Multiple-object Working Memory A Model for Behavioral Performance

Size: px
Start display at page:

Download "Multiple-object Working Memory A Model for Behavioral Performance"

Transcription

1 Multiple-object Working Memory A Model for Behavioral Performance D.J. Amit 1,, A. Bernacchia 1 and V. Yakovlev 3 1 Dipartimento di Fisica, Istituto di Fisica (INFM), Università di Roma La Sapienza, Piazzale A. Moro 1, 00185, Roma, Italy, Racah Institute of Physics and 3 Institute of Life Sciences, Hebrew University, Jerusalem, Israel In a psychophysics experiment, monkeys were shown a sequence of two to eight images, randomly chosen out of a set of 16, each image followed by a delay interval, the last image in the sequence being a repetition of any (one) of the images shown in the sequence. The monkeys learned to recognize the repetition of an image. The performance level was studied as a function of the number of images separating cue (image that will be repeated) from match for different sequence lengths, as well as at fixed cue match separation versus length of sequence. These experimental results are interpreted as features of multi-item working memory in the framework of a recurrent neural network. It is shown that a model network can sustain multi-item working memory. Fluctuations due to the finite size of the network, together with a single extra ingredient, related to expectation of reward, account for the dependence of the performance on the cue-position, as well as for the dependence of performance on sequence length for fixed cue match separation. Introduction The internal (cortical) structure of working memory (WM), as a tool for cognitive behavior, as well as its neurophysiological correlates, are of central interest in the effort to decipher the computational mysteries of the brain. Enhanced selective delay activity in associative parts of the cortex has been identified as a convincing candidate for a neural correlate of working memory (Fuster and Alexander, 1971; Kubota and Niki, 1971; Miyashita and Chang, 1988; Funahashi et al., 1989). On the theoretical side, such delay activity distributions, representing single items, have been accounted for by formation, during training or innately, of a Hebbian synaptic structure in recurrent networks, i.e. the appearance of stimulus-selective, sub-populations of excitatory cells within a cortical module, which have potentiated synapses between them and weakened synapses with other cells. Such structures can maintain selective delay activity (Amit, 1995; Amit and Brunel, 1997a,b; Brunel and Wang, 001). In a seminal set of experiments (Miller et al., 1996), monkeys were trained to recognize the repetition of the first image in a sequence, disregarding intervening images. With some more training, the monkeys learned to ignore also intervening repeated pairs. It was observed, in single-cell recordings, that neural delay activity correlates of the working memory of the first stimulus in a sequence were destroyed in inferotemporal (IT) cortex by the intervening stimuli, but were preserved, despite intervening stimuli, in pre-frontal (PF) cortex. This finding could be interpreted as implying either that PF cortex screens out intervening stimuli and maintains WM only of the first stimulus, as modeled by Brunel and Wang (Brunel and Wang, 001), or that WM could be structured to preserve the representations of several images in a sequence of images, as the union of the subpopulations representing the WM of each of the presented images. The need for multi-item WM was been recognized >50 years ago: There are indications that, prior to the internal or overt enunciation of the sentence, an aggregate of word units is partially activated or readied. Evidence for this comes from contaminations of speech and writing (Lashley, 1951). In thinking of language, the formation of a phrase, spoken or written, would require the activation of its underlying elements (multi-item WM) before syntax can be applied to expose its surface structure. Yakovlev et al. (Yakovlev et al., 000), stimulated by the initial difficulty that monkeys encountered in eliminating false positives in ABBA sequences (Miller et al., 1996), tested this alternative. Using sequences of from two to eight images (selected at random out of 16), in each of which the last image is a repetition of (any) one of the preceding images (see, for example, Fig. 1a). Each image is presented for 1 s, followed by a delay interval of either 1 or 3 s. Monkeys, rewarded for noticing the repetition, learn to perform well. In each trial, the number of images and their identities before repetition, the position in the sequence of the image to be repeated and the length of the delays are all chosen at random. (Additional details of the experimental study are to be presented in a forthcoming paper and the details of the presentation of the cited abstract can be viewed at: titanus.roma1.infn.it/docs/ storage/eilatposter.pdf.) We define the following variables (Fig. 1a): n is the length of the sequence, the number of images presented before the repetition; q is the position of the image which is eventually repeated; d is the distance between the cue and the repeated image, i.e. d = n q + 1. In Figure 1a, n = 5, q = and d = 4. There are therefore two independent variables, which we take as d and n. It is found that: the total performance level (percentage correct responses for all sequences of a given length n) decreases with increasing length of sequence, tending to a f lat asymptote (Fig. 1b); for sequence of fixed length n, performance decreases with increasing cue match distance d (Fig. 1c), equivalent to decreasing q; at fixed cue match separation d, performance improves with sequence length n (Fig. 1d), equivalent to increasing q. We model these experimental results with a double aim: to test whether modeling at the neural level can be as successful in the multi-item case as for single items and to use a successful model to provide cues for subsequent (single-unit) neurophysiological and cognitive studies. Comments 1. Bars in Figure 1b are averages over experimental data included in either Figure 1c or d, over all trials of the same sequence length n, irrespective of the position q of the cue in the sequence (hence for all allowed values of d).. The points in Figure 1c,d are identical. The only difference is Oxford University Press 003. All rights reserved. Cerebral Cortex May 003;13: ; /03/$4.00

2 Figure 1. Multiple item working memory (experiment). (a) The structure of the trial, defining n number of images in sequence prior to repetition; q, cue position (defined by repeating stimulus); d, distance of cue to match (d = n q + 1). In the figure, n = 5, q = and d = 4. All vary at random from trial to trial. (b)overall performance versus length of trial, for all allowable values of d. (c) Performance increase at fixed n with increasing cue position q, equivalent to decrease with cue match separation d(d = n q + 1). Each point represents the fraction of trials of a given q (abscissa) and given sequence length n, in which repetition was recognized (points connected by lines). (d) Performance improvement with sequence length at fixed cue match separation: same points as in (c); points connected are of equal cue match separation d. Increasing q implies increasing n. that in Figure 1c the lines connect points of equal sequence length n (and, hence, varying d), while in Figure 1d they connect points of equal separation d (and varying sequence length n). 3. From the cognitive point of view, decay of performance with cue match separation is natural: It is more difficult to hold in WM a representation of an item the greater the number of successive stimuli and/or the longer the time elapsed. To model the observed phenomenon one needs a network which can sustain multiple-item WM. In the absence of noise, items present in WM would tend to become equivalent and, hence, no decrease of performance as cue match separation increases, and all memories would be lost together (blackout); this is exemplified in Figure a,b. In contrast, what is observed is that older elements get lost (to WM) sooner and stochastically. This gap is bridged in our model by the reintroduction of noise, which is a natural feature of a microscopic model (see below). 4. That performance at equal separation improves with sequence length in other words, when more, irrelevant, stimuli precede the cue of the matching pair is surprising. To model the improvement of performance for longer sequences, one needs multiple WM with increasing stability, which we model by an external element: spiking local networks of excitatory and inhibitory neurons require a significant number of non-selective afferent currents to the neurons of the module (Van Vreeswijk and Sompolinsky, 1996; Amit and Brunel, 1997a). We assume that as the sequence becomes longer and no reward is obtained, reward expectation (RE) increases, expressed by a reduction of the non-selective external afferent (see below). This hypothesis is directly controllable in physiological experiments. Methods The Microscopic System The network consists of excitatory and inhibitory integrate-and-fire (IF) neurons. The dynamic of depolarization V i of neuron i is: i d i dvi = V t V I t g dt syn i 0 i i where i is the leak time, V 0 is the membrane resting potential (equal for all neurons) and g i is membrane conductance. When V i reaches (1) 436 A Multiple-object Working Memory Model Amit et al.

3 Figure. Network rate dynamics: average rates in all populations during presentation of a sequence of seven images. Repetition is not simulated nor presented (see text). (a, b) No noise nor reward-expectation (RE): (a) 18 rates (1,...,16, background, inhibition) versus time. Square wave at bottom: presentation protocol. Scenario: 1s stimulus-1, 1s delay activity, 1s stimulus-; second delay period, etc. During presentation of stimulus-1, one population (color-coded) emits at 8 Hz; inhibition is at 1 Hz; non-stimulated populations around 3 Hz. Rate in first delay period: 19 Hz. Between and 4 s, two populations are in WM; inhibition rises and emission rate in double attractor (-item WM) decreases, due to rise in inhibition; following presentation of stimulus-3, three populations coexist in WM, higher inhibition, lower delay rates. Until a 6-item WM is set active at 11 s. Following the presentation of stimulus-7, the 6-attractor collapses, all memory erased and only population-7 remains in 1-item delay activity. (b) Complementary representation of the dynamics in (a): color-coded rate in each population (abscissa) versus time (ordinate). Rate color code at right. Same data as in (a). 1,,3,4,5,6-item WM are observed, then, following the presentation of stimulus-7, blackout and only population-7 remains in WM. Parameters: ν ext = 3.8 Hz, J + = 14, f = 0.01, ν C = 0.07 Hz. (c, d) Network dynamics with noise and RE: (c) representation as in (a), rates fluctuate on short time scale. Inhibition rate decreases with time and delay rates increase due to RE. First population falls out in the delay period, following stimulus-5. Population-6 falls out during presentation of 7. (d) The same data as in (b) are presented, color-coded population rate dynamics. Additional parameters: Q = mvms 0.5, ν ext = 0.07 Hz. threshold, θ, a spike is emitted and the neuron is repolarized at reset potential V r (both uniform among the neurons) and is blocked for absolute refractory period arp i. The total synaptic current I syn i (t) [see Supplementary Material, equation (9)], arrives via three types of receptors: AMPA for collateral and external excitatory connections; NMDA for collateral excitation; and GABA for collateral inhibition. When a spike reaches a synapse, the AMPA current is characterized by an instantaneous rise and fast decay ( ms), NMDA current has a fast rise ( ms) and very slow decay (100 ms) and GABA current exhibits an instantaneous rise and slow decay (10 ms) (Brunel and Wang, 001). Currents depend on the post-synaptic depolarization, linearly for AMPA and GABA. Because of the magnesium blockade of the NMDA receptor at low post-synaptic potential, the NMDA current is non-linear. This current saturates for high afferent rates (see Supplementary Material). In the network, each neuron receives C E collateral excitatory synapses and C I inhibitory synapses, as well as C ext external, non-selective excitatory connections. Initially, biologically plausible synaptic efficacies are distributed at random and it is checked that spontaneous activity is stable at plausible rates. This requires that collateral inhibition dominate collateral excitation. Hence, it is left to external, non-selective afferents to keep neurons spiking (Van Vreeswijk and Sompolinsky 1996; Amit and Brunel, 1997a,b). Extended Mean-field Simulation When stimuli are non-overlapping, the network divides into separate functional populations, each of which is described by the mean variables of its neurons. In our case, there are 16 populations, each corresponding to neurons visually responsive to one of the images, one population of all excitatory neurons non-responsive to any stimulus and one of all inhibitory neurons. Neurons in each of these populations are functionally identified in that 1. they receive (on average) currents with the same distribution, both from outside the network and from collateral connections, whether the system is stimulated or not; the current is characterized by its mean and variance (Amit and Brunel, 1997a);. structuring produces (on average) a distinct synaptic structure connecting them to each other and to other neurons in the network. The assumption of distinct populations for each image renders neurons with perfectly sharp tuning curves. This is, of course, not very realistic. It Cerebral Cortex May 003, V 13 N 5 437

4 is, however, essential to be able to proceed with the very effective mean-field theory. On the other hand, it is not a limitation for a full microscopic simulation and we do not expect qualitative differences. Such simulations are being carried out. The simulation process starts by selecting a set of parameters for the neurons, the synapses and the network. Twenty-nine (!) out of the first 30 parameters in Table 1, defining the neurons on the receiving and the emitting ends, and the number of connections, are taken verbatim from Brunel and Wang (Brunel and Wang, 001), where they were selected for biological plausibility. Only g G E has been increased by 3%, to render spontaneous activity more stable. The parameters at our disposal are related to the structuring of the network, the structure of the stimuli and of the task, i.e. the coding level (fraction of excitatory neurons in a sub-population coding for a given image) f, the non-selective afferent rate, maintaining spontaneous activity, ν ext (see above), the potentiation amplitude, J +, (due to learning of each individual stimulus); the contrast rate, ν C, (the selective increase in external rate during the presentation of an image); the noise amplitude Q (mimicking finite-size fluctuations) and the RE parameter, ν ext (the decrease of the non-selective external input with increasing trial length). The structuring of the network follows a selection of 16 visually responsive sub-populations, each composed of a fraction f of the excitatory neurons. The recurrent synapses are potentiated (on average) by a factor J + within each population and depressed from each population to all other excitatory neurons. Depression is taken equal to J = (1 fj+)/(1 f) so the spontaneous rate does not vary when structuring takes place. When training renders J + large enough, the neurons in each population once stimulated can maintain selective delay activity when the stimulus is removed (Amit and Brunel, 1997a,b). An initial set of 18 rates, 18 mean depolarizations, their corresponding 18 variances (this is the sense in which MF is extended) and 18 effective time constants is selected (effective due to receptor dynamics). Eighteen new effective integration time constants, means and variances of the afferent currents to neurons in the different functional populations are computed from µ L NM g eff ζ t = h 1+ Cζ J ζ ρ g ζ is the membrane integration time constant of post-synaptic neurons in population; eff, µ and σ are the corresponding effective time constant, mean and variance of the current [the variance is approximated by its external (excitatory) part]. These quantities are related to the renormalized dynamics, in which all terms linearized as functions of the depolarization are grouped together in the drift term. The sums are over the presynaptic populations, ζ, each of which contributes with C ζ connections (note that we assume that the number of connections arriving to any type of neuron depends only on the pre-synaptic population) and for each of those over the different receptors r: those would be AMPA (r = A) receptors for neurons external to the module, AMPA and NMDA (r = A, N) receptors for excitatory collateral neurons and GA BA (r = G) for inter-neurons; J ζ is the synaptic efficacy from neurons in population ζ to those of population. In the absence of structuring, its value is 1 (see above); g is the conductance of the post-synaptic membrane, while g r ζ is the conductance of the receptor r on the synapse from ζ to. The index ζ will be omitted on g r ζ because in our network (structured or unstructured), r determines univocally ζ. V ζ inv is the inversion potential of neurons in the presynaptic population ζ and V 0 is the post-synaptic resting potential (equal for all neurons). S r ζ(t) is the synaptic gating variable corresponding to receptor r, which depends on r O QP 1 r r r btg Sζbtg eff t ζ t Cζ J ζ Vζ V g r inv r r = e j χbtg Sζbtg 0 g ζ r g σ btg ext A inv eff = VE Vbtg Cextνextbtg btg g () (3) (4) Table 1 Parameters of neurons, synapses, receptors, stimuli and structuring Excitatory connections c E = 800 Inhibitory connections C I = 00 External (excitatory) connections C ext = 800 Resting potential V 0 = 70 mv Threshold θ = 50mV Reset potential V r = 60 mv Excitatory membrane conductance g E = 5 ns Inhibitory membrane conductance g I = 0 ns Excitatory membrane leak time e = Inhibitory membrane leak time I = 10 ms Excitatory absolute refractory period E arp = ms Inhibitory absolute refractory period I arp = 1 ms AMPA current decay time ampa = ms GABA current decay time gaba = 10 ms NMDA current decay time decay NMDA = 100 ms NMDA current rise time rise NMDA = ms AMPA (external) conductance on excitatory post-synaptic g Aext E =.08 ns AMPA (external) conductance on inhibitory post-synaptic g Aext I = 1.6 ns AMPA (recurrent) conductance on excitatory post-synaptic g A E = ns AMPA (recurrent) conductance on inhibitory post-synaptic g A I = ns GABA conductance on excitatory post-synaptic g G E = 1.9 ns GABA conductance on inhibitory post-synaptic g G I = ns NMDA conductance on excitatory post-synaptic g N E = 0.39 ns NMDA conductance on inhibitory post-synaptic g N I = 0.58 ns Inversion potential on excitatory pre-synaptic V inv E = 0 mv Inversion potential on inhibitory pre-synaptic V inv I = 70 mv Mg + ion concentration [Mg + ] = 1 mm NMDA saturation parameter α = 500 Hz Inverse Mg + blockade potential β = 0.06 mv 1 Strength of Mg + blockade γ = [mg + ]/3.57 mm = 0.8 Number of coded stimuli p = 16 Coding level f = 0.01 Potentiation J + = 14 Contrast rate ν C = 0.07 Hz the presynaptic rates in population ζ. Its mean <S r h> depends linearly on rates for AMPA and GABA, and it saturates for NMDA. ρ N and χ N take into account the effect of the NMDA current on post-synaptic neurons of population. The mean-field expressions for <S r ζ>, ρ r and χ r the mean membrane potential <V >, are given in the Supplementary Material, equations (14 19). The Mean Field dynamic is defined by d i dm eff t M t V µ t Q t dt = Γ eff dσ btg Σ btg σ btg dt = + which represent the evolution of the depolarization mean M and variance Σ of population in the absence of a threshold, i.e. for small eff ν (<0.05 in spontaneous activity, <0. in delay activity). On the right-hand side of equation 1, we have already introduced the surrogate (finite-size) Gaussian noise term: QΓ(t), added to the evolution of the mean depolarization (see below). Given the quantities M (t), Σ and eff ν(t), one obtains the average emission rate in population e eff arp ν t = Φ M t, Σ t, t, The form of the IF-neuron s response function Φ, given the statistics of its afferent current, is (Ricciardi, 1977; Tuckwell, 1988) e j 1 Φ µ, σ,, = + Ψ µ, σ, θ µ F I Ψ µ σ σ ,, µ e j = HG K J + z A A A π 1+ r x V r erf x e dx σ e j j (5) (6) (7) (8) 438 A Multiple-object Working Memory Model Amit et al.

5 in which the correction for finite integration time, A, of the external AMPA noise has been taken into account (Brunel and Sergi, 1998; Brunel and Wang, 001) as in equations (0 3) of Brunel and Wang. The mean rates, in turn, enter the computation of the new values of ρ, χ, <S> and <V>, which lead, via equations (14 19) (Supplementary Material), to the new values of eff, µ and σ. Finite-size Noise and Expectation-attention The first simulates the noise due to the finite size of the network, which the mean-field approach neglects. It is represented by a stochastic term, QΓ(t), added to the average current feeding the mean depolarization, equation (5). It is added only to the dynamics of the mean depolarization, where it is expected to have the most effect. Q is the amplitude of this noise and Γ a normal Gaussian process. Even in the presence of NMDA receptors, there are significant size-dependent fluctuations (Compte et al., 000). The effect of reward-expectation is modeled by a decrease of the external afferents (sustaining spontaneous activity): ν ext (equation 1) decreases, upon every presentation, by ν ext. Simulations show that the f luctuating currents can be reasonably approximated by a Gaussian process, whose amplitude depends on the size of the network number of neurons, and/or number of contacts (Brunel and Wang, 001). Protocol A set of between one and seven items is selected and one of those stimuli already presented is designated as match. The network is launched in spontaneous activity and then the stimuli in the sequence are presented with the real time-course of the experimental protocol. The presentation of a stimulus consists of raising the external rate to the corresponding sub-population of neurons by the contrast, i.e. from ν ext to ν ext + ν C. For each pair (n, q), we present 00 sequences with 1 s delays and 00 with 3 s delays. At the end of the delay interval following the last stimulus, we test whether the population of the cue is still alive in WM, by averaging the rate in the population of the cue, over the last 100 ms. The fraction of cases, out of 00 trials, in which it is still in WM is the performance level at this separation for that sequence length (Fig. 4a,b). We lump together trials with different internal sets of delays, as was done in analyzing the experimental data. Results WM Dynamics in Absence of Noise and Reward Expectation MF-theory predicts accurately the different stationary activity states, before, during and following stimulation, observed in simulation of networks of spiking neurons (Amit and Brunel, 1997a,b). When the elements of the network are endowed with synaptic receptor dynamics and a finite synaptic time constant, phenomenology is richer and more stable. Despite added complexity, a MF description proved possible (Brunel and Wang, 001) and we follow this approach here, to be able (computation-wise) to perform the large number of repetitions of trials of long physical duration (real 14 8 s) required. Here, MF theory is extended to non-stationary situations (Amit and Brunel, 1997a), to allow for dynamical simulation of the full experimental protocol (see Methods). In Figure a, we present the rate dynamics of the network without finite-size noise and expectation-attention. Each stimulus of the sequence is presented for 1 s, followed by 1 s delay. Plotted are the average rates in all 18 (color-coded) populations (16 selective to familiar images, all non-selective excitatory cells and all inhibitory cells). Following 100 ms spontaneous activity, stimulus-1 elicits a rate of 8 Hz in population-1, 1 Hz in the inhibitory one and 3 Hz in the 16 non-stimulated populations. It is followed by 1 s delay activity in the stimulated population (19 Hz) and a decrease of the inhibition. Stimulus- is presented, population- emits at 7 Hz for 1s, while the rate in population-1 is a bit lower due to increased inhibition. The delay activity following stimulus- has equal rate in both populations. Note that no rate is seen to go down and the rate of the double WM is lower than that of the single-item WM (due to additional inhibition provoked by the double number of active neurons). Following the presentation of stimulus-6, six populations coexist in delay activity, at 15 Hz. The presentation of stimulus-7 causes a blackout: all six active populations return to spontaneous activity and the network state becomes rapidly identical (in terms of rates) to that following the presentation of the first stimulus, but in population-7. The same story is told in a complementary fashion in Figure b: rates (color-coded) in each population separately (abscissa) versus time (ordinate). The representation as in Figure a facilitates the reading of the rates, while that in Figure b discriminates better the relevant populations. The presentation of a stimulus is seen as a 1 s high rate every s, followed by delay activity at an elevated (but lower) rate. In the interval of 4 s, two populations coexist at elevated rates, then three, four, fuve and six populations, until, at 1 s, upon presentation of the seventh stimulus, only the seventh population remains in elevated activity, all others having returned to spontaneous activity. This dynamics of the cortical module implies the following behavioral pattern. In sequences of up to six images, repetition is recognized, up to a separation of five, with no decrease of performance with separation and no improvement with sequence length at fixed separation. Effect of Finite-size Noise and RE Real networks f luctuate around stationary states, so finite-size noise must supplement MF theory. These f luctuations are absent in MF theory and we reintroduce them ad hoc (see Methods). The amplitude of the noise is a parameter. It was found (Brunel and Wang, 001) that delay activity is stable in a finite range of (non-selective) external afferents: low external rates (currents) cannot sustain delay activity, while too high afferents destroy it. In both cases it is the collateral inhibition that creates the instability. In a wide range between these two situations, the stability of delay activity decreases with increasing external rates [single and multiple (Bernacchia, 001)]. We use this fact to exploit the decrease of external rate due to RE to improve performance for long sequences. Figure c,d presents a sample rate dynamics in the presence of finite-size internal noise and external noise reduction (due to expectation-attention), the analog of Figure a,b. The rates f luctuate on a short time scale, due to finite-size f luctuations. With the passage of time into the trial, inhibition decreases due to the decrease in external afferents and WM rates increase (Brunel and Wang, 001). Narrative: a 5-item (1,, 3, 4, 5) WM state sets in following stimulus-5 and the loss of item-1 at 9.7 s. At 1.5 s, item-6 is lost. Until 9.7 s, the repetition of any of images 1 5 gives a correct (positive) response. Later, repetition of 1 produces error. The richness of the dynamic behavior of the network is exhibited in Figure 3a d. Four sample scenarios are presented, chosen at random from the hundreds of trials run, with 1s delays (Fig. 3a,b) and with 3s delays (Fig. 3c,d). Note the evolution of multi-item delay activity, which propagates for several seconds; the random loss of populations in working memory; that earlier populations tend to be lost earlier (leading to performance decrease with cue match separation); and that some populations tend to hop into delay activity spontaneously (as in Fig. 3b d). The corresponding behavior: in Fig. 3b, for example, if one of images 1 5 is repeated prior to 9.5 s following the start of the trial, response is positive and correct. From 9.5 s on, image 4 has Cerebral Cortex May 003, V 13 N 5 439

6 Figure 3. Sample network rate dynamics, with noise and expectation-attention (RE). Conventions as in Figure b,d. Protocols: stimulus 1 s, delays in (a, b) 1 s in (c, d) 3 s. Scenarios: (a) presentation of stimulus-1, 1 s delay, stimulus-, second delay, stim 3, 4, 5 followed by 5-item WM. At 10.5 s, population- is lost to WM. Following stimulus-7, 6-item WM ( ). Until 10.5 s, repetition of images 1 5 produces correct positive. Later, repetition of leads to error. (b) Items 1 4 enter WM. Item 4 enters spontaneously, at 1 s, before it is presented. It does not lead to a false positive, because it is lost at 4.5 s, while it is presented at 6 s. At 9.5 s, item 4 is lost; at 8 s, item 5 enters and at 11 s, item 3 is lost. (c) At 15 s, item is lost and, following the presentation of item 7, at 4 s, there are six items in WM (1, 3, 4, 5, 6, 7). They all give a correct positive. Item 10 enters spontaneously at 1 s and persists until 16 s, without false positive. (d) Example of the loss of three populations and of long-lived spontaneous elements in WM. Parameters as in Figure. exited WM and its repetition is not recognized, producing an error; after 11 s, repetition of image 3 is not recognized and produces an error. The repetition of each of images 1,, 5 and 6 are recognized (they are still in WM) and, hence, are recalled correctly. Note also that the spontaneous (non-stimulated) activation of WM of item-4 does not lead to a false positive, because by the time item-4 is actually presented (at 6 s), which might have been conceived as a repetition, it is no longer in WM. In Figure 3c, item- is lost at 14 s, while item-11 enters WM spontaneously. In Figure 3d, items 1, and 4 are lost and 13 enters spontaneously. Model Performance Statistics To mimic the experiment, we present sequences of one to seven stimuli. Each trial is run 00 times with 1 s delay intervals and 00 times with 3 s delays. Following a sequence of n images, we imagine the presentation of the repetition (this would be the n + 1th image) and we check which images are still present in WM, i.e. which populations of the sequence presented still have delay activity and which have lost it (see Methods). The surviving populations are classified by their sequence length (n + 1) and by their cue match distance (of d = n q + 1), where q is the ordinal position of the cue. The distribution of these average rates [over the repetitions of trials of fixed (n, q)], has the form shown in Figure 4a,b, where we present histograms of the rate in population q in 100 trials of a given sequence length: q =, n = 4 (d = 3) (Fig. 4a) and q = 1, n = 5 (d = 5) (Fig. 4b). The rates are well separated into trials with rate >10 Hz (WM) and those with rate <5 Hz (spontaneous activity). The fraction of surviving images with given (n, q), out of the total number of 440 A Multiple-object Working Memory Model Amit et al.

7 Figure 4. Model network performance. (a, b) Sample rate distributions in WM across trials: histograms of average rates in a given cue population (number q) following 100 repetitions of trials of length n (hence fixed d). The rate is averaged over the last 100 ms of the delay period following the removal of the nth stimulus. (a) q =, n = 4 (d = 3); (b) q = 1, n = 5 (d = 5). In both cases there is a clear separation of WM rates (>10 Hz) from spontaneous rates. Note the shift of the statistics from high to low rates, on going from (a) to (b), increased d. The fraction of the distribution in the high-rate part of the histogram is defined as the performance level at the given d and n. (c, d) Performance levels in the model versus cue position q. (c) points connected are of equal trial length n (as in Fig. 1c); (d) same data, points connected, equal cue match separation d (as in Fig. 1d). trials corresponding to this pair is our estimate P of the performance level. This point of view is justified by the high performance level in the experiment, together with the assumption that information on images in WM is represented by multiple delay states (see Discussion). Figure 4c,d (same data) presents the performance of the model for the set of 8 (n, q) pairs studied in the experiment: Figure 4c corresponds to Figure 1c and Figure 4d to Figure 1d. The data, as well as the model s output, consist of the combined performance levels with 1 and 3 s delays. Performance of the model is better for short delays and this seems also to be the case for monkeys, except for low-n trials (data not shown). No systematic fitting of parameters was attempted. Beyond the similarity of the figures, the model predictions were found compatible with the data (Hotelling T test) at a confidence level of 95% (T = 0.46 with 546 degrees of freedom). Discussion The model presented here provides a rather complete account of the experimental results in the framework of MF theory, which is the dynamics of average population rates (hence, suppressed noise), with the above two elements added, one internal (finitesize noise) and one external (reward-expectation attention reduction of non-selective external afferents; see Methods). The network, embedding single items in a Hebbian way into its synaptic matrix, develops delay activity for each of the 16 images used in training. For sufficiently strong imprinting (synaptic potentiation) of the single item traces, multi-item WM emerges. In the case studied here, there was WM of up to six items, i.e. the network could sustain, simultaneously, enhanced delay activity for the unions of the cell groups in delay activity of as many items. This is true for every subset (of no more than six, for the parameters used) of the 16 images, in analogy with the spurious states of the Hopfield model (Hopfield, 198; Amit et al., 1985; Amit, 1989). What limits the span of WM is the concomitant rise in inhibition. Moreover, due to the introduction of NMDA receptors, as stimuli are presented in a sequence, the network passes into WM states of increasing multiplicity, rather than into the last presented, in contradistinction to the spurious states in the system of binary neurons. Similar observations, in a Cerebral Cortex May 003, V 13 N 5 441

8 Figure 5. Single cell recordings for recognizing a multiple-working-memory (MWM) cell from an IT cell and from a Miller Desimone PF cell. Schematic PST (rate) histogram of a cell exhibiting elevated delay activity to image-3, but not to image- or image-1. All panels represent the same cell. Left, a critical sequence (1-delay-3-delay-); right, a non-critical sequence (3-delay-1-delay-), leaving PF and MWM undifferentiated. Left (a c, from top down): the IT cell does not respond to image-1 and delay activity is at spontaneous rate; it strongly responds to image-3 followed by elevated delay activity; this delay activity is destroyed by image- (last). The PF cell: does not respond to image-1 followed by delay activity at spontaneous rate; it responds to image-3 but maintains the delay activity (spontaneous) corresponding to image-1 (first); image- does not change the delay activity. The MWM cell does not respond to image-1; has elevated delay activity for image-3. This delay activity persists after the presentation of image-. The delay activity is neither last (IT) nor first (PF). Right (d f): the rate histograms do not distinguish between a potential PF and MWM cell. somewhat different context, have been recently made by Tanaka (Tanaka, 00a,b), who has underlined the sensitivity of various network properties to the A MPA/NMDA ratio, as well as to inhibition. We defer the detailed examination of these effects in our context to when we confront the dynamics of the spiking network, rather than within MF theory. The fact that the network is made up of a finite number of neurons and, hence, that each neuron receives a limited number of pre-synaptic contacts (finite-size), together with the fact that spike emission is stochastic, introduces large f luctuations, especially in selective activity. When network activity expresses delay activity, of any multiplicity, these f luctuations cause, at random times, transitions of some populations in delay activity to spontaneous activity. This eliminates, sporadically, items from WM. The probability that an item s representation exits from WM is essentially independent of the item, but older items are exposed to more attempts at escape. Upon repeated presentation of a sequence, the older the item, the more likely it is to be lost to WM. An analogy is that of radioactive decay: though the disintegration probability of each atom is constant in time, older populations will be more depleted. When reward-expectation is introduced, simulated by a decrease in the non-selective ambient afferent on the module, delay activity becomes more stable with increasing sequence length. In this way, WM becomes increasingly stable with increasing multiplicity and decays become slower. Our position on the behavioral aspects of the model is that we identify recognition of a repetition when, upon presentation of the match, the cue is still in WM. The repetition, though, is never affected in the simulations and all images in the sequence are potential cues. The fact that monkeys perform well (up to 97% exact responses) implies that if the information on past images is present, coded in (multiple) delay activities, it can be used quite effectively. Since older items are more likely to have exited from WM earlier, performance decays with cue match separation and, since the stability of WM increases with the length of trial, performance is better at equal cue match separation as the pair moves down the sequence, i.e. for longer sequences. Note that effects of selective attention, novelty, primacy and similarity are not modeled. In fact, they do not seem to be observed in this type of task. They could be included in a more complete account, but here it is instructive to see how far the simpler account can go. [A preliminary analysis of false-positives in trials in which an image is in the sequence and those in which the same image provokes the false positive response shows very low correlation, implying little effect of image pair similarity. Details will be reported in the full account of the experiment.] The success of the model in reproducing the behavioral data, in rather realistic conditions, opens a bridge from behavior to physiology. In fact, single unit recording can distinguish neurons confirming the multi-item scenario, both on the level of neural spike dynamics as well as on the level of the correlation with behavioral response. Recognizing Multi-item WM in Single Cell Recordings Delay activity of IT neurons represents the last image shown (Yakovlev et al., 1998). In some situations, PF neurons maintain delay activity of the first stimulus only (Miller et al., 1996; Brunel and Wang, 001). Consider recording from a neuron that has delay activity for image-3 and no delay activity for either image-1 or image- (as one, for example, of column 3 in Fig. d). Consider a trial where images 1, 3 and are presented in that order, separated by a delay between the presentation of each two images (Fig. 5a c). Following image-1, there will be no visual response and the delay activity will be at spontaneous activity rate. If it is an IT-neuron, it will shift to elevated delay activity after the presentation of image-3 and will go back to spontaneous activity following image-, because this neuron expresses the delay activity for the last stimulus presented (Fig. 5a). A PF-neuron, of the Miller Desimone type, will respond to image-3 following the delay activity of image-1, but will have no elevated delay activity following image-3, because it preserves the delay activity corresponding only to the first stimulus presented in the task (Fig. 5b). If that neuron is a multi-item WM (MWM) neuron, it will have no elevated delay activity following the presentation of image-1; following image-3, it will go into elevated delay activity, as if it were of IT type. This would exclude the possibility of it being a Miller Desimone type PF-neuron, which would remain in spontaneous activity (the delay activity of this cell for the first stimulus). But upon presentation of image-, it will remain in the elevated delay activity of image-3 (Fig. 5c), rather than move to spontaneous activity (delay activity for image- for this neuron), as would the IT-neuron. This is a guide for physiology, in search of neural correlates, as well as a prediction to corroborate the model and its conceptual framework. As a contrast, we present the schematic evolution of the rates of the same neuron for a presentation of the sequence 3, 1,, which leaves the ambiguity PF MWM unresolved. (The same neurons, recorded during the presentation of sequence of 1,, 3, would leave the IT MWM ambiguity unresolved). The Neural Behavioral Correlate Given a neuron with selective delay activity, across images, if that image is presented in different trials, in various positions of the sequence, the response upon the repetition of this image should be correlated with the persistence of the neuron s delay 44 A Multiple-object Working Memory Model Amit et al.

9 activity until the presentation of the repetition. And, conversely, the absence of delay activity in this neuron should be correlated with negative responses no response when this image is repeated. This prediction may be affected by another correlation that of a correct response with the level (spike rate) of the specific delay activity [as in Goldman Rakic et al. (Goldman Rakic et al., 1990)] but factor analysis can disentangle the two effects. Supplementary Material Supplementary material can be found at: oupjournals.org Notes This study was supported by the Center of Excellence Grant Changing Your Mind of the Israel Science Foundation and the Center of Excellence Grant Statistical Mechanics and Complexity of the INFM, Roma-1. We thank M. Mascaro, G. Mongillo, S. Hochstein and Y. Amit for helpful discussions and comments and Harvinder Singh for assistance with the graphics. Address correspondence to Daniel J. Amit, Università degli studi di Roma La Sapienza, Dipartimento di Fisica, P.le A. Moro 1, 00185, Roma, Italy. daniel.amit@roma1.infn.it. References Amit DJ (1989) Modeling brain function. New York: Cambridge University Press. Amit DJ (1995) The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav Brain Sci 18: Amit DJ, Brunel N (1997a) Global spontaneous activity and local structured learned) delay period activity in cortex. Cereb Cortex 7:37 5. Amit DJ, Brunel N (1997b) Dynamics of a recurrent network of spiking neurons before and following learning. Network 8: Amit DJ, Gutfreund H, Sompolinsky H (1985) Spin-glass models of neural networks. Phys Rev A 3: Bernacchia A (001) Dinamica di una rete neuronale strutturata con recettori e attività selettiva multipla. Thesis of laurea, dip. di Fisica, Università di Roma la Sapienza [in Italian]. Brunel N, Sergi S (1998) Firing frequency of integrate-and-fire neurons with finite synaptic time constants. J Theor Biol 195: Brunel N, Wang XJ (001) Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11: Compte A, Brunel N, Goldman-Rakic PS, Wang X-J (000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10: Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey s dorsolateral prefrontal cortex. J Neurophysiol 61: Fuster JM, Alexander G (1971) Neuron activity related to short-term memory. Science 173: Goldman-Rakic PS, Funahashi S, Bruce CJ (1990) Neocortical memory circuits. Cold Spring Harb Symp Quant Biol LV: Hopfield JJ (198) Neural networks and physical systems with emergent selective computational abilities. Proc Natl Acad Sci USA 79: Kubota K, Niki H (1971) Prefrontal cortical unit activity and delayed alternation performance in monkeys. J Neurophysiol 34: Lashley KS (1951) The problem of serial order in behavior. In: Cerebral mechanisms in behavior (Jeffress LA, ed.). New York: Wiley. Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16: Miyashita Y, Chang HS (1988) Neural correlate of pictorial short-term memory in the primate temporal cortex. Nature 331: Ricciardi LM (1977) Diffusion processes and related topics on biology. Berlin: Springer. Tanaka S (00a) Multi-directional representation of spatial working memory in a model prefrontal cortical circuit. Neurocomputing 44 46: Tanaka S (00b) Dopamine controls fundamental cognitive operations of multi-target spatial working memory. Neural Networks 15: Tuckwell CT (1988) Introduction to theoretical neurobiology, vol.. Cambridge: Cambridge University Press. Van Vreeswijk C, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 74: Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19: Yakovlev V, Fusi S, Berman E, Zohary E (1998) Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations. Nat Neurosci 1: Yakovlev V, Orlov T, Zohary E, Hochstein S (000) Working memory for multiple stimuli in monkeys. Neurosci Lett Suppl 55:P7. Cerebral Cortex May 003, V 13 N 5 443

Rolls,E.T. (2016) Cerebral Cortex: Principles of Operation. Oxford University Press.

Rolls,E.T. (2016) Cerebral Cortex: Principles of Operation. Oxford University Press. Digital Signal Processing and the Brain Is the brain a digital signal processor? Digital vs continuous signals Digital signals involve streams of binary encoded numbers The brain uses digital, all or none,

More information

Why is our capacity of working memory so large?

Why is our capacity of working memory so large? LETTER Why is our capacity of working memory so large? Thomas P. Trappenberg Faculty of Computer Science, Dalhousie University 6050 University Avenue, Halifax, Nova Scotia B3H 1W5, Canada E-mail: tt@cs.dal.ca

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by:[new York University] On: 26 July 28 Access Details: [subscription number 79434316] Publisher: Informa Healthcare Informa Ltd Registered in England and Wales Registered Number:

More information

Synfire chains with conductance-based neurons: internal timing and coordination with timed input

Synfire chains with conductance-based neurons: internal timing and coordination with timed input Neurocomputing 5 (5) 9 5 www.elsevier.com/locate/neucom Synfire chains with conductance-based neurons: internal timing and coordination with timed input Friedrich T. Sommer a,, Thomas Wennekers b a Redwood

More information

Dopamine modulation of prefrontal delay activity - Reverberatory activity and sharpness of tuning curves

Dopamine modulation of prefrontal delay activity - Reverberatory activity and sharpness of tuning curves Dopamine modulation of prefrontal delay activity - Reverberatory activity and sharpness of tuning curves Gabriele Scheler+ and Jean-Marc Fellous* +Sloan Center for Theoretical Neurobiology *Computational

More information

A neural circuit model of decision making!

A neural circuit model of decision making! A neural circuit model of decision making! Xiao-Jing Wang! Department of Neurobiology & Kavli Institute for Neuroscience! Yale University School of Medicine! Three basic questions on decision computations!!

More information

Universal Memory Mechanism for Familiarity Recognition and Identification

Universal Memory Mechanism for Familiarity Recognition and Identification The Journal of Neuroscience, January 2, 2008 28(1):239 248 239 Behavioral/Systems/Cognitive Universal Memory Mechanism for Familiarity Recognition and Identification Volodya Yakovlev, 1 Daniel J. Amit,

More information

Theory of correlation transfer and correlation structure in recurrent networks

Theory of correlation transfer and correlation structure in recurrent networks Theory of correlation transfer and correlation structure in recurrent networks Ruben Moreno-Bote Foundation Sant Joan de Déu, Barcelona Moritz Helias Research Center Jülich Theory of correlation transfer

More information

Beyond bumps: Spiking networks that store sets of functions

Beyond bumps: Spiking networks that store sets of functions Neurocomputing 38}40 (2001) 581}586 Beyond bumps: Spiking networks that store sets of functions Chris Eliasmith*, Charles H. Anderson Department of Philosophy, University of Waterloo, Waterloo, Ont, N2L

More information

Different inhibitory effects by dopaminergic modulation and global suppression of activity

Different inhibitory effects by dopaminergic modulation and global suppression of activity Different inhibitory effects by dopaminergic modulation and global suppression of activity Takuji Hayashi Department of Applied Physics Tokyo University of Science Osamu Araki Department of Applied Physics

More information

Holding Multiple Items in Short Term Memory: A Neural Mechanism

Holding Multiple Items in Short Term Memory: A Neural Mechanism : A Neural Mechanism Edmund T. Rolls 1 *, Laura Dempere-Marco 1,2, Gustavo Deco 3,2 1 Oxford Centre for Computational Neuroscience, Oxford, United Kingdom, 2 Department of Information and Communication

More information

Information Processing During Transient Responses in the Crayfish Visual System

Information Processing During Transient Responses in the Crayfish Visual System Information Processing During Transient Responses in the Crayfish Visual System Christopher J. Rozell, Don. H. Johnson and Raymon M. Glantz Department of Electrical & Computer Engineering Department of

More information

Noise in attractor networks in the brain produced by graded firing rate representations

Noise in attractor networks in the brain produced by graded firing rate representations Noise in attractor networks in the brain produced by graded firing rate representations Tristan J. Webb, University of Warwick, Complexity Science, Coventry CV4 7AL, UK Edmund T. Rolls, Oxford Centre for

More information

Decision-making mechanisms in the brain

Decision-making mechanisms in the brain Decision-making mechanisms in the brain Gustavo Deco* and Edmund T. Rolls^ *Institucio Catalana de Recerca i Estudis Avangats (ICREA) Universitat Pompeu Fabra Passeigde Circumval.lacio, 8 08003 Barcelona,

More information

Neural response time integration subserves. perceptual decisions - K-F Wong and X-J Wang s. reduced model

Neural response time integration subserves. perceptual decisions - K-F Wong and X-J Wang s. reduced model Neural response time integration subserves perceptual decisions - K-F Wong and X-J Wang s reduced model Chris Ayers and Narayanan Krishnamurthy December 15, 2008 Abstract A neural network describing the

More information

Signal detection in networks of spiking neurons with dynamical synapses

Signal detection in networks of spiking neurons with dynamical synapses Published in AIP Proceedings 887, 83-88, 7. Signal detection in networks of spiking neurons with dynamical synapses Jorge F. Mejías and Joaquín J. Torres Dept. of Electromagnetism and Physics of the Matter

More information

Reading Neuronal Synchrony with Depressing Synapses

Reading Neuronal Synchrony with Depressing Synapses NOTE Communicated by Laurence Abbott Reading Neuronal Synchrony with Depressing Synapses W. Senn Department of Neurobiology, Hebrew University, Jerusalem 4, Israel, Department of Physiology, University

More information

Working models of working memory

Working models of working memory Working models of working memory Omri Barak and Misha Tsodyks 2014, Curr. Op. in Neurobiology Referenced by Kristjan-Julius Laak Sept 16th 2015 Tartu Working models of working memory Working models of

More information

Investigation of Physiological Mechanism For Linking Field Synapses

Investigation of Physiological Mechanism For Linking Field Synapses Investigation of Physiological Mechanism For Linking Field Synapses Richard B. Wells 1, Nick Garrett 2, Tom Richner 3 Microelectronics Research and Communications Institute (MRCI) BEL 316 University of

More information

The perirhinal cortex and long-term familiarity memory

The perirhinal cortex and long-term familiarity memory THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY 2005, 58B (3/4), 234 245 The perirhinal cortex and long-term familiarity memory E. T. Rolls, L. Franco, and S. M. Stringer University of Oxford, UK To analyse

More information

Sum of Neurally Distinct Stimulus- and Task-Related Components.

Sum of Neurally Distinct Stimulus- and Task-Related Components. SUPPLEMENTARY MATERIAL for Cardoso et al. 22 The Neuroimaging Signal is a Linear Sum of Neurally Distinct Stimulus- and Task-Related Components. : Appendix: Homogeneous Linear ( Null ) and Modified Linear

More information

Learning real world stimuli in a neural network with spike-driven synaptic dynamics

Learning real world stimuli in a neural network with spike-driven synaptic dynamics Learning real world stimuli in a neural network with spike-driven synaptic dynamics Joseph M. Brader, Walter Senn, Stefano Fusi Institute of Physiology, University of Bern, Bühlplatz 5, 314 Bern Abstract

More information

Associative memory properties of multiple cortical modules

Associative memory properties of multiple cortical modules Network: Comput. Neural Syst. 10 (1999) 237 255. Printed in the UK PII: S0954-898X(99)97275-5 Associative memory properties of multiple cortical modules Alfonso Renart, Néstor Parga and Edmund T Rolls

More information

Dynamics of Hodgkin and Huxley Model with Conductance based Synaptic Input

Dynamics of Hodgkin and Huxley Model with Conductance based Synaptic Input Proceedings of International Joint Conference on Neural Networks, Dallas, Texas, USA, August 4-9, 2013 Dynamics of Hodgkin and Huxley Model with Conductance based Synaptic Input Priyanka Bajaj and Akhil

More information

Cerebral Cortex. Edmund T. Rolls. Principles of Operation. Presubiculum. Subiculum F S D. Neocortex. PHG & Perirhinal. CA1 Fornix CA3 S D

Cerebral Cortex. Edmund T. Rolls. Principles of Operation. Presubiculum. Subiculum F S D. Neocortex. PHG & Perirhinal. CA1 Fornix CA3 S D Cerebral Cortex Principles of Operation Edmund T. Rolls F S D Neocortex S D PHG & Perirhinal 2 3 5 pp Ento rhinal DG Subiculum Presubiculum mf CA3 CA1 Fornix Appendix 4 Simulation software for neuronal

More information

A Neural Model of Context Dependent Decision Making in the Prefrontal Cortex

A Neural Model of Context Dependent Decision Making in the Prefrontal Cortex A Neural Model of Context Dependent Decision Making in the Prefrontal Cortex Sugandha Sharma (s72sharm@uwaterloo.ca) Brent J. Komer (bjkomer@uwaterloo.ca) Terrence C. Stewart (tcstewar@uwaterloo.ca) Chris

More information

Long-term depression and recognition of parallel "bre patterns in a multi-compartmental model of a cerebellar Purkinje cell

Long-term depression and recognition of parallel bre patterns in a multi-compartmental model of a cerebellar Purkinje cell Neurocomputing 38}40 (2001) 383}388 Long-term depression and recognition of parallel "bre patterns in a multi-compartmental model of a cerebellar Purkinje cell Volker Steuber*, Erik De Schutter Laboratory

More information

Modeling of Hippocampal Behavior

Modeling of Hippocampal Behavior Modeling of Hippocampal Behavior Diana Ponce-Morado, Venmathi Gunasekaran and Varsha Vijayan Abstract The hippocampus is identified as an important structure in the cerebral cortex of mammals for forming

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature10776 Supplementary Information 1: Influence of inhibition among blns on STDP of KC-bLN synapses (simulations and schematics). Unconstrained STDP drives network activity to saturation

More information

Supplementary materials for: Executive control processes underlying multi- item working memory

Supplementary materials for: Executive control processes underlying multi- item working memory Supplementary materials for: Executive control processes underlying multi- item working memory Antonio H. Lara & Jonathan D. Wallis Supplementary Figure 1 Supplementary Figure 1. Behavioral measures of

More information

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Peter Osseward, Uri Magaram Department of Neuroscience University of California, San Diego La Jolla, CA 92092 possewar@ucsd.edu

More information

Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells

Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells Neurocomputing, 5-5:389 95, 003. Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells M. W. Spratling and M. H. Johnson Centre for Brain and Cognitive Development,

More information

Shadowing and Blocking as Learning Interference Models

Shadowing and Blocking as Learning Interference Models Shadowing and Blocking as Learning Interference Models Espoir Kyubwa Dilip Sunder Raj Department of Bioengineering Department of Neuroscience University of California San Diego University of California

More information

A Novel Account in Neural Terms. Gal Chechik Isaac Meilijson and Eytan Ruppin. Schools of Medicine and Mathematical Sciences

A Novel Account in Neural Terms. Gal Chechik Isaac Meilijson and Eytan Ruppin. Schools of Medicine and Mathematical Sciences Synaptic Pruning in Development: A Novel Account in Neural Terms Gal Chechik Isaac Meilijson and Eytan Ruppin Schools of Medicine and Mathematical Sciences Tel-Aviv University Tel Aviv 69978, Israel gal@devil.tau.ac.il

More information

Spiking Inputs to a Winner-take-all Network

Spiking Inputs to a Winner-take-all Network Spiking Inputs to a Winner-take-all Network Matthias Oster and Shih-Chii Liu Institute of Neuroinformatics University of Zurich and ETH Zurich Winterthurerstrasse 9 CH-857 Zurich, Switzerland {mao,shih}@ini.phys.ethz.ch

More information

]Simulation in neurobiology { theory or experiment? 1. and Racah Institute of Physics, Hebrew University,

]Simulation in neurobiology { theory or experiment? 1. and Racah Institute of Physics, Hebrew University, ]Simulation in neurobiology { theory or experiment? 1 Daniel J. Amit INFN, Sezione di Roma, Istituto di Fisica Universita di Roma, La Sapienza, Roma and Racah Institute of Physics, Hebrew University, Jerusalem

More information

Dynamic Stochastic Synapses as Computational Units

Dynamic Stochastic Synapses as Computational Units Dynamic Stochastic Synapses as Computational Units Wolfgang Maass Institute for Theoretical Computer Science Technische Universitat Graz A-B01O Graz Austria. email: maass@igi.tu-graz.ac.at Anthony M. Zador

More information

Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence

Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence To understand the network paradigm also requires examining the history

More information

Input-speci"c adaptation in complex cells through synaptic depression

Input-specic adaptation in complex cells through synaptic depression 0 0 0 0 Neurocomputing }0 (00) } Input-speci"c adaptation in complex cells through synaptic depression Frances S. Chance*, L.F. Abbott Volen Center for Complex Systems and Department of Biology, Brandeis

More information

Supplemental Material

Supplemental Material Supplemental Material Recording technique Multi-unit activity (MUA) was recorded from electrodes that were chronically implanted (Teflon-coated platinum-iridium wires) in the primary visual cortex representing

More information

Effects of Network Topology on Decision-Making Behavior in A Biological Network Model

Effects of Network Topology on Decision-Making Behavior in A Biological Network Model Effects of Network Topology on Decision-Making Behavior in A Biological Network Model Suojun Lu*, Jian an Fang, Qingying Miao College of Information Science & Technology, Donghua University, 2999 North

More information

Hierarchical dynamical models of motor function

Hierarchical dynamical models of motor function ARTICLE IN PRESS Neurocomputing 70 (7) 975 990 www.elsevier.com/locate/neucom Hierarchical dynamical models of motor function S.M. Stringer, E.T. Rolls Department of Experimental Psychology, Centre for

More information

Observational Learning Based on Models of Overlapping Pathways

Observational Learning Based on Models of Overlapping Pathways Observational Learning Based on Models of Overlapping Pathways Emmanouil Hourdakis and Panos Trahanias Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH) Science and Technology

More information

The storage and recall of memories in the hippocampo-cortical system. Supplementary material. Edmund T Rolls

The storage and recall of memories in the hippocampo-cortical system. Supplementary material. Edmund T Rolls The storage and recall of memories in the hippocampo-cortical system Supplementary material Edmund T Rolls Oxford Centre for Computational Neuroscience, Oxford, England and University of Warwick, Department

More information

What is working memory? (a.k.a. short-term memory) Sustained activity, Working Memory, Associative memory. Sustained activity in PFC (1) Readings:

What is working memory? (a.k.a. short-term memory) Sustained activity, Working Memory, Associative memory. Sustained activity in PFC (1) Readings: What is working memory? (a.k.a. short-term memory) The ability to hold information over a time scale of seconds to minutes a critical component of cognitive functions (language, thoughts, planning etc..)

More information

The control of spiking by synaptic input in striatal and pallidal neurons

The control of spiking by synaptic input in striatal and pallidal neurons The control of spiking by synaptic input in striatal and pallidal neurons Dieter Jaeger Department of Biology, Emory University, Atlanta, GA 30322 Key words: Abstract: rat, slice, whole cell, dynamic current

More information

Neuron Phase Response

Neuron Phase Response BioE332A Lab 4, 2007 1 Lab 4 February 2, 2007 Neuron Phase Response In this lab, we study the effect of one neuron s spikes on another s, combined synapse and neuron behavior. In Lab 2, we characterized

More information

Evaluating the Effect of Spiking Network Parameters on Polychronization

Evaluating the Effect of Spiking Network Parameters on Polychronization Evaluating the Effect of Spiking Network Parameters on Polychronization Panagiotis Ioannou, Matthew Casey and André Grüning Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK

More information

Just One View: Invariances in Inferotemporal Cell Tuning

Just One View: Invariances in Inferotemporal Cell Tuning Just One View: Invariances in Inferotemporal Cell Tuning Maximilian Riesenhuber Tomaso Poggio Center for Biological and Computational Learning and Department of Brain and Cognitive Sciences Massachusetts

More information

Computational cognitive neuroscience: 2. Neuron. Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava

Computational cognitive neuroscience: 2. Neuron. Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava 1 Computational cognitive neuroscience: 2. Neuron Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava 2 Neurons communicate via electric signals In neurons it is important

More information

Same or Different? A Neural Circuit Mechanism of Similarity-Based Pattern Match Decision Making

Same or Different? A Neural Circuit Mechanism of Similarity-Based Pattern Match Decision Making 6982 The Journal of Neuroscience, May 11, 2011 31(19):6982 6996 Behavioral/Systems/Cognitive Same or Different? A Neural Circuit Mechanism of Similarity-Based Pattern Match Decision Making Tatiana A. Engel

More information

Neuron, Volume 63 Spatial attention decorrelates intrinsic activity fluctuations in Macaque area V4.

Neuron, Volume 63 Spatial attention decorrelates intrinsic activity fluctuations in Macaque area V4. Neuron, Volume 63 Spatial attention decorrelates intrinsic activity fluctuations in Macaque area V4. Jude F. Mitchell, Kristy A. Sundberg, and John H. Reynolds Systems Neurobiology Lab, The Salk Institute,

More information

Distributed Synchrony of Spiking Neurons in a Hebbian Cell Assembly

Distributed Synchrony of Spiking Neurons in a Hebbian Cell Assembly Distributed Synchrony of Spiking Neurons in a Hebbian Cell Assembly David Horn Nir Levy School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel

More information

A model of the interaction between mood and memory

A model of the interaction between mood and memory INSTITUTE OF PHYSICS PUBLISHING NETWORK: COMPUTATION IN NEURAL SYSTEMS Network: Comput. Neural Syst. 12 (2001) 89 109 www.iop.org/journals/ne PII: S0954-898X(01)22487-7 A model of the interaction between

More information

Perceptual Grouping in a Self-Organizing Map of Spiking Neurons

Perceptual Grouping in a Self-Organizing Map of Spiking Neurons Perceptual Grouping in a Self-Organizing Map of Spiking Neurons Yoonsuck Choe Department of Computer Sciences The University of Texas at Austin August 13, 2001 Perceptual Grouping Group Two! Longest Contour?

More information

Modeling the Primary Visual Cortex

Modeling the Primary Visual Cortex Modeling the Primary Visual Cortex David W. McLaughlin Courant Institute & Center for Neural Science New York University http://www.cims.nyu.edu/faculty/dmac/ Ohio - MBI Oct 02 Input Layer of Primary Visual

More information

Basics of Computational Neuroscience: Neurons and Synapses to Networks

Basics of Computational Neuroscience: Neurons and Synapses to Networks Basics of Computational Neuroscience: Neurons and Synapses to Networks Bruce Graham Mathematics School of Natural Sciences University of Stirling Scotland, U.K. Useful Book Authors: David Sterratt, Bruce

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature1216 Supplementary Methods M.1 Definition and properties of dimensionality Consider an experiment with a discrete set of c different experimental conditions, corresponding to all distinct

More information

Supplemental Information: Adaptation can explain evidence for encoding of probabilistic. information in macaque inferior temporal cortex

Supplemental Information: Adaptation can explain evidence for encoding of probabilistic. information in macaque inferior temporal cortex Supplemental Information: Adaptation can explain evidence for encoding of probabilistic information in macaque inferior temporal cortex Kasper Vinken and Rufin Vogels Supplemental Experimental Procedures

More information

Robust working memory in an asynchronously spiking neural network realized with neuromorphic VLSI

Robust working memory in an asynchronously spiking neural network realized with neuromorphic VLSI Robust working memory in an asynchronously spiking neural network realized with neuromorphic VLSI Massimiliano Giulioni 1,*, Patrick Camilleri 3,*, Maurizio Mattia 1, Vittorio Dante 1, Jochen Braun 3,

More information

Synaptic Transmission: Ionic and Metabotropic

Synaptic Transmission: Ionic and Metabotropic Synaptic Transmission: Ionic and Metabotropic D. Purves et al. Neuroscience (Sinauer Assoc.) Chapters 5, 6, 7. C. Koch. Biophysics of Computation (Oxford) Chapter 4. J.G. Nicholls et al. From Neuron to

More information

Heterogeneous networks of spiking neurons: self-sustained activity and excitability

Heterogeneous networks of spiking neurons: self-sustained activity and excitability Heterogeneous networks of spiking neurons: self-sustained activity and excitability Cristina Savin 1,2, Iosif Ignat 1, Raul C. Mureşan 2,3 1 Technical University of Cluj Napoca, Faculty of Automation and

More information

Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells

Self-organizing continuous attractor networks and path integration: one-dimensional models of head direction cells INSTITUTE OF PHYSICS PUBLISHING Network: Comput. Neural Syst. 13 (2002) 217 242 NETWORK: COMPUTATION IN NEURAL SYSTEMS PII: S0954-898X(02)36091-3 Self-organizing continuous attractor networks and path

More information

Part 11: Mechanisms of Learning

Part 11: Mechanisms of Learning Neurophysiology and Information: Theory of Brain Function Christopher Fiorillo BiS 527, Spring 2012 042 350 4326, fiorillo@kaist.ac.kr Part 11: Mechanisms of Learning Reading: Bear, Connors, and Paradiso,

More information

A general error-based spike-timing dependent learning rule for the Neural Engineering Framework

A general error-based spike-timing dependent learning rule for the Neural Engineering Framework A general error-based spike-timing dependent learning rule for the Neural Engineering Framework Trevor Bekolay Monday, May 17, 2010 Abstract Previous attempts at integrating spike-timing dependent plasticity

More information

Commentary on Moran and Desimone's 'spotlight in V4

Commentary on Moran and Desimone's 'spotlight in V4 Anne B. Sereno 1 Commentary on Moran and Desimone's 'spotlight in V4 Anne B. Sereno Harvard University 1990 Anne B. Sereno 2 Commentary on Moran and Desimone's 'spotlight in V4' Moran and Desimone's article

More information

Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses

Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses Journal of Physiology - Paris 97 (2003) 659 681 www.elsevier.com/locate/jphysparis Modelling the formation of working memory with networks of integrate-and-fire neurons connected by plastic synapses Paolo

More information

Visual Categorization: How the Monkey Brain Does It

Visual Categorization: How the Monkey Brain Does It Visual Categorization: How the Monkey Brain Does It Ulf Knoblich 1, Maximilian Riesenhuber 1, David J. Freedman 2, Earl K. Miller 2, and Tomaso Poggio 1 1 Center for Biological and Computational Learning,

More information

Network model of spontaneous activity exhibiting synchronous transitions between up and down states

Network model of spontaneous activity exhibiting synchronous transitions between up and down states Network model of spontaneous activity exhibiting synchronous transitions between up and down states Néstor Parga a and Larry F. Abbott Center for Neurobiology and Behavior, Kolb Research Annex, College

More information

Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex

Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex Yuichi Katori 1,2 *, Kazuhiro Sakamoto 3, Naohiro Saito 4, Jun Tanji 4, Hajime

More information

Dependence of Orientation Tuning on Recurrent Excitation and Inhibition in a Network Model of V1

Dependence of Orientation Tuning on Recurrent Excitation and Inhibition in a Network Model of V1 Dependence of Orientation Tuning on Recurrent Excitation and Inhibition in a Network Model of V1 Klaus Wimmer 1 *, Marcel Stimberg 1 *, Robert Martin 1, Lars Schwabe 2, Jorge Mariño 3, James Schummers

More information

Theta sequences are essential for internally generated hippocampal firing fields.

Theta sequences are essential for internally generated hippocampal firing fields. Theta sequences are essential for internally generated hippocampal firing fields. Yingxue Wang, Sandro Romani, Brian Lustig, Anthony Leonardo, Eva Pastalkova Supplementary Materials Supplementary Modeling

More information

Synaptic Plasticity and Connectivity Requirements to Produce Stimulus-Pair Specific Responses in Recurrent Networks of Spiking Neurons

Synaptic Plasticity and Connectivity Requirements to Produce Stimulus-Pair Specific Responses in Recurrent Networks of Spiking Neurons Synaptic Plasticity and Connectivity Requirements to Produce Stimulus-Pair Specific Responses in Recurrent Networks of Spiking Neurons Mark A. Bourjaily, Paul Miller* Department of Biology and Neuroscience

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Behavioral training. Supplementary Figure 1 Behavioral training. a, Mazes used for behavioral training. Asterisks indicate reward location. Only some example mazes are shown (for example, right choice and not left choice maze

More information

Self-Organization and Segmentation with Laterally Connected Spiking Neurons

Self-Organization and Segmentation with Laterally Connected Spiking Neurons Self-Organization and Segmentation with Laterally Connected Spiking Neurons Yoonsuck Choe Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 USA Risto Miikkulainen Department

More information

Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function

Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function Behavioural Brain Research 89 (1997) 1 34 Review article Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function Michael E. Hasselmo

More information

Neuromorphic computing

Neuromorphic computing Neuromorphic computing Robotics M.Sc. programme in Computer Science lorenzo.vannucci@santannapisa.it April 19th, 2018 Outline 1. Introduction 2. Fundamentals of neuroscience 3. Simulating the brain 4.

More information

Computing with Spikes in Recurrent Neural Networks

Computing with Spikes in Recurrent Neural Networks Computing with Spikes in Recurrent Neural Networks Dezhe Jin Department of Physics The Pennsylvania State University Presented at ICS Seminar Course, Penn State Jan 9, 2006 Outline Introduction Neurons,

More information

Why do we have a hippocampus? Short-term memory and consolidation

Why do we have a hippocampus? Short-term memory and consolidation Why do we have a hippocampus? Short-term memory and consolidation So far we have talked about the hippocampus and: -coding of spatial locations in rats -declarative (explicit) memory -experimental evidence

More information

ASSOCIATIVE MEMORY AND HIPPOCAMPAL PLACE CELLS

ASSOCIATIVE MEMORY AND HIPPOCAMPAL PLACE CELLS International Journal of Neural Systems, Vol. 6 (Supp. 1995) 81-86 Proceedings of the Neural Networks: From Biology to High Energy Physics @ World Scientific Publishing Company ASSOCIATIVE MEMORY AND HIPPOCAMPAL

More information

2012 Course : The Statistician Brain: the Bayesian Revolution in Cognitive Science

2012 Course : The Statistician Brain: the Bayesian Revolution in Cognitive Science 2012 Course : The Statistician Brain: the Bayesian Revolution in Cognitive Science Stanislas Dehaene Chair in Experimental Cognitive Psychology Lecture No. 4 Constraints combination and selection of a

More information

Resonant synchronization of heterogeneous inhibitory networks

Resonant synchronization of heterogeneous inhibitory networks Cerebellar oscillations: Anesthetized rats Transgenic animals Recurrent model Review of literature: γ Network resonance Life simulations Resonance frequency Conclusion Resonant synchronization of heterogeneous

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature14066 Supplementary discussion Gradual accumulation of evidence for or against different choices has been implicated in many types of decision-making, including value-based decisions

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 6: Single neuron models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis I 5 Data analysis II 6 Single

More information

Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation

Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation ARTICLE Communicated by Misha Tsodyks Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation Stefano Fusi INFN Sezione RM1, University of Rome La Sapienza, 185, Roma, Italy Mario Annunziato

More information

2 INSERM U280, Lyon, France

2 INSERM U280, Lyon, France Natural movies evoke responses in the primary visual cortex of anesthetized cat that are not well modeled by Poisson processes Jonathan L. Baker 1, Shih-Cheng Yen 1, Jean-Philippe Lachaux 2, Charles M.

More information

Model-Based Reinforcement Learning by Pyramidal Neurons: Robustness of the Learning Rule

Model-Based Reinforcement Learning by Pyramidal Neurons: Robustness of the Learning Rule 4th Joint Symposium on Neural Computation Proceedings 83 1997 Model-Based Reinforcement Learning by Pyramidal Neurons: Robustness of the Learning Rule Michael Eisele & Terry Sejnowski Howard Hughes Medical

More information

Models of Attention. Models of Attention

Models of Attention. Models of Attention Models of Models of predictive: can we predict eye movements (bottom up attention)? [L. Itti and coll] pop out and saliency? [Z. Li] Readings: Maunsell & Cook, the role of attention in visual processing,

More information

Thalamocortical Feedback and Coupled Oscillators

Thalamocortical Feedback and Coupled Oscillators Thalamocortical Feedback and Coupled Oscillators Balaji Sriram March 23, 2009 Abstract Feedback systems are ubiquitous in neural systems and are a subject of intense theoretical and experimental analysis.

More information

Temporally asymmetric Hebbian learning and neuronal response variability

Temporally asymmetric Hebbian learning and neuronal response variability Neurocomputing 32}33 (2000) 523}528 Temporally asymmetric Hebbian learning and neuronal response variability Sen Song*, L.F. Abbott Volen Center for Complex Systems and Department of Biology, Brandeis

More information

Cell Responses in V4 Sparse Distributed Representation

Cell Responses in V4 Sparse Distributed Representation Part 4B: Real Neurons Functions of Layers Input layer 4 from sensation or other areas 3. Neocortical Dynamics Hidden layers 2 & 3 Output layers 5 & 6 to motor systems or other areas 1 2 Hierarchical Categorical

More information

CS/NEUR125 Brains, Minds, and Machines. Due: Friday, April 14

CS/NEUR125 Brains, Minds, and Machines. Due: Friday, April 14 CS/NEUR125 Brains, Minds, and Machines Assignment 5: Neural mechanisms of object-based attention Due: Friday, April 14 This Assignment is a guided reading of the 2014 paper, Neural Mechanisms of Object-Based

More information

Hebbian Plasticity for Improving Perceptual Decisions

Hebbian Plasticity for Improving Perceptual Decisions Hebbian Plasticity for Improving Perceptual Decisions Tsung-Ren Huang Department of Psychology, National Taiwan University trhuang@ntu.edu.tw Abstract Shibata et al. reported that humans could learn to

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Supplementary Figure 1. Recording sites.

Supplementary Figure 1. Recording sites. Supplementary Figure 1 Recording sites. (a, b) Schematic of recording locations for mice used in the variable-reward task (a, n = 5) and the variable-expectation task (b, n = 5). RN, red nucleus. SNc,

More information

Modeling the Deployment of Spatial Attention

Modeling the Deployment of Spatial Attention 17 Chapter 3 Modeling the Deployment of Spatial Attention 3.1 Introduction When looking at a complex scene, our visual system is confronted with a large amount of visual information that needs to be broken

More information

Dopamine modulation in a basal ganglio-cortical network implements saliency-based gating of working memory

Dopamine modulation in a basal ganglio-cortical network implements saliency-based gating of working memory Dopamine modulation in a basal ganglio-cortical network implements saliency-based gating of working memory Aaron J. Gruber 1,2, Peter Dayan 3, Boris S. Gutkin 3, and Sara A. Solla 2,4 Biomedical Engineering

More information

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory 9.7.4 The threshold and channel memory The action potential has a threshold. In figure the area around threshold is expanded (rectangle). A current injection that does not reach the threshold does not

More information