippel-Lindau syndrome in a Chinese family with hemangioblastoma A novel mutation links to von Hippel-Lindau syndrome in a Chinese family with hemangioblastoma X.M. Fu 1, S.L. Zhao 2, J.C. Gui 2, Y.Q. Jiang 2, M.N. Shen 2, D.L. Su 2, B.J. Gu 2, X.Q. Wang 2, Q.J. Ren

More information

Identification of Somatic Mutations in the von Hippel Lindau (VHL) Gene in a Patient With Renal Cell Carcinoma

Identification of Somatic Mutations in the von Hippel Lindau (VHL) Gene in a Patient With Renal Cell Carcinoma CASE REPORT Identification of Somatic Mutations in the von Hippel Lindau (VHL) Gene in a Patient With Renal Cell Carcinoma Wen-Chung Wang, 1 Hui-Ju Chen, 2 Yu-Hua Tseng, 3 Yen-Chein Lai 2 * One of the

More information

An Analysis of Phenotypic Variation in the Familial Cancer Syndrome von Hippel Lindau Disease: Evidence for Modifier Effects

An Analysis of Phenotypic Variation in the Familial Cancer Syndrome von Hippel Lindau Disease: Evidence for Modifier Effects Am. J. Hum. Genet. 63:105 1035, 1998 An Analysis of Phenotypic Variation in the Familial Cancer Syndrome von Hippel Lindau Disease: Evidence for Modifier Effects Andrew R. Webster, 1, Frances M. Richards,

More information

Familial clear cell renal cell carcinoma (FCRC): clinical features and mutation analysis of the VHL, MET, and CUL2 candidate genes

Familial clear cell renal cell carcinoma (FCRC): clinical features and mutation analysis of the VHL, MET, and CUL2 candidate genes 348 Department of Pathology, University of Cambridge, Cambridge, UK E R Woodward NAAVara Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, University of Birmingham,

More information

Genotype-Phenotype Correlation in Ocular von Hippel-Lindau (VHL) Disease: The Effect of Missense Mutation Position on Ocular VHL Phenotype

Genotype-Phenotype Correlation in Ocular von Hippel-Lindau (VHL) Disease: The Effect of Missense Mutation Position on Ocular VHL Phenotype Clinical and Epidemiologic Research Genotype-Phenotype Correlation in Ocular von Hippel-Lindau (VHL) Disease: The Effect of Missense Mutation Position on Ocular VHL Phenotype Pradeep Mettu, 1,2 Elvira

More information

Von Hippel-Lindau (VHL) Syndrome: A Critical Insight

Von Hippel-Lindau (VHL) Syndrome: A Critical Insight 114 Review Article Von Hippel-Lindau (VHL) Syndrome: A Critical Insight Tapan Behl*, Ishneet Kaur, Puneet Sudan, Monika Sharma, Heena Goel Department of Pharmacology, Doaba Group of Colleges, Kharar, Mohali,

More information

Mosaicism in von Hippel Lindau Disease: Lessons from Kindreds with Germline Mutations Identified in Offspring with Mosaic Parents

Mosaicism in von Hippel Lindau Disease: Lessons from Kindreds with Germline Mutations Identified in Offspring with Mosaic Parents Am. J. Hum. Genet. 66:84 91, 2000 Mosaicism in von Hippel Lindau Disease: Lessons from Kindreds with Germline Mutations Identified in Offspring with Mosaic Parents M. T. Sgambati, 1,* C. Stolle, 4,* P.

More information

Long-Term Effect of External Beam Radiotherapy of Optic Disc Hemangioma in a Patient with von Hippel-Lindau Disease

Long-Term Effect of External Beam Radiotherapy of Optic Disc Hemangioma in a Patient with von Hippel-Lindau Disease 2011 65 2 135 141 Long-Term Effect of External Beam Radiotherapy of Optic Disc Hemangioma in a Patient with von Hippel-Lindau Disease a* b c c d e f g a b c f g d e 136 65 2 ʼ ʼ ʼ April 2011 Radiation

More information

A Martinez, P Fullwood, K Kondo, T Kishida, M Yao, E R Maher, F Latif

A Martinez, P Fullwood, K Kondo, T Kishida, M Yao, E R Maher, F Latif J Clin Pathol: Mol Pathol 2000;53:137 144 137 Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, The Medical School, University of Birmingham, Edgbaston, Birmingham

More information

Acknowledgements. Outline. Who were von Hippel and Lindau? Eugen von Hippel German Ophthalmologist

Acknowledgements. Outline. Who were von Hippel and Lindau? Eugen von Hippel German Ophthalmologist Ophthalmic Therapies & Standard of Care Acknowledgements Eric Jonasch, MD & Surena Matin, MD Collaborators Franco DeMonte, MD Marcy Johnson Ian McCutcheon, MD Chaan Ng, MD Nancy Perrier, MD Dawid Schellingerhout,

More information

The Genetics of VHL. Proper tissue growth - controlled traffic. How human cells and tissue grow and die?

The Genetics of VHL. Proper tissue growth - controlled traffic. How human cells and tissue grow and die? How human cells and tissue grow and die? The Genetics of VHL Xia Wang MD PhD Oct, 2017 Proper tissue growth - controlled traffic Normal tissue growth is regulated by many genetic factors Safe traffic is

More information

Laser Treatment of Retinal Angiomatosis

Laser Treatment of Retinal Angiomatosis Eye (1989) 3, 33-38 Laser Treatment of Retinal Angiomatosis CAROL M. LANE, GEORGE TURNER, ZDENEK 1. GREGOR, ALAN C. BIRD London Summary We have treated 26 retinal angiomas of less than 4.5mm in size in

More information

An information leaflet for patients and families. Von Hippel- Lindau Disease

An information leaflet for patients and families. Von Hippel- Lindau Disease An information leaflet for patients and families Von Hippel- Lindau Disease What is Von Hippel-Lindau disease? Von Hippel-Lindau (VHL) disease is a rare inherited disorder caused by a genetic alteration

More information

The Natural History of Cerebellar Hemangioblastomas in von Hippel-Lindau Disease

The Natural History of Cerebellar Hemangioblastomas in von Hippel-Lindau Disease AJNR Am J Neuroradiol 24:1570 1574, September 2003 The Natural History of Cerebellar Hemangioblastomas in von Hippel-Lindau Disease Andrew Slater, Niall R. Moore, and Susan M. Huson BACKGROUND AND PURPOSE:

More information

When is eye screening performed

When is eye screening performed Why is a regular ophthalmological exam critical in VHL Screening Department of Ophthalmology, University of South Florida VHLA Family Meeting in Tampa 2017 Screening is the testing of individuals at risk

More information

Tumor suppressor genes D R. S H O S S E I N I - A S L

Tumor suppressor genes D R. S H O S S E I N I - A S L Tumor suppressor genes 1 D R. S H O S S E I N I - A S L What is a Tumor Suppressor Gene? 2 A tumor suppressor gene is a type of cancer gene that is created by loss-of function mutations. In contrast to

More information

Early detection of Retinoblastoma in children. Max Mantik

Early detection of Retinoblastoma in children. Max Mantik Early detection of Retinoblastoma in children Max Mantik Introduction The most common primary intraocular malignancy of childhood 10 to 15 % of cancers that occur within the first year of life Typical

More information

Benign and malignant tumors in multiple organ systems

Benign and malignant tumors in multiple organ systems VICKI COUCH, MS; NORALANE M. LINDOR, MD; PAMELA S. KARNES, MD; AND VIRGINIA V. MICHELS, MD An autosomal dominant tumor predisposition syndrome, von Hippel-Lindau disease (VHL) is characterized by the presence

More information

Reconsideration of biallelic inactivation of the VHL tumour suppressor gene in hemangioblastomas of the central nervous system

Reconsideration of biallelic inactivation of the VHL tumour suppressor gene in hemangioblastomas of the central nervous system 644 Nephrology and Hypertension, Albert-Ludwigs- University, Medizinische Universitätsklinik, Hugstetter Straβe 55, D 79106 Freiburg, Germany S Gläsker B U Bender T W Apel H P H Neumann Neurosurgery V

More information

Genetics and Genomics in Endocrinology

Genetics and Genomics in Endocrinology Genetics and Genomics in Endocrinology Dr. Peter Igaz MD MSc PhD 2 nd Department of Medicine Faculty of Medicine Semmelweis University Genetics-based endocrine diseases I. Monogenic diseases: Multiple

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Choroideremia OMIM number for disease 303100 Disease alternative names please

More information

The von Hippel Lindau (VHL) syndrome is a rare (1/

The von Hippel Lindau (VHL) syndrome is a rare (1/ Hemangioblastomas of the Retina: Impact of von Hippel Lindau Disease Mika Niemelä, 1 Sebsebe Lemeta, 2 Markku Sainio, 2 Sirpa Rauma, 3 Eero Pukkala, 4 Juha Kere, 5 Tom Böhling, 6 Leila Laatikainen, 7 Juha

More information

Haemangioblastomas of the central nervous system in von Hippel Lindau Syndrome involving cerebellum and spinal cord

Haemangioblastomas of the central nervous system in von Hippel Lindau Syndrome involving cerebellum and spinal cord Romanian Neurosurgery Volume XXXII Number 1 2018 January-March Article Haemangioblastomas of the central nervous system in von Hippel Lindau Syndrome involving cerebellum and spinal cord V.A. Kiran Kumar,

More information

Retina Conference. Janelle Fassbender, MD, PhD University of Louisville Department of Ophthalmology and Visual Sciences 09/04/2014

Retina Conference. Janelle Fassbender, MD, PhD University of Louisville Department of Ophthalmology and Visual Sciences 09/04/2014 Retina Conference Janelle Fassbender, MD, PhD University of Louisville Department of Ophthalmology and Visual Sciences 09/04/2014 Subjective CC/HPI: 64 year old Caucasian female referred by outside ophthalmologist

More information

Case Report: Indocyanine Green Dye Leakage from Retinal Artery in Branch Retinal Vein Occlusion

Case Report: Indocyanine Green Dye Leakage from Retinal Artery in Branch Retinal Vein Occlusion Case Report: Indocyanine Green Dye Leakage from Retinal Artery in Branch Retinal Vein Occlusion Hiroki Fujita, Kyoko Ohno-Matsui, Soh Futagami and Takashi Tokoro Department of Visual Science, Tokyo Medical

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download:https://getbooksolutions.com/download/test-bank-for-robbinsand-cotran-pathologic-basis-of-disease-9th-edition-by-kumar Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th

More information

Recurrent intraocular hemorrhage secondary to cataract wound neovascularization (Swan Syndrome)

Recurrent intraocular hemorrhage secondary to cataract wound neovascularization (Swan Syndrome) Recurrent intraocular hemorrhage secondary to cataract wound neovascularization (Swan Syndrome) John J. Chen MD, PhD; Young H. Kwon MD, PhD August 6, 2012 Chief complaint: Recurrent vitreous hemorrhage,

More information

Photocoagulation of disciform macular lesions

Photocoagulation of disciform macular lesions British Journal of Ophthalmology, 1979, 63, 669-673 Photocoagulation of disciform macular lesions with krypton laser A. C. BIRD AND R. H. B. GREY From the Institute of Ophthalmology, Moorfields Eye Hospital,

More information

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar

Test Bank for Robbins and Cotran Pathologic Basis of Disease 9th Edition by Kumar Link full download: http://testbankair.com/download/test-bank-for-robbins-cotran-pathologic-basis-of-disease-9th-edition-bykumar-abbas-and-aster Test Bank for Robbins and Cotran Pathologic Basis of Disease

More information

Diagnosis and treatment of diabetic retinopathy. Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City

Diagnosis and treatment of diabetic retinopathy. Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City Diagnosis and treatment of diabetic retinopathy Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City Disclosures Consulted for Novo Nordisk 2017,2018. Will be discussing

More information

10/11/2018. Clinical and Surgical Management of VHL-Related Cysts and Cystic RCC. Outline. VHL Renal Manifestations. VHL Renal Manifestations

10/11/2018. Clinical and Surgical Management of VHL-Related Cysts and Cystic RCC. Outline. VHL Renal Manifestations. VHL Renal Manifestations Outline Clinical and Surgical Management of VHL-Related Cysts and Cystic RCC Mark W. Ball, MD Assistant Research Physician Attending Surgeon Urologic Oncology Branch, National Cancer Institute Prevalence

More information

von Hippel-Lindau Syndrome: Target for Anti-Vascular Endothelial Growth Factor (VEGF) Receptor Therapy

von Hippel-Lindau Syndrome: Target for Anti-Vascular Endothelial Growth Factor (VEGF) Receptor Therapy von Hippel-Lindau Syndrome: Target for Anti-Vascular Endothelial Growth Factor (VEGF) Receptor Therapy ADRIAN L. HARRIS Imperial Cancer Research Fund, Medical Oncology Laboratories, University of Oxford,

More information

Michael P. Blair, MD Retina Consultants, Ltd Libertyville/Des Plaines, Illinois Clinical Associate University of Chicago 17 October 2015

Michael P. Blair, MD Retina Consultants, Ltd Libertyville/Des Plaines, Illinois Clinical Associate University of Chicago 17 October 2015 Michael P. Blair, MD Retina Consultants, Ltd Libertyville/Des Plaines, Illinois Clinical Associate University of Chicago 17 October 2015 So What Parts of the Eye Retina are Affected by VHL Neural tissue

More information

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2

LESSON 3.2 WORKBOOK. How do normal cells become cancer cells? Workbook Lesson 3.2 For a complete list of defined terms, see the Glossary. Transformation the process by which a cell acquires characteristics of a tumor cell. LESSON 3.2 WORKBOOK How do normal cells become cancer cells?

More information

Multistep nature of cancer development. Cancer genes

Multistep nature of cancer development. Cancer genes Multistep nature of cancer development Phenotypic progression loss of control over cell growth/death (neoplasm) invasiveness (carcinoma) distal spread (metastatic tumor) Genetic progression multiple genetic

More information

, Valeria Pagliei, Martina Maceroni, Matteo Federici, Gloria Gambini and Aldo Caporossi. Angelo Maria Minnella *

, Valeria Pagliei, Martina Maceroni, Matteo Federici, Gloria Gambini and Aldo Caporossi. Angelo Maria Minnella * Minnella et al. Journal of Medical Case Reports (2018) 12:248 https://doi.org/10.1186/s13256-018-1787-8 CASE REPORT Open Access Effect of intravitreal dexamethasone on macular edema in von Hippel-Lindau

More information

Genotype-phenotype correlations in Chinese von Hippel Lindau disease patients

Genotype-phenotype correlations in Chinese von Hippel Lindau disease patients /, 2017, Vol. 8, (No. 24), pp: 38456-38465 Genotype-phenotype correlations in Chinese von Hippel Lindau disease patients Shuanghe Peng 1,2,3, Matthew J. Shepard 4,5, Jiangyi Wang 1,2,3, Teng Li 1,2,3,

More information

R enal cell carcinoma (RCC) is the most common adult

R enal cell carcinoma (RCC) is the most common adult 706 ORIGINAL ARTICLE Molecular genetic analysis of FIH-1, FH, and SDHB candidate tumour suppressor genes in renal cell carcinoma M R Morris, E N Maina, N V Morgan, D Gentle, D Astuti, H Moch, T Kishida,

More information

Novel Heterozygous Mutation in YAP1 in A Family with Isolated Ocular Colobomas

Novel Heterozygous Mutation in YAP1 in A Family with Isolated Ocular Colobomas Novel Heterozygous Mutation in YAP1 in A Family with Isolated Ocular Colobomas Julius T. Oatts 1, Sarah Hull 2, Michel Michaelides 2, Gavin Arno 2, Andrew R. Webster 2*, Anthony T. Moore 1,2* 1. Department

More information

Sarah Marie Nielsen. BA, Lehigh University, Submitted to the Graduate Faculty of. the Graduate School of Public Health in partial fulfillment

Sarah Marie Nielsen. BA, Lehigh University, Submitted to the Graduate Faculty of. the Graduate School of Public Health in partial fulfillment GENOTYPE-PHENOTYPE CORRELATIONS AMONG TWO LARGE WESTERN PENNSYLVANIA VON HIPPEL-LINDAU DISEASE (VHL) TYPE 2A KINDREDS WITH HIGH INCIDENCE OF PHEOCHROMOCYTOMA AND DIFFERENT MISSENSE MUTATIONS IN THE VHL

More information

ZEISS AngioPlex OCT Angiography. Clinical Case Reports

ZEISS AngioPlex OCT Angiography. Clinical Case Reports Clinical Case Reports Proliferative Diabetic Retinopathy (PDR) Case Report 969 PROLIFERATIVE DIABETIC RETINOPATHY 1 1-year-old diabetic female presents for follow-up of proliferative diabetic retinopathy

More information

Best Practice Guidelines for Molecular Analysis of Retinoblastoma

Best Practice Guidelines for Molecular Analysis of Retinoblastoma Best Practice Guidelines for Molecular Analysis of Retinoblastoma Lohmann D 1, Scheffer H 2, Gaille B 3 1 Institut für Humangenetik, Universitätsklinikum Essen, Germany. 2 Dept. Human Genetics, University

More information

The phenotype of Arg555Trp mutation in a large Turkish family with corneal granular dystrophy

The phenotype of Arg555Trp mutation in a large Turkish family with corneal granular dystrophy European Journal of Ophthalmology / Vol. 11 no. 4, 2001 / pp. 333-337 The phenotype of Arg555Trp mutation in a large Turkish family with corneal granular dystrophy H. KIRATLI 1, M. İRKEÇ 1, K. ÖZGÜL 2,

More information

Rhodopsin Gene Codon 106 Mutation (Gly-to-Arg) in a Japanese Family with Autosomal Dominant Retinitis Pigmentosa

Rhodopsin Gene Codon 106 Mutation (Gly-to-Arg) in a Japanese Family with Autosomal Dominant Retinitis Pigmentosa Rhodopsin Gene Codon 106 Mutation (Gly-to-Arg) in a Japanese Family with Autosomal Dominant Retinitis Pigmentosa Budu,* Masayuki Matsumoto, Seiji Hayasaka, Tetsuya Yamada and Yoriko Hayasaka Department

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name Leber congenital amaurosis OMIM number for disease 204000 Disease alternative

More information

Optical Coherence Tomograpic Features in Idiopathic Retinitis, Vasculitis, Aneurysms and Neuroretinitis (IRVAN)

Optical Coherence Tomograpic Features in Idiopathic Retinitis, Vasculitis, Aneurysms and Neuroretinitis (IRVAN) Columbia International Publishing Journal of Ophthalmic Research (2014) Research Article Optical Coherence Tomograpic Features in Idiopathic Retinitis, Vasculitis, Aneurysms and Neuroretinitis (IRVAN)

More information

Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion

Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion Neovascular Glaucoma Associated with Cilioretinal Artery Occlusion Combined with Perfused Central Retinal Vein Occlusion Man-Seong Seo,* Jae-Moon Woo* and Jeong-Jin Seo *Department of Ophthalmology, Chonnam

More information

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease)

CANCER. Inherited Cancer Syndromes. Affects 25% of US population. Kills 19% of US population (2nd largest killer after heart disease) CANCER Affects 25% of US population Kills 19% of US population (2nd largest killer after heart disease) NOT one disease but 200-300 different defects Etiologic Factors In Cancer: Relative contributions

More information

Problem Set 5 KEY

Problem Set 5 KEY 2006 7.012 Problem Set 5 KEY ** Due before 5 PM on THURSDAY, November 9, 2006. ** Turn answers in to the box outside of 68-120. PLEASE WRITE YOUR ANSWERS ON THIS PRINTOUT. 1. You are studying the development

More information

Von Hippel-Lindau disease (VHL) Information for patients

Von Hippel-Lindau disease (VHL) Information for patients Von Hippel-Lindau disease (VHL) Information for patients This booklet has been written to answer some of the questions people may have about von Hippel-Lindau (VHL) disease. VHL is a rare disorder caused

More information

Von Hippel-Lindau disease: a genetic study

Von Hippel-Lindau disease: a genetic study JMedGenet 1991; 28: 443-447 Original articles Von Hippel-Lindau disease: a genetic study E R Maher, L Iselius, J R W Yates, M Littler, M A Ferguson-Smith, N Morton Abstract Genetic aspects of von Hippel-Lindau

More information

Disclosures. Neurological Manifestations of Von Hippel Lindau Syndrome. Objectives. Overview. None No conflicts of interest

Disclosures. Neurological Manifestations of Von Hippel Lindau Syndrome. Objectives. Overview. None No conflicts of interest Neurological Manifestations of Von Hippel Lindau Syndrome ARNOLD B. ETAME MD, PhD NEURO-ONCOLOGY/NEUROSURGERY Moffitt Cancer Center Disclosures None No conflicts of interest VHL Alliance Annual Family

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#4:(October-0-4-2010) Cancer and Signals 1 2 1 2 Evidence in Favor Somatic mutations, Aneuploidy, Copy-number changes and LOH

More information

Von Hippel Lindau Disease, Involvement of Multiple Members of the Same Families

Von Hippel Lindau Disease, Involvement of Multiple Members of the Same Families ORIGINAL ARTICLE Von Hippel Lindau Disease, Involvement of Multiple Members of the Same Families AMIR AZIZ, YASER-UD-DIN HOTI, KHURRAM ISHAQ Tariq Salah-ud-Din Department of Neurosurgery Unit II, Lahore

More information

KEY WORDS hemangioblastoma von Hippel Lindau disease gene mutation comparative genomic hybridization. J. Neurosurg. / Volume 97 / October, 2002

KEY WORDS hemangioblastoma von Hippel Lindau disease gene mutation comparative genomic hybridization. J. Neurosurg. / Volume 97 / October, 2002 J Neurosurg 97:977 982, 2002 Analysis of von Hippel Lindau mutations with comparative genomic hybridization in sporadic and hereditary hemangioblastomas: possible genetic heterogeneity JOHANNA M. M. GIJTENBEEK,

More information

MOLECULAR BASIS OF THE VHL HEREDITARY CANCER SYNDROME

MOLECULAR BASIS OF THE VHL HEREDITARY CANCER SYNDROME MOLECULAR BASIS OF THE VHL HEREDITARY CANCER SYNDROME William G. Kaelin, Jr The von Hippel Lindau hereditary cancer syndrome was first described about 100 years ago. The unusual clinical features of this

More information

Molecular basis of von Hippel-Lindau syndrome in Chinese patients

Molecular basis of von Hippel-Lindau syndrome in Chinese patients Chinese Medical Journal 2011;124(2):237-241 237 Original article Molecular basis of von Hippel-Lindau syndrome in Chinese patients SIU Wai-kwan, MA Ronald Ching-wan, LAM Ching-wan, MAK Chloe Miu, YUEN

More information

optic disc neovascularisation

optic disc neovascularisation British Journal of Ophthalmology, 1979, 63, 412-417 A comparative study of argon laser and krypton laser in the treatment of diabetic optic disc neovascularisation W. E. SCHULENBURG, A. M. HAMILTON, AND

More information

MRC-Holland MLPA. Description version 06; 23 December 2016

MRC-Holland MLPA. Description version 06; 23 December 2016 SALSA MLPA probemix P417-B2 BAP1 Lot B2-1216. As compared to version B1 (lot B1-0215), two reference probes have been added and two target probes have a minor change in length. The BAP1 (BRCA1 associated

More information

Tuberous sclerosis presenting as atypical aggressive retinal astrocytoma with proliferative retinopathy and vitreous haemorrhage

Tuberous sclerosis presenting as atypical aggressive retinal astrocytoma with proliferative retinopathy and vitreous haemorrhage Case Report Brunei Int Med J. 2015; 11 (1): 49-53 Tuberous sclerosis presenting as atypical aggressive retinal astrocytoma with proliferative retinopathy and vitreous haemorrhage Pui Ling TANG and Mae-Lynn

More information

Clinically Significant Macular Edema (CSME)

Clinically Significant Macular Edema (CSME) Clinically Significant Macular Edema (CSME) 1 Clinically Significant Macular Edema (CSME) Sadrina T. Shaw OMT I Student July 26, 2014 Advisor: Dr. Uwaydat Clinically Significant Macular Edema (CSME) 2

More information

Studying The Role Of DNA Mismatch Repair In Brain Cancer Malignancy

Studying The Role Of DNA Mismatch Repair In Brain Cancer Malignancy Kavya Puchhalapalli CALS Honors Project Report Spring 2017 Studying The Role Of DNA Mismatch Repair In Brain Cancer Malignancy Abstract Malignant brain tumors including medulloblastomas and primitive neuroectodermal

More information

Renal Cell Carcinoma: Genetics & Imaging Srinivasa R Prasad University of Texas San Antonio

Renal Cell Carcinoma: Genetics & Imaging Srinivasa R Prasad University of Texas San Antonio Renal Cell Carcinoma: Genetics & Imaging Srinivasa R Prasad University of Texas HSC @ San Antonio No financial disclosures Acknowledgements Dr. Peter Choyke, NIH My Gurus @ MIR, MGH 2004 WHO Taxonomy of

More information

Célia DeLozier-Blanchet

Célia DeLozier-Blanchet The Genetics Consultation in OB-GYN : Hereditary cancers Célia DeLozier-Blanchet Division of Medical Genetics, Geneva University Hospital It is probable that all cancers are genetic! genetic vs. hereditary

More information

IVF Michigan, Rochester Hills, Michigan, and Reproductive Genetics Institute, Chicago, Illinois

IVF Michigan, Rochester Hills, Michigan, and Reproductive Genetics Institute, Chicago, Illinois FERTILITY AND STERILITY VOL. 80, NO. 4, OCTOBER 2003 Copyright 2003 American Society for Reproductive Medicine Published by Elsevier Inc. Printed on acid-free paper in U.S.A. CASE REPORTS Preimplantation

More information

Multiple Fibroadenomas Harboring Carcinoma in Situ in a Woman with a Familty History of Breast/ Ovarian Cancer

Multiple Fibroadenomas Harboring Carcinoma in Situ in a Woman with a Familty History of Breast/ Ovarian Cancer Multiple Fibroadenomas Harboring Carcinoma in Situ in a Woman with a Familty History of Breast/ Ovarian Cancer A Kuijper SS Preisler-Adams FD Rahusen JJP Gille E van der Wall PJ van Diest J Clin Pathol

More information

MRC-Holland MLPA. Description version 29;

MRC-Holland MLPA. Description version 29; SALSA MLPA KIT P003-B1 MLH1/MSH2 Lot 1209, 0109. As compared to the previous lots 0307 and 1006, one MLH1 probe (exon 19) and four MSH2 probes have been replaced. In addition, one extra MSH2 exon 1 probe,

More information

Table S1. Primers and PCR protocols for mutation screening of MN1, NF2, KREMEN1 and ZNRF3.

Table S1. Primers and PCR protocols for mutation screening of MN1, NF2, KREMEN1 and ZNRF3. Table S1. Primers and PCR protocols for mutation screening of MN1, NF2, KREMEN1 and ZNRF3. MN1 (Accession No. NM_002430) MN1-1514F 5 -GGCTGTCATGCCCTATTGAT Exon 1 MN1-1882R 5 -CTGGTGGGGATGATGACTTC Exon

More information

CANCER GENETICS PROVIDER SURVEY

CANCER GENETICS PROVIDER SURVEY Dear Participant, Previously you agreed to participate in an evaluation of an education program we developed for primary care providers on the topic of cancer genetics. This is an IRB-approved, CDCfunded

More information

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier

Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Proposal form for the evaluation of a genetic test for NHS Service Gene Dossier Test Disease Population Triad Disease name OMIM number for disease 231300 Disease alternative names Please provide any alternative

More information

Title. Author(s)Saito, Wataru; Kase, Satoru; Ohgami, Kazuhiro; Mori, CitationActa Ophthalmologica, 88(3): Issue Date Doc URL.

Title. Author(s)Saito, Wataru; Kase, Satoru; Ohgami, Kazuhiro; Mori, CitationActa Ophthalmologica, 88(3): Issue Date Doc URL. Title Intravitreal anti-vascular endothelial growth factor oedema Author(s)Saito, Wataru; Kase, Satoru; Ohgami, Kazuhiro; Mori, CitationActa Ophthalmologica, 88(3): 377-380 Issue Date 2010-05 Doc URL http://hdl.handle.net/2115/45372

More information

Comparison of prognosis between patients with renal cell carcinoma on hemodialysis and those with renal cell carcinoma in the general population

Comparison of prognosis between patients with renal cell carcinoma on hemodialysis and those with renal cell carcinoma in the general population DOI 10.1007/s10147-015-0812-9 ORIGINAL ARTICLE Comparison of prognosis between patients with renal cell carcinoma on hemodialysis and those with renal cell carcinoma in the general population Yasunobu

More information

Optical coherence tomography findings in a child with posterior scleritis

Optical coherence tomography findings in a child with posterior scleritis European Journal of Ophthalmology / Vol. 18 no. 6, 2008 / pp. 1007-1010 SHORT OMMUNITIONS & SE REPORTS Optical coherence tomography findings in a child with posterior scleritis H. ERDÖL, M. KOL,. TÜRK

More information

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions

Single Gene (Monogenic) Disorders. Mendelian Inheritance: Definitions. Mendelian Inheritance: Definitions Single Gene (Monogenic) Disorders Mendelian Inheritance: Definitions A genetic locus is a specific position or location on a chromosome. Frequently, locus is used to refer to a specific gene. Alleles are

More information

Diabesity A Public Health Crisis: AOA Evidence Based Translation to Care Series

Diabesity A Public Health Crisis: AOA Evidence Based Translation to Care Series Diabesity A Public Health Crisis: AOA Evidence Based Translation to Care Series Joseph J. Pizzimenti, OD, FAAO Associate Professor Nova Southeastern University The Eye Care Institute pizzimen@nova.edu

More information

Cancer Prone Disease Section Review

Cancer Prone Disease Section Review Atlas of Genetics and Cytogenetics in Oncology and Haematology OPEN ACCESS JOURNAL AT INIST-CNRS Cancer Prone Disease Section Review Von Hippel-Lindau Stéphane Richard Génétique Oncologique EPHE, Faculté

More information

Introduction to Genetics

Introduction to Genetics Introduction to Genetics Table of contents Chromosome DNA Protein synthesis Mutation Genetic disorder Relationship between genes and cancer Genetic testing Technical concern 2 All living organisms consist

More information

Pancreatic Involvement in Von Hippel-Lindau Disease: The Role of Integrated Imaging

Pancreatic Involvement in Von Hippel-Lindau Disease: The Role of Integrated Imaging MULTIMEDIA ARTICLE - Clinical Imaging Pancreatic Involvement in Von Hippel-Lindau Disease: The Role of Integrated Imaging Lucia Calculli 1, Marta Fiscaletti 1, Riccardo Casadei 2, Raffaele Pezzilli 3,

More information

DIABETIC RETINOPATHY

DIABETIC RETINOPATHY THE UK GUIDE DIABETIC RETINOPATHY Everything you need to know about diabetic retinopathy Jaheed Khan BSc (Hons) MBBS MD FRCOphth Fellow of the Royal College of Ophthalmologists Association for Research

More information

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 4/ Issue 55/ July 09, 2015 Page 9665

J of Evolution of Med and Dent Sci/ eissn , pissn / Vol. 4/ Issue 55/ July 09, 2015 Page 9665 RARE PRESENTATION OF BILATERAL CHOROIDAL METASTASIS FROM PRIMARY MUCO-EPIDERMOID CARCINOMA OF THE PAROTID GLAND: A G. Premalatha 1, Ramya Seetamraju 2 HOW TO CITE THIS ARTICLE: G. Premalatha, Ramya Seetamraju.

More information

RPE65-associated Leber Congenital Amaurosis

RPE65-associated Leber Congenital Amaurosis RPE65-associated Leber Congenital Amaurosis Brian Privett, MD, Edwin M. Stone, MD, PhD February 16, 2010 Chief Complaint: Poor fixation at 4 months of age History of Present Illness: This 7 year old female

More information

Acute Retinal Necrosis Secondary to Varicella Zoster Virus in an Immunosuppressed Post-Kidney Transplant Patient

Acute Retinal Necrosis Secondary to Varicella Zoster Virus in an Immunosuppressed Post-Kidney Transplant Patient CM&R Rapid Release. Published online ahead of print September 20, 2012 as Aperture Acute Retinal Necrosis Secondary to Varicella Zoster Virus in an Immunosuppressed Post-Kidney Transplant Patient Elizabeth

More information

SALSA MLPA KIT P060-B2 SMA

SALSA MLPA KIT P060-B2 SMA SALSA MLPA KIT P6-B2 SMA Lot 111, 511: As compared to the previous version B1 (lot 11), the 88 and 96 nt DNA Denaturation control fragments have been replaced (QDX2). Please note that, in contrast to the

More information

Mutational analysis of p53 gene in sporadic breast carcinoma

Mutational analysis of p53 gene in sporadic breast carcinoma Pak. J. Biochem. Mol. Biol. 2015; 48(3): 79-83 Mutational analysis of p53 gene in sporadic breast carcinoma Irsa Mateen and Saba Irshad* Institute of Biochemistry and Biotechnology, University of the Punjab,

More information

Superior mediastinal paraganglioma associated with von Hippel-Lindau syndrome: report of a case

Superior mediastinal paraganglioma associated with von Hippel-Lindau syndrome: report of a case Takahashi et al. World Journal of Surgical Oncology 2014, 12:74 WORLD JOURNAL OF SURGICAL ONCOLOGY CASE REPORT Open Access Superior mediastinal paraganglioma associated with von Hippel-Lindau syndrome:

More information

Renal tumors of adults

Renal tumors of adults Renal tumors of adults Urinary Tract Tumors 2%-3% of all cancers in adults. The most common malignant tumor of the kidney is renal cell carcinoma. Tumors of the lower urinary tract are twice as common

More information

Germline mutation analysis in the CYLD gene in Chinese patients with multiple trichoepitheliomas

Germline mutation analysis in the CYLD gene in Chinese patients with multiple trichoepitheliomas Germline mutation analysis in the CYLD gene in Chinese patients with multiple trichoepitheliomas Z.L. Li 1,2, H.H. Guan 3, X.M. Xiao 1,2, Y. Hui 3, W.X. Jia 1,2, R.X. Yu 1,2, H. Chen 1,2 and C.R. Li 1,2

More information

oncogenes-and- tumour-suppressor-genes)

oncogenes-and- tumour-suppressor-genes) Special topics in tumor biochemistry oncogenes-and- tumour-suppressor-genes) Speaker: Prof. Jiunn-Jye Chuu E-Mail: jjchuu@mail.stust.edu.tw Genetic Basis of Cancer Cancer-causing mutations Disease of aging

More information

SALSA MLPA probemix P315-B1 EGFR

SALSA MLPA probemix P315-B1 EGFR SALSA MLPA probemix P315-B1 EGFR Lot B1-0215 and B1-0112. As compared to the previous A1 version (lot 0208), two mutation-specific probes for the EGFR mutations L858R and T709M as well as one additional

More information

Information for You and Your Family

Information for You and Your Family Information for You and Your Family What is Prevention? Cancer prevention is action taken to lower the chance of getting cancer. In 2017, more than 1.6 million people will be diagnosed with cancer in the

More information

Kamron N Khan PhD, FRCOphth [1-3], Keren Carss [5], F. Lucy Raymond [5], Farrah Islam

Kamron N Khan PhD, FRCOphth [1-3], Keren Carss [5], F. Lucy Raymond [5], Farrah Islam Title: Vitamin A deficiency - there's more to it than meets the eye. Kamron N Khan PhD, FRCOphth [1-3], Keren Carss [5], F. Lucy Raymond [5], Farrah Islam FCPS, FRCS [2], Anthony T Moore FRCS, FRCOphth

More information

Long-Term Visual Outcome in Proliferative Diabetic Retinopathy Patients After Panretinal Photocoagulation

Long-Term Visual Outcome in Proliferative Diabetic Retinopathy Patients After Panretinal Photocoagulation Long-Term Visual Outcome in Proliferative Diabetic Retinopathy Patients After Panretinal Photocoagulation Murat Dogru, Makoto Nakamura, Masanori Inoue and Misao Yamamoto Department of Ophthalmology, Kobe

More information

Purtscher s retinopathy: A case of severe bilateral visual loss due to chest compression

Purtscher s retinopathy: A case of severe bilateral visual loss due to chest compression O P E N A C C E S S Case study Purtscher s retinopathy: A case of severe bilateral visual loss due to chest compression Shakeel P Hashim, Maha M El Shafei, Zakia M Al Ansari Hamad Medical Corporation,

More information

Supplemental Data: Detailed Characteristics of Patients with MKRN3. Patient 1 was born after an uneventful pregnancy. She presented in our

Supplemental Data: Detailed Characteristics of Patients with MKRN3. Patient 1 was born after an uneventful pregnancy. She presented in our 1 2 Supplemental Data: Detailed Characteristics of Patients with MKRN3 Mutations 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Patient 1 was born after an uneventful pregnancy. She presented

More information

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber

Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber Oncogenes and Tumor Suppressors MCB 5068 November 12, 2013 Jason Weber jweber@dom.wustl.edu Oncogenes & Cancer DNA Tumor Viruses Simian Virus 40 p300 prb p53 Large T Antigen Human Adenovirus p300 E1A

More information