Computational cognitive neuroscience: 2. Neuron. Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava

Size: px
Start display at page:

Download "Computational cognitive neuroscience: 2. Neuron. Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava"

Transcription

1 1 Computational cognitive neuroscience: 2. Neuron Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava

2 2 Neurons communicate via electric signals In neurons it is important where the membrane potential crosses a certain threshold. That is considered an important event for the transmission of the signal from one cell to another.

3 Presynaptic and postsynaptic: flow of information soma axon dendritic tree spines basal dendrites synapse Axons of presynaptic neurons make synapses (little blobs) on the body and dendrites of the postsynaptic neuron 3 3

4 Neurons in the networks communicate via synapses Presynaptic electric pulse (i.e. spike) arrives to terminal. This causes release of neurotransmitter molecules from vesicles. Neurotransmitter binds to receptors in the dendritic membrane. Ion channels associated with receptors open and allow influx of charged ions into the spine evoking a postsynaptic potential at synapse. axon of presynaptic neuron dendrite of postsynaptic neuron 4

5 5 Inhibitory synapses Neutrotransmitter GABA, 2 types of postsynapstic receptors GABRA and GABRB, ion channels for Cl - and K +, respectively. Ca 2+ Presynaptic terminal GABA Cl - K + When we measure an electric potential in the postsynaptic site, we see something like this: a negative deviation from the resting potential, which is called inhibitory postsynaptic potential (IPSP). GABR A R N GABR B

6 6 Excitatory synapses Ca 2+ Presynaptic terminal R Glutamate Na + Na + AMPA N NMDA Ca 2 + Neutrotransmitter glutamate, 2 types of postsynaptic receptors AMPA and NMDA, ion channels for Na + and Na + and Ca 2+, respectively. When we measure an electric potential in the postsynaptic site, we see something like this: a positive deviation from the resting potential, which is called excitatory postsynaptic potential (EPSP).

7 7 Summation of individual PSPs Each presynaptic electric pulse (spike) causes a single EPSP bump at the postsynaptic site. On arrival of many presynaptic spikes in close succession, these EPSPs sum on top of each other and if the cumulative sum crosses the firing threshold Q, the neuron generates an output spike (also called an action potential). (Q) EPSP S EPSP S EPSP

8 Neuron: an analog-digital converter Q EPSP IPSP EPSPIPSP > Q Since the inhibitory synapses can be activated as well, the total V at soma = SEPSP-SIPSP. If PSP > Q, neuron generates an output spike train during the time when the total PSP at soma > Q. We call it a spike train. The number and frequency/rate of spikes within the output spike train are proportional to the duration and magnitude of V at the soma. Spike train then propagates towards synapses, where it causes release of neurotransmitter. 8

9 Simultaneous recordings of output spike trains of 30 neurons from monkey visual cortex [Krüger and Aiple, 1988]. Postsynaptic activity of real neurons Each spike is denoted by a vertical bar, with a separate row for each neuron. An interval of 150 msec is shaded. This time span is known to suffice for the completion of some very complex computations. Neurons use few spikes to accomplish complex tasks. 9

10 10 Ultrafast visual classification of objects Simon Thorpe et al. at the University of Toulouse, France, performed an experiment with humans and monkeys, in which subjects were supposed to classify pictures into 2 categories, either an animal category or a non-animal category (Thorpe et al., Science, 1996). Hundreds of pictures were used. Subjects did not see the pictures before. Every 2 s, a picture from one or the other class was drawn at random. Each time, it was a different picture, thus there was no repetition. Pictures were shown just for 20 ms. In spite of that, humans on average correctly classified the pictures in 94% cases and monkeys in 91%. Ultra-fast classification did not depend on classes of objects, did not depend on colour, and did not depend on attention or eye fixation.

11 11 Ultrafast visual classification of objects During an experiment the brain activity of subjects was recorded. Reaction time, i.e. time from presentation of stimulus to pressing the button, was equal to 250 ms in humans, on average. Prefrontal cortex Frontal cortex PMC 250 ms MC Higher-order parietal visual areas Activity in the inferotemporal (IT) cortex occurred on average after 150 ms, so the preparation and execution of motor response took on average 100 ms. Eye Thalamus IT 150 ms V4 V2 V1 Cerebellum Primary visual cortex In monkeys, times were shorter by about 80 ms (smaller brains).

12 12 Ultrafast visual classification of objects Projected image stimulates retina for 20 ms. In about 80 ms, thalamic LGN responds. Thalamic neurons activate neurons in the primary visual cortex (V1). Then, activation proceeds to and through higherorder visual areas, V2, V4 and IT, where activity appears after 150 ms. Thus (150-80) / 4 areas = 17.5 ms per area. Even if neurons fire with f = 100 Hz, this would mean that each one fires 1-2 spikes within this interval Prefrontal cortex Eye Frontal cortex PMC 250 ms MC Thalamus IT 150 ms V4 Cerebellum Higher-order parietal visual areas V2 V1 Conclusion: individual neurons do not have time to calculate mean rates of firing!!! Primary visual cortex

13 13 Rate or frequency code These models are based on the idea that a feature of an object is coded by the frequency of spikes. In the figure, each of the five neurons codes a different feature of an object. Neuron will only reach the threshold needed to generate an output when the total number of spikes it receives over some time exceeds some value.

14 14 Synchrony code (coincidence detection) Features that are represented by particular populations of neurons will synchronize the firing of these neurons if the features belong to the same object (binding by synchrony). In the figure, each of the 5 neurons codes for a different feature of the same object. Neurons act as coincidence detectors thus responding to and strengthening inputs that are active at the same time.

15 15 Spike delay code Delay coding is based on the idea that neurons will respond to more energetic input signals by generating a spike earlier, that this generated spike will arrive at the downstream neuron earlier than other spikes and will thus have a higher impact or 'ranking' relative to later incoming spikes as a result. Another variant is that information is encoded in the phase relationship between the cell s firing activity and the underlying rhythmic oscillations of the whole population of neurons.

16 16 Spatio-temporal coding Neurons respond to the same stimulus with the same stimulus-specific spatio-temporal pattern of spikes. Different stimuli evoke different spatio-temporal patterns of spikes in neuronal populations that process them.

17 17 Neural code hypotheses a. Rate. Information about the feature is encoded in the frequency of neuron s firing (Adrian 1929, Hubel and Wiesel 1962). b. Synchronisation. Populations of neurons that represent features belonging to one object are bound together by synchronous firing (Singer et al. 1996). Synfire chains: information is carried by waves of synchronously firing neural ensembles (Bienenstock 1995, Abeles 2001). c. Delay code. Phase. Information about the feature is encoded in the phase of neuron s impulses with respect to the reference background oscillation (Jensen 2001, Hopfield 2005). Time to the first spike. Neurons that fire the first carry the information about the stimulus features. The rest of neurons and the rest of impulses are ignored (Thorpe et al. 1996). d. Spatio-temporal pattern of firing. Information about the salience of the object feature is encoded in the exact temporal structure of the spike train (Rieke et al. 1996, A. Villa 2005).

18 Spiking versus rate model of neurons Spiking Neuron Rate model of neuron PSP I 1 Out time I 2 Sigmoid O 1 D 1 D 2 D 3 S Th () I 3 Input Output Input Output Spiking neuron receives spikes with various delays D j Input spikes induce either EPSP or IPSP, which add upon each other Output: a single spike or a train of spikes when SEPSP-SIPSP > Q Inputs to the rate model of a neuron are numbers (e.g., 0.6, 0.7, etc.) that represent the frequency of incoming spike trains Output: the rate-based model produces a single number (e.g., 0.4) that represents the rate of the output spike train. 18

19 19 How do we construct a spiking model of a neuron? Important note: in all types of model neurons there is an important variable, which we call the weight of a synapse that reflects the strength of input coming from the presynaptic neuron j upon the postsynaptic neuron i.

20 20 Integrate and fire (I&F) models Soma plus dendrites are modelled as a single compartment. The dependent variable is the membrane voltage V, the independent variable is time t. Action potentials occur when the membrane potential V reaches a firing threshold Q. Leaky I&F: after firing, the membrane potential is reset to the value of resting potential V 0. I&F can be modelled at various levels of rigour depending on simplifying assumptions used.

21 Single compartment model Electric scheme equivalent to an integrate and fire (I&F) neuron model C m is the capacitance of the membrane, g k is the conductance for ion of type k, and E is the equilibrium potential for a given type of an ion. Rate of change of the membrane potential V is proportional to the electric current entering into neuron; by convention capacitance current is plus while membrane current is minus : c dv dt m i m 21

22 22 Membrane current i m Membrane current i m is the sum of leakage current (L) and all the ion currents flowing through all the currently open ion channels per unit area of the membrane (thus k = Na +, K +, and Cl ): i m i L k i k i L I Each current component is equal to driving force (difference between the membrane potential V and the equilibrium potential E k ) multiplied by the corresponding ion channel conductance g k, where k stands for ions, i.e. k = Na +, K +, and Cl : i i k L g V E k ( k g L ( V EL ) )

23 23 Integrate & fire model of a spiking neuron The simplest model of a spiking neuron is described by this equation: c c m dv dt dv dt m i m g ( V E ) L ; if V Q a postsynaptic spike is fired L Where: I = S i k is the sum of all excitatory and inhibitory ionic currents I mediated by ions of type k; the symbol L denotes the so-called leak current that is always present, b/c the membrane always leaks some currents. Dependent variables are: V, ionic conductances g k, and I. Parameters are: c m, g L, Q, and all the equilibrium potentials E.

24 24 Adaptive exponential integrate-and-fire model AdEx O Reilly uses AdEx introduced by Gerstner and Brette: c m dv dt f ( V ) w dw dt f ( V ) g L ( V w E L I ) g a( V E ) w L L D T V exp Q D T if V Q, then three events happen Postsynaptic neuron fires a spike V is reset to a reset potential, for instance V 0 and w is reset to w + b Dependent variables are: V, I, and variable w. Parameters are: c m, g L, Q, D T, a, b, and all the equilibrium potentials E.

25 25 How do we fix the model parameter values? Step 1: Fix the known parameters (e.g. V 0, E L, etc) and make educated guesses for the remaining unknown parameter values. Step 2: Use the model to simulate experiments, producing model data. Step 3: Compare the model data with experimental data. Step 4: Adjust one or more parameter values and repeat from Step 2 until the simulated data sufficiently matches experimental data. Step 5: Use the model to simulate new experiments not used in the steps above and compare the resulting model data with the new experimental data to verify that the chosen parameter values are robust.

26 26 Behaviour of I&F model in response to excitatory inputs Firing threshold Q Spike waveforms are simply superimposed upon underlying waveform of membrane potential V Differential equation for V can be solved numerically for different time course of synaptic current I e as shown in the figure above. Here we only consider excitatory synaptic currents, hence the subscript e in I e

27 A big leap: Izhikevich s model of spiking neuron reproduces firing behavior of many types of cortical neurons. It combines the biologically plausibility of Hodgkin-Huxley-type dynamics and the computational efficiency of integrate-and-fire neurons. ( ) if dv dt du dt v 5v 140 u v a( bv u) peak, v c then u u d I Dependent variables: I, v and u Parameters: a, b, c, d these determine a particular spiking pattern Parameter peak is the value of the spike peak (see the next slide) 27

28 The project: Simple spiking model of Izhikevich 28

29 29 Reply of Izhikevich neuron to a constant input Let s image I = constant, then the regularly spiking cell will produce this output The so-called chattering neuron responds to I = constant like this And the low-threshold (usually an inhibitory) neuron responds like this

30 30 Reply of Izhikevich neuron to random input Let s imagine I = random, then the regularly spiking cell will produce this output But the so-called chattering type of a neuron responds like this And the low-threshold (usually an inhibitory) neuron responds like this

31 31 Applications The Gerstner and Brette s model is used in the Blue Brain project Izhikevich has developed his model based on a deep dynamical analysis of general properties of neurons, see Dynamical System in Neuroscience: E.I. is a director of the Brain Corporation: the goal of which is to build artificial brains for commercial applications.

32 32 Summary Since we ignore many details, including the geometry of the dendrites, and particular ion channels in the membrane, then we need to adjust the values of parameters in the right hand side of the basic equation for the voltage V. Thus, there are many modifications of the basic I&F model Adaptive exponential I&F model AdEx of Brette and Gerstner Simple spiking model of Izhikevich And many more

Synapses and synaptic plasticity. Lubica Benuskova Lecture 8 How neurons communicate How do we learn and remember

Synapses and synaptic plasticity. Lubica Benuskova Lecture 8 How neurons communicate How do we learn and remember Synapses and synaptic plasticity Lubica Benuskova Lecture 8 How neurons communicate How do we learn and remember 1 Brain is comprised of networks of neurons connected and communicating via synapses ~10

More information

Chapter 6 subtitles postsynaptic integration

Chapter 6 subtitles postsynaptic integration CELLULAR NEUROPHYSIOLOGY CONSTANCE HAMMOND Chapter 6 subtitles postsynaptic integration INTRODUCTION (1:56) This sixth and final chapter deals with the summation of presynaptic currents. Glutamate and

More information

Neuromorphic computing

Neuromorphic computing Neuromorphic computing Robotics M.Sc. programme in Computer Science lorenzo.vannucci@santannapisa.it April 19th, 2018 Outline 1. Introduction 2. Fundamentals of neuroscience 3. Simulating the brain 4.

More information

Action potential. Definition: an all-or-none change in voltage that propagates itself down the axon

Action potential. Definition: an all-or-none change in voltage that propagates itself down the axon Action potential Definition: an all-or-none change in voltage that propagates itself down the axon Action potential Definition: an all-or-none change in voltage that propagates itself down the axon Naturally

More information

Part 11: Mechanisms of Learning

Part 11: Mechanisms of Learning Neurophysiology and Information: Theory of Brain Function Christopher Fiorillo BiS 527, Spring 2012 042 350 4326, fiorillo@kaist.ac.kr Part 11: Mechanisms of Learning Reading: Bear, Connors, and Paradiso,

More information

Structure of a Neuron:

Structure of a Neuron: Structure of a Neuron: At the dendrite the incoming signals arrive (incoming currents) At the soma current are finally integrated. At the axon hillock action potential are generated if the potential crosses

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 6: Single neuron models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis I 5 Data analysis II 6 Single

More information

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells. The beauty of the Na + K + pump Na + K + pump Found along the plasma membrane of all cells. Establishes gradients, controls osmotic effects, allows for cotransport Nerve cells have a Na + K + pump and

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Neurons: Structure and communication

Neurons: Structure and communication Neurons: Structure and communication http://faculty.washington.edu/chudler/gall1.html Common Components of a Neuron Dendrites Input, receives neurotransmitters Soma Processing, decision Axon Transmits

More information

What is Anatomy and Physiology?

What is Anatomy and Physiology? Introduction BI 212 BI 213 BI 211 Ecosystems Organs / organ systems Cells Organelles Communities Tissues Molecules Populations Organisms Campbell et al. Figure 1.4 Introduction What is Anatomy and Physiology?

More information

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

1) Drop off in the Bi 150 box outside Baxter 331 or  to the head TA (jcolas). Bi/CNS/NB 150 Problem Set 3 Due: Tuesday, Oct. 27, at 4:30 pm Instructions: 1) Drop off in the Bi 150 box outside Baxter 331 or e-mail to the head TA (jcolas). 2) Submit with this cover page. 3) Use a

More information

Cell communication. Gated ion channels. Allow specific ions to pass only when gates are open

Cell communication. Gated ion channels. Allow specific ions to pass only when gates are open increase decrease Cell communication Gated ion channels Allow specific ions to pass only when gates are open Triggered by: potential change, chemical binding, temperature change, stretching 1 Voltage-Gated

More information

Cell communication. Gated ion channels. Voltage-Gated Na + Channel. Allow specific ions to pass only when gates are open

Cell communication. Gated ion channels. Voltage-Gated Na + Channel. Allow specific ions to pass only when gates are open increase decrease Cell communication Gated ion channels Allow specific ions to pass only when gates are open Voltage-Gated Na + Channel Activation gate ECF Triggered by: change, chemical binding, temperature

More information

Cellular Bioelectricity

Cellular Bioelectricity ELEC ENG 3BB3: Cellular Bioelectricity Notes for Lecture 24 Thursday, March 6, 2014 8. NEURAL ELECTROPHYSIOLOGY We will look at: Structure of the nervous system Sensory transducers and neurons Neural coding

More information

Lecture 22: A little Neurobiology

Lecture 22: A little Neurobiology BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 22: A little Neurobiology http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Nervous system development Part of the ectoderm

More information

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017

Applied Neuroscience. Conclusion of Science Honors Program Spring 2017 Applied Neuroscience Conclusion of Science Honors Program Spring 2017 Review Circle whichever is greater, A or B. If A = B, circle both: I. A. permeability of a neuronal membrane to Na + during the rise

More information

How Synapses Integrate Information and Change

How Synapses Integrate Information and Change How Synapses Integrate Information and Change Rachel Stewart class of 2016 http://neuroscience.uth.tmc.edu/s1/chapter06.html http://neuroscience.uth.tmc.edu/s1/chapter07.html Chris Cohan, Ph.D. Dept. of

More information

Evaluating the Effect of Spiking Network Parameters on Polychronization

Evaluating the Effect of Spiking Network Parameters on Polychronization Evaluating the Effect of Spiking Network Parameters on Polychronization Panagiotis Ioannou, Matthew Casey and André Grüning Department of Computing, University of Surrey, Guildford, Surrey, GU2 7XH, UK

More information

EE 791 Lecture 2 Jan 19, 2015

EE 791 Lecture 2 Jan 19, 2015 EE 791 Lecture 2 Jan 19, 2015 Action Potential Conduction And Neural Organization EE 791-Lecture 2 1 Core-conductor model: In the core-conductor model we approximate an axon or a segment of a dendrite

More information

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh 9 Ameen Alsaras Ameen Alsaras Mohd.Khatatbeh Nerve Cells (Neurons) *Remember: The neural cell consists of: 1-Cell body 2-Dendrites 3-Axon which ends as axon terminals. The conduction of impulse through

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 7: Network models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single neuron

More information

Synaptic Transmission: Ionic and Metabotropic

Synaptic Transmission: Ionic and Metabotropic Synaptic Transmission: Ionic and Metabotropic D. Purves et al. Neuroscience (Sinauer Assoc.) Chapters 5, 6, 7. C. Koch. Biophysics of Computation (Oxford) Chapter 4. J.G. Nicholls et al. From Neuron to

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain?

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Postsynaptic potentials small changes in voltage (membrane potential) due to the binding of neurotransmitter. Receptor-gated ion channels ion channels that open or close in response to the binding of a

More information

BIPN 140 Problem Set 6

BIPN 140 Problem Set 6 BIPN 140 Problem Set 6 1) The hippocampus is a cortical structure in the medial portion of the temporal lobe (medial temporal lobe in primates. a) What is the main function of the hippocampus? The hippocampus

More information

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain? Workbook. Postsynaptic potentials Depolarize to decrease the resting membrane potential. Decreasing membrane potential means that the membrane potential is becoming more positive. Excitatory postsynaptic potentials (EPSP) graded postsynaptic

More information

Basics of Computational Neuroscience: Neurons and Synapses to Networks

Basics of Computational Neuroscience: Neurons and Synapses to Networks Basics of Computational Neuroscience: Neurons and Synapses to Networks Bruce Graham Mathematics School of Natural Sciences University of Stirling Scotland, U.K. Useful Book Authors: David Sterratt, Bruce

More information

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system)

9/28/2016. Neuron. Multipolar Neuron. Astrocytes Exchange Materials With Neurons. Glia or Glial Cells ( supporting cells of the nervous system) Neuron Multipolar Neuron https://www.youtube.com/watch?v=lw-psbnu5xago to :38 Glia or Glial Cells ( supporting cells of the nervous system) 10X more numerous than neurons but one-tenth the size make up

More information

How Synapses Integrate Information and Change

How Synapses Integrate Information and Change How Synapses Integrate Information and Change Rachel Stewart class of 2016 https://nba.uth.tmc.edu/neuroscience/s1/chapter06.html https://nba.uth.tmc.edu/neuroscience/s1/chapter07.html Chris Cohan, Ph.D.

More information

Neural Communication. Central Nervous System Peripheral Nervous System. Communication in the Nervous System. 4 Common Components of a Neuron

Neural Communication. Central Nervous System Peripheral Nervous System. Communication in the Nervous System. 4 Common Components of a Neuron Neural Communication Overview of CNS / PNS Electrical Signaling Chemical Signaling Central Nervous System Peripheral Nervous System Somatic = sensory & motor Autonomic = arousal state Parasympathetic =

More information

Neurobiology: The nerve cell. Principle and task To use a nerve function model to study the following aspects of a nerve cell:

Neurobiology: The nerve cell. Principle and task To use a nerve function model to study the following aspects of a nerve cell: Principle and task To use a nerve function model to study the following aspects of a nerve cell: INTRACELLULAR POTENTIAL AND ACTION POTENTIAL Comparison between low and high threshold levels Comparison

More information

BIPN 140 Problem Set 6

BIPN 140 Problem Set 6 BIPN 140 Problem Set 6 1) Hippocampus is a cortical structure in the medial portion of the temporal lobe (medial temporal lobe in primates. a) What is the main function of the hippocampus? The hippocampus

More information

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Omar Sami. Muhammad Abid. Muhammad khatatbeh 10 Omar Sami Muhammad Abid Muhammad khatatbeh Let s shock the world In this lecture we are going to cover topics said in previous lectures and then start with the nerve cells (neurons) and the synapses

More information

Sample Lab Report 1 from 1. Measuring and Manipulating Passive Membrane Properties

Sample Lab Report 1 from  1. Measuring and Manipulating Passive Membrane Properties Sample Lab Report 1 from http://www.bio365l.net 1 Abstract Measuring and Manipulating Passive Membrane Properties Biological membranes exhibit the properties of capacitance and resistance, which allow

More information

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013

BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 BIONB/BME/ECE 4910 Neuronal Simulation Assignments 1, Spring 2013 Tutorial Assignment Page Due Date Week 1/Assignment 1: Introduction to NIA 1 January 28 The Membrane Tutorial 9 Week 2/Assignment 2: Passive

More information

QUIZ YOURSELF COLOSSAL NEURON ACTIVITY

QUIZ YOURSELF COLOSSAL NEURON ACTIVITY QUIZ YOURSELF What are the factors that produce the resting potential? How is an action potential initiated and what is the subsequent flow of ions during the action potential? 1 COLOSSAL NEURON ACTIVITY

More information

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215

PSY 215 Lecture 3 (1/19/2011) (Synapses & Neurotransmitters) Dr. Achtman PSY 215 Corrections: None needed. PSY 215 Lecture 3 Topic: Synapses & Neurotransmitters Chapters 2 & 3, pages 40-57 Lecture Notes: SYNAPSES & NEUROTRANSMITTERS, CHAPTER 3 Action Potential (above diagram found

More information

What effect would an AChE inhibitor have at the neuromuscular junction?

What effect would an AChE inhibitor have at the neuromuscular junction? CASE 4 A 32-year-old woman presents to her primary care physician s office with difficulty chewing food. She states that when she eats certain foods that require a significant amount of chewing (meat),

More information

Neurons, Synapses and Signaling. Chapter 48

Neurons, Synapses and Signaling. Chapter 48 Neurons, Synapses and Signaling Chapter 48 Warm Up Exercise What types of cells can receive a nerve signal? Nervous Organization Neurons- nerve cells. Brain- organized into clusters of neurons, called

More information

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3

NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES 34.3 NEURONS COMMUNICATE WITH OTHER CELLS AT SYNAPSES Neurons communicate with other neurons or target cells at synapses. Chemical synapse: a very narrow

More information

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory 9.7.4 The threshold and channel memory The action potential has a threshold. In figure the area around threshold is expanded (rectangle). A current injection that does not reach the threshold does not

More information

Modulators of Spike Timing-Dependent Plasticity

Modulators of Spike Timing-Dependent Plasticity Modulators of Spike Timing-Dependent Plasticity 1 2 3 4 5 Francisco Madamba Department of Biology University of California, San Diego La Jolla, California fmadamba@ucsd.edu 6 7 8 9 10 11 12 13 14 15 16

More information

Electrophysiology. General Neurophysiology. Action Potentials

Electrophysiology. General Neurophysiology. Action Potentials 5 Electrophysiology Cochlear implants should aim to reproduce the coding of sound in the auditory system as closely as possible, for best sound perception. The cochlear implant is in part the result of

More information

Introduction to Neurobiology

Introduction to Neurobiology Biology 240 General Zoology Introduction to Neurobiology Nervous System functions: communication of information via nerve signals integration and processing of information control of physiological and

More information

Active Control of Spike-Timing Dependent Synaptic Plasticity in an Electrosensory System

Active Control of Spike-Timing Dependent Synaptic Plasticity in an Electrosensory System Active Control of Spike-Timing Dependent Synaptic Plasticity in an Electrosensory System Patrick D. Roberts and Curtis C. Bell Neurological Sciences Institute, OHSU 505 N.W. 185 th Avenue, Beaverton, OR

More information

Problem Set 3 - Answers. -70mV TBOA

Problem Set 3 - Answers. -70mV TBOA Harvard-MIT Division of Health Sciences and Technology HST.131: Introduction to Neuroscience Course Director: Dr. David Corey HST 131/ Neuro 200 18 September 05 Explanation in text below graphs. Problem

More information

Synapses. Excitatory synapses

Synapses. Excitatory synapses Synapses Sensory cells located at the periphery of the body, initiate and conduct signals to the brain and provide various sensory inputs such as vision, hearing, posture, and so on. Providing information

More information

Biomimetic Cortical Nanocircuits: The BioRC Project. Alice C. Parker NSF Emerging Models of Technology Meeting July 24, 2008

Biomimetic Cortical Nanocircuits: The BioRC Project. Alice C. Parker NSF Emerging Models of Technology Meeting July 24, 2008 Biomimetic Cortical Nanocircuits: The BioRC Project Alice C. Parker NSF Emerging Models of Technology Meeting July 24, 2008 The BioRC Project Team and Support Alice Parker, PI and Chongwu Zhou, Co-PI Graduate

More information

Temporal coding in the sub-millisecond range: Model of barn owl auditory pathway

Temporal coding in the sub-millisecond range: Model of barn owl auditory pathway Temporal coding in the sub-millisecond range: Model of barn owl auditory pathway Richard Kempter* Institut fur Theoretische Physik Physik-Department der TU Munchen D-85748 Garching bei Munchen J. Leo van

More information

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1

BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 BIPN100 F15 Human Physiology 1 Lecture 3. Synaptic Transmission p. 1 Terms you should know: synapse, neuromuscular junction (NMJ), pre-synaptic, post-synaptic, synaptic cleft, acetylcholine (ACh), acetylcholine

More information

Rolls,E.T. (2016) Cerebral Cortex: Principles of Operation. Oxford University Press.

Rolls,E.T. (2016) Cerebral Cortex: Principles of Operation. Oxford University Press. Digital Signal Processing and the Brain Is the brain a digital signal processor? Digital vs continuous signals Digital signals involve streams of binary encoded numbers The brain uses digital, all or none,

More information

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons Peter Osseward, Uri Magaram Department of Neuroscience University of California, San Diego La Jolla, CA 92092 possewar@ucsd.edu

More information

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings ( Anatomy Review Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (http://www.aw-bc.com) Page 1. Introduction Neurons communicate with other cells at junctions

More information

Chapter 11: Functional Organization of Nervous Tissue

Chapter 11: Functional Organization of Nervous Tissue Chapter 11: Functional Organization of Nervous Tissue I. Functions of the Nervous System A. List and describe the five major nervous system functions: 1. 2. 3. 4. 5. II. Divisions of the Nervous System

More information

CAS Seminar - Spiking Neurons Network (SNN) Jakob Kemi ( )

CAS Seminar - Spiking Neurons Network (SNN) Jakob Kemi ( ) CAS Seminar - Spiking Neurons Network (SNN) Jakob Kemi (820622-0033) kemiolof@student.chalmers.se November 20, 2006 Introduction Biological background To be written, lots of good sources. Background First

More information

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals.

3) Most of the organelles in a neuron are located in the A) dendritic region. B) axon hillock. C) axon. D) cell body. E) axon terminals. Chapter 48 Neurons, Synapses, and Signaling Multiple-Choice Questions 1) A simple nervous system A) must include chemical senses, mechanoreception, and vision. B) includes a minimum of 12 ganglia. C) has

More information

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY]

QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY] QUIZ/TEST REVIEW NOTES SECTION 7 NEUROPHYSIOLOGY [THE SYNAPSE AND PHARMACOLOGY] Learning Objectives: Explain how neurons communicate stimulus intensity Explain how action potentials are conducted along

More information

BIOLOGICAL PROCESSES

BIOLOGICAL PROCESSES BIOLOGICAL PROCESSES CHAPTER 3 1 LEARNING GOALS Discuss how the nervous system communicates internally. Describe the structure and function of neurons Describe how the neuron transmits information Describe

More information

Zoo400 Exam 1: Mar 25, 1999

Zoo400 Exam 1: Mar 25, 1999 Zoo400 Exam 1: Mar 25, 1999 NAME: There is only 1 best answer per question. (1 pt each) A large dendrite is 1mm long and has a diameter of 3.2 µ. Calculate the following using the assumption that the dendrite

More information

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire

Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons. Chad Smurthwaite & Jordan Shellmire Chapter 45: Synapses Transmission of Nerve Impulses Between Neurons Chad Smurthwaite & Jordan Shellmire The Chemical Synapse The most common type of synapse used for signal transmission in the central

More information

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY

MCB MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY MCB 160 - MIDTERM EXAM #1 MONDAY MARCH 3, 2008 ANSWER KEY Name ID# Instructions: -Only tests written in pen will be regarded -Please submit a written request indicating where and why you deserve more points

More information

SYNAPTIC TRANSMISSION 1

SYNAPTIC TRANSMISSION 1 SYNAPTIC TRANSMISSION 1 I. OVERVIEW A. In order to pass and process information and mediate responses cells communicate with other cells. These notes examine the two means whereby excitable cells can rapidly

More information

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1

Lesson 14. The Nervous System. Introduction to Life Processes - SCI 102 1 Lesson 14 The Nervous System Introduction to Life Processes - SCI 102 1 Structures and Functions of Nerve Cells The nervous system has two principal cell types: Neurons (nerve cells) Glia The functions

More information

Investigation of Physiological Mechanism For Linking Field Synapses

Investigation of Physiological Mechanism For Linking Field Synapses Investigation of Physiological Mechanism For Linking Field Synapses Richard B. Wells 1, Nick Garrett 2, Tom Richner 3 Microelectronics Research and Communications Institute (MRCI) BEL 316 University of

More information

5-Nervous system II: Physiology of Neurons

5-Nervous system II: Physiology of Neurons 5-Nervous system II: Physiology of Neurons AXON ION GRADIENTS ACTION POTENTIAL (axon conduction) GRADED POTENTIAL (cell-cell communication at synapse) SYNAPSE STRUCTURE & FUNCTION NEURAL INTEGRATION CNS

More information

CHAPTER 44: Neurons and Nervous Systems

CHAPTER 44: Neurons and Nervous Systems CHAPTER 44: Neurons and Nervous Systems 1. What are the three different types of neurons and what are their functions? a. b. c. 2. Label and list the function of each part of the neuron. 3. How does the

More information

Action potentials propagate down their axon

Action potentials propagate down their axon Action potentials propagate down their axon Larger diameter axons have less resistance to ion flow Speed of conduction is faster in large diameter axons Saltatory conduction in myelinated axons Large myelinated

More information

2Lesson. Outline 3.3. Lesson Plan. The OVERVIEW. Lesson 3.3 Why does applying pressure relieve pain? LESSON. Unit1.2

2Lesson. Outline 3.3. Lesson Plan. The OVERVIEW. Lesson 3.3 Why does applying pressure relieve pain? LESSON. Unit1.2 Outline 2Lesson Unit1.2 OVERVIEW Rationale: This lesson introduces students to inhibitory synapses. To review synaptic transmission, the class involves a student model pathway to act out synaptic transmission.

More information

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25 Memory Systems II How Stored: Engram and LTP Reading: BCP Chapter 25 Memory Systems Learning is the acquisition of new knowledge or skills. Memory is the retention of learned information. Many different

More information

Anatomy of a Neuron. Copyright 2000 by BSCS and Videodiscovery, Inc. Permission granted for classroom use. Master 2.1

Anatomy of a Neuron. Copyright 2000 by BSCS and Videodiscovery, Inc. Permission granted for classroom use. Master 2.1 Anatomy of a Neuron Master 2.1 Neurons Interact With Other Neurons Through Synapses Master 2.2 How Do Neurons Communicate? 1 2 3 4 5 6 Master 2.3 Neurons Communicate by Neurotransmission Neurons communicate

More information

Human Brain and Senses

Human Brain and Senses Human Brain and Senses Outline for today Levels of analysis Basic structure of neurons How neurons communicate Basic structure of the nervous system Levels of analysis Organism Brain Cell Synapses Membrane

More information

Bioscience in the 21st century

Bioscience in the 21st century Bioscience in the 21st century Neurons, Synapses, and Signaling Dr. Michael Burger Outline: 1. Why neuroscience? 2. The neuron 3. Action potentials 4. Synapses 5. Organization of the nervous system 6.

More information

Physiological and Physical Basis of Functional Brain Imaging 6. EEG/MEG. Kâmil Uludağ, 20. November 2007

Physiological and Physical Basis of Functional Brain Imaging 6. EEG/MEG. Kâmil Uludağ, 20. November 2007 Physiological and Physical Basis of Functional Brain Imaging 6. EEG/MEG Kâmil Uludağ, 20. November 2007 Course schedule 1. Overview 2. fmri (Spin dynamics, Image formation) 3. fmri (physiology) 4. fmri

More information

BIOL Week 6. Nervous System. Transmission at Synapses

BIOL Week 6. Nervous System. Transmission at Synapses Collin County Community College BIOL 2401 Week 6 Nervous System 1 Transmission at Synapses Synapses are the site of communication between 2 or more neurons. It mediates the transfer of information and

More information

Basics of Computational Neuroscience

Basics of Computational Neuroscience Basics of Computational Neuroscience 1 1) Introduction Lecture: Computational Neuroscience, The Basics A reminder: Contents 1) Brain, Maps,, Networks,, and The tough stuff: 2,3) Membrane Models 3,4) Spiking

More information

International Journal of Advanced Computer Technology (IJACT)

International Journal of Advanced Computer Technology (IJACT) Abstract An Introduction to Third Generation of Neural Networks for Edge Detection Being inspired by the structure and behavior of the human visual system the spiking neural networks for edge detection

More information

STDP between a Pair of Recurrently Connected Neurons with Asynchronous and Synchronous Stimulation AZADEH HASSANNEJAD NAZIR

STDP between a Pair of Recurrently Connected Neurons with Asynchronous and Synchronous Stimulation AZADEH HASSANNEJAD NAZIR STDP between a Pair of Recurrently Connected Neurons with Asynchronous and Synchronous Stimulation AZADEH HASSANNEJAD NAZIR Master of Science Thesis Stockholm, Sweden 2012 STDP between a Pair of Recurrently

More information

Concept 48.1 Neuron organization and structure reflect function in information transfer

Concept 48.1 Neuron organization and structure reflect function in information transfer Name Chapter 48: Neurons, Synapses, and Signaling Period Chapter 48: Neurons, Synapses, and Signaling Concept 48.1 Neuron organization and structure reflect function in information transfer 1. What is

More information

Input-speci"c adaptation in complex cells through synaptic depression

Input-specic adaptation in complex cells through synaptic depression 0 0 0 0 Neurocomputing }0 (00) } Input-speci"c adaptation in complex cells through synaptic depression Frances S. Chance*, L.F. Abbott Volen Center for Complex Systems and Department of Biology, Brandeis

More information

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline

Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Chapter 11 Introduction to the Nervous System and Nervous Tissue Chapter Outline Module 11.1 Overview of the Nervous System (Figures 11.1-11.3) A. The nervous system controls our perception and experience

More information

Communication within a Neuron

Communication within a Neuron Neuronal Communication, Ph.D. Communication within a Neuron Measuring Electrical Potentials of Axons The Membrane Potential The Action Potential Conduction of the Action Potential 1 The withdrawal reflex

More information

Welcome to CSE/NEUBEH 528: Computational Neuroscience

Welcome to CSE/NEUBEH 528: Computational Neuroscience Welcome to CSE/NEUBEH 528: Computational Neuroscience Instructors: Rajesh Rao (rao@cs) Adrienne Fairhall (fairhall@u) TA: Yanping Huang (huangyp@u) 1 Today s Agenda Introduction: Who are we? Course Info

More information

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis

Synaptic plasticityhippocampus. Neur 8790 Topics in Neuroscience: Neuroplasticity. Outline. Synaptic plasticity hypothesis Synaptic plasticityhippocampus Neur 8790 Topics in Neuroscience: Neuroplasticity Outline Synaptic plasticity hypothesis Long term potentiation in the hippocampus How it s measured What it looks like Mechanisms

More information

Recognition of English Characters Using Spiking Neural Networks

Recognition of English Characters Using Spiking Neural Networks Recognition of English Characters Using Spiking Neural Networks Amjad J. Humaidi #1, Thaer M. Kadhim *2 Control and System Engineering, University of Technology, Iraq, Baghdad 1 601116@uotechnology.edu.iq

More information

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells

Portions from Chapter 6 CHAPTER 7. The Nervous System: Neurons and Synapses. Chapter 7 Outline. and Supporting Cells CHAPTER 7 The Nervous System: Neurons and Synapses Chapter 7 Outline Neurons and Supporting Cells Activity in Axons The Synapse Acetylcholine as a Neurotransmitter Monoamines as Neurotransmitters Other

More information

Physiology of synapses and receptors

Physiology of synapses and receptors Physiology of synapses and receptors Dr Syed Shahid Habib Professor & Consultant Clinical Neurophysiology Dept. of Physiology College of Medicine & KKUH King Saud University REMEMBER These handouts will

More information

Plasticity of Cerebral Cortex in Development

Plasticity of Cerebral Cortex in Development Plasticity of Cerebral Cortex in Development Jessica R. Newton and Mriganka Sur Department of Brain & Cognitive Sciences Picower Center for Learning & Memory Massachusetts Institute of Technology Cambridge,

More information

Chapter 4 Neuronal Physiology

Chapter 4 Neuronal Physiology Chapter 4 Neuronal Physiology V edit. Pg. 99-131 VI edit. Pg. 85-113 VII edit. Pg. 87-113 Input Zone Dendrites and Cell body Nucleus Trigger Zone Axon hillock Conducting Zone Axon (may be from 1mm to more

More information

Chapter 2: Cellular Mechanisms and Cognition

Chapter 2: Cellular Mechanisms and Cognition Chapter 2: Cellular Mechanisms and Cognition MULTIPLE CHOICE 1. Two principles about neurons were defined by Ramón y Cajal. The principle of connectional specificity states that, whereas the principle

More information

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM STRUCTURE AND MAINTENANCE OF NEURONS (a) (b) Dendrites Cell body Initial segment collateral terminals (a) Diagrammatic representation of a neuron. The break in

More information

Photoreceptors Rods. Cones

Photoreceptors Rods. Cones Photoreceptors Rods Cones 120 000 000 Dim light Prefer wavelength of 505 nm Monochromatic Mainly in periphery of the eye 6 000 000 More light Different spectral sensitivities!long-wave receptors (558 nm)

More information

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. Neurons Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons. MBL, Woods Hole R Cheung MSc Bioelectronics: PGEE11106 1 Neuron

More information

Firing Cell: An Artificial Neuron with a Simulation of Long-Term-Potentiation-Related Memory

Firing Cell: An Artificial Neuron with a Simulation of Long-Term-Potentiation-Related Memory Firing Cell: An Artificial Neuron with a Simulation of Long-Term-Potentiation-Related Memory Jacek Bialowas Dept. of Anatomy and Neurobiology Medical University of Gdansk Debinki 1, 80-211 Gdansk, Poland

More information

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels.

The action potential travels down both branches because each branch is a typical axon with voltage dependent Na + and K+ channels. BIO 360 - MIDTERM FALL 2018 This is an open book, open notes exam. PLEASE WRITE YOUR NAME ON EACH SHEET. Read each question carefully and answer as well as you can. Point values are shown at the beginning

More information

Introduction to the Nervous System

Introduction to the Nervous System Introduction to the Nervous System Sharba Bandyopadhyay Department of E&ECE sharba@ece.iitkgp.ernet.in Why study the brain? Basic Science understanding how the brain works from molecules to mind Being

More information

Synaptic Communication. Steven McLoon Department of Neuroscience University of Minnesota

Synaptic Communication. Steven McLoon Department of Neuroscience University of Minnesota Synaptic Communication Steven McLoon Department of Neuroscience University of Minnesota 1 Course News The first exam is next week on Friday! Be sure to checkout the sample exam on the course website. 2

More information

MOLECULAR AND CELLULAR NEUROSCIENCE

MOLECULAR AND CELLULAR NEUROSCIENCE MOLECULAR AND CELLULAR NEUROSCIENCE BMP-218 November 4, 2014 DIVISIONS OF THE NERVOUS SYSTEM The nervous system is composed of two primary divisions: 1. CNS - Central Nervous System (Brain + Spinal Cord)

More information

Synfire chains with conductance-based neurons: internal timing and coordination with timed input

Synfire chains with conductance-based neurons: internal timing and coordination with timed input Neurocomputing 5 (5) 9 5 www.elsevier.com/locate/neucom Synfire chains with conductance-based neurons: internal timing and coordination with timed input Friedrich T. Sommer a,, Thomas Wennekers b a Redwood

More information

THE HISTORY OF NEUROSCIENCE

THE HISTORY OF NEUROSCIENCE THE HISTORY OF NEUROSCIENCE BIOLOGICAL ASPECTS OF BEHAVIOR: THE NEURON & NEURAL COMMUNICATION NERVOUS SYSTEM Combined activity of the brain, spinal cord & other nerve fibers Acts as an information processing

More information

Simulating inputs of parvalbumin inhibitory interneurons onto excitatory pyramidal cells in piriform cortex

Simulating inputs of parvalbumin inhibitory interneurons onto excitatory pyramidal cells in piriform cortex Simulating inputs of parvalbumin inhibitory interneurons onto excitatory pyramidal cells in piriform cortex Jeffrey E. Dahlen jdahlen@ucsd.edu and Kerin K. Higa khiga@ucsd.edu Department of Neuroscience

More information