Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections

Size: px
Start display at page:

Download "Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections"

Transcription

1 Desorption Electrospray Ionization Coupled with Ultraviolet Photodissociation for Characterization of Phospholipid Isomers in Tissue Sections Dustin R. Klein, Clara L. Feider, Kyana Y. Garza, John Q. Lin, Livia S. Eberlin, and Jennifer S. Brodbelt Department of Chemistry, The University of Texas at Austin, Austin, TX Supporting Information Table of Contents Content Page no. 1. Experimental Methods S2-S3 2. Image of experimental setup and representative MS1 spectrum S4 3. HCD spectra, UVPD spectra and fragment ion maps for of m/z 760, m/z 782 and m/z HCD profiling spectra, UVPD profiling spectra and fragment ion maps for m/z HCD spectra, UVPD spectra and fragment ion maps for m/z 820 S9 6. Representative MS1 spectra from DESI profiling of human tissue S10 7. Representative HCD spectra from DESI profiling of human tissue S11 8. Representative UVPD spectra from DESI profiling of human tissue S12 9. HCD spectra, UVPD spectra and fragment ion maps for PC 18:1(6Z)/PC 18:1(6Z) and PC 18:1(9Z)/PC 18:1(9Z) 10. Representative expanded regions of UVPD mass spectra of varying concentration ratios of isomeric phospholipid standards S5-S7 11. DESI-UVPD ion imaging of a mouse brain tissue section S15-S DESI-UVPD ion imaging of a human brain tissue section S DESI-UVPD ion imaging of a lymph node tissue section with thyroid cancer metastasis 14. HCD and UVPD profiling spectra of regions cancerous and normal tissue from the lymph node tissue section with thyroid cancer metastasis 15. References S22 S8 S13 S14 S19 S20-S21 S1

2 Experiment Methods Materials Acetonitrile was purchased from EMD Millipore (Billerica, MA, USA). PC 18:1(9Z)/18:1(9Z) and PC 18:1(6Z)/18:1(6Z) standards were purchased from Avanti Polar Lipids (Alabaster, AB, USA). Hematoxylin stain was purchased from Ricca Chemical (Arlington, TX, USA) and eosin stain was purchased from Fisher Scientific (Waltham, MA, USA). Glass microscope slides and multi-spot glass microscope slides were purchased from Fisher Scientific (Waltham, MA, USA). Tissue Samples Mouse brain and kidney tissue samples were purchased from BioIVT (Hicksville, NY, USA). Pancreas, kidney, lung, fallopian and human tissues were acquired from Cooperative Human Tissue Network (CHTN). Ovarian tissue was acquired from MD Anderson Cancer Center Tissue Bank (Houston, TX, USA). Endometrial tissue was provided by Seton Medical Center (Austin, TX, USA). All tissues were analyzed in accordance with IRB and IBC protocols. Tissues were sectioned on a Cryostar NX50 cryostat (Thermo Scientific, San Jose, CA, USA) at 16 µm each and stored at -80 C prior to analysis. DESI-MS and DESI-UVPD Profiling and Imaging All experiments were performed in positive ion mode on an Thermo Scientific Orbitrap Fusion Lumos mass spectrometer (San Jose, CA, USA) modified with a 193 nm Coherent Excistar excimer laser (Santa Clara, CA, USA) to perform UVPD as previously described. 1 All spectra were collected with the instrument operating in full profile mode. DESI was performed using a 2D Omnispray DESI stage and ion source adapter (Prosolia, Inc., Indianapolis, IN, USA) with a custom manufactured ion transfer tube for coupling to the Fusion Lumos interface. Acetonitrile was sprayed at rate of 5-8 µl/min through a lab built sprayer using a nitrogen pressure of 180 psi and a spray voltage of 5kV. HCD spectra were collected at a normalized collision energy (NCE) of 30 and UVPD spectra were collected at 20 pulses with 6 mj per pulse. UVPD was performed in the high pressure trap of the dual linear ion trap with the q-value set to 0.1. For DESI profiling experiments, MS1, HCD and UVPD spectra were collected with a maximum ion injection time of ms and an AGC target of 1E5-1E6. MS1 profiling spectra were collected with a mass range of m/z and are presented with a mass range of m/z HCD and UVPD profiling spectra were collected with a mass range of m/z All representative profiling spectra are a composite of 15 consecutive averaged spectra and all representative spectra from S2

3 imaging data are a composite of 3 consecutive averaged spectra. DESI-MS images were collected at an instrument resolving power of 240,000 with the maximum ion injection time set to 50 ms and an ACG target of 1E6-2E6 to ensure consistent instrument scan times. DESI-UVPD images were collected by continuously activating the isolated m/z value of interest with the instrument operating at a resolving power of 120,000, the maximum ion injection time set to 1400 ms, the ACG target set to 1E6-2E6 and a mass range of m/z Mouse brain tissue section and human lymph node were imaged at a pixel size of 250 µm and human brain was imaged at a pixel size of 175 µm, respectively. 2D Imaging Data Analysis Thermo RAW files were converted to mzml files using msconvert (ProteoWizard). 2 Mzml files were subsequently imported into R using the mzr package from the Bioconductor repository. The peak intensity of an ion within a m/z window of.04 to.12 was taken. Ion intensities or ion ratio values were plotted as a heat map in R. Lipid Notation Lipid shorthand notation used is consistent with the notation previously described by Liebisch et al. 3 In brief, a / is used between acyl chains of known orientation with sn-1 followed by sn-2, and _ is used between acyl chains of unknown orientation. Double bond positions are indicated in parenthesis after the acyl chain composition as carbon number counted down the acyl chain starting at the carbonyl carbon followed by Z, E or Δ to indicate cis, trans or unknown double bond stereochemistry. S3

4 Figure S1. Picture of DESI stage set-up on an Orbitrap Fusion Lumos mass spectrometer and DESI-MS profiling mass spectrum of a mouse brain tissue section. The obvs The lipid profile observed in the positive ion mode MS1 spectra of a mouse brain tissue section was consistent with previous reports. 4 S4

5 Figure S2. HCD (NCE 30) mass spectra of ions of a) m/z 760, b) m/z 782 and c) m/z 798 from DESI profiling corresponding to the molecular ion, sodium-adducted ion, and potassium-adducted ion for PC 16:0_18:1, respectively. Fragment ion maps are shown in Supporting Information Figure S4. S5

6 Figure S3. UVPD (20 pulses, 6 mj) mass spectra of ions of a) m/z 760, b) m/z 782 and c) m/z 798 from DESI profiling corresponding to the molecular ion, sodium-adducted ion, and potassiumadducted ion or PC 16:0_18:1, respectively. Fragment ion maps are shown in Supporting Information Figure S4. S6

7 Figure S4. Fragment ion map for mass spectra in Supporting Information Figure 2 and Figure 3. Subscripts indicate the presence of a sodium (Na) or potassium (K) adduct. X represents either a proton, sodium cation or potassium cation. S7

8 Figure S5. a) HCD (NCE 30) and b) UVPD (20 pulses, 6 mj) mass spectra of the ion of m/z 826 obtained from DESI profiling of a mouse brain tissue section with corresponding fragment ion maps for detected isomers [PC 18:0_18:1(9 ), PC 18:0_18:1(11 )]. Subscripts indicate the presence of a potassium (K) adduct. S8

9 Figure S6. a) HCD (NCE 30) and b) UVPD (20 pulses, 6 mj) mass spectra of the ion of m/z 820 obtained from DESI profiling of a mouse brain tissue section with corresponding fragment ion map. Subscripts indicate the presence of a potassium (K) adduct. S9

10 Figure S7. MS1 spectra from DESI profiling of a) endometrial tissue, b) kidney tissue, c) lymph node tissue, d) ovarian tissue, e) pancreas tissue, and f) brain tissue. All tissues were human. S10

11 Figure S8. HCD (NCE 30) mass spectra from DESI profiling of a) endometrial tissue (m/z 782), b) kidney tissue (m/z 782), c) lymph node tissue (m/z 782), d) ovarian tissue (m/z 782), e) pancreas tissue (m/z 798), and f) brain tissue. All tissues were human. S11

12 Figure S9. UVPD (20 pulses, 6 mj) mass spectra from DESI profiling of a) endometrial tissue (m/z 782), b) kidney tissue (m/z 782), c) lymph node tissue (m/z 782), d) ovarian tissue (m/z 782), e) pancreas tissue (m/z 798), and f) brain tissue (m/z 798). All tissues were human. S12

13 Figure S10. a) HCD (NCE 30) and b) UVPD (20 pulses, 6 mj) mass spectra from DESI profiling of PC 18:1(6Z)/18:1(6Z). c) HCD (NCE 30) and d) UVPD (20 pulses, 6 mj) mass spectra from DESI profiling of PC 18:1(9Z)/18:1(9Z). Subscripts indicate the presence of a sodium (Na) adduct. S13

14 Figure S11. Representative expanded regions of UVPD (20 pulses, 6 mj) mass spectra of isomeric phospholipid standards, PC 18:1(6Z)/18:1(6Z) and PC 18:1(9Z)/18:1(9Z), in varying concentration ratios from DESI-UVPD ion imaging experiments. Mass spectra correspond to the following ratios of PC 18:1(6Z)/18:1(6Z) to PC 18:1(9Z)/18:1(9Z): a) 1:19, b) 1:9, c) 1:4, d) 1:1, e) 4:1, f) 9:1 and g) 19:1. S14

15 Figure S12. DESI-UVPD ion imaging of a mouse brain tissue section (replicate 1). a) Optical image of the H&E stained mouse brain tissue section, b) DESI-MS ion image of m/z 798, c) DESI- UVPD ion image of m/z 660, d) DESI-UVPD ion image of m/z 684, e) DESI-UVPD ion image of m/z 688, f) DESI-UVPD ion image of m/z 712, g) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ), h) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ) and i) DESI ratio image of the ratio of the summed intensities of the UVPD double bond diagnostic ions (I m/z )/(I m/z ). S15

16 Figure S13. DESI-UVPD ion imaging of a mouse brain tissue section (replicate 2). a) Optical image of the H&E stained mouse brain tissue section, b) DESI-MS ion image of m/z 798, c) DESI- UVPD ion image of m/z 660, d) DESI-UVPD ion image of m/z 684, e) DESI-UVPD ion image of m/z 688, f) DESI-UVPD ion image of m/z 712, g) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ), h) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ) and i) DESI ratio image of the ratio of the summed intensities of the UVPD double bond diagnostic ions (I m/z )/(I m/z ). S16

17 Figure S14. DESI-UVPD ion imaging of a mouse brain tissue section (replicate 3). a) Optical image of the H&E stained mouse brain tissue section, b) DESI-MS ion image of m/z 798, c) DESI- UVPD ion image of m/z 660, d) DESI-UVPD ion image of m/z 684, e) DESI-UVPD ion image of m/z 688, f) DESI-UVPD ion image of m/z 712, g) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ), h) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ) and i) DESI ratio image of the ratio of the summed intensities of the UVPD double bond diagnostic ions (I m/z )/(I m/z ). Images from this replicate are the ones used in the main text. S17

18 Figure S15. DESI-UVPD ion imaging of a human brain tissue section. a) Optical image of the H&E stained human brain tissue section, b) DESI-MS ion image of m/z 798, c) DESI-UVPD ion image of m/z 660, d) DESI-UVPD ion image of m/z 684, e) DESI-UVPD ion image of m/z 688, f) DESI-UVPD ion image of m/z 712, g) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ), h) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ) and i) DESI ratio image of the ratio of the summed intensities of the UVPD double bond diagnostic ions (I m/z )/(I m/z ). S18

19 Figure S16. DESI-UVPD ion imaging of a lymph node tissue section with thyroid cancer metastasis. a) Optical image of the H&E stained lymph node tissue section with thyroid cancer metastasis, b) DESI-MS ion image of m/z 798, c) DESI-UVPD ion image of m/z 660, d) DESI- UVPD ion image of m/z 684, e) DESI-UVPD ion image of m/z 688, f) DESI-UVPD ion image of m/z 712, g) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ), h) DESI-UVPD ion image of the summed intensity of m/z 660 and m/z 684 (I m/z ) and i) DESI ratio image of the ratio of the summed intensities of the UVPD double bond diagnostic ions (I m/z )/(I m/z ), j) DESI ratio image of m/z 684 to m/z 712. S19

20 Figure S17. HCD profiling spectra of regions of a) cancerous and b) normal tissue from the lymph node tissue section with thyroid cancer metastasis. S20

21 Figure S18. UVPD profiling spectra from regions of a) cancerous and b) normal tissue from the lymph node tissue section with thyroid cancer metastasis. Expanded UVPD spectra from regions of c) cancerous and d) normal tissue from the lymph node tissue section with thyroid cancer metastasis with further expanded insets. The DESI difference image for the lymph node tissue section with thyroid cancer metastasis was made from division of just m/z and m/z for avoid contributing signal form m/z S21

22 References (1) Klein, D. R.; Holden, D. D.; Brodbelt, J. S. Shotgun Analysis of Rough-Type Lipopolysaccharides Using Ultraviolet Photodissociation Mass Spectrometry. Anal. Chem. 2016, 88, (2) Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open Source Software for Rapid Proteomics Tools Development. Bioinformatics 2008, 24, (3) Liebisch, G.; Vizcaíno, J. A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W. J.; Schmitz, G.; Spener, F.; Wakelam, M. J. O. Shorthand Notation for Lipid Structures Derived from Mass Spectrometry. J. Lipid Res. 2013, 54, (4) Škrášková, K.; Claude, E.; Jones, E. A.; Towers, M.; Ellis, S. R.; Heeren, R. M. A. Enhanced Capabilities for Imaging Gangliosides in Murine Brain with Matrix-Assisted Laser Desorption/Ionization and Desorption Electrospray Ionization Mass Spectrometry Coupled to Ion Mobility Separation. Methods 2016, 104, S22

Supporting Information

Supporting Information Supporting Information Wiley-VCH 2006 69451 Weinheim, Germany Tissue Imaging at Atmospheric Pressure using Desorption Electrospray Ionization (DESI) Mass Spectrometry Justin M. Wiseman, Demian R. Ifa,

More information

Figure S6. A-J) Annotated UVPD mass spectra for top ten peptides found among the peptides identified by Byonic but not SEQUEST + Percolator.

Figure S6. A-J) Annotated UVPD mass spectra for top ten peptides found among the peptides identified by Byonic but not SEQUEST + Percolator. Extending Proteome Coverage by Combining MS/MS Methods and a Modified Bioinformatics Platform adapted for Database Searching of Positive and Negative Polarity 193 nm Ultraviolet Photodissociation Mass

More information

Supporting information

Supporting information Supporting information A novel lipidomics workflow for improved human plasma identification and quantification using RPLC-MSn methods and isotope dilution strategies Evelyn Rampler 1,2,3, Angela Criscuolo

More information

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information

Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry. Supporting Information Characterization of Disulfide Linkages in Proteins by 193 nm Ultraviolet Photodissociation (UVPD) Mass Spectrometry M. Montana Quick, Christopher M. Crittenden, Jake A. Rosenberg, and Jennifer S. Brodbelt

More information

SUPPORTING INFORMATION. High Throughput Reaction Screening using Desorption Electrospray Ionization Mass Spectrometry

SUPPORTING INFORMATION. High Throughput Reaction Screening using Desorption Electrospray Ionization Mass Spectrometry Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2018 SUPPORTING INFORMATION High Throughput Reaction Screening using Desorption Electrospray

More information

Ozonolysis of phospholipid double bonds during electrospray. ionization: a new tool for structure determination

Ozonolysis of phospholipid double bonds during electrospray. ionization: a new tool for structure determination Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination Michael C. Thomas, Todd W. Mitchell, Stephen J. Blanksby Departments of Chemistry and Biomedical

More information

Selective phosphatidylcholine double bond. fragmentation and localization using. Paternó-Büchi reactions and ultraviolet.

Selective phosphatidylcholine double bond. fragmentation and localization using. Paternó-Büchi reactions and ultraviolet. Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2017 Selective phosphatidylcholine double bond fragmentation and localization using Paternó-Büchi reactions

More information

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan

Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan PREMIER Biosoft Automating Mass Spectrometry-Based Quantitative Glycomics using Tandem Mass Tag (TMT) Reagents with SimGlycan Ne uaca2-3galb1-4glc NAcb1 6 Gal NAca -Thr 3 Ne uaca2-3galb1 Ningombam Sanjib

More information

Utility of neurological smears for intrasurgical brain cancer diagnostics and tumour cell percentage by DESI-MS

Utility of neurological smears for intrasurgical brain cancer diagnostics and tumour cell percentage by DESI-MS Electronic Supplementary Material (ESI) for Analyst. This journal is The Royal Society of Chemistry 2017 Utility of neurological smears for intrasurgical brain cancer diagnostics and tumour cell percentage

More information

Essential Lipidomics Experiments using the LTQ Orbitrap Hybrid Mass Spectrometer

Essential Lipidomics Experiments using the LTQ Orbitrap Hybrid Mass Spectrometer Application Note: 367 Essential Lipidomics Experiments using the LTQ rbitrap Hybrid Mass Spectrometer Thomas Moehring 1, Michaela Scigelova 2, Christer S. Ejsing 3, Dominik Schwudke 3, Andrej Shevchenko

More information

Increased Identification Coverage and Throughput for Complex Lipidomes

Increased Identification Coverage and Throughput for Complex Lipidomes Increased Identification Coverage and Throughput for Complex Lipidomes Reiko Kiyonami, David Peake, Yingying Huang, Thermo Fisher Scientific, San Jose, CA USA Application Note 607 Key Words Q Exactive

More information

Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section

Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section Data Independent MALDI Imaging HDMS E for Visualization and Identification of Lipids Directly from a Single Tissue Section Emmanuelle Claude, Mark Towers, and Kieran Neeson Waters Corporation, Manchester,

More information

Supporting information for

Supporting information for Supporting information for Nitrogen and Sulfur Co-doped Carbon Dots-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry Imaging for Profiling Bisphenol S Distribution in Mouse Tissues

More information

Supplementary Information

Supplementary Information Supplementary Information Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry Annabelle Fülöp 1,2, Denis A. Sammour 1,2, Katrin Erich 1,2, Johanna von Gerichten 4,

More information

LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES. Gilles Frache Materials Characterization Day October 14 th 2016

LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES. Gilles Frache Materials Characterization Day October 14 th 2016 LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES Gilles Frache Materials Characterization Day October 14 th 2016 1 MOLECULAR ANALYSES Which focus? LOCALIZATION of molecules by Mass Spectrometry

More information

MALDI Imaging Drug Imaging Detlev Suckau Head of R&D MALDI Bruker Daltonik GmbH. December 19,

MALDI Imaging Drug Imaging Detlev Suckau Head of R&D MALDI Bruker Daltonik GmbH. December 19, MALDI Imaging Drug Imaging Detlev Suckau Head of R&D MALDI Bruker Daltonik GmbH December 19, 2014 1 The principle of MALDI imaging Spatially resolved mass spectra are recorded Each mass signal represents

More information

Supporting information

Supporting information Supporting information Figure legends Supplementary Table 1. Specific product ions obtained from fragmentation of lithium adducts in the positive ion mode comparing the different positional isomers of

More information

Reversible Formation of Ag 44 from Selenolates

Reversible Formation of Ag 44 from Selenolates Electronic Supplementary Material (ESI) for Nanoscale. This journal is The Royal Society of Chemistry 2014 Supporting information for the paper Reversible Formation of Ag 44 from Selenolates Indranath

More information

Supporting Information

Supporting Information Supporting Information Santagata et al. 10.1073/pnas.1404724111 Extended Description of Fig. 4A Intraoperative MS allows for significant advances in the frequency of intraoperative tissue sampling as well

More information

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine Application Note: 346 MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine Gargi Choudhary and Diane Cho, Thermo Fisher Scientific, San Jose, CA Wayne Skinner and

More information

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer Robert Plumb, Michael D. Jones, and Marian Twohig Waters Corporation, Milford, MA, USA INTRODUCTION The detection and characterization of impurities and degradation products of an active pharmaceutical

More information

SUPPLEMENTARY DATA. Materials and Methods

SUPPLEMENTARY DATA. Materials and Methods SUPPLEMENTARY DATA Materials and Methods HPLC-UV of phospholipid classes and HETE isomer determination. Fractionation of platelet lipid classes was undertaken on a Spherisorb S5W 150 x 4.6 mm column (Waters

More information

Ion Source. Mass Analyzer. Detector. intensity. mass/charge

Ion Source. Mass Analyzer. Detector. intensity. mass/charge Proteomics Informatics Overview of spectrometry (Week 2) Ion Source Analyzer Detector Peptide Fragmentation Ion Source Analyzer 1 Fragmentation Analyzer 2 Detector b y Liquid Chromatography (LC)-MS/MS

More information

Characterization of an Unknown Compound Using the LTQ Orbitrap

Characterization of an Unknown Compound Using the LTQ Orbitrap Characterization of an Unknown Compound Using the LTQ rbitrap Donald Daley, Russell Scammell, Argenta Discovery Limited, 8/9 Spire Green Centre, Flex Meadow, Harlow, Essex, CM19 5TR, UK bjectives unknown

More information

Mass Spectrometry. Actual Instrumentation

Mass Spectrometry. Actual Instrumentation Mass Spectrometry Actual Instrumentation August 2017 See also http://www.uni-bielefeld.de/chemie/analytik/ms f additional infmation 1. MALDI TOF MASS SPECTROMETRY ON THE ULTRAFLEX 2 2. ESI MASS SPECTROMETRY

More information

An optical dosimeter for the selective detection of gaseous phosgene with ultra-low detection limit

An optical dosimeter for the selective detection of gaseous phosgene with ultra-low detection limit Supporting information for An optical dosimeter for the selective detection of gaseous phosgene with ultra-low detection limit Alejandro P. Vargas, Francisco Gámez*, Javier Roales, Tània Lopes-Costa and

More information

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry Kai Scheffler, PhD BioPharma Support Expert,LSMS Europe The world

More information

Phospholipid characterization by a TQ-MS data based identification scheme

Phospholipid characterization by a TQ-MS data based identification scheme P-CN1716E Phospholipid characterization by a TQ-MS data based identification scheme ASMS 2017 MP-406 Tsuyoshi Nakanishi 1, Masaki Yamada 1, Ningombam Sanjib Meitei 2, 3 1 Shimadzu Corporation, Kyoto, Japan,

More information

Discrimination of Human Astrocytoma Subtypes by Lipid Analysis Using Desorption Electrospray Ionization Imaging Mass Spectrometry

Discrimination of Human Astrocytoma Subtypes by Lipid Analysis Using Desorption Electrospray Ionization Imaging Mass Spectrometry Discrimination of Human Astrocytoma Subtypes by Lipid Analysis Using Desorption Electrospray Ionization Imaging Mass Spectrometry L. S. Eberlin, A. L. Dill, A. J. Golby, K. L. Ligon, J. M. Wiseman, R.

More information

Impact of Chromatography on Lipid Profiling of Liver Tissue Extracts

Impact of Chromatography on Lipid Profiling of Liver Tissue Extracts Impact of Chromatography on Lipid Profiling of Liver Tissue Extracts Application Note Clinical Research Authors Mark Sartain and Theodore Sana Agilent Technologies, Inc. Santa Clara, California, USA Introduction

More information

New Instruments and Services

New Instruments and Services New Instruments and Services Liwen Zhang Mass Spectrometry and Proteomics Facility The Ohio State University Summer Workshop 2016 Thermo Orbitrap Fusion http://planetorbitrap.com/orbitrap fusion Thermo

More information

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS New Solvent Grade Targeted for Trace Analysis by UHPLC-MS Subhra Bhattacharya, Deva H. Puranam, and Stephen C. Roemer Thermo Fisher Scientific Fisher Chemical, One Reagent Lane, Fair Lawn, NJ Material

More information

Supporting Information

Supporting Information Supporting Information Development of a High Coverage Pseudotargeted Lipidomics Method Based on Ultra-High Performance Liquid Chromatography-Mass Spectrometry Qiuhui Xuan 1,2#, Chunxiu Hu 1#, Di Yu 1,2,

More information

Using Software Tools to Improve the Detection of Impurities by LC/MS. Application Note. Christine Miller Agilent Technologies.

Using Software Tools to Improve the Detection of Impurities by LC/MS. Application Note. Christine Miller Agilent Technologies. Using Software Tools to Improve the Detection of Impurities Application Note Christine Miller Introduction The analysis of raw materials and finished products for or impurities presents a challenge in

More information

Lipids Analysis. Lipids

Lipids Analysis. Lipids Lipids Analysis Stephen Barnes 3 5 15 Lipids Lipids are mostly very hydrophobic Most are conjugates of fatty acids of a variety of chain lengths, which have different degrees of unsaturation, cis trans

More information

Supporting Information. Evolution of atomically precise silver clusters to superlattices

Supporting Information. Evolution of atomically precise silver clusters to superlattices Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2012. Supporting Information for Part. Part. Sys. Charact., DOI: 10.1002/ppsc.((please add manuscript number)) Evolution of atomically

More information

MALDI-TOF analysis of whole blood: its usefulness and potential in the assessment of HbA1c levels

MALDI-TOF analysis of whole blood: its usefulness and potential in the assessment of HbA1c levels MALDI-TOF analysis of whole blood: its usefulness and potential in the assessment of HbA1c levels Jane Y. Yang, David A. Herold Department of Pathology, University of California San Diego, 9500 Gilman

More information

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection Application Note Cannabis Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection Authors Mike Adams, Annette Roth, Sue D

More information

Principles of Shotgun Lipidomics

Principles of Shotgun Lipidomics Principles of Shotgun Lipidomics Xianlin Han Diabetes and Obesity Research Center Sanford-Burnham Medical Research Institute Lake Nona Orlando, FL 32827 What is shotgun lipidomics? Original definition

More information

SimGlycan. A high-throughput glycan and glycopeptide data analysis tool for LC-, MALDI-, ESI- Mass Spectrometry workflows.

SimGlycan. A high-throughput glycan and glycopeptide data analysis tool for LC-, MALDI-, ESI- Mass Spectrometry workflows. PREMIER Biosoft SimGlycan A high-throughput glycan and glycopeptide data analysis tool for LC-, MALDI-, ESI- Mass Spectrometry workflows SimGlycan software processes and interprets the MS/MS and higher

More information

Mass spectrometry imaging. What does MS imaging offer?

Mass spectrometry imaging. What does MS imaging offer? BMG 744 Mass spectrometry imaging Stephen Barnes, PhD With sincere acknowledgments to David Stella, PhD and Kyle A. Floyd, MS, former students in the Barnes Laboratory (2005 2012) and Kevin Schey, PhD,

More information

The study of phospholipids in single cells using an integrated microfluidic device

The study of phospholipids in single cells using an integrated microfluidic device Supporting Information: The study of phospholipids in single cells using an integrated microfluidic device combined with matrix-assisted laser desorption/ionization mass spectrometry Weiyi Xie,, Dan Gao,

More information

Characterization of Noncovalent Complexes of Polyelectrolytes by Mass Spectrometry

Characterization of Noncovalent Complexes of Polyelectrolytes by Mass Spectrometry The University of Akron IdeaExchange@UAkron Honors Research Projects The Dr. Gary B. and Pamela S. Williams Honors College Spring 2015 Characterization of Noncovalent Complexes of Polyelectrolytes by Mass

More information

[application note] DIRECT TISSUE IMAGING AND CHARACTERIZATION OF PHOSPHOLIPIDS USING A MALDI SYNAPT HDMS SYSTEM

[application note] DIRECT TISSUE IMAGING AND CHARACTERIZATION OF PHOSPHOLIPIDS USING A MALDI SYNAPT HDMS SYSTEM DIRECT TISSUE IMAGING AND CHARACTERIZATION OF PHOSPHOLIPIDS USING A MALDI SYNAPT HDMS SYSTEM Emmanuelle Claude, Marten Snel, Thérèse McKenna, and James Langridge INTRODUCTION The last decade has seen a

More information

Mass Spectrometry based metabolomics

Mass Spectrometry based metabolomics Mass Spectrometry based metabolomics Metabolomics- A realm of small molecules (

More information

Chapter 12: Mass Spectrometry: molecular weight of the sample

Chapter 12: Mass Spectrometry: molecular weight of the sample Structure Determination: hapter 12: Mass Spectrometry- molecular weight of the sample; formula hapter 12: Infrared Spectroscopy- indicated which functional groups are present hapter 13: Nuclear Magnetic

More information

Application Note # FTMS-46 solarix XR: Analysis of Complex Mixtures

Application Note # FTMS-46 solarix XR: Analysis of Complex Mixtures Application Note # FTMS-46 solarix XR: Analysis of Complex Mixtures Introduction Natural organic matter (NOM) as well as crude oil and crude oil fractions are very complex mixtures of organic compounds

More information

Small Molecule Drug Imaging of Mouse Tissue by MALDI-TOF/TOF Mass Spectrometry and FTMS

Small Molecule Drug Imaging of Mouse Tissue by MALDI-TOF/TOF Mass Spectrometry and FTMS Bruker Daltonics Application Note # MT-93/FTMS-38 Small Molecule Drug Imaging of Mouse Tissue by MALDI-TOF/TOF Mass Spectrometry and FTMS Introduction Matrix Assisted Laser Desorption Ionization (MALDI)

More information

Mass spectrometry Technologies in Lipid chemistry

Mass spectrometry Technologies in Lipid chemistry Mass spectrometry Technologies in Lipid chemistry Rabah Soliymani University Of Helsinki Protein Chemistry Unit Biomedicum Helsinki Rabah.soliymani@helsinki.fi Complex_&_dynamic_mixtures (few copies to

More information

Mass-Spectrometric Analysis of Lipids (Lipidomics)

Mass-Spectrometric Analysis of Lipids (Lipidomics) Mass-Spectrometric Analysis of Lipids (Lipidomics) 1. Identification 2. Quantification 3. Metabolism Why to do lipidomics? Biology: Functions of different lipids? Medicine: Diagnostics and Therapy Industry:

More information

Annotation of potential isobaric and isomeric lipid species measured with the AbsoluteIDQ p180 Kit (and p150 Kit)

Annotation of potential isobaric and isomeric lipid species measured with the AbsoluteIDQ p180 Kit (and p150 Kit) We provide the Phenotype to the Genotype! DocNr. 35017 V 2 2017-02 Annotation of potential isobaric and isomeric lipid species measured with the (and p150 Kit) Introduction Lipidomics, a branch of metabolomics

More information

The use of mass spectrometry in lipidomics. Outlines

The use of mass spectrometry in lipidomics. Outlines The use of mass spectrometry in lipidomics Jeevan Prasain jprasain@uab.edu 6-2612 utlines Brief introduction to lipidomics Analytical methodology: MS/MS structure elucidation of phospholipids Phospholipid

More information

MALDI-IMS (MATRIX-ASSISTED LASER DESORPTION/IONIZATION

MALDI-IMS (MATRIX-ASSISTED LASER DESORPTION/IONIZATION MALDI-IMS (MATRIX-ASSISTED LASER DESORPTION/IONIZATION IMAGING MASS SPECTROMETER) IN TISSUE STUDY YANXIAN CHEN MARCH 8 TH, WEDNESDAY. SEMINAR FOCUSING ON What is MALDI imaging mass spectrometer? How does

More information

REDOX PROTEOMICS. Roman Zubarev.

REDOX PROTEOMICS. Roman Zubarev. REDOX PROTEOMICS Roman Zubarev Roman.Zubarev@ki.se Physiological Chemistry I, Department for Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm What is (RedOx) Proteomics? Proteomics -

More information

Unsupervised Identification of Isotope-Labeled Peptides

Unsupervised Identification of Isotope-Labeled Peptides Unsupervised Identification of Isotope-Labeled Peptides Joshua E Goldford 13 and Igor GL Libourel 124 1 Biotechnology institute, University of Minnesota, Saint Paul, MN 55108 2 Department of Plant Biology,

More information

Supporting Information

Supporting Information Supporting Information Mass Spectrometry Imaging Shows Cocaine and Methylphenidate have Opposite Effects on Major Lipids in Drosophila Brain Mai H. Philipsen *, Nhu T. N. Phan *, John S. Fletcher *, Per

More information

New Instruments and Services

New Instruments and Services New Instruments and Services http://planetorbitrap.com/orbitrap fusion Combining the best of quadrupole, Orbitrap, and ion trap mass analysis in a revolutionary Tribrid architecture, the Orbitrap Fusion

More information

A STABLE DICATIONIC SALT IN REACTIVE DESI-MS IMAGING IN POSITIVE ION MODE TO ANALYZE BIOLOGICAL SAMPLES DRAGOS LOSTUN

A STABLE DICATIONIC SALT IN REACTIVE DESI-MS IMAGING IN POSITIVE ION MODE TO ANALYZE BIOLOGICAL SAMPLES DRAGOS LOSTUN A STABLE DICATIONIC SALT IN REACTIVE DESI-MS IMAGING IN POSITIVE ION MODE TO ANALYZE BIOLOGICAL SAMPLES DRAGOS LOSTUN A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE

More information

Greazy: Open-Source Software for Automated Phospholipid MS/MS Identification. Michael Kochen

Greazy: Open-Source Software for Automated Phospholipid MS/MS Identification. Michael Kochen Greazy: Open-Source Software for Automated Phospholipid MS/MS Identification By Michael Kochen Thesis Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of

More information

Glycerolipid Analysis. LC/MS/MS Analytical Services

Glycerolipid Analysis. LC/MS/MS Analytical Services Glycerolipid Analysis LC/MS/MS Analytical Services Molecular Characterization and Quantitation of Glycerophospholipids in Commercial Lecithins by High Performance Liquid Chromatography with Mass Spectrometric

More information

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 9 Infinity II/63B LC/TOF system Application Brief Authors Mike Adams, Karen Kaikaris, and A. Roth CWC Labs Joan Stevens, Sue D

More information

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis Ying Qing Yu Waters Corporation, Milford, MA, USA APPLICATION BENEFITS

More information

Components of a Mass Spectrometer

Components of a Mass Spectrometer Components of a Mass Spectrometer Sample Introduction Inlet GC LC Direct Insertion (Syringe/Probe) Ionization Ion Separation Ion Detection Ion Source EI,CI,,, MALDI Mass Analyzer Under vacuum TOF, Quadrupole,

More information

More structural information with MS n

More structural information with MS n PRODUCT SPECIFICATIONS The LTQ XL linear ion trap mass spectrometer More structural information with MS n The LTQ XL linear ion trap mass spectrometer delivers more structural information faster and with

More information

Lecture 3. Tandem MS & Protein Sequencing

Lecture 3. Tandem MS & Protein Sequencing Lecture 3 Tandem MS & Protein Sequencing Nancy Allbritton, M.D., Ph.D. Department of Physiology & Biophysics 824-9137 (office) nlallbri@uci.edu Office- Rm D349 Medical Science D Bldg. Tandem MS Steps:

More information

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010 MASS SPECTROMETRY BASED METABOLOMICS Pavel Aronov ABRF2010 Metabolomics Research Group March 21, 2010 Types of Experiments in Metabolomics targeted non targeted Number of analyzed metabolites is limited

More information

MALDI Imaging Mass Spectrometry

MALDI Imaging Mass Spectrometry MALDI Imaging Mass Spectrometry Nan Kleinholz Mass Spectrometry and Proteomics Facility The Ohio State University Mass Spectrometry and Proteomics Workshop What is MALDI Imaging? MALDI: Matrix Assisted

More information

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS Jenny Chen, Hongxia Wang, Zhiqi Hao, Patrick Bennett, and Greg Kilby Thermo Fisher

More information

Three Dimensional Mapping and Imaging of Neuropeptides and Lipids in Crustacean Brain

Three Dimensional Mapping and Imaging of Neuropeptides and Lipids in Crustacean Brain Three Dimensional Mapping and Imaging of Neuropeptides and Lipids in Crustacean Brain Using the 4800 MALDI TOF/TOF Analyzer Ruibing Chen and Lingjun Li School of Pharmacy and Department of Chemistry, University

More information

Fizzy Extraction of Volatile and Semivolatile Compounds into the Gas Phase

Fizzy Extraction of Volatile and Semivolatile Compounds into the Gas Phase SUPPORTING INFORMATION Fizzy Extraction of Volatile and Semivolatile Compounds into the Gas Phase Cheng-Hao Chang, Pawel L. Urban* Department of Applied Chemistry, National Chiao Tung University 1001 University

More information

High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. R. J. Rose, E. Damoc, E. Denisov, A. Makarov, A. J. R.

High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. R. J. Rose, E. Damoc, E. Denisov, A. Makarov, A. J. R. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies R. J. Rose, E. Damoc, E. Denisov, A. Makarov, A. J. R. Heck SUPPLEMENTARY INFORMATION HCD multipole C -trap Transport octapole

More information

Time (min) Supplementary Figure 1: Gas decomposition products of irradiated DMC.

Time (min) Supplementary Figure 1: Gas decomposition products of irradiated DMC. 200000 C 2 CH 3 CH 3 DMC 180000 160000 140000 Intensity 120000 100000 80000 60000 40000 C 2 H 6 CH 3 CH 2 CH 3 CH 3 CCH 3 EMC DEC 20000 C 3 H 8 HCCH 3 5 10 15 20 25 Time (min) Supplementary Figure 1: Gas

More information

AB Sciex QStar XL. AIMS Instrumentation & Sample Report Documentation. chemistry

AB Sciex QStar XL. AIMS Instrumentation & Sample Report Documentation. chemistry Mass Spectrometry Laboratory AIMS Instrumentation & Sample Report Documentation AB Sciex QStar XL chemistry UNIVERSITY OF TORONTO AIMS Mass Spectrometry Laboratory Department of Chemistry, University of

More information

2D-LC as an Automated Desalting Tool for MSD Analysis

2D-LC as an Automated Desalting Tool for MSD Analysis 2D-LC as an Automated Desalting Tool for MSD Analysis Direct Mass Selective Detection of a Pharmaceutical Peptide from an MS-Incompatible USP Method Application Note Biologics and Biosimilars Author Sonja

More information

Supplementary information. Miniaturised 3D printed polypropylene reactor for online reaction. analysis by mass spectrometry

Supplementary information. Miniaturised 3D printed polypropylene reactor for online reaction. analysis by mass spectrometry Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is The Royal Society of Chemistry 2017 Supplementary information Miniaturised 3D printed polypropylene reactor

More information

Mass Spectrometry Course Árpád Somogyi Chemistry and Biochemistry MassSpectrometry Facility) University of Debrecen, April 12-23, 2010

Mass Spectrometry Course Árpád Somogyi Chemistry and Biochemistry MassSpectrometry Facility) University of Debrecen, April 12-23, 2010 Mass Spectrometry Course Árpád Somogyi Chemistry and Biochemistry MassSpectrometry Facility) University of Debrecen, April 12-23, 2010 Introduction, Ionization Methods Mass Analyzers, Ion Activation Methods

More information

SUPPLEMENTAL MATERIAL

SUPPLEMENTAL MATERIAL SUPPLEMENTAL MATERIAL Supplemental Methods Lipid extraction. Tissue was pulverized with a mortar and pestle or a ball-grinding method (Mikro Dismembrator, Sartorius). All subsequent steps were performed

More information

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS.

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS. A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS. Martin R Green*, Keith Richardson, John Chipperfield, Nick Tomczyk, Martin

More information

Molecular pathology with desorption electrospray ionization (DESI) - where we are and where we're going

Molecular pathology with desorption electrospray ionization (DESI) - where we are and where we're going Molecular pathology with desorption electrospray ionization (DESI) - where we are and where we're going Dr. Emrys Jones Waters Users Meeting ASMS 2015 May 30th 2015 Waters Corporation 1 Definition: Seek

More information

MALDI-TOF. Introduction. Schematic and Theory of MALDI

MALDI-TOF. Introduction. Schematic and Theory of MALDI MALDI-TOF Proteins and peptides have been characterized by high pressure liquid chromatography (HPLC) or SDS PAGE by generating peptide maps. These peptide maps have been used as fingerprints of protein

More information

INTRODUCTION TO MALDI IMAGING

INTRODUCTION TO MALDI IMAGING INTRODUCTION TO MALDI IMAGING Marten F. Snel, Emmanuelle Claude, Thérèse McKenna, and James I. Langridge Waters Corporation, Manchester, UK INT RODUCTION The last few years have seen a rapid increase in

More information

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Application ote #LCMS-2 esquire series Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices Introduction The simple monitoring

More information

SYNAPT G2-S High Definition MS (HDMS) System

SYNAPT G2-S High Definition MS (HDMS) System SYNAPT G2-S High Definition MS (HDMS) System High performance, versatility, and workflow efficiency of your MS system all play a crucial role in your ability to successfully reach your scientific and business

More information

Ionization Methods. Neutral species Charged species. Removal/addition of electron(s) Removal/addition of proton(s)

Ionization Methods. Neutral species Charged species. Removal/addition of electron(s) Removal/addition of proton(s) Ionization Methods Neutral species Charged species Removal/addition of electron(s) M + e - (M +. )* + 2e - electron ionization Removal/addition of proton(s) M + (Matrix)-H MH + + (Matrix) - chemical ionization

More information

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS

Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS Rapid Lipid Profiling of Serum by Reverse Phase UPLC-Tandem Quadrupole MS Mark Ritchie and Evelyn Goh Waters Pacific Pte Ltd., Singapore A P P L I C AT ION B E N E F I T S Delivers a rapid 10-min MRM method

More information

Biological Mass Spectrometry. April 30, 2014

Biological Mass Spectrometry. April 30, 2014 Biological Mass Spectrometry April 30, 2014 Mass Spectrometry Has become the method of choice for precise protein and nucleic acid mass determination in a very wide mass range peptide and nucleotide sequencing

More information

Comparison of mass spectrometers performances

Comparison of mass spectrometers performances Comparison of mass spectrometers performances Instrument Mass Mass Sensitivity resolution accuracy Quadrupole 1 x 10 3 0.1 Da* 0.5-1.0 pmol DE-MALDI 2 x 10 4 20 ppm 1-10 fmol peptide 1-5 pmol protein Ion

More information

Analysis of Triglycerides in Cooking Oils Using MALDI-TOF Mass Spectrometry and Principal Component Analysis

Analysis of Triglycerides in Cooking Oils Using MALDI-TOF Mass Spectrometry and Principal Component Analysis Analysis of Triglycerides in Cooking Oils Using MALDI-TOF Mass Spectrometry and Principal Component Analysis Kevin Cooley Chemistry Supervisor: Kingsley Donkor 1. Abstract Triglycerides are composed of

More information

Analysis of Choline and its Metabolites on the Finnigan LTQ

Analysis of Choline and its Metabolites on the Finnigan LTQ Analysis of Choline and its Metabolites on the Finnigan LTQ Gargi Choudhary Diane Cho Thermo Electron, San Jose, CA Abstracted from a poster presented at Montreux 3 LC/MS Symposium, with co-authors: Brad

More information

Fundamentals of Soft Ionization and MS Instrumentation

Fundamentals of Soft Ionization and MS Instrumentation Fundamentals of Soft Ionization and MS Instrumentation Ana Varela Coelho varela@itqb.unl.pt Mass Spectrometry Lab Analytical Services Unit Index Mass spectrometers and its components Ionization methods:

More information

An Alternative Approach: Top-Down Bioanalysis of Intact Large Molecules Can this be part of the future? Lecture 8, Page 27

An Alternative Approach: Top-Down Bioanalysis of Intact Large Molecules Can this be part of the future? Lecture 8, Page 27 An Alternative Approach: Top-Down Bioanalysis of Intact Large Molecules Can this be part of the future? Lecture 8, Page 27 Top-down HRAM Bioanalysis of Native Proteins/Molecules Relative Abundance 100

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCHEM.2419 Diversification of Self-Replicating Molecules Jan W. Sadownik, Elio Mattia, Piotr Nowak, Sijbren Otto* University of Groningen, Center for Systems Chemistry, Stratingh Institute

More information

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05.

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05. NIH Public Access Author Manuscript Published in final edited form as: J Proteome Res. 2013 July 5; 12(7): 3071 3086. doi:10.1021/pr3011588. Evaluation and Optimization of Mass Spectrometric Settings during

More information

Application of a new capillary HPLC- ICP-MS interface to the identification of selenium-containing proteins in selenized yeast

Application of a new capillary HPLC- ICP-MS interface to the identification of selenium-containing proteins in selenized yeast Application of a new capillary HPLC- ICP-MS interface to the identification of selenium-containing proteins in selenized yeast Application note Food supplements Authors Juliusz Bianga and Joanna Szpunar

More information

Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer

Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer Mass Spectrometric Analysis of Explosives Bull. Korean Chem. Soc. 2013, Vol. 34, No. 12 3659 http://dx.doi.org/10.5012/bkcs.2013.34.12.3659 Mass Spectrometric Analysis of Eight Common Chemical Explosives

More information

Sequence Identification And Spatial Distribution of Rat Brain Tryptic Peptides Using MALDI Mass Spectrometric Imaging

Sequence Identification And Spatial Distribution of Rat Brain Tryptic Peptides Using MALDI Mass Spectrometric Imaging Sequence Identification And Spatial Distribution of Rat Brain Tryptic Peptides Using MALDI Mass Spectrometric Imaging AB SCIEX MALDI TOF/TOF* Systems Patrick Pribil AB SCIEX, Canada MALDI mass spectrometric

More information

The Analysis of Jojoba Oil by LC-Coordination Ion Spray-MS (LC-CIS-MS)

The Analysis of Jojoba Oil by LC-Coordination Ion Spray-MS (LC-CIS-MS) The Analysis of Jojoba Oil by LC-Coordination Ion Spray-MS (LC-CIS-MS) K. Lazou 1, A. d Oosterlinck 2, L. De Reu 1, M. Schelfaut 2, and P. Sandra 2 * 1 Department of Chemical Quality Control, Janssen Pharmaceutica,

More information

Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins using a Triple Quadrupole Mass Spectrometer

Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins using a Triple Quadrupole Mass Spectrometer ELECTRONIC SUPPLEMENTARY INFORMATION Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins using a Triple Quadrupole Mass Spectrometer Evelyn H. Wang 1, Peter C. Combe 2, and Kevin A.

More information

Designer Fentanyls Drugs that kill and how to detect them. Cyclopropylfentanyl

Designer Fentanyls Drugs that kill and how to detect them. Cyclopropylfentanyl Designer Fentanyls Drugs that kill and how to detect them Cyclopropylfentanyl Science for a safer world The in vitro metabolism of cyclopropylfentanyl Simon Hudson & Charlotte Cutler, Sport and Specialised

More information

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine J. Jones, Thermo Fisher Scientific, Runcorn, Cheshire, UK Application Note 709 Key Words SPE, SOLA

More information