B657: Final Project Report Holistically-Nested Edge Detection

Size: px
Start display at page:

Download "B657: Final Project Report Holistically-Nested Edge Detection"

Transcription

1 B657: Final roject Report Holistically-Nested Edge Detection Mingze Xu & Hanfei Mei May 4, 2016 Abstract Holistically-Nested Edge Detection (HED), which is a novel edge detection method based on fully convolutional neural networks, has a great performance on edge detection work for natural scenes. There are two important improvements in this method: (1) image-to-image training and prediction; and (2) utilization of multi-scale and multi-level deep learning architectures. Inspired by this, we re-implement HED and try to solve Optical Character Recognition (OCR) problem by matching edge maps between templates and input images. Introduction Figure 1. Illustration of the proposed HED algorithm. In the first row: (a) shows an example test image in the BSD500 dataset; (b) shows its corresponding edges as an notation by human subjects; (c ) displays the HED results. In the second row: (d), (e), and (f) respectively shows side edge responses from layers 2, 3, and 4 of our convolutional neural networks. In the third row: (g), (h), and (i), respectively show edge responses from the Canny detector at scales σ=2.0, σ=4.0, and σ=8.0. [1] Note: Figure reprinted from [1] Saining and Zhouwen. 1

2 1. Edge detection is both fundamental and important to other computer vision areas, such as segmentation, classification, recognition and 3D reconstruction. However, in Figure 1, we can see that classic methods, such as Canny, based on gradient variation cannot provide satisfied results. This prevents further researches from accurate state. 2. This paper provides a method of image-to-image prediction by means of deep learning model in a fully convolutional neural network. 3. This paper uses multi-scale and multi-level structure to generate 5 side outputs which improve the final fusion result advanced to state-of-art accuracy. Holistically-Nested Edge Detection 1. Multi-scale and Multi-level NN Figure 2. (a) multi-stream architecture; (b) skip-layer net architecture; (c) a single model running on multi-scale inputs; (d) separate training of different networks; (e) holisticallynested architecture. [1] Note: Figure reprinted from [1] Saining and Zhouwen. (a) Holistically-nested network is a relatively simple architecture that uses a single image as input and produces multiple side outputs. (b) Contrary to get multi-scale inputs like (c) in Figure 2, it generates side outputs in different scales which together contribute to the fusion result. One can consider this as doing edge detection of one image in multiple scales, which has the same effect to multi-scale inputs. (c) The current architecture can generate 5 side outputs. Each one represents a edge map in a particular scales. HED is flexible if more side outputs are desired in a particular circumstance. 2. Network Architecture 2

3 Table 1. The receptive field and stride size in VGGNet [4] used in HED. The bolded convolutional layers are linked to additional side-output layers. [1] Note: Table reused from [1] Saining and Zhouwen. This paper adopts the VGGNet architecture but make the following modifications: (a) Connecting the side output layer to the last convolutional layer in each stage, respectively conv1 2, conv2 2, conv3 3, conv4 3, conv5 3. The receptive field size of each of these convolutional layers is identical to the corresponding side-output layer; [1] (b) Cutting the last stage of VGGNet. Each side output is expected to be meaningful. A convolutional layer with stride 32 will make the output image too small that hardly contributes to the last fusion output. We can see from Table 1 that each bolded convolutional layer are followed by a pooling layer. After one side output is generated, HED sub-samples the image to make it smaller. A smaller image means the neural network will focus more one its contour instead of details. 3. Result Generation Figure 4. Illustration of our network architecture for edge detection, high-lighting the error back propagation paths. Side-output layers are inserted after convolutional layers. Deep supervision is imposed at each side-output layer, guiding the side-outputs towards edge predictions with the characteristics we desire. The outputs of HED are multi-scale and multi-level, with the side-output-plane size becoming smaller and the receptive field size becoming larger. One weighted-fusion layer is added to automatically learn how to combine outputs from multiple scales. The entire network is trained with multiple error propagation paths (dashed lines). [1] Note: Figure reprinted from [1] Saining and Zhouwen. 3

4 (a) Instead of only having one loss function, each side output will have its own loss function. Each one will contribute to the whole back propagation process. M (m) αm lside (W, w(m) ) i. Lside (W, w) = m=1 ii. (m) lside (W, w(m) ) = β log r(yj = 1 X; W, w(m) ) (1 β) log r(yj = j Y j Y + 0 X; W, w(m) ) iii. Lf use (W, w, h) = Dist(Y, Y f use ) iv. (W, w, h) = arg min(lside (W, w) + Lf use (W, w, h)) (b) Given image X, we obtain edge predictions from both the side output layers and the weighted-fusion layer as following: (1) (2) (M ) i. (Y f use, Y side, Y side,..., Y side ) = CN N (X, (W, w, h) ) (1) (2) (M ) ii. Y HED = Average(Y f use, Y side, Y side,..., Y side ) Implementation and roblems Figure 5. First line: left) original image; right) Canny edges. Second line: left) sample side output; right) HED edges. 1. Figure 5 is a sample result of HED edge detection. We use model trained by HED networks 4

5 and use natural scene around us as test image. We can see compared to Canny edges, HED edges focus more on outlines of items in picture and closer to what it supposed to be. Figure 6. edges for musical notations with noise 2. In Figure 6, HED edge detection works not as well as it does on natural scenes. There are some reasons. (a) The training data are all natural scenes, as a result, the trained model must fit natural scenes edges well. The musical notes are differently represented, so the trained model may find it wired to see this items. (b) The training data are all high definition pictures, therefore, every pixel in training images is important to the final results. However, the test data is a blurred one with many spots on it, which will make our model difficult to find accurate edge pixels. 3. Though HED edge detection works not perfectly on these musical notes. it performs better than Sobel edge detection that we used to apply in assignment 1 does. However, the result of Optical Character Recognition (OCR) is still not very good. We think it is mostly because there are more steps in a process of Character Recognition. Besides edge detection, we still have to choose distance function and match the template with the Character in test image. Although a good edge detection method will contribute some to the result, it will not make significant changes. Because the result are based on a combination of many different works. Conclusion 1. The HED works very well on natural scenes edge detection but not perfectly on other data such as Musical notations. 2. The HED still has difficulties to recognize actual item from noise. Reference [1] Saining Xie and Zhouwen Tu, Holistically-Nested EdgeDetection, in roc. ICCV,2015. [2] K. Silberman, A. Zisserman. Very deep convolutional networks for large-scale image recognition, In ICLR, 2015 [3] Liang Chen, Kun Duan, MIDI-Assisted Egocentric Optical Music Recognition, WACV, [4] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR,

Holistically-Nested Edge Detection (HED)

Holistically-Nested Edge Detection (HED) Holistically-Nested Edge Detection (HED) Saining Xie, Zhuowen Tu Presented by Yuxin Wu February 10, 20 What is an Edge? Local intensity change? Used in traditional methods: Canny, Sobel, etc Learn it!

More information

CSE Introduction to High-Perfomance Deep Learning ImageNet & VGG. Jihyung Kil

CSE Introduction to High-Perfomance Deep Learning ImageNet & VGG. Jihyung Kil CSE 5194.01 - Introduction to High-Perfomance Deep Learning ImageNet & VGG Jihyung Kil ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton,

More information

Multi-attention Guided Activation Propagation in CNNs

Multi-attention Guided Activation Propagation in CNNs Multi-attention Guided Activation Propagation in CNNs Xiangteng He and Yuxin Peng (B) Institute of Computer Science and Technology, Peking University, Beijing, China pengyuxin@pku.edu.cn Abstract. CNNs

More information

Flexible, High Performance Convolutional Neural Networks for Image Classification

Flexible, High Performance Convolutional Neural Networks for Image Classification Flexible, High Performance Convolutional Neural Networks for Image Classification Dan C. Cireşan, Ueli Meier, Jonathan Masci, Luca M. Gambardella, Jürgen Schmidhuber IDSIA, USI and SUPSI Manno-Lugano,

More information

An Artificial Neural Network Architecture Based on Context Transformations in Cortical Minicolumns

An Artificial Neural Network Architecture Based on Context Transformations in Cortical Minicolumns An Artificial Neural Network Architecture Based on Context Transformations in Cortical Minicolumns 1. Introduction Vasily Morzhakov, Alexey Redozubov morzhakovva@gmail.com, galdrd@gmail.com Abstract Cortical

More information

Object Detectors Emerge in Deep Scene CNNs

Object Detectors Emerge in Deep Scene CNNs Object Detectors Emerge in Deep Scene CNNs Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba Presented By: Collin McCarthy Goal: Understand how objects are represented in CNNs Are

More information

Automatic Classification of Perceived Gender from Facial Images

Automatic Classification of Perceived Gender from Facial Images Automatic Classification of Perceived Gender from Facial Images Joseph Lemley, Sami Abdul-Wahid, Dipayan Banik Advisor: Dr. Razvan Andonie SOURCE 2016 Outline 1 Introduction 2 Faces - Background 3 Faces

More information

Efficient Deep Model Selection

Efficient Deep Model Selection Efficient Deep Model Selection Jose Alvarez Researcher Data61, CSIRO, Australia GTC, May 9 th 2017 www.josemalvarez.net conv1 conv2 conv3 conv4 conv5 conv6 conv7 conv8 softmax prediction???????? Num Classes

More information

Neuromorphic convolutional recurrent neural network for road safety or safety near the road

Neuromorphic convolutional recurrent neural network for road safety or safety near the road Neuromorphic convolutional recurrent neural network for road safety or safety near the road WOO-SUP HAN 1, IL SONG HAN 2 1 ODIGA, London, U.K. 2 Korea Advanced Institute of Science and Technology, Daejeon,

More information

arxiv: v1 [stat.ml] 23 Jan 2017

arxiv: v1 [stat.ml] 23 Jan 2017 Learning what to look in chest X-rays with a recurrent visual attention model arxiv:1701.06452v1 [stat.ml] 23 Jan 2017 Petros-Pavlos Ypsilantis Department of Biomedical Engineering King s College London

More information

Performance evaluation of the various edge detectors and filters for the noisy IR images

Performance evaluation of the various edge detectors and filters for the noisy IR images Performance evaluation of the various edge detectors and filters for the noisy IR images * G.Padmavathi ** P.Subashini ***P.K.Lavanya Professor and Head, Lecturer (SG), Research Assistant, ganapathi.padmavathi@gmail.com

More information

HHS Public Access Author manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 January 04.

HHS Public Access Author manuscript Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 January 04. Discriminative Localization in CNNs for Weakly-Supervised Segmentation of Pulmonary Nodules Xinyang Feng 1, Jie Yang 1, Andrew F. Laine 1, and Elsa D. Angelini 1,2 1 Department of Biomedical Engineering,

More information

arxiv: v2 [cs.cv] 7 Jun 2018

arxiv: v2 [cs.cv] 7 Jun 2018 Deep supervision with additional labels for retinal vessel segmentation task Yishuo Zhang and Albert C.S. Chung Lo Kwee-Seong Medical Image Analysis Laboratory, Department of Computer Science and Engineering,

More information

Edge Detection Techniques Based On Soft Computing

Edge Detection Techniques Based On Soft Computing International Journal for Science and Emerging ISSN No. (Online):2250-3641 Technologies with Latest Trends 7(1): 21-25 (2013) ISSN No. (Print): 2277-8136 Edge Detection Techniques Based On Soft Computing

More information

Image Enhancement and Compression using Edge Detection Technique

Image Enhancement and Compression using Edge Detection Technique Image Enhancement and Compression using Edge Detection Technique Sanjana C.Shekar 1, D.J.Ravi 2 1M.Tech in Signal Processing, Dept. Of ECE, Vidyavardhaka College of Engineering, Mysuru 2Professor, Dept.

More information

Networks and Hierarchical Processing: Object Recognition in Human and Computer Vision

Networks and Hierarchical Processing: Object Recognition in Human and Computer Vision Networks and Hierarchical Processing: Object Recognition in Human and Computer Vision Guest&Lecture:&Marius&Cătălin&Iordan&& CS&131&8&Computer&Vision:&Foundations&and&Applications& 01&December&2014 1.

More information

Deep learning and non-negative matrix factorization in recognition of mammograms

Deep learning and non-negative matrix factorization in recognition of mammograms Deep learning and non-negative matrix factorization in recognition of mammograms Bartosz Swiderski Faculty of Applied Informatics and Mathematics Warsaw University of Life Sciences, Warsaw, Poland bartosz_swiderski@sggw.pl

More information

International Journal for Science and Emerging

International Journal for Science and Emerging International Journal for Science and Emerging ISSN No. (Online):2250-3641 Technologies with Latest Trends 8(1): 7-13 (2013) ISSN No. (Print): 2277-8136 Adaptive Neuro-Fuzzy Inference System (ANFIS) Based

More information

Segmentation of Cell Membrane and Nucleus by Improving Pix2pix

Segmentation of Cell Membrane and Nucleus by Improving Pix2pix Segmentation of Membrane and Nucleus by Improving Pix2pix Masaya Sato 1, Kazuhiro Hotta 1, Ayako Imanishi 2, Michiyuki Matsuda 2 and Kenta Terai 2 1 Meijo University, Siogamaguchi, Nagoya, Aichi, Japan

More information

Attentional Masking for Pre-trained Deep Networks

Attentional Masking for Pre-trained Deep Networks Attentional Masking for Pre-trained Deep Networks IROS 2017 Marcus Wallenberg and Per-Erik Forssén Computer Vision Laboratory Department of Electrical Engineering Linköping University 2014 2017 Per-Erik

More information

Intelligent Edge Detector Based on Multiple Edge Maps. M. Qasim, W.L. Woon, Z. Aung. Technical Report DNA # May 2012

Intelligent Edge Detector Based on Multiple Edge Maps. M. Qasim, W.L. Woon, Z. Aung. Technical Report DNA # May 2012 Intelligent Edge Detector Based on Multiple Edge Maps M. Qasim, W.L. Woon, Z. Aung Technical Report DNA #2012-10 May 2012 Data & Network Analytics Research Group (DNA) Computing and Information Science

More information

Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation

Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation U. Baid 1, S. Talbar 2 and S. Talbar 1 1 Department of E&TC Engineering, Shri Guru Gobind Singhji

More information

Motivation: Attention: Focusing on specific parts of the input. Inspired by neuroscience.

Motivation: Attention: Focusing on specific parts of the input. Inspired by neuroscience. Outline: Motivation. What s the attention mechanism? Soft attention vs. Hard attention. Attention in Machine translation. Attention in Image captioning. State-of-the-art. 1 Motivation: Attention: Focusing

More information

Reading Assignments: Lecture 18: Visual Pre-Processing. Chapters TMB Brain Theory and Artificial Intelligence

Reading Assignments: Lecture 18: Visual Pre-Processing. Chapters TMB Brain Theory and Artificial Intelligence Brain Theory and Artificial Intelligence Lecture 18: Visual Pre-Processing. Reading Assignments: Chapters TMB2 3.3. 1 Low-Level Processing Remember: Vision as a change in representation. At the low-level,

More information

A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images

A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images A convolutional neural network to classify American Sign Language fingerspelling from depth and colour images Ameen, SA and Vadera, S http://dx.doi.org/10.1111/exsy.12197 Title Authors Type URL A convolutional

More information

Image-Based Estimation of Real Food Size for Accurate Food Calorie Estimation

Image-Based Estimation of Real Food Size for Accurate Food Calorie Estimation Image-Based Estimation of Real Food Size for Accurate Food Calorie Estimation Takumi Ege, Yoshikazu Ando, Ryosuke Tanno, Wataru Shimoda and Keiji Yanai Department of Informatics, The University of Electro-Communications,

More information

Multi-Scale Salient Object Detection with Pyramid Spatial Pooling

Multi-Scale Salient Object Detection with Pyramid Spatial Pooling Multi-Scale Salient Object Detection with Pyramid Spatial Pooling Jing Zhang, Yuchao Dai, Fatih Porikli and Mingyi He School of Electronics and Information, Northwestern Polytechnical University, China.

More information

Diabetic Retinopathy Detection Using Eye Images

Diabetic Retinopathy Detection Using Eye Images CS365:Artificial Intelligence Course Project Diabetic Retinopathy Detection Using Eye Images Mohit Singh Solanki 12419 mohitss@iitk.ac.in Supervisor: Dr. Amitabha Mukherjee April 18, 2015 Abstract Diabetic

More information

CS6501: Deep Learning for Visual Recognition. GenerativeAdversarial Networks (GANs)

CS6501: Deep Learning for Visual Recognition. GenerativeAdversarial Networks (GANs) CS6501: Deep Learning for Visual Recognition GenerativeAdversarial Networks (GANs) Today s Class Adversarial Examples Input Optimization Generative Adversarial Networks (GANs) Conditional GANs Style-Transfer

More information

Skin cancer reorganization and classification with deep neural network

Skin cancer reorganization and classification with deep neural network Skin cancer reorganization and classification with deep neural network Hao Chang 1 1. Department of Genetics, Yale University School of Medicine 2. Email: changhao86@gmail.com Abstract As one kind of skin

More information

arxiv: v2 [cs.cv] 19 Dec 2017

arxiv: v2 [cs.cv] 19 Dec 2017 An Ensemble of Deep Convolutional Neural Networks for Alzheimer s Disease Detection and Classification arxiv:1712.01675v2 [cs.cv] 19 Dec 2017 Jyoti Islam Department of Computer Science Georgia State University

More information

Learning and Adaptive Behavior, Part II

Learning and Adaptive Behavior, Part II Learning and Adaptive Behavior, Part II April 12, 2007 The man who sets out to carry a cat by its tail learns something that will always be useful and which will never grow dim or doubtful. -- Mark Twain

More information

Age Estimation based on Multi-Region Convolutional Neural Network

Age Estimation based on Multi-Region Convolutional Neural Network Age Estimation based on Multi-Region Convolutional Neural Network Ting Liu, Jun Wan, Tingzhao Yu, Zhen Lei, and Stan Z. Li 1 Center for Biometrics and Security Research & National Laboratory of Pattern

More information

Design of Palm Acupuncture Points Indicator

Design of Palm Acupuncture Points Indicator Design of Palm Acupuncture Points Indicator Wen-Yuan Chen, Shih-Yen Huang and Jian-Shie Lin Abstract The acupuncture points are given acupuncture or acupressure so to stimulate the meridians on each corresponding

More information

Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images

Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images Y-Net: Joint Segmentation and Classification for Diagnosis of Breast Biopsy Images Sachin Mehta 1, Ezgi Mercan 1, Jamen Bartlett 2, Donald Weaver 2, Joann G. Elmore 1, and Linda Shapiro 1 1 University

More information

Comparative Analysis of Canny and Prewitt Edge Detection Techniques used in Image Processing

Comparative Analysis of Canny and Prewitt Edge Detection Techniques used in Image Processing Comparative Analysis of Canny and Prewitt Edge Detection Techniques used in Image Processing Nisha 1, Rajesh Mehra 2, Lalita Sharma 3 PG Scholar, Dept. of ECE, NITTTR, Chandigarh, India 1 Associate Professor,

More information

Supplementary Online Content

Supplementary Online Content Supplementary Online Content Ting DS, Cheung CY-L, Lim G, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic

More information

International Journal of Computational Science, Mathematics and Engineering Volume2, Issue6, June 2015 ISSN(online): Copyright-IJCSME

International Journal of Computational Science, Mathematics and Engineering Volume2, Issue6, June 2015 ISSN(online): Copyright-IJCSME Various Edge Detection Methods In Image Processing Using Matlab K. Narayana Reddy 1, G. Nagalakshmi 2 12 Department of Computer Science and Engineering 1 M.Tech Student, SISTK, Puttur 2 HOD of CSE Department,

More information

Tumor Cellularity Assessment. Rene Bidart

Tumor Cellularity Assessment. Rene Bidart Tumor Cellularity Assessment Rene Bidart 1 Goals Find location and class of all cell nuclei: Lymphocyte Cells Normal Epithelial Cells Malignant Epithelial Cells Why: Test effectiveness of pre-surgery treatment

More information

arxiv: v1 [cs.cv] 9 Oct 2018

arxiv: v1 [cs.cv] 9 Oct 2018 Automatic Segmentation of Thoracic Aorta Segments in Low-Dose Chest CT Julia M. H. Noothout a, Bob D. de Vos a, Jelmer M. Wolterink a, Ivana Išgum a a Image Sciences Institute, University Medical Center

More information

Question 1 Multiple Choice (8 marks)

Question 1 Multiple Choice (8 marks) Philadelphia University Student Name: Faculty of Engineering Student Number: Dept. of Computer Engineering First Exam, First Semester: 2015/2016 Course Title: Neural Networks and Fuzzy Logic Date: 19/11/2015

More information

PMR5406 Redes Neurais e Lógica Fuzzy. Aula 5 Alguns Exemplos

PMR5406 Redes Neurais e Lógica Fuzzy. Aula 5 Alguns Exemplos PMR5406 Redes Neurais e Lógica Fuzzy Aula 5 Alguns Exemplos APPLICATIONS Two examples of real life applications of neural networks for pattern classification: RBF networks for face recognition FF networks

More information

Automatic Hemorrhage Classification System Based On Svm Classifier

Automatic Hemorrhage Classification System Based On Svm Classifier Automatic Hemorrhage Classification System Based On Svm Classifier Abstract - Brain hemorrhage is a bleeding in or around the brain which are caused by head trauma, high blood pressure and intracranial

More information

A CONVENTIONAL STUDY OF EDGE DETECTION TECHNIQUE IN DIGITAL IMAGE PROCESSING

A CONVENTIONAL STUDY OF EDGE DETECTION TECHNIQUE IN DIGITAL IMAGE PROCESSING Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 3, Issue. 4, April 2014,

More information

Learning Convolutional Neural Networks for Graphs

Learning Convolutional Neural Networks for Graphs GA-65449 Learning Convolutional Neural Networks for Graphs Mathias Niepert Mohamed Ahmed Konstantin Kutzkov NEC Laboratories Europe Representation Learning for Graphs Telecom Safety Transportation Industry

More information

Computational modeling of visual attention and saliency in the Smart Playroom

Computational modeling of visual attention and saliency in the Smart Playroom Computational modeling of visual attention and saliency in the Smart Playroom Andrew Jones Department of Computer Science, Brown University Abstract The two canonical modes of human visual attention bottomup

More information

Comparison of Two Approaches for Direct Food Calorie Estimation

Comparison of Two Approaches for Direct Food Calorie Estimation Comparison of Two Approaches for Direct Food Calorie Estimation Takumi Ege and Keiji Yanai Department of Informatics, The University of Electro-Communications, Tokyo 1-5-1 Chofugaoka, Chofu-shi, Tokyo

More information

Keywords Fuzzy Logic, Fuzzy Rule, Fuzzy Membership Function, Fuzzy Inference System, Edge Detection, Regression Analysis.

Keywords Fuzzy Logic, Fuzzy Rule, Fuzzy Membership Function, Fuzzy Inference System, Edge Detection, Regression Analysis. Volume 6, Issue 3, March 2016 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Modified Fuzzy

More information

Deep Supervision for Pancreatic Cyst Segmentation in Abdominal CT Scans

Deep Supervision for Pancreatic Cyst Segmentation in Abdominal CT Scans Deep Supervision for Pancreatic Cyst Segmentation in Abdominal CT Scans Yuyin Zhou 1, Lingxi Xie 2( ), Elliot K. Fishman 3, Alan L. Yuille 4 1,2,4 The Johns Hopkins University, Baltimore, MD 21218, USA

More information

Image Captioning using Reinforcement Learning. Presentation by: Samarth Gupta

Image Captioning using Reinforcement Learning. Presentation by: Samarth Gupta Image Captioning using Reinforcement Learning Presentation by: Samarth Gupta 1 Introduction Summary Supervised Models Image captioning as RL problem Actor Critic Architecture Policy Gradient architecture

More information

Edge detection. Gradient-based edge operators

Edge detection. Gradient-based edge operators Edge detection Gradient-based edge operators Prewitt Sobel Roberts Laplacian zero-crossings Canny edge detector Hough transform for detection of straight lines Circle Hough Transform Digital Image Processing:

More information

ACUTE LEUKEMIA CLASSIFICATION USING CONVOLUTION NEURAL NETWORK IN CLINICAL DECISION SUPPORT SYSTEM

ACUTE LEUKEMIA CLASSIFICATION USING CONVOLUTION NEURAL NETWORK IN CLINICAL DECISION SUPPORT SYSTEM ACUTE LEUKEMIA CLASSIFICATION USING CONVOLUTION NEURAL NETWORK IN CLINICAL DECISION SUPPORT SYSTEM Thanh.TTP 1, Giao N. Pham 1, Jin-Hyeok Park 1, Kwang-Seok Moon 2, Suk-Hwan Lee 3, and Ki-Ryong Kwon 1

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis 1 Co-trained convolutional neural networks for automated detection of prostate cancer in multiparametric MRI, 2017, Medical Image Analysis 2 Graph-based prostate extraction in t2-weighted

More information

1 Pattern Recognition 2 1

1 Pattern Recognition 2 1 1 Pattern Recognition 2 1 3 Perceptrons by M.L. Minsky and S.A. Papert (1969) Books: 4 Pattern Recognition, fourth Edition (Hardcover) by Sergios Theodoridis, Konstantinos Koutroumbas Publisher: Academic

More information

Algorithms in Nature. Pruning in neural networks

Algorithms in Nature. Pruning in neural networks Algorithms in Nature Pruning in neural networks Neural network development 1. Efficient signal propagation [e.g. information processing & integration] 2. Robust to noise and failures [e.g. cell or synapse

More information

arxiv: v1 [cs.cv] 13 Jul 2018

arxiv: v1 [cs.cv] 13 Jul 2018 Multi-Scale Convolutional-Stack Aggregation for Robust White Matter Hyperintensities Segmentation Hongwei Li 1, Jianguo Zhang 3, Mark Muehlau 2, Jan Kirschke 2, and Bjoern Menze 1 arxiv:1807.05153v1 [cs.cv]

More information

Shu Kong. Department of Computer Science, UC Irvine

Shu Kong. Department of Computer Science, UC Irvine Ubiquitous Fine-Grained Computer Vision Shu Kong Department of Computer Science, UC Irvine Outline 1. Problem definition 2. Instantiation 3. Challenge 4. Fine-grained classification with holistic representation

More information

Object recognition and hierarchical computation

Object recognition and hierarchical computation Object recognition and hierarchical computation Challenges in object recognition. Fukushima s Neocognitron View-based representations of objects Poggio s HMAX Forward and Feedback in visual hierarchy Hierarchical

More information

arxiv: v2 [cs.cv] 8 Mar 2018

arxiv: v2 [cs.cv] 8 Mar 2018 Automated soft tissue lesion detection and segmentation in digital mammography using a u-net deep learning network Timothy de Moor a, Alejandro Rodriguez-Ruiz a, Albert Gubern Mérida a, Ritse Mann a, and

More information

Using Deep Convolutional Networks for Gesture Recognition in American Sign Language

Using Deep Convolutional Networks for Gesture Recognition in American Sign Language Using Deep Convolutional Networks for Gesture Recognition in American Sign Language Abstract In the realm of multimodal communication, sign language is, and continues to be, one of the most understudied

More information

COMP9444 Neural Networks and Deep Learning 5. Convolutional Networks

COMP9444 Neural Networks and Deep Learning 5. Convolutional Networks COMP9444 Neural Networks and Deep Learning 5. Convolutional Networks Textbook, Sections 6.2.2, 6.3, 7.9, 7.11-7.13, 9.1-9.5 COMP9444 17s2 Convolutional Networks 1 Outline Geometry of Hidden Unit Activations

More information

using deep learning models to understand visual cortex

using deep learning models to understand visual cortex using deep learning models to understand visual cortex 11-785 Introduction to Deep Learning Fall 2017 Michael Tarr Department of Psychology Center for the Neural Basis of Cognition this lecture A bit out

More information

Designing Caption Production Rules Based on Face, Text and Motion Detections

Designing Caption Production Rules Based on Face, Text and Motion Detections Designing Caption Production Rules Based on Face, Text and Motion Detections C. Chapdelaine *, M. Beaulieu, L. Gagnon R&D Department, Computer Research Institute of Montreal (CRIM), 550 Sherbrooke West,

More information

DEEP LEARNING BASED VISION-TO-LANGUAGE APPLICATIONS: CAPTIONING OF PHOTO STREAMS, VIDEOS, AND ONLINE POSTS

DEEP LEARNING BASED VISION-TO-LANGUAGE APPLICATIONS: CAPTIONING OF PHOTO STREAMS, VIDEOS, AND ONLINE POSTS SEOUL Oct.7, 2016 DEEP LEARNING BASED VISION-TO-LANGUAGE APPLICATIONS: CAPTIONING OF PHOTO STREAMS, VIDEOS, AND ONLINE POSTS Gunhee Kim Computer Science and Engineering Seoul National University October

More information

Humans and deep networks largely agree on which kinds of variation make object recognition harder

Humans and deep networks largely agree on which kinds of variation make object recognition harder arxiv:164.6486v1 [ccv] 21 Apr 216 Humans and deep networks largely agree on which kinds of variation make object recognition harder Saeed Reza Kheradpisheh 1, Masoud Ghodrati 2, Mohammad Ganjtabesh 1,

More information

Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) Convolutional Neural Networks (CNN) Algorithm and Some Applications in Computer Vision Luo Hengliang Institute of Automation June 10, 2014 Luo Hengliang (Institute of Automation) Convolutional Neural Networks

More information

Hierarchical Convolutional Features for Visual Tracking

Hierarchical Convolutional Features for Visual Tracking Hierarchical Convolutional Features for Visual Tracking Chao Ma Jia-Bin Huang Xiaokang Yang Ming-Husan Yang SJTU UIUC SJTU UC Merced ICCV 2015 Background Given the initial state (position and scale), estimate

More information

High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks

High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks Krzysztof J. Geras Joint work with Kyunghyun Cho, Linda Moy, Gene Kim, Stacey Wolfson and Artie Shen. GTC 2017

More information

EXTRACTION OF RETINAL BLOOD VESSELS USING IMAGE PROCESSING TECHNIQUES

EXTRACTION OF RETINAL BLOOD VESSELS USING IMAGE PROCESSING TECHNIQUES EXTRACTION OF RETINAL BLOOD VESSELS USING IMAGE PROCESSING TECHNIQUES T.HARI BABU 1, Y.RATNA KUMAR 2 1 (PG Scholar, Dept. of Electronics and Communication Engineering, College of Engineering(A), Andhra

More information

Cover Page. Author: Wang, Ancong Title: Automatic quantification of intravascular optical coherence tomography Issue Date:

Cover Page. Author: Wang, Ancong Title: Automatic quantification of intravascular optical coherence tomography Issue Date: Cover Page The handle http://hdl.handle.net/1887/29690 holds various files of this Leiden University dissertation Author: Wang, Ancong Title: Automatic quantification of intravascular optical coherence

More information

Computational Perception /785. Auditory Scene Analysis

Computational Perception /785. Auditory Scene Analysis Computational Perception 15-485/785 Auditory Scene Analysis A framework for auditory scene analysis Auditory scene analysis involves low and high level cues Low level acoustic cues are often result in

More information

LUNG CANCER continues to rank as the leading cause

LUNG CANCER continues to rank as the leading cause 1138 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 24, NO. 9, SEPTEMBER 2005 Computer-Aided Diagnostic Scheme for Distinction Between Benign and Malignant Nodules in Thoracic Low-Dose CT by Use of Massive

More information

arxiv: v2 [cs.cv] 29 Jan 2019

arxiv: v2 [cs.cv] 29 Jan 2019 Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification Ivo M. Baltruschat 1,2,, Hannes Nickisch 3, Michael Grass 3, Tobias Knopp 1,2, and Axel Saalbach 3 arxiv:1803.02315v2 [cs.cv]

More information

Implementation of Automatic Retina Exudates Segmentation Algorithm for Early Detection with Low Computational Time

Implementation of Automatic Retina Exudates Segmentation Algorithm for Early Detection with Low Computational Time www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 5 Issue 10 Oct. 2016, Page No. 18584-18588 Implementation of Automatic Retina Exudates Segmentation Algorithm

More information

Automatic Context-Aware Image Captioning

Automatic Context-Aware Image Captioning Technical Disclosure Commons Defensive Publications Series May 23, 2017 Automatic Context-Aware Image Captioning Sandro Feuz Sebastian Millius Follow this and additional works at: http://www.tdcommons.org/dpubs_series

More information

Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition

Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition Charles F. Cadieu, Ha Hong, Daniel L. K. Yamins, Nicolas Pinto, Diego Ardila, Ethan A. Solomon, Najib

More information

EARLY STAGE DIAGNOSIS OF LUNG CANCER USING CT-SCAN IMAGES BASED ON CELLULAR LEARNING AUTOMATE

EARLY STAGE DIAGNOSIS OF LUNG CANCER USING CT-SCAN IMAGES BASED ON CELLULAR LEARNING AUTOMATE EARLY STAGE DIAGNOSIS OF LUNG CANCER USING CT-SCAN IMAGES BASED ON CELLULAR LEARNING AUTOMATE SAKTHI NEELA.P.K Department of M.E (Medical electronics) Sengunthar College of engineering Namakkal, Tamilnadu,

More information

Convolutional Neural Networks for Estimating Left Ventricular Volume

Convolutional Neural Networks for Estimating Left Ventricular Volume Convolutional Neural Networks for Estimating Left Ventricular Volume Ryan Silva Stanford University rdsilva@stanford.edu Maksim Korolev Stanford University mkorolev@stanford.edu Abstract End-systolic and

More information

7.1 Grading Diabetic Retinopathy

7.1 Grading Diabetic Retinopathy Chapter 7 DIABETIC RETINOPATHYGRADING -------------------------------------------------------------------------------------------------------------------------------------- A consistent approach to the

More information

The Impact of Visual Saliency Prediction in Image Classification

The Impact of Visual Saliency Prediction in Image Classification Dublin City University Insight Centre for Data Analytics Universitat Politecnica de Catalunya Escola Tècnica Superior d Enginyeria de Telecomunicacions de Barcelona Eric Arazo Sánchez The Impact of Visual

More information

STDP-based spiking deep convolutional neural networks for object recognition

STDP-based spiking deep convolutional neural networks for object recognition arxiv:1611.01421v3 [cs.cv] 25 Dec 2017 This manuscript is published in Neural Networks. Please cite it as: Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T., STDP-based spiking deep convolutional

More information

arxiv: v2 [cs.cv] 3 Jun 2018

arxiv: v2 [cs.cv] 3 Jun 2018 S4ND: Single-Shot Single-Scale Lung Nodule Detection Naji Khosravan and Ulas Bagci Center for Research in Computer Vision (CRCV), School of Computer Science, University of Central Florida, Orlando, FL.

More information

Supplementary method. a a a. a a a. h h,w w, then the size of C will be ( h h + 1) ( w w + 1). The matrix K is

Supplementary method. a a a. a a a. h h,w w, then the size of C will be ( h h + 1) ( w w + 1). The matrix K is Deep earning Radiomics of Shear Wave lastography Significantly Improved Diagnostic Performance for Assessing iver Fibrosis in Chronic epatitis B: A Prospective Multicenter Study Supplementary method Mathematical

More information

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation

A deep learning model integrating FCNNs and CRFs for brain tumor segmentation A deep learning model integrating FCNNs and CRFs for brain tumor segmentation Xiaomei Zhao 1,2, Yihong Wu 1, Guidong Song 3, Zhenye Li 4, Yazhuo Zhang,3,4,5,6, and Yong Fan 7 1 National Laboratory of Pattern

More information

arxiv: v2 [cs.cv] 22 Mar 2018

arxiv: v2 [cs.cv] 22 Mar 2018 Deep saliency: What is learnt by a deep network about saliency? Sen He 1 Nicolas Pugeault 1 arxiv:1801.04261v2 [cs.cv] 22 Mar 2018 Abstract Deep convolutional neural networks have achieved impressive performance

More information

Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks

Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks Joseph Antony, Kevin McGuinness, Noel E O Connor, Kieran Moran Insight Centre for Data Analytics, Dublin City

More information

Shu Kong. Department of Computer Science, UC Irvine

Shu Kong. Department of Computer Science, UC Irvine Ubiquitous Fine-Grained Computer Vision Shu Kong Department of Computer Science, UC Irvine Outline 1. Problem definition 2. Instantiation 3. Challenge and philosophy 4. Fine-grained classification with

More information

Simultaneous Estimation of Food Categories and Calories with Multi-task CNN

Simultaneous Estimation of Food Categories and Calories with Multi-task CNN Simultaneous Estimation of Food Categories and Calories with Multi-task CNN Takumi Ege and Keiji Yanai The University of Electro-Communications, Tokyo 1 Introduction (1) Spread of meal management applications.

More information

Study And Development Of Digital Image Processing Tool For Application Of Diabetic Retinopathy

Study And Development Of Digital Image Processing Tool For Application Of Diabetic Retinopathy Study And Development O Digital Image Processing Tool For Application O Diabetic Retinopathy Name: Ms. Jyoti Devidas Patil mail ID: jyot.physics@gmail.com Outline 1. Aims & Objective 2. Introduction 3.

More information

196 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 2, NO. 3, SEPTEMBER 2010

196 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 2, NO. 3, SEPTEMBER 2010 196 IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, VOL. 2, NO. 3, SEPTEMBER 2010 Top Down Gaze Movement Control in Target Search Using Population Cell Coding of Visual Context Jun Miao, Member, IEEE,

More information

Detection of Glaucoma and Diabetic Retinopathy from Fundus Images by Bloodvessel Segmentation

Detection of Glaucoma and Diabetic Retinopathy from Fundus Images by Bloodvessel Segmentation International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 8958, Volume-5, Issue-5, June 2016 Detection of Glaucoma and Diabetic Retinopathy from Fundus Images by Bloodvessel Segmentation

More information

arxiv: v1 [cs.cv] 28 Dec 2018

arxiv: v1 [cs.cv] 28 Dec 2018 Salient Object Detection via High-to-Low Hierarchical Context Aggregation Yun Liu 1 Yu Qiu 1 Le Zhang 2 JiaWang Bian 1 Guang-Yu Nie 3 Ming-Ming Cheng 1 1 Nankai University 2 A*STAR 3 Beijing Institute

More information

LUNG NODULE DETECTION SYSTEM

LUNG NODULE DETECTION SYSTEM LUNG NODULE DETECTION SYSTEM Kalim Bhandare and Rupali Nikhare Department of Computer Engineering Pillai Institute of Technology, New Panvel, Navi Mumbai, India ABSTRACT: The Existing approach consist

More information

Acoustic Signal Processing Based on Deep Neural Networks

Acoustic Signal Processing Based on Deep Neural Networks Acoustic Signal Processing Based on Deep Neural Networks Chin-Hui Lee School of ECE, Georgia Tech chl@ece.gatech.edu Joint work with Yong Xu, Yanhui Tu, Qing Wang, Tian Gao, Jun Du, LiRong Dai Outline

More information

POC Brain Tumor Segmentation. vlife Use Case

POC Brain Tumor Segmentation. vlife Use Case Brain Tumor Segmentation vlife Use Case 1 Automatic Brain Tumor Segmentation using CNN Background Brain tumor segmentation seeks to separate healthy tissue from tumorous regions such as the advancing tumor,

More information

Lesson 6 Learning II Anders Lyhne Christensen, D6.05, INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS

Lesson 6 Learning II Anders Lyhne Christensen, D6.05, INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS Lesson 6 Learning II Anders Lyhne Christensen, D6.05, anders.christensen@iscte.pt INTRODUCTION TO AUTONOMOUS MOBILE ROBOTS First: Quick Background in Neural Nets Some of earliest work in neural networks

More information

Image processing mammography applications

Image processing mammography applications Image processing mammography applications Isabelle Bloch Isabelle.Bloch@telecom-paristech.fr http://perso.telecom-paristech.fr/bloch LTCI, Télécom ParisTech Mammography p.1/27 Image processing for mammography

More information

Early Diagnosis of Autism Disease by Multi-channel CNNs

Early Diagnosis of Autism Disease by Multi-channel CNNs Early Diagnosis of Autism Disease by Multi-channel CNNs Guannan Li 1,2, Mingxia Liu 2, Quansen Sun 1(&), Dinggang Shen 2(&), and Li Wang 2(&) 1 School of Computer Science and Engineering, Nanjing University

More information

Patients EEG Data Analysis via Spectrogram Image with a Convolution Neural Network

Patients EEG Data Analysis via Spectrogram Image with a Convolution Neural Network Patients EEG Data Analysis via Spectrogram Image with a Convolution Neural Network Longhao Yuan and Jianting Cao ( ) Graduate School of Engineering, Saitama Institute of Technology, Fusaiji 1690, Fukaya-shi,

More information