By Nichole Miller, BSN Direct Care Nurse, ICU Dwight D Eisenhower Army Medical Center Fort Gordon, Ga.

Size: px
Start display at page:

Download "By Nichole Miller, BSN Direct Care Nurse, ICU Dwight D Eisenhower Army Medical Center Fort Gordon, Ga."

Transcription

1 Set the stage for ventilator 2.0 ANCC CONTACT HOURS Are you puzzled by ventilator modes? We help you differentiate between invasive and noninvasive ventilation and understand the common settings for each. By Nichole Miller, BSN Direct Care Nurse, ICU Dwight D Eisenhower Army Medical Center Fort Gordon, Ga. Your patient in the ICU today is Mrs. J, who was intubated for hypercapnic respiratory failure yesterday after she failed a trial on bilevel positive airway pressure (BIPAP). Her ventilator settings are assist control (AC), 12; tidal volume (TV), 600; positive end-expiratory pressure (PEEP), 5; and Fio 2, 40%. You suddenly feel like you re on another planet and people are speaking a different language. In this article, we ll show you how to identify the difference between invasive and noninvasive ventilation, understand the basic mechanisms of different ventilator modes, and interpret the ventilator settings. Indications for mechanical ventilation Partial pressure of oxygen in arterial blood (PaO 2 ) < 50 mm Hg with FiO 2 > 0.60 PaO 2 > 50 mm Hg with ph < 7.25 Vital capacity < two times TV Negative inspiratory force < 25 cm H 2 O Respiratory rate > 35/minute Source: Smeltzer SC, Bare BG, Hinkle JL, Cheever KH. Brunner and Suddarth s Textbook of Medical-Surgical Nursing. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; Invasive ventilation Invasive positive pressure ventilation requires that the patient be intubated by placing an endotracheal (ET) tube to provide direct ventilation to the lungs. It s indicated for patients who aren t breathing (apneic) or breathing ineffectively, causing ventilation problems. Intubation is necessary for any patient with impending or current respiratory failure. There are no specific contraindications to mechanical ventilation when a patient isn t breathing, but facial, neck, or tracheal trauma can make oral intubation undesirable (see Indications for mechanical ventilation). Almost all ventilators have the capability of being set to four basic modes: AC, synchronized intermittent mandatory ventilation (SIMV), airway pressure release ventilation (APRV), and pressure support (PS). Most newer ventilators can also be set to specialty modes, such as high frequency oscillatory ventilation (HFOV). Let s take a closer look at these standard ventilator modes (see Picturing modes of mechanical ventilation). 44 Nursing made Incredibly Easy! May/June

2 settings May/June 2013 Nursing made Incredibly Easy! 45

3 Initial ventilator settings Assist control AC is one of the most common modes used for ventilation in the ICU. It s often used for patients who require the most support from the ventilator. When looking at the ventilator, you ll see that there are several basic settings within AC mode. These include the respiratory rate, TV, Fio 2, and PEEP (see Initial ventilator settings). Let s look at each one of these terms. The respiratory rate is the minimum amount of breaths that the patient will be allowed to take. This rate is programmed into the ventilator, often set between 12 and 18. TV is the amount of air that will go into the patient s lungs with each breath. This is based on the ideal body weight of the patient, most often calculated at 10 ml/kg. Some patients may require a smaller TV due to poor lung compliance (the amount of stretch the lungs can handle without damage). TV is usually set between 400 ml The following guide is an example of the steps involved in operating a mechanical ventilator. The nurse, in collaboration with the respiratory therapist, always reviews the manufacturer s instructions, which vary according to the equipment, before beginning mechanical ventilation. 1. Set the machine to deliver the TV required (10 to 15 ml/kg). 2. Adjust the machine to deliver the lowest concentration of oxygen to maintain normal PaO 2 (80 to 100 mm Hg). This setting may be high initially but will gradually be reduced based on ABG results. 3. Record peak inspiratory pressure. 4. Set mode (AC or SIMV) and rate according to the healthcare provider s order. Set PEEP and PS if ordered. 5. Adjust sensitivity so that the patient can trigger the ventilator with a minimal effort (usually 2 mm Hg negative inspiratory force). 6. Record minute volume and obtain ABGs to measure partial pressure of carbon dioxide, ph, and PaO 2 after 20 minutes of continuous mechanical ventilation. 7. Adjust setting (FiO 2 and rate) according to results of ABG analysis to provide normal values or those set by the healthcare provider. 8. If the patient suddenly becomes confused or agitated or begins bucking the ventilator for some unexplained reason, assess for hypoxia and manually ventilate on 100% oxygen with a resuscitation bag. Source: Smeltzer SC, Bare BG, Hinkle JL, Cheever KH. Brunner and Suddarth s Textbook of Medical-Surgical Nursing. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; for a small person and up to 800 ml for a larger person. Measured as a percentage, FiO 2 is the amount of oxygen the patient requires to maintain appropriate blood oxygen levels. PEEP is the pressure that s applied at the end of the expiratory phase that helps keep the alveoli from snapping shut when the patient exhales. This can minimize the risk of developing atelectasis and prevent shearing force trauma to the alveoli. Shearing is caused when the alveoli are opening and shutting too quickly. PEEP can also be used to help open areas of collapsed alveoli, also known as atelectasis. PEEP is measured in centimeters of water and is often seen at levels between 5 and 10 cm H 2 O. In AC mode, the patient will have a set respiratory rate, meaning that it s a timetriggered mode. If for some reason the patient doesn t initiate a breath on his or her own after so many seconds, the ventilator will sense that the patient hasn t attempted a breath and will deliver the TV. The time between breaths is based on the set respiratory rate. For example, if the respiratory rate is set to 12 and there s no breath initiated within 5 seconds, the ventilator will give the patient a controlled, or ventilator-dependent, breath. The ventilator will give this set number of breaths every minute as long as the patient isn t attempting to breathe. The ventilator won t allow the patient to breathe less than the set amount. If the patient is capable of taking breaths on his or her own, the ventilator will sense that the patient is taking a breath by the negative flow of air and will help facilitate the breath by delivering the set TV. The patient can breathe as many times a minute as he or she wants but will get the same TV with each breath. The benefit of AC mode is that it can be used in both patients who are spontaneously breathing and those who aren t. It will provide the set number of breaths every minute, but also allow patients who want a higher rate to initiate breaths on their own. This can 46 Nursing made Incredibly Easy! May/June

4 decrease anxiety by allowing the patient to set his or her own respiratory rate while still being supported by the full TV. For weak or critically ill patients, the ventilator does most of the work, meaning that the patient doesn t have to do much of the work of breathing. The downside of using this mode is that every breath is the same size. If the TV is set at 600 ml, then every breath (both spontaneous and assisted) will be approximately 600 ml. After the volume has been delivered, a valve closes in the circuit and the patient is forced to exhale. However, a person s normal breathing pattern doesn t include identical breaths. If a patient wants larger breaths than the set TV, it can cause anxiety and interrupt the patient s breathing pattern, which may lead to resistance in ventilation. This can lead to tachypnea and hyperventilation, which, in turn, may result in respiratory alkalosis. Another common issue seen with the use of AC mode is often caused by the low work of breathing. When patients have been in this mode for a period of time, it can cause weakened respiratory muscles and increase in ventilator times. Sedation, appropriate volumes, and weaning trials can often help decrease these complications. Synchronized intermittent mandatory ventilation SIMV is also a common mode of ventilation used in the ICU. It works on the same basic principles of AC mode a set number of breaths will be delivered each minute, but the patient can breathe as many times a minute as he or she feels the need to. These breaths can be patientor ventilator-initiated, but the difference is how TV is delivered. All ventilatorinitiated breaths will have the full TV delivered, but for patient-initiated breaths, the set respiratory rate will be an independent breath and the TV won t be delivered. The patient will need to inhale the TV independently. Picturing modes of mechanical ventilation Source: Smeltzer SC, Bare BG, Hinkle JL, Cheever KH. Brunner and Suddarth s Textbook of Medical- Surgical Nursing. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; May/June 2013 Nursing made Incredibly Easy! 47

5 The rationale behind using SIMV instead of AC is to help work the patient s respiratory muscles by providing periods of decreased support. Remember, if the respiratory rate is set high or the patient isn t breathing spontaneously, then this mode functions identically to AC mode. The benefit of using SIMV is seen most often in surgical patients who require ventilator support for a short period of time postoperatively. As the patient wakes up, he or she is able to take an increasing number of unassisted breaths. By using this mode, it helps determine at what point the patient is ready for extubation. The downside of SIMV is often seen when it s used with weakened or critically ill patients. The increased work of breathing can actually cause a patient to tire out and lead to longer intubation times or failed weaning attempts. Other issues include hypoventilation from the inability to take adequate TV with independent breaths and anxiety from not knowing what breaths will be assisted or unassisted. Troubleshooting problems with mechanical ventilation Problem Cause Considerations Ventilator problems Increase in peak airway pressure Coughing or plugged airway tube Decrease in pressure or loss of volume Patient bucking ventilator Decreasing lung compliance Tubing kinked Pneumothorax Atelectasis or bronchospasm Increase in compliance Leak in ventilator or tubing; cuff on tube/ humidifier not tight Suction airway for secretions; empty condensation fluid from circuit. Adjust sensitivity. Manually ventilate patient. Assess for hypoxia or bronchospasm. Check ABG values. Sedate only if necessary. Check tubing; reposition patient; insert oral airway if necessary. Manually ventilate patient; notify healthcare provider. Clear secretions. None Check entire ventilator circuit for patency. Correct leak. Patient problems Cardiovascular compromise Barotrauma/pneumothorax Pulmonary infection Decrease in venous return due to application of positive pressure to lungs Application of positive pressure to lungs; high mean airway pressures lead to alveolar rupture Bypass of normal defense mechanisms; frequent breaks in ventilator circuit; decreased mobility; impaired cough reflex Assess for adequate volume status by measuring heart rate, BP, central venous pressure, pulmonary capillary wedge pressure, and urine output. Notify healthcare provider if values are abnormal. Notify healthcare provider. Prepare patient for chest tube insertion. Avoid high pressure settings for patients with chronic obstructive pulmonary diease, ARDS, or history of pneumothorax. Use meticulous aseptic technique. Provide frequent mouth care. Optimize nutritional status. Source: Smeltzer SC, Bare BG, Hinkle JL, Cheever KH. Brunner and Suddarth s Textbook of Medical-Surgical Nursing. 11th ed. Philadelphia, PA: Lippincott Williams & Wilkins; Nursing made Incredibly Easy! May/June

6 Airway pressure release ventilation APRV is considered a rescue method of ventilation and is often used for patients who are having problems with lung compliance or difficulty with oxygenation. This is a fairly advanced and complicated mode of ventilation, most commonly used in patients who have acute respiratory distress syndrome (ARDS). APRV uses an inverse ratio to achieve higher levels of pressure, meaning that the expiratory phase is longer than the inspiratory phase. This allows higher levels of pressure to be held throughout the respiratory cycle, although this isn t how we normally breathe. However, compared with older modes that used an inverse ratio, APRV is much more comfortable for patients and allows for spontaneous breathing. The patient can take a breath at any point in the ventilator cycle, making the high pressures more tolerable. These high pressures combined with PEEP help improve and prevent areas of atelectasis. This is one way that APRV helps improve oxygenation when other modes can t. Improved oxygenation is the biggest benefit to using this mode. It has often been shown to significantly improve oxygenation in patients who are very difficult to oxygenate otherwise. This is commonly seen in patients with ARDS because of the decrease in lung compliance and dense areas of atelectasis. Another benefit seen over the use of other inverse ratio modes is that paralysis and heavy sedation aren t required because patients can breathe anywhere in the pressure cycle. There are more risks with the use of APRV than with the other modes, including a higher incidence of pneumothorax and other ventilator trauma injuries because of the higher levels of pressure combined with the decrease in patient lung compliance. High frequency oscillatory ventilation Used when all other modes fail to improve oxygenation, HFOV isn t usually found on a traditional ventilator. This mode, along with APRV, is considered a rescue mode of ventilation and is most commonly used in adult patients with ARDS or for neonates with neonate respiratory distress syndrome or meconium aspiration. The benefit of using this type of ventilation is that it has been shown to significantly improve oxygenation when conventional methods have been unsuccessful by sustaining very high levels of PEEP almost continuously. This high level of PEEP helps provide enough pressure to reopen areas of collapsed alveoli (atelectasis), often referred to as recruitment. The downside of HFOV is the potential for the development of pneumothorax or other barotrauma. There s also a potential for complications from the use of paralytics, sedation, and pain medication. All three are required for patients to tolerate HFOV. This can lead to difficulty in assessing neurologic function or when transitioning the patient to a conventional mode. These patients are often critically ill and require frequent close monitoring of arterial blood gases (ABGs) and one-to-one nursing care. Pressure support PS is considered a weaning mode used to assess the patient s readiness for extubation. It doesn t use a set respiratory rate and is a pressure-driven mode rather than a timetriggered one. PS requires the patient to initiate each breath and then that breath is assisted through the ET tube with a set amount of pressure. This support helps overcome the resistance of the ET tube. When this mode is used, the pressure is often started at a high rate, such as 20 cm H 2 O, and titrated to usually 8 cm H 2 O before extubation. The lower the pressure, the more work the patient needs to do to pull adequate TV through the ET tube. After the patient has been weaned to the lowest amount of PS and is able to achieve adequate TV while maintaining oxygenation, it suggests that he or she will be able to be Invasive ventilation usually requires weaning. May/June 2013 Nursing made Incredibly Easy! 49

7 did you know? successfully extubated. PS can also be used in conjunction with SIMV as additional assistance for independent breaths. When assessing a patient in this mode, it s important to ensure that he or she is getting adequate TV. Remember that the patient should be achieving volumes between 400 and 800 ml based on body weight. The amount of time that a patient remains in PS mode will depend on how ready he or she is for extubation. Weaning often starts with short periods of high pressures; as the patient tolerates the trial, the periods can be extended and the pressure decreased. Strong patients may do a PS trial for less than an hour and then be extubated. Patients who are weak, who suffer from chronic lung disease, or who ve been intubated for long periods of time may take several days or even weeks with daily trials to be ready for extubation. The biggest benefit of using the PS mode is that it acts as a stepping stone between a dependent ventilator mode and extubation. This helps decrease the risk of reintubation by allowing adequate assessment of the patient s ability to breathe independently. It also helps work the respiratory muscles to get them ready for independent breathing. The downside of PS is that the increased work of breathing can leave the patient tired The use of ventilators has been recorded since the early 1800s, but modern ventilation was first used in the 1940s. The early mechanism was based on keeping the chest in a negative-pressure environment that was contained in a closed system such as the iron lung. As technology advanced, so did the benefits. Healthcare providers were able to perform surgeries that weren t possible without mechanical ventilation, and many patients who previously wouldn t have survived recovered from infections such as pneumonia. However, there were also drawbacks. The equipment was large and difficult to use, most ICUs weren t able to handle more than four or five ventilated patients, and there was difficulty maintaining adequate ventilation. Today s advanced ventilators are portable and use positive pressure the forcing of gases into the chest instead of negative pressure. Patients are no longer placed inside the ventilator; an ET tube is all that s required. and unable to pull enough TV to maintain adequate ventilation. Poor ventilation can lead to hypercapnia and respiratory acidosis. Alarm limits should be set to detect patterns of low volumes to help decrease this risk. Tachycardia and tachypnea can also be signs that a patient may need a higher level of pressure or require rest in AC mode. Often, patients who ve been on mechanical ventilation for an extended period of time have a weak diaphragm due to the decreased workload of breathing while on the ventilator. These patients may require higher levels of support and many days of weaning trials before extubation. Noninvasive ventilation Sometime patients don t need to be intubated but need breathing support. When respiratory failure is pending, the healthcare team will often take the least aggressive method of providing appropriate ventilation. Noninvasive ventilation can be an effective alternative to intubation. There are two different methods of noninvasive ventilation that can be used in this situation: BIPAP and continuous positive airway pressure (CPAP). Both use a mask that s placed over the nose or face delivering positive airway pressure and oxygen to help assist breathing. These methods are to be used only for a patient who s breathing spontaneously. Let s take a closer look. Bilevel positive airway pressure BIPAP provides positive airway pressure during both inspiration and exhalation. This helps assist patients who are spontaneously breathing with ventilation and gas exchange. BIPAP is useful in assisting patients with achieving full TV, leading to improved ventilation in patients with impending respiratory failure. It can also provide supplemental oxygen along with inspiratory pressure. BIPAP is often used with patients who are hypercapnic or who have elevated levels of 50 Nursing made Incredibly Easy! May/June

8 carbon dioxide (CO 2 ). It helps improve ventilation and decrease high CO 2 levels, but can only be used in patients who are able to breathe independently. BIPAP isn t appropriate for a patient who s apneic or who has a low respiratory rate. Continuous positive airway pressure CPAP is a noninvasive form of PEEP. It can be provided through a ventilator as a separate mode, but can also be delivered via an independent machine. CPAP is most commonly delivered through a small mask that s worn over the nose, but can also be provided through a full-face mask. CPAP provides a constant end-expiratory pressure that helps keep the airway open; some machines also provide supplemental oxygen if required by the patient. Because this type of noninvasive ventilation provides constant airway pressure, it s most often used for patients with obstructive sleep apnea (OSA). The biggest benefit of CPAP is decreasing or even eliminating the adverse reactions of OSA. The positive pressure helps prevent obstruction while the patient is sleeping and allows for effective ventilation and oxygenation. Patients most often complain about wearing the mask but, for most, the improved quality of sleep outweighs the discomfort. Nursing considerations As the nurse caring for an intubated patient, it s important to be aware of the different alarms you may encounter. One of the most common alarms is a high pressure alarm, which may mean that there are secretions present and the patient requires suctioning or that the patient is biting on the ET tube and may require more sedation. Most intubated patients will require some sedation and analgesia to make tolerating the ET tube more comfortable. The other common alarm is a low pressure alarm, which may indicate that there s an air leak in the ventilator circuit or the cuff on the end of the ET tube and air is leaking past the cuff and out of the patient s mouth. Adding some air to the cuff or finding the leak in the circuit will resolve this type of alarm (see Troubleshooting problems with mechanical ventilation). Caring for an intubated patient also requires a basic care routine and assessment skills. Each ET tube is marked in centimeters, and the position should be checked every 4 hours. When checking the tube s position, it s also a good time to assess for skin integrity, the stability of the securement device, and lung sounds. Mouth care should also be provided every 4 hours, and the patient s teeth should be brushed twice a day to decrease the incidence of ventilator-acquired pneumonia. You also need to be aware of the complications of mechanical ventilation. Two of the most dangerous are volutrauma and barotrauma. Volutrauma is often caused by a TV that s too high, causing overdistension of the alveoli and leading to edema at the level of the alveoli where oxygenation takes place. Barotrauma is caused by elevated pressure in the lungs from high levels of PEEP. Most often seen in patients who have decreased lung compliance, such as in ARDS or pulmonary fibrosis, the first signs of barotrauma are low oxygen levels, tachypnea, agitation, and high airway pressures. For patients receiving BIPAP or CPAP, you must assess the quality and rate of respirations. If respirations change or decrease, it may be a sign of worsening respiratory failure. Lung sounds should also be assessed at regular intervals to evaluate adequate air movement. Like invasive ventilation, there are also alarms associated with noninvasive ventilation. The most common cause of alarms is low volume due to a leak in the seal between the mask and the patient s face. Readjustment of the mask to a tighter seal will usually resolve this problem. Other alarms may be for low or high respiratory rates or low TV, If you need help breathing, noninvasive ventilation may be used. May/June 2013 Nursing made Incredibly Easy! 51

9 Want more CE? You got it! meaning that the patient isn t breathing deep enough. These alarms may indicate that the patient isn t tolerating the therapy and may require intubation. ABG monitoring may be needed to determine if a patient is tolerating noninvasive ventilation. Ready, set, go! Invasive and noninvasive ventilator modes aren t as daunting as you may think. Ventilators have come a long way over the years and are often seen in the ICU, ED, and OR settings. When working in these areas, or in other areas that commonly use ventilators, it s important to know how to interpret the settings. Knowing the ventilator mode that your patient is on will help you identify what settings will be present and allow you to assess what the next step for your patient will be. Learn more about it Adams AB. Too many ventilator modes! Respir Care. 2012;57(4): Daoud EG, Farag HL, Chatburn RL. Airway pressure release ventilation: what do we know? Respir Care. 2012;57(2): Kacmarek RM. The mechanical ventilator: past, present, and future. Respir Care. 2011;56(8): Siau C, Stewart TE. Current role of high frequency oscillatory ventilation and APRV in acute lung injury and acute respiratory distress syndrome. Clin Chest Med. 200;29(2): Singer BD, Corbridge TC. Basic invasive mechanical ventilation. South Med J. 2009;102(12): The author and planners have disclosed that they have no financial relationships related to this article. DOI /01.NME f7 For more than 36 additional continuing education articles related to respiratory topics, go to Nursingcenter.com/CE. TEST INSTRUCTIONS To take the test online, go to our secure Web site at CE/nmie. On the print form, record your answers in the test answer section of the CE enrollment form on page 56. Each question has only one correct answer. You may make copies of these forms. Complete the registration information and course evaluation. Mail the completed form and registration fee of $21.95 to: Lippincott Williams & Wilkins, CE Group, 74 Brick Blvd., Bldg. 4, Suite 206, Brick, NJ We will mail your certificate in 4 to 6 weeks. For faster service, include a fax number and we will fax your certificate within 2 business days of receiving your enrollment form. You will receive your CE certificate of earned contact hours and an answer key to review your results.there is no minimum passing grade. Registration deadline is June 30, INSTRUCTIONS Set the stage for ventilator settings Earn CE credit online: Go to and receive a certificate within minutes. DISCOUNTS and CUSTOMER SERVICE Send two or more tests in any nursing journal published by Lippincott Williams & Wilkins together by mail and deduct $0.95 from the price of each test. We also offer CE accounts for hospitals and other health care facilities on nursingcenter. com. Call for details. PROVIDER ACCREDITATION Lippincott Williams & Wilkins, publisher of Nursing made Incredibly Easy!, will award 2.0 contact hours for this continuing nursing education activity. Lippincott Williams & Wilkins is accredited as a provider of continuing nursing education by the American Nurses Credentialing Center s Commission on Accreditation. This activity is also provider approved by the California Board of Registered Nursing, Provider Number CEP for 2.0 contact hours. Lippincott Williams & Wilkins is also an approved provider of continuing nursing education by the District of Columbia and Florida #FBN2454. Your certificate is valid in all states. The ANCC s accreditation status of Lippincott Williams & Wilkins Department of Continuing Education refers only to its continuing nursing educational activities and does not imply Commission on Accreditation approval or endorsement of any commercial product. 52 Nursing made Incredibly Easy! May/June

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor

Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor Mechanical Ventilation Prepared by : Bayan Kaddourah RN,MHM. GICU Clinical Instructor 1 Definition Is a supportive therapy to facilitate gas exchange. Most ventilatory support requires an artificial airway.

More information

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo

Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo Instant dowload and all chapters Test Bank Pilbeam's Mechanical Ventilation Physiological and Clinical Applications 6th Edition Cairo https://testbanklab.com/download/test-bank-pilbeams-mechanical-ventilation-physiologicalclinical-applications-6th-edition-cairo/

More information

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV)

NON INVASIVE LIFE SAVERS. Non Invasive Ventilation (NIV) Table 1. NIV: Mechanisms Of Action Decreases work of breathing Increases functional residual capacity Recruits collapsed alveoli Improves respiratory gas exchange Reverses hypoventilation Maintains upper

More information

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE

Handling Common Problems & Pitfalls During. Oxygen desaturation in patients receiving mechanical ventilation ACUTE SEVERE RESPIRATORY FAILURE Handling Common Problems & Pitfalls During ACUTE SEVERE RESPIRATORY FAILURE Pravit Jetanachai, MD QSNICH Oxygen desaturation in patients receiving mechanical ventilation Causes of oxygen desaturation 1.

More information

What is the next best step?

What is the next best step? Noninvasive Ventilation William Janssen, M.D. Assistant Professor of Medicine National Jewish Health University of Colorado Denver Health Sciences Center What is the next best step? 65 year old female

More information

Case Scenarios. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity

Case Scenarios. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity Case Scenarios Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Case 1 A 36 year male with cirrhosis and active GI bleeding is intubated to protect his airway,

More information

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device

I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device I. Subject: Continuous Positive Airway Pressure CPAP by Continuous Flow Device II. Policy: Continuous Positive Airway Pressure CPAP by the Down's system will be instituted by Respiratory Therapy personnel

More information

7 Initial Ventilator Settings, ~05

7 Initial Ventilator Settings, ~05 Abbreviations (inside front cover and back cover) PART 1 Basic Concepts and Core Knowledge in Mechanical -- -- -- -- 1 Oxygenation and Acid-Base Evaluation, 1 Review 01Arterial Blood Gases, 2 Evaluating

More information

NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP)

NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP) Introduction NIV - BI-LEVEL POSITIVE AIRWAY PRESSURE (BIPAP) Noninvasive ventilation (NIV) is a method of delivering oxygen by positive pressure mask that allows for the prevention or postponement of invasive

More information

Module 4: Understanding MechanicalVentilation Jennifer Zanni, PT, DScPT Johns Hopkins Hospital

Module 4: Understanding MechanicalVentilation Jennifer Zanni, PT, DScPT Johns Hopkins Hospital Module 4: Understanding MechanicalVentilation Jennifer Zanni, PT, DScPT Johns Hopkins Hospital Objectives Upon completion of this module, the learner will be able to: Identify types of airways and indications

More information

Slide 1. Slide 2. Slide 3 VENTILATOR MADNESS.. MAKING SENSE OF IT ALL!! Objectives: I have nothing to disclose.

Slide 1. Slide 2. Slide 3 VENTILATOR MADNESS.. MAKING SENSE OF IT ALL!! Objectives: I have nothing to disclose. Slide 1 VENTILATOR MADNESS.. MAKING SENSE OF IT ALL!! Maryann M Brogden ND, MSN, RN, APN-C, CCNS, SCRN Slide 2 I have nothing to disclose. Slide 3 Objectives: Identify Criteria for Intubation Differentiate

More information

Capnography Connections Guide

Capnography Connections Guide Capnography Connections Guide Patient Monitoring Contents I Section 1: Capnography Introduction...1 I Section 2: Capnography & PCA...3 I Section 3: Capnography & Critical Care...7 I Section 4: Capnography

More information

Competency Title: Continuous Positive Airway Pressure

Competency Title: Continuous Positive Airway Pressure Competency Title: Continuous Positive Airway Pressure Trainee Name: ------------------------------------------------------------- Title: ---------------------------------------------------------------

More information

Mechanical Ventilation 1. Shari McKeown, RRT Respiratory Services - VGH

Mechanical Ventilation 1. Shari McKeown, RRT Respiratory Services - VGH Mechanical Ventilation 1 Shari McKeown, RRT Respiratory Services - VGH Objectives Describe indications for mcvent Describe types of breaths and modes of ventilation Describe compliance and resistance and

More information

APRV Ventilation Mode

APRV Ventilation Mode APRV Ventilation Mode Airway Pressure Release Ventilation A Type of CPAP Continuous Positive Airway Pressure (CPAP) with an intermittent release phase. Patient cycles between two levels of CPAP higher

More information

Cardiorespiratory Physiotherapy Tutoring Services 2017

Cardiorespiratory Physiotherapy Tutoring Services 2017 VENTILATOR HYPERINFLATION ***This document is intended to be used as an information resource only it is not intended to be used as a policy document/practice guideline. Before incorporating the use of

More information

Interfacility Protocol Protocol Title:

Interfacility Protocol Protocol Title: Interfacility Protocol Protocol Title: Mechanical Ventilator Monitoring & Management Original Adoption Date: 05/2009 Past Protocol Updates 05/2009, 12/2013 Date of Most Recent Update: March 23, 2015 Medical

More information

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv

ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) Rv.8.18.18 ACUTE RESPIRATORY DISTRESS SYNDROME (ARDS) SUDDEN PROGRESSIVE FORM OF ACUTE RESPIRATORY FAILURE ALVEOLAR CAPILLARY MEMBRANE BECOMES DAMAGED AND MORE

More information

Julie Zimmerman, MSN, RN, CCRN Clinical Nurse Specialist

Julie Zimmerman, MSN, RN, CCRN Clinical Nurse Specialist Julie Zimmerman, MSN, RN, CCRN Clinical Nurse Specialist Objectives Define capnography vs. end tidal CO2 (EtCO 2 ) Identify what normal vs. abnormal EtCO2 values mean and what to do Understand when to

More information

Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning

Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning CME article Johnson S, et al: Noninvasive ventilation Noninvasive ventilation: Selection of patient, interfaces, initiation and weaning Saumy Johnson, Ramesh Unnikrishnan * Email: ramesh.unnikrishnan@manipal.edu

More information

and Noninvasive Ventilatory Support

and Noninvasive Ventilatory Support Chapter 2 Mechanical Ventilation and Noninvasive Ventilatory Support Megan L. Anderson and John G. Younger PERSPECTIVE Invasive and noninvasive ventilation are essential tools for treatment of critically

More information

Mechanical Ventilation Principles and Practices

Mechanical Ventilation Principles and Practices Mechanical Ventilation Principles and Practices Dr LAU Chun Wing Arthur Department of Intensive Care Pamela Youde Nethersole Eastern Hospital 6 October 2009 In this lecture, you will learn Major concepts

More information

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018

NON-INVASIVE VENTILATION. Lijun Ding 23 Jan 2018 NON-INVASIVE VENTILATION Lijun Ding 23 Jan 2018 Learning objectives What is NIV The difference between CPAP and BiPAP The indication of the use of NIV Complication of NIV application Patient monitoring

More information

Weaning from Mechanical Ventilation. Dr Azmin Huda Abdul Rahim

Weaning from Mechanical Ventilation. Dr Azmin Huda Abdul Rahim Weaning from Mechanical Ventilation Dr Azmin Huda Abdul Rahim Content Definition Classification Weaning criteria Weaning methods Criteria for extubation Introduction Weaning comprises 40% of the duration

More information

Objectives. Health care significance of ARF 9/10/15 TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION

Objectives. Health care significance of ARF 9/10/15 TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION TREATMENT OF ACUTE RESPIRATORY FAILURE OF VARIABLE CAUSES: INVASIVE VS. NON- INVASIVE VENTILATION Louisa Chika Ikpeama, DNP, CCRN, ACNP-BC Objectives Identify health care significance of acute respiratory

More information

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation.

1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. Chapter 1: Principles of Mechanical Ventilation TRUE/FALSE 1. When a patient fails to ventilate or oxygenate adequately, the problem is caused by pathophysiological factors such as hyperventilation. F

More information

NIV use in ED. Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH

NIV use in ED. Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH NIV use in ED Dr. Khalfan AL Amrani Emergency Resuscitation Symposium 2 nd May 2016 SQUH Outline History & Introduction Overview of NIV application Review of proven uses of NIV History of Ventilation 1940

More information

CLINICAL CONSIDERATIONS FOR THE BUNNELL LIFE PULSE HIGH-FREQUENCY JET VENTILATOR

CLINICAL CONSIDERATIONS FOR THE BUNNELL LIFE PULSE HIGH-FREQUENCY JET VENTILATOR CLINICAL CONSIDERATIONS FOR THE BUNNELL LIFE PULSE HIGH-FREQUENCY JET VENTILATOR 801-467-0800 Phone 800-800-HFJV (4358) Hotline TABLE OF CONTENTS Respiratory Care Considerations..3 Physician Considerations

More information

Mechanical ventilation in the emergency department

Mechanical ventilation in the emergency department Mechanical ventilation in the emergency department Intubation and mechanical ventilation are often needed in emergency treatment. A ENGELBRECHT, MB ChB, MMed (Fam Med), Dip PEC, DA Head, Emergency Medicine

More information

Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล

Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Mechanical Ventilation ศ.พ.ญ.ส ณ ร ตน คงเสร พงศ ภาคว ชาว ส ญญ ว ทยา คณะแพทยศาสตร ศ ร ราชพยาบาล Goal of Mechanical Ventilation Mechanical ventilation is any means in which physical device or machines are

More information

Optimize vent weaning and SBT outcomes. Identify underlying causes for SBT failures. Role SBT and weaning protocol have in respiratory care

Optimize vent weaning and SBT outcomes. Identify underlying causes for SBT failures. Role SBT and weaning protocol have in respiratory care Optimize vent weaning and SBT outcomes Identify underlying causes for SBT failures Role SBT and weaning protocol have in respiratory care Lower risk of developing complications Lower risk of VAP, other

More information

Lung Wit and Wisdom. Understanding Oxygenation and Ventilation in the Neonate. Jennifer Habert, BHS-RT, RRT-NPS, C-NPT Willow Creek Women s Hospital

Lung Wit and Wisdom. Understanding Oxygenation and Ventilation in the Neonate. Jennifer Habert, BHS-RT, RRT-NPS, C-NPT Willow Creek Women s Hospital Lung Wit and Wisdom Understanding Oxygenation and Ventilation in the Neonate Jennifer Habert, BHS-RT, RRT-NPS, C-NPT Willow Creek Women s Hospital Objectives To review acid base balance and ABG interpretation

More information

Provide guidelines for the management of mechanical ventilation in infants <34 weeks gestation.

Provide guidelines for the management of mechanical ventilation in infants <34 weeks gestation. Page 1 of 5 PURPOSE: Provide guidelines for the management of mechanical ventilation in infants

More information

Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด

Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด Noninvasive Mechanical Ventilation in Children ศ.พญ.อร ณวรรณ พฤทธ พ นธ หน วยโรคระบบหายใจเด ก ภาคว ชาก มารเวชศาสตร คณะแพทยศาสตร โรงพยาบาลรามาธ บด Noninvasive Mechanical Ventilation Provide support without

More information

Practical Application of CPAP

Practical Application of CPAP CHAPTER 3 Practical Application of CPAP Dr. Srinivas Murki Neonatologist Fernadez Hospital, Hyderabad. A.P. Practical Application of CPAP Continuous positive airway pressure (CPAP) applied to premature

More information

Simulation 3: Post-term Baby in Labor and Delivery

Simulation 3: Post-term Baby in Labor and Delivery Simulation 3: Post-term Baby in Labor and Delivery Opening Scenario (Links to Section 1) You are an evening-shift respiratory therapist in a large hospital with a level III neonatal unit. You are paged

More information

Spontaneous Breathing Trial and Mechanical Ventilation Weaning Process

Spontaneous Breathing Trial and Mechanical Ventilation Weaning Process Page 1 of 5 ASSESSMENT INTERVENTION Patient receiving mechanical ventilation Baseline ventilatory mode/ settings RT and RN to assess criteria 1 for SBT Does patient meet criteria? RT to initiate SBT Does

More information

I. Subject: Pressure Support Ventilation (PSV) with BiPAP Device/Nasal CPAP

I. Subject: Pressure Support Ventilation (PSV) with BiPAP Device/Nasal CPAP I. Subject: Pressure Support Ventilation (PSV) with BiPAP Device/Nasal CPAP II. Policy: PSV with BiPAP device/nasal CPAP will be initiated upon a physician's order by Respiratory Therapy personnel trained

More information

Weaning and extubation in PICU An evidence-based approach

Weaning and extubation in PICU An evidence-based approach Weaning and extubation in PICU An evidence-based approach Suchada Sritippayawan, MD. Div. Pulmonology & Crit Care Dept. Pediatrics Faculty of Medicine Chulalongkorn University Kanokporn Udomittipong, MD.

More information

Charisma High-flow CPAP solution

Charisma High-flow CPAP solution Charisma High-flow CPAP solution Homecare PNEUMOLOGY Neonatology Anaesthesia INTENSIVE CARE VENTILATION Sleep Diagnostics Service Patient Support charisma High-flow CPAP solution Evidence CPAP therapy

More information

BiLevel Pressure Device

BiLevel Pressure Device PROCEDURE - Page 1 of 7 Purpose Scope Classes/ Goals Define indications and care settings for acute and chronic initiation of Noninvasive Positive Pressure Ventilation. Identify the role of Respiratory

More information

APPENDIX VI HFOV Quick Guide

APPENDIX VI HFOV Quick Guide APPENDIX VI HFOV Quick Guide Overall goal: Maintain PH in the target range at the minimum tidal volume. This is achieved by favoring higher frequencies over lower P (amplitude). This goal is also promoted

More information

By Mark Bachand, RRT-NPS, RPFT. I have no actual or potential conflict of interest in relation to this presentation.

By Mark Bachand, RRT-NPS, RPFT. I have no actual or potential conflict of interest in relation to this presentation. By Mark Bachand, RRT-NPS, RPFT I have no actual or potential conflict of interest in relation to this presentation. Objectives Review state protocols regarding CPAP use. Touch on the different modes that

More information

You are caring for a patient who is intubated and. pressure control ventilation. The ventilator. up to see these scalars

You are caring for a patient who is intubated and. pressure control ventilation. The ventilator. up to see these scalars Test yourself Test yourself #1 You are caring for a patient who is intubated and ventilated on pressure control ventilation. The ventilator alarms and you look up to see these scalars What is the most

More information

CLINICAL VIGNETTE 2016; 2:3

CLINICAL VIGNETTE 2016; 2:3 CLINICAL VIGNETTE 2016; 2:3 Editor-in-Chief: Olufemi E. Idowu. Neurological surgery Division, Department of Surgery, LASUCOM/LASUTH, Ikeja, Lagos, Nigeria. Copyright- Frontiers of Ikeja Surgery, 2016;

More information

GE Healthcare. Non Invasive Ventilation (NIV) For the Engström Ventilator. Relief, Relax, Recovery

GE Healthcare. Non Invasive Ventilation (NIV) For the Engström Ventilator. Relief, Relax, Recovery GE Healthcare Non Invasive Ventilation (NIV) For the Engström Ventilator Relief, Relax, Recovery COPD is currently the fourth leading cause of death in the world, and further increases in the prevalence

More information

Dr. Yasser Fathi M.B.B.S, M.Sc, M.D. Anesthesia Consultant, Head of ICU King Saud Hospital, Unaizah

Dr. Yasser Fathi M.B.B.S, M.Sc, M.D. Anesthesia Consultant, Head of ICU King Saud Hospital, Unaizah BY Dr. Yasser Fathi M.B.B.S, M.Sc, M.D Anesthesia Consultant, Head of ICU King Saud Hospital, Unaizah Objectives For Discussion Respiratory Physiology Pulmonary Graphics BIPAP Graphics Trouble Shootings

More information

CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION

CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP) DEFINITION Method of maintaining low pressure distension of lungs during inspiration and expiration when infant breathing spontaneously Benefits Improves oxygenation

More information

Basics of NIV. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity

Basics of NIV. Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC. Consultant, Critical Care Medicine Medanta, The Medicity Basics of NIV Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Objectives: Definitions Advantages and Disadvantages Interfaces Indications Contraindications

More information

Ventilator Waveforms: Interpretation

Ventilator Waveforms: Interpretation Ventilator Waveforms: Interpretation Albert L. Rafanan, MD, FPCCP Pulmonary, Critical Care and Sleep Medicine Chong Hua Hospital, Cebu City Types of Waveforms Scalars are waveform representations of pressure,

More information

NI 60. Non-invasive ventilation without compromise. Homecare Pneumology Neonatology Anaesthesia. Sleep Diagnostics Service Patient Support

NI 60. Non-invasive ventilation without compromise. Homecare Pneumology Neonatology Anaesthesia. Sleep Diagnostics Service Patient Support NI 60 Non-invasive ventilation without compromise Homecare Pneumology Neonatology Anaesthesia INTENSIVE CARE VENTILATION Sleep Diagnostics Service Patient Support NI 60 Non-invasive ventilation without

More information

Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients

Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients Bi-Level Therapy: Boosting Comfort & Compliance in Apnea Patients Objectives Describe nocturnal ventilation characteristics that may indicate underlying conditions and benefits of bilevel therapy for specific

More information

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL)

5. What is the cause of this patient s metabolic acidosis? LACTIC ACIDOSIS SECONDARY TO ANEMIC HYPOXIA (HIGH CO LEVEL) Self-Assessment RSPT 2350: Module F - ABG Analysis 1. You are called to the ER to do an ABG on a 40 year old female who is C/O dyspnea but seems confused and disoriented. The ABG on an FiO 2 of.21 show:

More information

AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL

AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL AFCH NEUROMUSCULAR DISORDERS (NMD) PROTOCOL A. Definition of Therapy: 1. Cough machine: 4 sets of 5 breaths with a goal of I:E pressures approximately the same of 30-40. Inhale time = 1 second, exhale

More information

SESSION 3 OXYGEN THERAPY

SESSION 3 OXYGEN THERAPY SESSION 3 OXYGEN THERAPY Harith Eranga Yapa Department of Nursing Faculty of Health Sciences The Open University of Sri Lanka 1 Outline Methods of delivery Complications of oxygen therapy Artificial airways

More information

An introduction to mechanical ventilation. Fran O Higgins, Adrian Clarke Correspondence

An introduction to mechanical ventilation. Fran O Higgins, Adrian Clarke Correspondence Update in Anaesthesia An introduction to mechanical ventilation Respiratory Summary Mechanical ventilation is the major invasive intervention offered in the ICU. In low income countries, where the facilities

More information

Capnography (ILS/ALS)

Capnography (ILS/ALS) Capnography (ILS/ALS) Clinical Indications: 1. Capnography shall be used as soon as possible in conjunction with any airway management adjunct, including endotracheal, Blind Insertion Airway Devices (BIAD)

More information

Diagnosis and Management of Acute Respiratory Failure

Diagnosis and Management of Acute Respiratory Failure Diagnosis and Management of Acute Respiratory Failure Steven B. Leven, M.D., F.C.C.P. Clinical Professor, Pulmonary/Critical Care Medicine UCI Director MICU and Respiratory Therapy, UCI Medical Center

More information

17400 Medina Road, Suite 100 Phone: Minneapolis, MN Fax:

17400 Medina Road, Suite 100 Phone: Minneapolis, MN Fax: 17400 Medina Road, Suite 100 Phone: 763-398-8300 Minneapolis, MN 55447-1341 Fax: 763-398-8400 www.pulmonetic.com Clinical Bulletin To: Cc: From: Domestic Sales Representatives and International Distributors

More information

Non-invasive Ventilation

Non-invasive Ventilation Non-invasive Ventilation 163 29 Non-invasive Ventilation AM BHAGWATI Artificial ventilatory support has became an integral component in the management of critically ill patients in the intensive care units.

More information

Bergen Community College Division of Health Professions Department of Respiratory Care Fundamentals of Respiratory Critical Care

Bergen Community College Division of Health Professions Department of Respiratory Care Fundamentals of Respiratory Critical Care Bergen Community College Division of Health Professions Department of Respiratory Care Fundamentals of Respiratory Critical Care Date Revised: January 2015 Course Description Student Learning Objectives:

More information

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4

INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4 INDICATIONS FOR RESPIRATORY ASSISTANCE A C U T E M E D I C I N E U N I T P - Y E A R M B B S 4 RESPIRATORY FAILURE Acute respiratory failure is defined by hypoxemia with or without hypercapnia. It is one

More information

RESPIRATORY COMPLICATIONS AFTER SCI

RESPIRATORY COMPLICATIONS AFTER SCI SHEPHERD.ORG RESPIRATORY COMPLICATIONS AFTER SCI NORMA I RIVERA, RRT, RCP RESPIRATORY EDUCATOR SHEPHERD CENTER 2020 Peachtree Road, NW, Atlanta, GA 30309-1465 404-352-2020 DISCLOSURE STATEMENT I have no

More information

10/17/2016 OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT COURSE OBJECTIVES COMMON CAUSES OF RESPIRATORY FAILURE

10/17/2016 OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT COURSE OBJECTIVES COMMON CAUSES OF RESPIRATORY FAILURE OXYGEN DELIVERY: INDICATIONS AND USE OF EQUIPMENT J U L I E Z I M M E R M A N, R N, M S N C L I N I C A L N U R S E S P E C I A L I S T E L O I S A C U T L E R, R R T, B S R C C L I N I C A L / E D U C

More information

sounds are distant with inspiratory crackles. He sits on the edge of his chair, leaning forward, with both hands on his

sounds are distant with inspiratory crackles. He sits on the edge of his chair, leaning forward, with both hands on his I NTE R P R ETI N G A R T E R I A L B L O O D G A S E S : EASY AS A B C Take this step-by-step approach to demystify the parameters of oxygenation, ventilation, acid-base balance. BY WILLIAM C. PRUITT,

More information

Volume Guarantee Initiation and ongoing clinical management of an infant supported by Volume Guarantee A Case Study

Volume Guarantee Initiation and ongoing clinical management of an infant supported by Volume Guarantee A Case Study D-32084-2011 Volume Guarantee Initiation and ongoing clinical management of an infant supported by Volume Guarantee A Case Study Robert DiBlasi RRT-NPS, FAARC Respiratory Care Manager of Research & Quality

More information

Paramedic Rounds. Pre-Hospital Continuous Positive Airway Pressure (CPAP)

Paramedic Rounds. Pre-Hospital Continuous Positive Airway Pressure (CPAP) Paramedic Rounds Pre-Hospital Continuous Positive Airway Pressure (CPAP) Morgan Hillier MD Class of 2011 Dr. Mike Peddle Assistant Medical Director SWORBHP Objectives Outline evidence for pre-hospital

More information

Condensed version.

Condensed version. I m Stu 3 Condensed version smcvicar@uwhealth.org Listen 1. Snoring 2. Gurgling 3. Hoarseness 4. Stridor (inspiratory/expiratory) 5. Wheezing 6. Grunting Listen Crackles Wheezing Stridor Absent Crackles

More information

Effects of PPV on the Pulmonary System. Chapter 17

Effects of PPV on the Pulmonary System. Chapter 17 Effects of PPV on the Pulmonary System Chapter 17 Pulmonary Complications Lung Injury Gas distribution Pulmonary blood flow VAP Hypoventilation Hyperventilation Air trapping Oxygen toxicity WOB Patient-Ventilator

More information

STATE OF OKLAHOMA 2014 EMERGENCY MEDICAL SERVICES PROTOCOLS

STATE OF OKLAHOMA 2014 EMERGENCY MEDICAL SERVICES PROTOCOLS 3K NON-INVASIVE POSITIVE PRESSURE VENTILATION (NIPPV) ADULT EMT EMT-INTERMEDIATE 85 ADVANCED EMT PARAMEDIC Indications: 1. Dyspnea Uncertain Etiology Adult. 2. Dyspnea Asthma Adult. 3. Dyspnea Chronic

More information

F: Respiratory Care. College of Licensed Practical Nurses of Alberta, Competency Profile for LPNs, 3rd Ed. 59

F: Respiratory Care. College of Licensed Practical Nurses of Alberta, Competency Profile for LPNs, 3rd Ed. 59 F: Respiratory Care College of Licensed Practical Nurses of Alberta, Competency Profile for LPNs, 3rd Ed. 59 Competency: F-1 Airway Management F-1-1 F-1-2 F-1-3 F-1-4 F-1-5 Demonstrate knowledge and ability

More information

Foundation in Critical Care Nursing. Airway / Respiratory / Workbook

Foundation in Critical Care Nursing. Airway / Respiratory / Workbook Foundation in Critical Care Nursing Airway / Respiratory / Workbook Airway Anatomy: Please label the following: Tongue Larynx Epiglottis Pharynx Trachea Vertebrae Oesophagus Where is the ET (endotracheal)

More information

Airway Clearance Devices

Airway Clearance Devices Print Page 1 of 11 Wisconsin.gov home state agencies subject directory department of health services Search Welcome» August 2, 2018 5:18 PM Program Name: BadgerCare Plus and Medicaid Handbook Area: Durable

More information

VENTILATOR GRAPHICS ver.2.0. Charles S. Williams RRT, AE-C

VENTILATOR GRAPHICS ver.2.0. Charles S. Williams RRT, AE-C VENTILATOR GRAPHICS ver.2.0 Charles S. Williams RRT, AE-C Purpose Graphics are waveforms that reflect the patientventilator system and their interaction. Purposes of monitoring graphics: Allow users to

More information

to optimize By Jin Xiong Lian, BSN, RN, CNS

to optimize By Jin Xiong Lian, BSN, RN, CNS Using ABGs to optimize By Jin Xiong Lian BSN RN CNS AN ARTERIAL BLOOD GAS (ABG) analysis can tell you about the patient s oxygenation (via PaO 2 and SaO 2 ) acid-base balance pulmonary function (through

More information

Approach to type 2 Respiratory Failure

Approach to type 2 Respiratory Failure Approach to type 2 Respiratory Failure Changing Nature of NIV Not longer just the traditional COPD patients Increasingly Obesity Neuromuscular Pneumonias 3 fold increase in patients with Ph 7.25 and below

More information

1.40 Prevention of Nosocomial Pneumonia

1.40 Prevention of Nosocomial Pneumonia 1.40 Prevention of Nosocomial Pneumonia Purpose Audience Policy Statement: The guideline is designed to reduce the incidence of pneumonia and other acute lower respiratory tract infections. All UTMB healthcare

More information

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary:

Respiratory Failure. Causes of Acute Respiratory Failure (ARF): a- Intrapulmonary: Respiratory failure exists whenever the exchange of O 2 for CO 2 in the lungs cannot keep up with the rate of O 2 consumption & CO 2 production in the cells of the body. This results in a fall in arterial

More information

Keeping Patients Off the Vent: Bilevel, HFNC, Neither?

Keeping Patients Off the Vent: Bilevel, HFNC, Neither? Keeping Patients Off the Vent: Bilevel, HFNC, Neither? Robert Kempainen, MD Pulmonary and Critical Care Medicine Hennepin County Medical Center University of Minnesota School of Medicine Objectives Summarize

More information

Indications for Respiratory Assistance. Sheba Medical Center, ICU Department Nick D Ardenne St George s University of London Tel Hashomer

Indications for Respiratory Assistance. Sheba Medical Center, ICU Department Nick D Ardenne St George s University of London Tel Hashomer Indications for Respiratory Assistance Sheba Medical Center, ICU Department Nick D Ardenne St George s University of London Tel Hashomer Respiratory Assistance Non-invasive - Nasal specs - Facemask/ Resevoir

More information

How to write bipap settings

How to write bipap settings How to write bipap settings 6-6-2013 Living On O2 for Life If you use a bipap machine, like I do, this post is for you. I've been using a bipap machine since 1993 which is a pretty long time. BiPAP 's

More information

Ron Hosp, MS-HSA, RRT Regional Respiratory Specialist. This program has been approved for 1 hour of continuing education credit.

Ron Hosp, MS-HSA, RRT Regional Respiratory Specialist. This program has been approved for 1 hour of continuing education credit. Ron Hosp, MS-HSA, RRT Regional Respiratory Specialist This program has been approved for 1 hour of continuing education credit. Course Objectives Identify at least four goals of home NIV Identify candidates

More information

APRV: An Update CHLOE STEINSHOUER, MD PULMONARY & SLEEP CONSULTANTS OF KANSAS 04/06/2017

APRV: An Update CHLOE STEINSHOUER, MD PULMONARY & SLEEP CONSULTANTS OF KANSAS 04/06/2017 APRV: An Update CHLOE STEINSHOUER, MD PULMONARY & SLEEP CONSULTANTS OF KANSAS 04/06/2017 Disclosures No conflicts of interest Objectives Attendees will be able to: Define the mechanism of APRV Describe

More information

It costs you nothing, but gains everything for your patient!

It costs you nothing, but gains everything for your patient! It costs you nothing, but gains everything for your patient! Attend the entire presentation Complete and submit the evaluation This session is approved for: ANCC hours CECBEMS hours No partial credit will

More information

Training. Continuous Positive Airway Pressure (CPAP)

Training. Continuous Positive Airway Pressure (CPAP) Training The training module will follow the national standard curriculum as it relates to the application and use of CPAP. The proposed curriculum will closely resemble the following algorithm utilizing

More information

New and Future Trends in EMS. Ron Brown, MD, FACEP Paramedic Lecture Series 2018

New and Future Trends in EMS. Ron Brown, MD, FACEP Paramedic Lecture Series 2018 New and Future Trends in EMS Ron Brown, MD, FACEP Paramedic Lecture Series 2018 New technologies and protocols DSD Mechanical Compression ITD BiPAP Ultrasound Double Sequential Defibrillation Two defibrillators

More information

Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the

Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the Neuromuscular diseases (NMDs) include both hereditary and acquired diseases of the peripheral neuromuscular system. They are diseases of the peripheral nerves (neuropathies and anterior horn cell diseases),

More information

Non-Invasive Ventilation

Non-Invasive Ventilation Khusrav Bajan Head Emergency Medicine, Consultant Intensivist & Physician, P.D. Hinduja National Hospital & M.R.C. 112 And the Lord God formed man of the dust of the ground and breathed into his nostrils

More information

NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity

NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity NIV in Acute Respiratory Failure: Where we fail? Dr Shrikanth Srinivasan MD,DNB,FNB,EDIC Consultant, Critical Care Medicine Medanta, The Medicity Use of NIV 1998-2010 50 45 40 35 30 25 20 15 10 5 0 1998

More information

Therapist Written RRT Examination Detailed Content Outline

Therapist Written RRT Examination Detailed Content Outline I. PATIENT DATA EVALUATION AND RECOMMENDATIONS 4 7 17 28 A. Review Data in the Patient Record 1 4 0 5 1. Patient history e.g., present illness admission notes respiratory care orders medication history

More information

9/5/2018. Conflicts of Interests. Pediatric Acute Respiratory Distress Syndrome. Objectives ARDS ARDS. Definitions. None

9/5/2018. Conflicts of Interests. Pediatric Acute Respiratory Distress Syndrome. Objectives ARDS ARDS. Definitions. None Pediatric Acute Respiratory Distress Syndrome Conflicts of Interests Diane C Lipscomb, MD Director Inpatient Pediatric Medical Director Mercy Springfield Associate Clerkship Clinical Director University

More information

CPAP. Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device. Charlottesville Albemarle Rescue Squad - CPAP

CPAP. Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device. Charlottesville Albemarle Rescue Squad - CPAP CPAP Pre-Hospital Treatment Using The Respironics Whisperflow CPAP Device CPAP What Is It? C ontinuous P ositive A irway P ressure Anatomy Review Anatomy Review Anatomy Review Alveoli Anatomy Review Chest

More information

POLICY. Number: Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE. Authorization

POLICY. Number: Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE. Authorization POLICY Number: 7311-60-024 Title: APPLICATION OF NON INVASIVE VENTILATION FOR ACUTE RESPIRATORY FAILURE Authorization [ ] President and CEO [ x ] Vice President, Finance and Corporate Services Source:

More information

NON-INVASIVE POSITIVE PRESSURE VENTILATION IN THE EMERGENCY DEPARTMENT

NON-INVASIVE POSITIVE PRESSURE VENTILATION IN THE EMERGENCY DEPARTMENT NON-INVASIVE POSITIVE PRESSURE VENTILATION IN THE EMERGENCY DEPARTMENT Developed by J. Osteraas and K. Fuzzard 2001. Reviewed and by K. Maddern 2010 Contents Introduction Assessment Learning Outcomes Background

More information

1.1.2 CPAP therapy is used for patients who are suffering from an acute type 1 respiratory failure (Pa02 <8kPa with a normal or low Pac02).

1.1.2 CPAP therapy is used for patients who are suffering from an acute type 1 respiratory failure (Pa02 <8kPa with a normal or low Pac02). Guidelines for initiating and managing CPAP (Continuous Positive Airway Pressure) on a general ward. B25/2006 1.Introduction and Who Guideline applies to 1.1.1 This document provides guidance for Healthcare

More information

Understanding Breathing Muscle Weakness

Understanding Breathing Muscle Weakness Understanding Breathing Muscle Weakness A N D R E A L. K L E I N P R E S I D E N T / F O U N D E R B R E A T H E W I T H M D w w w.facebook.com/ b r e a t h e w i t h m d h t t p : / / w w w. b r e a t

More information

to optimize mechanical ventilation

to optimize mechanical ventilation ILLUSTRATION BY ROY SCOTT Using ABGs to optimize mechanical ventilation Three case studies illustrate how arterial blood gas analyses can guide appropriate ventilator strategy. By Jin Xiong Lian, BSN,

More information

Ventilating the paediatric patient. Lizzie Barrett Nurse Educator November 2016

Ventilating the paediatric patient. Lizzie Barrett Nurse Educator November 2016 Ventilating the paediatric patient Lizzie Barrett Nurse Educator November 2016 Acknowledgements Kate Leutert NE PICU Children's Hospital Westmead Dr. Chloe Tetlow VMO Anaesthetist and Careflight Overview

More information

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD.

Capnography. Capnography. Oxygenation. Pulmonary Physiology 4/15/2018. non invasive monitor for ventilation. Edward C. Adlesic, DMD. Capnography Edward C. Adlesic, DMD University of Pittsburgh School of Dental Medicine 2018 North Carolina Program Capnography non invasive monitor for ventilation measures end tidal CO2 early detection

More information