Theory of cortical plasticity in vision. George J. Kalarickal

Size: px
Start display at page:

Download "Theory of cortical plasticity in vision. George J. Kalarickal"

Transcription

1 Theory of cortical plasticity in vision by George J. Kalarickal A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulllment of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science. Chapel Hill 1998 Approved by: Prof. Jonathan A. Marshall, Advisor Dr. William D. Ross, Reader Prof. Oleg V. Favorov, Reader Prof. David Fitzpatrick Prof. Stephen M. Pizer

2 ii c1998 George J. Kalarickal ALL RIGHTS RESERVED

3 To Wg. Cdr. and Mrs. K.J. Joseph and Fr. Sebastian Kalarickal, S.J. iii

4 iv George J. Kalarickal. Theory of cortical plasticity in vision (Under the direction of Professor Jonathan A. Marshall.) ABSTRACT A theory of postnatal activity-dependent neural plasticity based on synaptic weight modication is presented. Synaptic weight modications are governed by simple variants of a Hebbian rule for excitatory pathways and an anti-hebbian rule for inhibitory pathways. The dissertation focuses on modeling the following cortical phenomena: long-term potentiation and depression (LTP and LTD); dynamic receptive eld changes during articial scotoma conditioning in adult animals; adult cortical plasticity induced by bilateral retinal lesions, intracortical microstimulation (ICMS), and repetitive peripheral stimulation; changes in ocular dominance during \classical" rearing conditioning; and the eect of neuropharmacological manipulations on plasticity. Novel experiments are proposed to test the predictions of the proposed models, and the models are compared with other models of cortical properties. The models presented in the dissertation provide insights into the neural basis of perceptual learning. In perceptual learning, persistent changes in cortical neuronal receptive elds are produced by conditioning procedures that manipulate the activation of cortical neurons by repeated activation of localized cortical regions. Thus, the analysis of synaptic plasticity rules for receptive eld changes produced by conditioning procedures that activate small groups of neurons can also elucidate the neural basis of perceptual learning. Previous experimental and theoretical work on cortical plasticity focused mainly on aerent excitatory synaptic plasticity. The novel and unifying theme in this work is self-organization and the use of the lateral inhibitory synaptic plasticity rule. Many cortical properties, e.g., orientation selectivity, motion selectivity, spatial frequency selectivity, etc. are produced or strongly inuenced by inhibitory interactions. properties could be produced by lateral inhibitory synaptic plasticity. Thus, changes in these

5 v Acknowledgements I thank Dr. Jonathan Marshall for his guidance, advice, and support during my ve years at UNC-Chapel Hill. I immensely enjoyed working with Dr. Marshall. I am grateful to him for imparting to me his good taste for relevant and important research work and for teaching me the art of identifying important research questions. I appreciate his help in improving my writing and public speaking skills. I am grateful for the encouragement and the support from Dr. Stephen Pizer, Dr. David Fitzpatrick, Dr. Oleg Favorov, and Dr. William Ross. I appreciate their advice and critical review of my work. I am thankful to Dr. Nestor Schmajuk for initially serving on my dissertation committee. I was very lucky to have Dr. Oleg Favorov join the committee at very short notice. I thank Dr. Favorov and Dr. Ross for reading my dissertation. I thank Richard Alley, Vinay Gupta, Charles Schmitt, and Viswanath Srikanth for their help, advice, and support. I am grateful to all in the Department of Computer Science for making it a fun and happy place to work. This work was supported in part by the Oce of Naval Research (Cognitive and Neural Sciences) and by the Whitaker Foundation (Special Opportunity Grant).

6 vi Contents List of Figures List of Tables xi xvii 1 Introduction: Motivation and overview Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simplied neural circuit : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Plasticity in early postnatal and adult cortex : : : : : : : : : : : : : : : : : Long-term synaptic plasticity : : : : : : : : : : : : : : : : : : : : : : Cortical plasticity in early postnatal development : : : : : : : : : : : Cortical plasticity during pharmacological infusions : : : : : : : : : : Cortical plasticity induced by peripheral conditioning : : : : : : : : Cortical plasticity induced by intracortical microstimulation : : : : : The rules of long-term synaptic plasticity : : : : : : : : : : : : : : : : : : : Relation to previous theories : : : : : : : : : : : : : : : : : : : : : : : : : : Emphasis on lateral inhibitory interactions : : : : : : : : : : : : : : : : : : Thesis statement : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Overall contributions and signicance : : : : : : : : : : : : : : : : : : : : : Outline of the dissertation : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22 2 Comparison of generalized Hebbian rules for long-term synaptic plasticity Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The activation equation : : : : : : : : : : : : : : : : : : : : : : : : : Synaptic plasticity rules : : : : : : : : : : : : : : : : : : : : : : : : : Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Analyses of excitatory synaptic plasticity rules : : : : : : : : : : : : Analysis of the outstar lateral inhibitory synaptic plasticity rule : : Characteristics of the excitatory synaptic plasticity rules : : : : : : : Combined eects of instar and outstar excitatory synaptic plasticity rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Characteristics of the outstar inhibitory synaptic plasticity rule : : : Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 86

7 vii Experimental evidence for the excitatory synaptic plasticity rules : : Experimental evidence for the outstar lateral inhibitory synaptic plasticity rule : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Functional signicance of the synaptic plasticity rules : : : : : : : : Comparison of the functional roles of the instar and outstar excitatory rules : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The role of aerent excitatory and lateral inhibitory synaptic plasticity in visual cortical ocular dominance plasticity Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : EXIN model of ocular dominance shifts : : : : : : : : : : : : : : : : Initial network structure : : : : : : : : : : : : : : : : : : : : : : : : : Measures of cortical properties : : : : : : : : : : : : : : : : : : : : : Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Normal rearing : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Monocular deprivation : : : : : : : : : : : : : : : : : : : : : : : : : : Reverse suture : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Strabismus : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Binocular deprivation : : : : : : : : : : : : : : : : : : : : : : : : : : Recovery : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Role of lateral inhibitory synaptic plasticity on neuronal feature selectivity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Site of cortical OD plasticity : : : : : : : : : : : : : : : : : : : : : : Comparison with other models of cortical OD plasticity : : : : : : : 16 4 Plasticity in cortical neuron properties: Modeling the eects of an NMDA antagonist and a GABA agonist during visual deprivation Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Disruption of MD by pharmacological infusion : : : : : : : : : : : : Aspecic eects of infusion of APV and muscimol : : : : : : : : : : Previous models : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Signicance and contributions of the chapter : : : : : : : : : : : : : EXIN model of changes in cortical properties : : : : : : : : : : : : : : : : : The EXIN plasticity rules : : : : : : : : : : : : : : : : : : : : : : : : The activation rule : : : : : : : : : : : : : : : : : : : : : : : : : : : : Explanation based on the EXIN plasticity rules : : : : : : : : : : : : Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Initial network structure : : : : : : : : : : : : : : : : : : : : : : : : : Pharmacological manipulations : : : : : : : : : : : : : : : : : : : : : Simulation procedure : : : : : : : : : : : : : : : : : : : : : : : : : : Measures of cortical properties : : : : : : : : : : : : : : : : : : : : : Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 177

8 viii Aspecic eects of pharmacological treatments : : : : : : : : : : : : Eects of pharmacological treatments during MD : : : : : : : : : : : Important model parameters : : : : : : : : : : : : : : : : : : : : : : Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Loss of cortical neuronal stimulus feature selectivity : : : : : : : : : Model predictions : : : : : : : : : : : : : : : : : : : : : : : : : : : : Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2 5 Models of receptive eld dynamics in visual cortex Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Signicance of RF dynamics : : : : : : : : : : : : : : : : : : : : : : : Modeling of RF dynamics : : : : : : : : : : : : : : : : : : : : : : : : Signicance and contributions of this chapter : : : : : : : : : : : : : Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Network simulation organization : : : : : : : : : : : : : : : : : : : : The inputs : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation procedure : : : : : : : : : : : : : : : : : : : : : : : : : : RF measurements : : : : : : : : : : : : : : : : : : : : : : : : : : : : The EXIN model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The LISSOM model : : : : : : : : : : : : : : : : : : : : : : : : : : : The inhibition-dominant adaptation model : : : : : : : : : : : : : : The adaptation model with no lateral interaction : : : : : : : : : : : The excitation-dominant adaptation model : : : : : : : : : : : : : : Simulation results: Scotoma stimuli : : : : : : : : : : : : : : : : : : : : : : : Comparison of outstar/instar lateral inhibitory synaptic plasticity rules and neuronal adaptation : : : : : : : : : : : : : : : : : : : : : : Role of aerent excitatory synaptic plasticity : : : : : : : : : : : : : Role of lateral excitatory synaptic plasticity : : : : : : : : : : : : : : Simulation results: Complementary scotoma stimuli : : : : : : : : : : : : : : RF changes because of synaptic plasticity : : : : : : : : : : : : : : : RF changes because of neuronal adaptation : : : : : : : : : : : : : : Recovery of RF properties : : : : : : : : : : : : : : : : : : : : : : : : Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Models based on the EXIN and the LISSOM rules : : : : : : : : : : Transient response bias in RF measurements : : : : : : : : : : : : : Eect of orientation on RF dynamics : : : : : : : : : : : : : : : : : : Long-term eects of retinal lesions on RF properties : : : : : : : : : Role of lateral excitatory pathways in RF properties : : : : : : : : : Signicance of the EXIN lateral inhibitory plasticity rule : : : : : : Neurophysiological realization of the EXIN lateral inhibitory plasticity rule : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 293

9 ix 6 Rearrangement of receptive eld topography after intracortical and peripheral stimulation: The role of plasticity in inhibitory pathways Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Cortical plasticity in adult animals : : : : : : : : : : : : : : : : : : : Receptive eld topography changes after intracortical microstimulation Receptive eld topography changes after peripheral stimulation : : : Previously suggested mechanisms : : : : : : : : : : : : : : : : : : : : EXIN model of RF changes : : : : : : : : : : : : : : : : : : : : : : : Signicance and contributions of the chapter : : : : : : : : : : : : : Methods : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Model architecture : : : : : : : : : : : : : : : : : : : : : : : : : : : : Model stimulation procedures : : : : : : : : : : : : : : : : : : : : : : Simulation procedure : : : : : : : : : : : : : : : : : : : : : : : : : : RF measurements : : : : : : : : : : : : : : : : : : : : : : : : : : : : The EXIN model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The eects of ICMS on the model : : : : : : : : : : : : : : : : : : : The eects of model ICMS parameters : : : : : : : : : : : : : : : : : The eects of RF scatter during ICMS : : : : : : : : : : : : : : : : : The eects of peripheral stimulation : : : : : : : : : : : : : : : : : : Changes in stimulus discrimination after peripheral stimulation : : : Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Explanation of the RF changes during ICMS and peripheral stimulation Stability of EXIN networks : : : : : : : : : : : : : : : : : : : : : : : Assumptions of the model : : : : : : : : : : : : : : : : : : : : : : : : Signicance of lateral inhibitory plasticity : : : : : : : : : : : : : : : Model predictions : : : : : : : : : : : : : : : : : : : : : : : : : : : : Neurophysiological realization of the EXIN synaptic plasticity rules : Conclusions and future work Summary : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Future work : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Development of topographic cortical maps : : : : : : : : : : : : : : : Neural basis of perceptual learning : : : : : : : : : : : : : : : : : : : Changes in information content of self-organizing networks after changes in input environment : : : : : : : : : : : : : : : : : : : : : : Self-organization of stereopsis : : : : : : : : : : : : : : : : : : : : : : Binocular rivalry : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 397 A Parameters used in the simulations of Chapter 2 4 B Parameters used in the simulations of Chapters 3 and 4 46 B.1 Activation equation parameters : : : : : : : : : : : : : : : : : : : : : : : : : 46 B.2 Initial network : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46 B.3 Training and test stimuli : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

10 x B.4 Normal rearing procedure : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48 B.5 Classical rearing manipulations : : : : : : : : : : : : : : : : : : : : : : : : : 49 B.6 Parameters for synaptic plasticity rules : : : : : : : : : : : : : : : : : : : : : 41 B.7 Parameters for aspecic action of pharmacological infusion : : : : : : : : : : 41 B.8 Eects of pharmacological infusion : : : : : : : : : : : : : : : : : : : : : : : 41 B.8.1 APV infusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 411 B.8.2 Muscimol infusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : 411 C Parameters used in the simulations of Chapter C.1 Parameters for the EXIN model simulations : : : : : : : : : : : : : : : : : : 412 C.1.1 Parameters for the activation equation : : : : : : : : : : : : : : : : : 413 C.1.2 Parameters for the learning equations : : : : : : : : : : : : : : : : : 415 C.2 Parameters for the LISSOM simulations : : : : : : : : : : : : : : : : : : : : 419 C.2.1 Parameters for the activation equation : : : : : : : : : : : : : : : : : 419 C.2.2 Parameters for the learning equations : : : : : : : : : : : : : : : : : 419 C.3 Parameters for the adaptation model simulations : : : : : : : : : : : : : : : 42 C.3.1 Parameters for the activation equation : : : : : : : : : : : : : : : : : 421 C.3.2 Parameters for the adaptation equation : : : : : : : : : : : : : : : : 421 C.4 Parameters for generating the inputs for the simulations : : : : : : : : : : : 422 C.5 Parameters for RF measurements : : : : : : : : : : : : : : : : : : : : : : : : 422 C.6 Conditioning procedure : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 422 D Parameters used in the simulations of Chapter D.1 Parameters for the activation equation : : : : : : : : : : : : : : : : : : : : : 424 D.2 Parameters for initial synaptic strength values : : : : : : : : : : : : : : : : : 425 D.3 Parameters for the initial training phase : : : : : : : : : : : : : : : : : : : : 426 D.4 Parameters for ICMS simulations : : : : : : : : : : : : : : : : : : : : : : : : 427 D.4.1 ICMS simulations in Section : : : : : : : : : : : : : : : : : : : 427 D.4.2 ICMS simulations in Section : : : : : : : : : : : : : : : : : : : 427 D.4.3 ICMS simulations in Section : : : : : : : : : : : : : : : : : : : 428 D.5 Parameters for peripheral stimulation simulations : : : : : : : : : : : : : : : 428 D.6 Parameters for RF measurements : : : : : : : : : : : : : : : : : : : : : : : : 429 Bibliography 43

11 xi List of Figures 1.1 Pathway connection pattern in the primary visual cortex. : : : : : Simplied neural circuit. : : : : : : : : : : : : : : : : : : : : : : : : : : Abstract neural circuit. : : : : : : : : : : : : : : : : : : : : : : : : : : : Experimental conguration for experiments on long-term synaptic plasticity. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Comparison of instar and outstar plasticity rules. : : : : : : : : : : : The BCM excitatory synaptic plasticity rule. : : : : : : : : : : : : : The BCM excitatory synaptic plasticity rule. : : : : : : : : : : : : : Change in synaptic weight as a function of the postsynaptic activity using the BCM rule. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Change in synaptic weight as a function of the presynaptic activity using the instar excitatory synaptic plasticity rule. : : : : : : : : : : Change in synaptic weight as a function of the presynaptic activity using the outstar excitatory synaptic plasticity rule. : : : : : : : : : The outstar inhibitory synaptic plasticity rule under the linearity assumption. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Model network. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Changes in excitatory synaptic ecacy of stimulated and unstimulated pathways as a function of presynaptic stimulation strength. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Changes in excitatory synaptic ecacy of stimulated and unstimulated pathways under faster learning parameters. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Equilibrium values of excitatory synaptic ecacy of stimulated and unstimulated pathways. : : : : : : : : : : Simulation results: Equilibrium values of excitatory synaptic ecacy of stimulated and unstimulated pathways according to the BCM rule. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: The eects of lateral inhibitory weight on excitatory synaptic plasticity. : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Excitatory synaptic plasticity produced by stimulation of equally strong pathways to dierent neurons. : : : : 64

12 xii 2.14 Simulation results: Changes in excitatory synaptic ecacy of the stimulated pathway as a function of postsynaptic activation. : : : : Simulation results: Changes in excitatory synaptic ecacy of the stimulated pathway as a function of initial synaptic ecacy. : : : : Simulation results: Changes in excitatory synaptic ecacy of the stimulated pathway according to the BCM rule as a function of prior presynaptic stimulation. : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Postsynaptic activation caused by stimulation of independent excitatory pathways. : : : : : : : : : : : : : : : : : : : Simulation results: Associative synaptic plasticity. : : : : : : : : : : Simulation results: Postsynaptic activation caused by stimulation of independent excitatory pathways in a network with asymmetric lateral inhibitory weights. : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Associative synaptic plasticity in a network with asymmetric lateral inhibitory weights. : : : : : : : : : : : : : : : Simulation results: Synaptic plasticity with xed presynaptic stimulation and variable postsynaptic activation level under the instar and the outstar excitatory synaptic plasticity rules. : : : : : Simulation results: Changes in inhibitory synaptic ecacy under the outstar inhibitory synaptic plasticity rule as a function of input excitation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Changes in inhibitory synaptic ecacy under the outstar inhibitory synaptic plasticity rule produced by unequal activation of neurons. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Equilibrium value of inhibitory synaptic ecacy under the outstar inhibitory synaptic plasticity rule. : : : Simulation results: Changes in inhibitory synaptic ecacy under the outstar inhibitory synaptic plasticity rule as a function of pre- and postsynaptic activation. : : : : : : : : : : : : : : : : : : : : : Simulation results: Changes in inhibitory synaptic ecacy under the outstar inhibitory synaptic plasticity rule as a function of initial inhibitory weight. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Changes in inhibitory synaptic ecacy under the outstar inhibitory synaptic plasticity rule as reciprocal inhibitory weights were varied. : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Changes in inhibitory synaptic ecacy under the outstar inhibitory synaptic plasticity rule as reciprocal weights were varied and the neurons received equal input excitations. : : : Normal rearing. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Development of monocular RFs during NR. : : : : : : : : : : : : : : NR with binocular inputs over a larger disparity range. : : : : : : : The eects of varying the inhibitory weights during NR. : : : : : : OD changes during MD. : : : : : : : : : : : : : : : : : : : : : : : : : : : Monocular RF changes during MD. : : : : : : : : : : : : : : : : : : : 14

13 xiii 3.7 OD changes during RS. : : : : : : : : : : : : : : : : : : : : : : : : : : : Monocular RF changes during RS. : : : : : : : : : : : : : : : : : : : : Monocular RF changes during NR for the neurons in Figure 3.8. : OD changes during ST. : : : : : : : : : : : : : : : : : : : : : : : : : : : Monocular RF changes during ST. : : : : : : : : : : : : : : : : : : : : OD changes during BD. : : : : : : : : : : : : : : : : : : : : : : : : : : : Monocular RF changes during BD. : : : : : : : : : : : : : : : : : : : : Monocular RF changes during BD without lateral inhibitory synaptic plasticity. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : OD during RE following MD. : : : : : : : : : : : : : : : : : : : : : : : Monocular RF changes during RE following MD. : : : : : : : : : : : OD during RE following BD. : : : : : : : : : : : : : : : : : : : : : : : : Monocular RF changes during RE following BD. : : : : : : : : : : : Monocular RF changes during RE following prolonged BD and during NR. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : OD during RE following ST. : : : : : : : : : : : : : : : : : : : : : : : : Monocular RF changes during RE following ST. : : : : : : : : : : : Models OD changes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Model OD distribution before MD. : : : : : : : : : : : : : : : : : : : : Aspecic eects of APV. : : : : : : : : : : : : : : : : : : : : : : : : : : Aspecic eects of APV with lateral inhibitory plasticity. : : : : : Aspecic eects of muscimol. : : : : : : : : : : : : : : : : : : : : : : : : Aspecic eects of muscimol with aerent excitatory and lateral inhibitory synaptic plasticity. : : : : : : : : : : : : : : : : : : : : : : : : Changes in RF properties after MD with APV infusion. : : : : : : Changes in RF properties after MD with APV infusion with lateral inhibitory pathway synaptic plasticity disabled. : : : : : : : : : : : : Model OD distribution after MD with muscimol infusion. : : : : : Model OD distribution after MD with muscimol infusion with lateral inhibitory pathway synaptic plasticity disabled. : : : : : : : Dependence of OD shifts on APV concentration. : : : : : : : : : : : Dependence of OD shifts on muscimol concentration. : : : : : : : : Dependence of RF width and responsiveness on cortical activation RF width and responsiveness in the presence of APV or muscimol Site of RF changes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Network architecture for the EXIN model. : : : : : : : : : : : : : : : The eects of scotoma conditioning on the EXIN model. : : : : : : Network architecture for the LISSOM model and the inhibition-dominant adaptation model. : : : : : : : : : : : : : : : : : : The eects of scotoma conditioning on the LISSOM model. : : : : The eects of scotoma conditioning on the inhibition-dominant adaptation model. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: RF expansion and contraction. : : : : : : : : : : 239

14 xiv 5.8 Simulation results: The iceberg eect. : : : : : : : : : : : : : : : : : : Simulation results: RF size as a function of position. : : : : : : : : Simulation results: Changes in RF after scotoma conditioning with a smaller scotoma. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Recovery of responsiveness of Layer 2 neurons RF shift as function of position. : : : : : : : : : : : : : : : : : : : : : : Simulation results: Blank screen causes RF changes in the inhibition-dominant adaptation model. : : : : : : : : : : : : : : : : : : Simulation results: RF size changes in other adaptation models. : Simulation results: The iceberg eect in other adaptation models Simulation results: RF shifts in other adaptation models. : : : : : Simulation results: Recovery of responsiveness in other adaptation models. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: RF size changes caused by aerent excitatory plasticity. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: RF proles of neurons that show expansion or contraction. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Activation proles in response to inputs at locations away from the scotoma. : : : : : : : : : : : : : : : : : : : : : Simulation results: Recovery of responsiveness of Layer 2 neurons caused by aerent excitatory plasticity. : : : : : : : : : : : : : : : : : Simulation results: RF shifts caused by aerent excitatory plasticity Simulation results: RF changes in the LISSOM network with only lateral excitatory plasticity enabled. : : : : : : : : : : : : : : : : : : : Simulation results: Average RF size changes after complementary scotoma conditioning. : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Average RF size changes after complementary scotoma conditioning. : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Average RF shifts after complementary scotoma conditioning. : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Average RF shifts after complementary scotoma conditioning. : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Average RF size changes after complementary scotoma conditioning. : : : : : : : : : : : : : : : : : : : : : : : : : : : : Simulation results: Average RF shifts after complementary scotoma conditioning. : : : : : : : : : : : : : : : : : : : : : : : : : : : : Network architecture of the EXIN model. : : : : : : : : : : : : : : : Intracortical microstimulation of model cortical layer. : : : : : : : : Spatial distribution of presynaptic excitation and postsynaptic activation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Changes in RF overlap with the ICMS-site RF. : : : : : : : : : : : : Changes in activation level of neurons caused by changes in the distribution of presynaptic excitation to aerent excitatory pathways. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 319

15 6.6 Pre- and post-icms RFs. : : : : : : : : : : : : : : : : : : : : : : : : : : Pre- and post-icms aerent excitatory and lateral inhibitory synaptic weights. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Changes in RF size. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Changes in neuronal responsiveness after ICMS. : : : : : : : : : : : RF shift after ICMS. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Spatial distribution of changes in model cortical RF topography. : Temporal changes in RF topography and RF size during ICMS. : Temporal eects of ICMS on responsiveness. : : : : : : : : : : : : : : RF changes with additional ICMS. : : : : : : : : : : : : : : : : : : : : Changes pathway weights in ICMS simulations with aerent excitatory or lateral inhibitory synaptic plasticity disabled. : : : : Role of aerent excitatory and lateral inhibitory plasticity in producing RF changes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : Changes in model cortical RF topography with only aerent excitatory plasticity. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Eect of aerent excitatory plasticity and lateral inhibitory plasticity on responsiveness. : : : : : : : : : : : : : : : : : : : : : : : : Changes in model cortical RF topography with only lateral inhibitory plasticity. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Synaptic plasticity in the simulation manipulating the magnitude of presynaptic excitation to aerent excitatory synapses produced by ICMS. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Synaptic plasticity in the simulation manipulating the distribution of presynaptic excitation to aerent excitatory synapses produced by ICMS. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Eects of the strength of presynaptic excitation of aerent excitatory pathways on model RF size and position. : : : : : : : : : Eects of excitation strength of the presynaptic aerent excitatory pathways on model responsiveness. : : : : : : : : : : : : : : : : : : : : Eects of presynaptic stimulation distribution to the aerent excitatory pathways on model RF properties. : : : : : : : : : : : : : Eects of presynaptic stimulation distribution to the aerent excitatory pathways on model responsiveness. : : : : : : : : : : : : : Changes in activation of model neurons caused by changes in the distribution of direct excitation to the neurons. : : : : : : : : : : : : Eects of distribution of direct stimulation to the model cortical neurons on RF properties. : : : : : : : : : : : : : : : : : : : : : : : : : Eects of distribution of direct stimulation to the model cortical neurons on responsiveness. : : : : : : : : : : : : : : : : : : : : : : : : : Changes in activation of model neurons caused by changes in the distribution of presynaptic excitation to lateral inhibitory pathways.352 xv

16 xvi 6.3 Eects of distribution of presynaptic stimulation of lateral inhibitory pathways during ICMS on model RF topography and RF size. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Eects of distribution of presynaptic stimulation of lateral inhibitory pathways during ICMS on model responsiveness. : : : : Eects of distribution of presynaptic stimulation of lateral inhibitory pathways during ICMS on model RF topography and RF size. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Eects of distribution of presynaptic stimulation of lateral inhibitory pathways during ICMS on model responsiveness. : : : : Initial model cortical RF topography in the scatter simulation. : : Changes in RF topography after ICMS in a network with RF scatter Changes in RF properties in a model network with RF scatter. : : Changes in responsiveness in a model network with RF scatter. : Spatial distribution of presynaptic excitation and postsynaptic activation in model during peripheral stimulation. : : : : : : : : : : Changes in activation of model neurons caused by variations in peripheral stimulation strength. : : : : : : : : : : : : : : : : : : : : : : Changes in model RF properties caused by peripheral stimulation Changes in model neuron responsiveness caused by peripheral stimulation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Changes in model cortical magnication caused by peripheral stimulation. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Changes in position discrimination after peripheral stimulation. : 369 A.1 The eects of parameters A, B, and C on the activation equation. 43 A.2 The eects of varying,, input excitation function, and input inhibition function on the activation equation. : : : : : : : : : : : : : 45 C.1 Behavior of the EXIN network as a function of activation equation parameters. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 415 C.2 Activation curves in the EXIN network after whole-eld stimulation.416 C.3 Stability of the EXIN network with lateral inhibitory synaptic plasticity alone. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 418 D.1 Activation curves in the EXIN network after ICMS. : : : : : : : : : 425

17 xvii List of Tables 2.1 Properties of the excitatory synaptic plasticity rules that are consistent with experimental data. : : : : : : : : : : : : : : : : : : : : Properties of the excitatory synaptic plasticity rules that are inconsistent with experimental data. : : : : : : : : : : : : : : : : : : : Comparison of the excitatory synaptic plasticity rules. : : : : : : : Comparison of models of dynamic RF changes : : : : : : : : : : : : : 28

18 Chapter 1 Introduction: Motivation and overview 1.1 Introduction The visual system, even in adult animals, is highly plastic, i.e., easily modiable. The perception of a visual feature depends on the surrounding (contextual) visual features in space (simultaneously presented neighboring stimuli) and in time (e.g., previously presented stimuli). For example, adaptation (from continuous viewing of a stimulus for few minutes) to a stimulus produces a contextual, orientation specic contrast threshold elevation for test stimuli (Blakemore & Nachmias, 1971). Adaptation eects are not persistent; they wear o within a few minutes in the absence of visual stimulation. Adaptation to orientation stimuli can distort perception of test stimuli. In the tilt aftereect, after viewing a grating of a particular orientation (e.g., vertical), an observer perceives o-vertical gratings to be more tilted away from the vertical than the actual test grating (Mayo et al., 1968). The response properties of neurons in the primary visual cortex, the rst visual cortical processing stage, fatigue/adapt after the conditioning phase (Maei & Fiorentini, 1973; Movshon & Lennie, 1979), and the neural adaptation is consistent with the tilt aftereect (see Sekuler & Blake, 1994, pp. 135).

19 2 Prior viewing of stimuli over a longer period can also produce persistent changes in visual perception. For example, in perceptual learning, human observers improve their performance in perceptual tasks such as orientation perception (Fiorentini & Berardi, 198), vernier acuity (Fahle & Edelman, 1993), and discrimination of texture (Karni & Sagi, 1991) after training. Perceptual learning is stable, as it does not wear o after periods without visual stimulation, unlike the adaptation eects. The eects of perceptual learning are very specic; the improvement may be restricted to the orientation (Fahle et al., 1995; Poggio et al., 1992) and visual eld position (Fahle et al., 1995; Karni & Sagi, 1991; Poggio et al., 1992) of the training stimuli. The eects of perceptual learning can be masked by adaptation/fatigue. Improvement in perceptual performance may not be apparent during training, but may manifest itself following a rest period during which the eects of adaptation/fatigue dissipate (Fahle, 1997; Karni & Sagi, 1991). It has been proposed that the long-range lateral pathways in the primary visual cortex may subserve the eects of contextual stimuli and visual plasticity. The lateral long-range pathways in the primary visual cortex connect neurons with non-overlapping \classical" receptive elds, but with similar stimulus feature preferences, e.g., orientation (Gilbert & Wiesel, 1989; Weliky et al., 1995). Thus, neural representations of distant visual stimuli may interact via the long-range pathways to produce the contextual eects. The receptive eld properties of primary visual cortical neurons are aected by simultaneously presented contextual stimuli (Gilbert & Wiesel, 199; Sengpiel et al., 1997; Toth et al., 1996). Repeated presentation of stimuli used to characterize the eects of neighboring stimuli on orientation preference of a neuron produced persistent changes in its orientation tuning (Gilbert & Wiesel, 199). Karni and Sagi (1991) suggested that perceptual learning occurs even at the monocular stage of visual cortical processing. Herzog and Fahle (1995) suggested that perceptual learning may involve reciprocal interactions among several visual cortical processing stages. Perceptual learning occurs in other sensory modalities too. For example, monkeys gradually improved their performance of a tactile frequency discrimination task during several weeks of training (Recanzone et al., 1992a). The training also produced changes in the receptive eld properties of neurons in the somatosensory cortex

20 3 (Recanzone et al., 1992acde). From an information theoretic viewpoint, animal brains adapt during long-term development and during short-term conditionings to maximize the information content of neural signals (Atick & Redlich, 199). Following changes in living environment, loss of sensory organs (e.g., damage to retina, loss of limbs, etc.), or brain damage (e.g., from stroke) the brain adapts to maximize the information content of its remaining capacities with respect to the new condition. An information-theoretic analysis of brain adaptation does not reveal the brain processes or the rules by which the brain adapts, although it constrains plausible rules for plasticity. Knowledge of the substrate(s) and the rules for brain adaptation is useful for clinical applications, e.g., treatment of brain damage, or recovery from loss of sense organs, as well as for design of articial systems capable of mimicking animal brain functions, e.g., face recognition systems. The information theoretic approach does not elucidate the mechanistic processes of the brain. Current psychophysical and neurobiological data suggest that cortical plasticity can be produced by changes in ecacy of individual synapses (synaptic plasticity) (Kirkwood et al., 1993), by habituation of individual synapses (synaptic habituation/adaptation) or in individual neurons (neuronal habituation/adaptation) (Movshon & Lennie, 1979; Varela et al., 1997), and by changes in axonal arborization and synaptogenesis (Darian-Smith & Gilbert, 1994). Changes in these sites dier in their persistence/stability and in the time scales at which they occur. Synaptic and neuronal habituation are short-term changes; they are induced within a few seconds by synaptic activity and neuronal activity, respectively, and last for a few seconds after removal of the activation. Synaptic plasticity depends on activation in pre- and postsynaptic elements; it is produced in several minutes and lasts for several tens of minutes. Changes in axonal arborization and synaptogenesis take several months and last for several months. In this dissertation, simple synaptic plasticity rules are used to model persistent changes in receptive eld properties of cortical neurons that are produced by conditioning procedures that selectively activate aerent pathways to cortical neurons, manipulate the activation of cortical neurons, and produce activation in localized cortical regions. In

21 4 perceptual learning, a stimulus conguration is repeatedly presented. It is assumed that the neurons selective for the features of the training stimuli become repeatedly activated. Thus, the analysis of synaptic plasticity rules for receptive eld changes produced by conditioning procedures that activate small groups of neurons can shed light on the neural basis of perceptual learning. The synaptic plasticity rules are compared with experimental data on synaptic plasticity in the cortex and the hippocampus, and the rules are used to model several phenomena of cortical plasticity in early postnatal and adult animals. Several cortical plasticity phenomenona are characterized as the emergent properties of a small set of synaptic plasticity rules. In particular, the EXIN rules (Marshall, 1995a; Marshall & Gupta, 1998), which comprise a Hebbian aerent excitatory synaptic plasticity rule and an anti-hebbian lateral inhibitory synaptic plasticity rule, are used to model long-term potentiation (LTP) and long-term depression (LTD); changes in ocular dominance during \classical" rearing conditioning; changes in ocular dominance during visual deprivation with cortical infusion of pharmacological agents; dynamic receptive eld (RF) changes during articial scotoma conditioning and retinal lesions; changes in RF topography and RF properties after intracortical microstimulation; and changes in RF topography and stimulus discrimination following repeated local peripheral stimulation. The novel and unifying theme in this work is self-organization and the use of the lateral inhibitory synaptic plasticity rule. Many experiments (Benevento et al., 1972; Rose & Blakemore, 1974; Sillito, 1975, 1977, 1979; Sillito et al., 198; Sillito & Versiani, 1977) have shown that many cortical properties are produced or strongly inuenced by inhibitory interactions. A biologically plausible neural model of primary visual cortex has reproduced several neurobiological results on the eects of simultaneously presented contextual stimuli

22 5 and adaptation eects (Somers et al., 1996, 1998; Todorov et al, 1997). In the model, lateral inhibitory interactions are responsible for producing the eects of high-contrast contextual stimuli. The lateral excitatory interactions were responsible for the facilitatory eects produced by subthreshold contextual stimuli. In spite of the experimental data on the role of lateral inhibition in producing cortical feature selectivity, there is little experimental information on lateral inhibitory synaptic plasticity and its role in the development and maintenance of cortical properties. Thus, the analysis of the role of lateral inhibitory synaptic plasticity in the development of cortical receptive eld properties and changes in receptive eld properties in adult animals advances our understanding of the possible neural mechanisms of cortical plasticity. Several novel and testable experiments are also suggested to probe the predictions of the models. The following section (Section 1.2) describes a simplied neural circuit used in the simulations in this dissertation. The conditioning procedures that produce synaptic plasticity and cortical plasticity that are modeled in this dissertation are briey described in Section 1.3. The synaptic plasticity rules used in this dissertation are briey described in Section 1.4. Section 1.5 relates this work to previous self-organization based theories of cortical development and cortical plasticity. The absence of lateral excitatory pathways in the EXIN model simulations is justied in Section 1.6. A summarizing thesis statement is presented in Section 1.7, and the overall contributions and signicance of this work are stated in Section 1.8. Finally, Section 1.9 outlines the organization of this dissertation. 1.2 Simplied neural circuit Most of the data modeled in this dissertation are from experiments on primary visual cortical plasticity. Some persistent plasticity in the somatosensory cortex and the hippocampus is also modeled. In this section, the pathway connections within the primary visual cortex are briey described. Although, the cortical areas dier in their cytoarchitecture, corticocortical and subcortical connectivity, neural response properties, and behavioral role, they share several anatomical and functional properties (Sur et al., 199). In fact, re-routing the retinal aerents to medial geniculate nucleus

23 6 causes primary auditory cortical neurons to become visually responsive, and some of these neurons even become orientation selective (Sur et al., 199). The visual cortical connectivity has a hierarchical organization (Felleman & Van Essen, 1991) { information from the sensors ows through several stages of processing; at each successive stage, the information undergoes more complex transformations. The cortical areas interact via reciprocal excitatory pathways. The pathways from an early/lower processing stage to a later/higher processing stage are called feedforward pathways, and the reciprocal pathways from a higher to a lower processing stage are called feedback pathways. The pathways conveying inputs to neurons are called aerent pathways, and the pathways channeling outputs to other neurons are called eerent pathways. The cortical areas also perform parallel information processing; the eerent pathways from a cortical area can provide inputs to two or more cortical areas (Felleman & Van Essen, 1991). The cortical areas receiving inputs from a common cortical area may also have reciprocal excitatory pathways between them. In this situation, feedforward and feedback pathways cannot truly be dened based on sequential processing stages. Maunsell and Van Essen (1983) dened feedforward and feedback pathways in cortex in terms of the cortical lamina in which the pathways originate and terminate. Feedforward pathways originate mainly from supercial layers and terminate mainly in layer 4, and feedback pathways originate from supercial and deep layers and terminate mainly outside layer 4 (Maunsell & Van Essen, 1983). The cortex in cross-section has a layered structure. Figure 1.1 shows a simplied cross-section of the primary visual cortex. The primary visual cortex receives feedforward excitatory aerents from the lateral geniculate nucleus (LGN) in layer 4C (Hubel & Wiesel, 1972). There are reciprocal excitatory pathways between the layers (Blasdel et al., 1985; Fitzpatrick et al., 1985). The cortex contains excitatory and inhibitory neurons, but the proportion of inhibitory neurons is about 2 percent (Somogyi & Martin, 1985). The excitatory and inhibitory neurons receive aerent excitatory inputs (Somogyi, 1989). In addition, there are lateral/horizontal pathways within the layers (Blasdel et al., 1985; Gilbert & Wiesel, 1983, 1989; Rockland & Lund, 1983). The lateral excitatory (inhibitory) pathways originate from excitatory (inhibitory) neurons and terminate on excitatory and inhibitory neurons (McGuire et al., 1991; Somogyi et al., 1983;

Abstract A neural network model called LISSOM for the cooperative self-organization of

Abstract A neural network model called LISSOM for the cooperative self-organization of Modeling Cortical Plasticity Based on Adapting Lateral Interaction Joseph Sirosh and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin, Austin, TX{78712. email: sirosh,risto@cs.utexas.edu

More information

Plasticity of Cerebral Cortex in Development

Plasticity of Cerebral Cortex in Development Plasticity of Cerebral Cortex in Development Jessica R. Newton and Mriganka Sur Department of Brain & Cognitive Sciences Picower Center for Learning & Memory Massachusetts Institute of Technology Cambridge,

More information

Input-speci"c adaptation in complex cells through synaptic depression

Input-specic adaptation in complex cells through synaptic depression 0 0 0 0 Neurocomputing }0 (00) } Input-speci"c adaptation in complex cells through synaptic depression Frances S. Chance*, L.F. Abbott Volen Center for Complex Systems and Department of Biology, Brandeis

More information

Activity-Dependent Development II April 25, 2007 Mu-ming Poo

Activity-Dependent Development II April 25, 2007 Mu-ming Poo Activity-Dependent Development II April 25, 2007 Mu-ming Poo 1. The neurotrophin hypothesis 2. Maps in somatic sensory and motor cortices 3. Development of retinotopic map 4. Reorganization of cortical

More information

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence

Reading Assignments: Lecture 5: Introduction to Vision. None. Brain Theory and Artificial Intelligence Brain Theory and Artificial Intelligence Lecture 5:. Reading Assignments: None 1 Projection 2 Projection 3 Convention: Visual Angle Rather than reporting two numbers (size of object and distance to observer),

More information

Visual cortical plasticity

Visual cortical plasticity Visual cortical plasticity Deprivation-induced changes in representation Ocular dominance plasticity Retinal scotoma and cortical re-organization Perceptual learning-related plasticity Timing-dependent

More information

M Cells. Why parallel pathways? P Cells. Where from the retina? Cortical visual processing. Announcements. Main visual pathway from retina to V1

M Cells. Why parallel pathways? P Cells. Where from the retina? Cortical visual processing. Announcements. Main visual pathway from retina to V1 Announcements exam 1 this Thursday! review session: Wednesday, 5:00-6:30pm, Meliora 203 Bryce s office hours: Wednesday, 3:30-5:30pm, Gleason https://www.youtube.com/watch?v=zdw7pvgz0um M Cells M cells

More information

Associative Decorrelation Dynamics: A Theory of Self-Organization and Optimization in Feedback Networks

Associative Decorrelation Dynamics: A Theory of Self-Organization and Optimization in Feedback Networks Associative Decorrelation Dynamics: A Theory of Self-Organization and Optimization in Feedback Networks Dawei W. Dong* Lawrence Berkeley Laboratory University of California Berkeley, CA 94720 Abstract

More information

The Visual System. Cortical Architecture Casagrande February 23, 2004

The Visual System. Cortical Architecture Casagrande February 23, 2004 The Visual System Cortical Architecture Casagrande February 23, 2004 Phone: 343-4538 Email: vivien.casagrande@mcmail.vanderbilt.edu Office: T2302 MCN Required Reading Adler s Physiology of the Eye Chapters

More information

Abstract

Abstract Self-Organization, Plasticity, and Low-level Visual Phenomena in a Laterally Connected Map Model of the Primary Visual Cortex Risto Miikkulainen, James A. Bednar, Yoonsuck Choe, and Joseph Sirosh Department

More information

VISUAL CORTICAL PLASTICITY

VISUAL CORTICAL PLASTICITY VISUAL CORTICAL PLASTICITY OCULAR DOMINANCE AND OTHER VARIETIES REVIEW OF HIPPOCAMPAL LTP 1 when an axon of cell A is near enough to excite a cell B and repeatedly and consistently takes part in firing

More information

OPTO 5320 VISION SCIENCE I

OPTO 5320 VISION SCIENCE I OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Mechanisms of Color Processing . Neural Mechanisms of Color Processing A. Parallel processing - M- & P- pathways B. Second

More information

Emanuel Todorov, Athanassios Siapas and David Somers. Dept. of Brain and Cognitive Sciences. E25-526, MIT, Cambridge, MA 02139

Emanuel Todorov, Athanassios Siapas and David Somers. Dept. of Brain and Cognitive Sciences. E25-526, MIT, Cambridge, MA 02139 A Model of Recurrent Interactions in Primary Visual Cortex Emanuel Todorov, Athanassios Siapas and David Somers Dept. of Brain and Cognitive Sciences E25-526, MIT, Cambridge, MA 2139 Email: femo,thanos,somersg@ai.mit.edu

More information

Early Stages of Vision Might Explain Data to Information Transformation

Early Stages of Vision Might Explain Data to Information Transformation Early Stages of Vision Might Explain Data to Information Transformation Baran Çürüklü Department of Computer Science and Engineering Mälardalen University Västerås S-721 23, Sweden Abstract. In this paper

More information

LISC-322 Neuroscience Cortical Organization

LISC-322 Neuroscience Cortical Organization LISC-322 Neuroscience Cortical Organization THE VISUAL SYSTEM Higher Visual Processing Martin Paré Assistant Professor Physiology & Psychology Most of the cortex that covers the cerebral hemispheres is

More information

V1 (Chap 3, part II) Lecture 8. Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017

V1 (Chap 3, part II) Lecture 8. Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 V1 (Chap 3, part II) Lecture 8 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017 Topography: mapping of objects in space onto the visual cortex contralateral representation

More information

Mechanisms of stimulus feature selectivity in sensory systems

Mechanisms of stimulus feature selectivity in sensory systems Mechanisms of stimulus feature selectivity in sensory systems 1. Orientation and direction selectivity in the visual cortex 2. Selectivity to sound frequency in the auditory cortex 3. Feature selectivity

More information

lateral connections are non-modiable and distinct from with short-range excitation and long-range inhibition.

lateral connections are non-modiable and distinct from with short-range excitation and long-range inhibition. How Lateral Interaction Develops in a Self-Organizing Feature Map Joseph Sirosh and Risto Miikkulainen Department of Computer Sciences The University of Texas at Austin, Austin, TX-771 sirosh,risto@cs.utexas.edu

More information

Organization of Binocular Pathways: Modeling and Data Related to Rivalry

Organization of Binocular Pathways: Modeling and Data Related to Rivalry Communicated by Oliver Braddick : Modeling and Data Related to Rivalry Sidney R. Lehky Laboratory of Neuropsychlogy, National Institute of Mental Health, Building 9, Room IN-107, Bethesda, MD 20892 USA

More information

Photoreceptors Rods. Cones

Photoreceptors Rods. Cones Photoreceptors Rods Cones 120 000 000 Dim light Prefer wavelength of 505 nm Monochromatic Mainly in periphery of the eye 6 000 000 More light Different spectral sensitivities!long-wave receptors (558 nm)

More information

Neural Plasticity: Merzenich,Taub, and Greenough

Neural Plasticity: Merzenich,Taub, and Greenough 16 Neural Plasticity: Merzenich,Taub, and Greenough BY ERIN CLIFFORD Introduction REVIEW The study of neural plasticity has important implications for psychological development. Plasticity refers to the

More information

Thalamocortical Feedback and Coupled Oscillators

Thalamocortical Feedback and Coupled Oscillators Thalamocortical Feedback and Coupled Oscillators Balaji Sriram March 23, 2009 Abstract Feedback systems are ubiquitous in neural systems and are a subject of intense theoretical and experimental analysis.

More information

1. The responses of on-center and off-center retinal ganglion cells

1. The responses of on-center and off-center retinal ganglion cells 1. The responses of on-center and off-center retinal ganglion cells 2. Responses of an on-center ganglion cell to different light conditions 3. Responses of an on-center ganglion cells to different light

More information

Cortical Map Plasticity. Gerald Finnerty Dept Basic and Clinical Neuroscience

Cortical Map Plasticity. Gerald Finnerty Dept Basic and Clinical Neuroscience Cortical Map Plasticity Gerald Finnerty Dept Basic and Clinical Neuroscience Learning Objectives Be able to: 1. Describe the characteristics of a cortical map 2. Appreciate that the term plasticity is

More information

Physiology of Tactile Sensation

Physiology of Tactile Sensation Physiology of Tactile Sensation Objectives: 1. Describe the general structural features of tactile sensory receptors how are first order nerve fibers specialized to receive tactile stimuli? 2. Understand

More information

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex

2/3/17. Visual System I. I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 1 Visual System I I. Eye, color space, adaptation II. Receptive fields and lateral inhibition III. Thalamus and primary visual cortex 2 1 2/3/17 Window of the Soul 3 Information Flow: From Photoreceptors

More information

Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence

Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence To understand the network paradigm also requires examining the history

More information

Memory, Attention, and Decision-Making

Memory, Attention, and Decision-Making Memory, Attention, and Decision-Making A Unifying Computational Neuroscience Approach Edmund T. Rolls University of Oxford Department of Experimental Psychology Oxford England OXFORD UNIVERSITY PRESS Contents

More information

Why do we have a hippocampus? Short-term memory and consolidation

Why do we have a hippocampus? Short-term memory and consolidation Why do we have a hippocampus? Short-term memory and consolidation So far we have talked about the hippocampus and: -coding of spatial locations in rats -declarative (explicit) memory -experimental evidence

More information

The Eye. Cognitive Neuroscience of Language. Today s goals. 5 From eye to brain. Today s reading

The Eye. Cognitive Neuroscience of Language. Today s goals. 5 From eye to brain. Today s reading Cognitive Neuroscience of Language 5 From eye to brain Today s goals Look at the pathways that conduct the visual information from the eye to the visual cortex Marielle Lange http://homepages.inf.ed.ac.uk/mlange/teaching/cnl/

More information

Neuroscience Tutorial

Neuroscience Tutorial Neuroscience Tutorial Brain Organization : cortex, basal ganglia, limbic lobe : thalamus, hypothal., pituitary gland : medulla oblongata, midbrain, pons, cerebellum Cortical Organization Cortical Organization

More information

How has Computational Neuroscience been useful? Virginia R. de Sa Department of Cognitive Science UCSD

How has Computational Neuroscience been useful? Virginia R. de Sa Department of Cognitive Science UCSD How has Computational Neuroscience been useful? 1 Virginia R. de Sa Department of Cognitive Science UCSD What is considered Computational Neuroscience? 2 What is considered Computational Neuroscience?

More information

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization

Mechanosensation. Central Representation of Touch. Wilder Penfield. Somatotopic Organization Mechanosensation Central Representation of Touch Touch and tactile exploration Vibration and pressure sensations; important for clinical testing Limb position sense John H. Martin, Ph.D. Center for Neurobiology

More information

Prof. Greg Francis 7/31/15

Prof. Greg Francis 7/31/15 s PSY 200 Greg Francis Lecture 06 How do you recognize your grandmother? Action potential With enough excitatory input, a cell produces an action potential that sends a signal down its axon to other cells

More information

Neuromorphic computing

Neuromorphic computing Neuromorphic computing Robotics M.Sc. programme in Computer Science lorenzo.vannucci@santannapisa.it April 19th, 2018 Outline 1. Introduction 2. Fundamentals of neuroscience 3. Simulating the brain 4.

More information

Lateral Geniculate Nucleus (LGN)

Lateral Geniculate Nucleus (LGN) Lateral Geniculate Nucleus (LGN) What happens beyond the retina? What happens in Lateral Geniculate Nucleus (LGN)- 90% flow Visual cortex Information Flow Superior colliculus 10% flow Slide 2 Information

More information

PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision

PHY3111 Mid-Semester Test Study. Lecture 2: The hierarchical organisation of vision PHY3111 Mid-Semester Test Study Lecture 2: The hierarchical organisation of vision 1. Explain what a hierarchically organised neural system is, in terms of physiological response properties of its neurones.

More information

Hebbian Plasticity for Improving Perceptual Decisions

Hebbian Plasticity for Improving Perceptual Decisions Hebbian Plasticity for Improving Perceptual Decisions Tsung-Ren Huang Department of Psychology, National Taiwan University trhuang@ntu.edu.tw Abstract Shibata et al. reported that humans could learn to

More information

Introduction to Computational Neuroscience

Introduction to Computational Neuroscience Introduction to Computational Neuroscience Lecture 7: Network models Lesson Title 1 Introduction 2 Structure and Function of the NS 3 Windows to the Brain 4 Data analysis 5 Data analysis II 6 Single neuron

More information

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus

Thalamo-Cortical Relationships Ultrastructure of Thalamic Synaptic Glomerulus Central Visual Pathways V1/2 NEUR 3001 dvanced Visual Neuroscience The Lateral Geniculate Nucleus () is more than a relay station LP SC Professor Tom Salt UCL Institute of Ophthalmology Retina t.salt@ucl.ac.uk

More information

UMIACS-TR August Feature Maps. Yinong Chen. University of Maryland. College Park, MD 20742

UMIACS-TR August Feature Maps. Yinong Chen. University of Maryland. College Park, MD 20742 UMIACS-TR-97-56 August 1997 CS-TR-3816 A Motor Control Model Based on Self-organizing Feature Maps Yinong Chen Institute for Advanced Computer Studies Department of Computer Science University of Maryland

More information

COGS 101A: Sensation and Perception

COGS 101A: Sensation and Perception COGS 101A: Sensation and Perception 1 Virginia R. de Sa Department of Cognitive Science UCSD Lecture 5: LGN and V1: Magno and Parvo streams Chapter 3 Course Information 2 Class web page: http://cogsci.ucsd.edu/

More information

using deep learning models to understand visual cortex

using deep learning models to understand visual cortex using deep learning models to understand visual cortex 11-785 Introduction to Deep Learning Fall 2017 Michael Tarr Department of Psychology Center for the Neural Basis of Cognition this lecture A bit out

More information

Adult Cortical Plasticity

Adult Cortical Plasticity Adult Cortical Plasticity 141 Adult Cortical Plasticity U T Eysel, Ruhr-University Bochum, Bochum, Germany ã 2009 Elsevier Ltd. All rights reserved. Introduction Plasticity of the brain is a lifelong phenomenon.

More information

Vision II. Steven McLoon Department of Neuroscience University of Minnesota

Vision II. Steven McLoon Department of Neuroscience University of Minnesota Vision II Steven McLoon Department of Neuroscience University of Minnesota 1 Ganglion Cells The axons of the retinal ganglion cells form the optic nerve and carry visual information into the brain. 2 Optic

More information

Thalamocortical Dysrhythmia. Thalamocortical Fibers. Thalamocortical Loops and Information Processing

Thalamocortical Dysrhythmia. Thalamocortical Fibers. Thalamocortical Loops and Information Processing halamocortical Loops and Information Processing 2427 halamocortical Dysrhythmia Synonyms CD A pathophysiological chain reaction at the origin of neurogenic pain. It consists of: 1) a reduction of excitatory

More information

Self-Organization and Segmentation with Laterally Connected Spiking Neurons

Self-Organization and Segmentation with Laterally Connected Spiking Neurons Self-Organization and Segmentation with Laterally Connected Spiking Neurons Yoonsuck Choe Department of Computer Sciences The University of Texas at Austin Austin, TX 78712 USA Risto Miikkulainen Department

More information

Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes)

Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes) Jan 28: Neural Mechanisms--intro Questions Addressed Through Study of Behavioral Mechanisms (Proximate Causes) Control of behavior in response to stimuli in environment Diversity of behavior: explain the

More information

Perceptual Grouping in a Self-Organizing Map of Spiking Neurons

Perceptual Grouping in a Self-Organizing Map of Spiking Neurons Perceptual Grouping in a Self-Organizing Map of Spiking Neurons Yoonsuck Choe Department of Computer Sciences The University of Texas at Austin August 13, 2001 Perceptual Grouping Group Two! Longest Contour?

More information

Neural Activity and the Development of Brain Circuits

Neural Activity and the Development of Brain Circuits Neural Activity and the Development of Brain Circuits Carsten D Hohnke, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA Mriganka Sur, Massachusetts Institute of Technology, Cambridge,

More information

Chapter 9 Refinement of Synaptic Connections

Chapter 9 Refinement of Synaptic Connections Chapter 9 Refinement of Synaptic Connections Afferent Projection Error during Development During development there is a constant rearrangement of synaptic connections, new synapses are formed and old synapses

More information

PHGY 210,2,4 - Physiology SENSORY PHYSIOLOGY. Martin Paré

PHGY 210,2,4 - Physiology SENSORY PHYSIOLOGY. Martin Paré PHGY 210,2,4 - Physiology SENSORY PHYSIOLOGY Martin Paré Associate Professor of Physiology & Psychology pare@biomed.queensu.ca http://brain.phgy.queensu.ca/pare PHGY 210,2,4 - Physiology SENSORY PHYSIOLOGY

More information

Synaptic Plasticity and the NMDA Receptor

Synaptic Plasticity and the NMDA Receptor Synaptic Plasticity and the NMDA Receptor Lecture 4.2 David S. Touretzky November, 2015 Long Term Synaptic Plasticity Long Term Potentiation (LTP) Reversal of LTP Long Term Depression (LTD) Reversal of

More information

Lecture 22: A little Neurobiology

Lecture 22: A little Neurobiology BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 22: A little Neurobiology http://compbio.uchsc.edu/hunter/bio5099 Larry.Hunter@uchsc.edu Nervous system development Part of the ectoderm

More information

Ch 5. Perception and Encoding

Ch 5. Perception and Encoding Ch 5. Perception and Encoding Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun, Norton, 2002. Summarized by Y.-J. Park, M.-H. Kim, and B.-T. Zhang

More information

1 Introduction Synchronous ring of action potentials amongst multiple neurons is a phenomenon that has been observed in a wide range of neural systems

1 Introduction Synchronous ring of action potentials amongst multiple neurons is a phenomenon that has been observed in a wide range of neural systems Model-free detection of synchrony in neuronal spike trains, with an application to primate somatosensory cortex A. Roy a, P. N. Steinmetz a 1, K. O. Johnson a, E. Niebur a 2 a Krieger Mind/Brain Institute,

More information

Parallel streams of visual processing

Parallel streams of visual processing Parallel streams of visual processing RETINAL GANGLION CELL AXONS: OPTIC TRACT Optic nerve Optic tract Optic chiasm Lateral geniculate nucleus Hypothalamus: regulation of circadian rhythms Pretectum: reflex

More information

Cognitive Modelling Themes in Neural Computation. Tom Hartley

Cognitive Modelling Themes in Neural Computation. Tom Hartley Cognitive Modelling Themes in Neural Computation Tom Hartley t.hartley@psychology.york.ac.uk Typical Model Neuron x i w ij x j =f(σw ij x j ) w jk x k McCulloch & Pitts (1943), Rosenblatt (1957) Net input:

More information

Early Vision and Visual System Development

Early Vision and Visual System Development Early Vision and Visual System Development Dr. James A. Bednar jbednar@inf.ed.ac.uk http://homepages.inf.ed.ac.uk/jbednar CNV Spring 2009: Vision background 1 Studying the visual system (1) The visual

More information

Computational Explorations in Perceptual Learning

Computational Explorations in Perceptual Learning Computational Explorations in Perceptual Learning Guillaume Hennequin E H U N I V E R S I T Y T O H F R G E D I N B U Master of Science Cognitive Science and Natural Language Processing School of Informatics

More information

Cell Responses in V4 Sparse Distributed Representation

Cell Responses in V4 Sparse Distributed Representation Part 4B: Real Neurons Functions of Layers Input layer 4 from sensation or other areas 3. Neocortical Dynamics Hidden layers 2 & 3 Output layers 5 & 6 to motor systems or other areas 1 2 Hierarchical Categorical

More information

Primary Visual Pathways (I)

Primary Visual Pathways (I) Primary Visual Pathways (I) Introduction to Computational and Biological Vision CS 202-1-5261 Computer Science Department, BGU Ohad Ben-Shahar Where does visual information go from the eye? Where does

More information

Ch 5. Perception and Encoding

Ch 5. Perception and Encoding Ch 5. Perception and Encoding Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed., M. S. Gazzaniga,, R. B. Ivry,, and G. R. Mangun,, Norton, 2002. Summarized by Y.-J. Park, M.-H. Kim, and B.-T. Zhang

More information

Pain and Touch. Academic Press. Edited by Lawrence Kruger. Department of Neurobiology University of California, Los Angeles Los Angeles, California

Pain and Touch. Academic Press. Edited by Lawrence Kruger. Department of Neurobiology University of California, Los Angeles Los Angeles, California Pain and Touch Edited by Lawrence Kruger Department of Neurobiology University of California, Los Angeles Los Angeles, California San Diego New York Sydney Academic Press London Boston Tokyo Toronto Contributors

More information

Neuronal responses to plaids

Neuronal responses to plaids Vision Research 39 (1999) 2151 2156 Neuronal responses to plaids Bernt Christian Skottun * Skottun Research, 273 Mather Street, Piedmont, CA 94611-5154, USA Received 30 June 1998; received in revised form

More information

Visual Brain: The Neural Basis of Visual Perception!

Visual Brain: The Neural Basis of Visual Perception! Visual Brain: The Neural Basis of Visual Perception!?! Human Brain: Amazing Machine! Cerebral cortex! Highest level of all sensory integration Highest level of somatic motor control Memory, association

More information

PLASTICITY OF ORIENTATION PROCESSING IN ADULT VISUAL CORTEX. Valentin Dragoi and Mriganka Sur

PLASTICITY OF ORIENTATION PROCESSING IN ADULT VISUAL CORTEX. Valentin Dragoi and Mriganka Sur PLASTICITY OF ORIENTATION PROCESSING IN ADULT VISUAL CORTEX Valentin Dragoi and Mriganka Sur Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge, MA 2139 Running

More information

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J.

The Integration of Features in Visual Awareness : The Binding Problem. By Andrew Laguna, S.J. The Integration of Features in Visual Awareness : The Binding Problem By Andrew Laguna, S.J. Outline I. Introduction II. The Visual System III. What is the Binding Problem? IV. Possible Theoretical Solutions

More information

LOCAL CIRCUITS IN PRIMARY VISUAL CORTEX OF THE MACAQUE MONKEY

LOCAL CIRCUITS IN PRIMARY VISUAL CORTEX OF THE MACAQUE MONKEY Annu. Rev. Neurosci. 1998. 21:47 74 Copyright c 1998 by Annual Reviews Inc. All rights reserved 48 CALLAWAY LOCAL CIRCUITS IN PRIMARY VISUAL CORTEX OF THE MACAQUE MONKEY Edward M. Callaway Systems Neurobiology

More information

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision

Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision Carlson (7e) PowerPoint Lecture Outline Chapter 6: Vision This multimedia product and its contents are protected under copyright law. The following are prohibited by law: any public performance or display,

More information

Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells

Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells Neurocomputing, 5-5:389 95, 003. Exploring the Functional Significance of Dendritic Inhibition In Cortical Pyramidal Cells M. W. Spratling and M. H. Johnson Centre for Brain and Cognitive Development,

More information

The following article was presented as an oral presentation at the Conference ICANN 98:

The following article was presented as an oral presentation at the Conference ICANN 98: The following article was presented as an oral presentation at the Conference ICANN 98: Wiemer J, Spengler F, Joublin F, Stagge P, Wacquant S: A Model of Cortical Plasticity: Integration and Segregation

More information

Sequence 1 E K L M N O P Q R S

Sequence 1 E K L M N O P Q R S International Journal of Neural Systems, Vol. 6 (Supp. 1995) 71{80 Proceedings of the third Workshop: Neural Networks: from Biology to High Energy Physics c World Scientic Publishing Company UNIFICATION

More information

Adventures into terra incognita

Adventures into terra incognita BEWARE: These are preliminary notes. In the future, they will become part of a textbook on Visual Object Recognition. Chapter VI. Adventures into terra incognita In primary visual cortex there are neurons

More information

Chapter 5: Learning and Behavior Learning How Learning is Studied Ivan Pavlov Edward Thorndike eliciting stimulus emitted

Chapter 5: Learning and Behavior Learning How Learning is Studied Ivan Pavlov Edward Thorndike eliciting stimulus emitted Chapter 5: Learning and Behavior A. Learning-long lasting changes in the environmental guidance of behavior as a result of experience B. Learning emphasizes the fact that individual environments also play

More information

Object vision (Chapter 4)

Object vision (Chapter 4) Object vision (Chapter 4) Lecture 8 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Spring 2015 1 Outline for today: Chap 3: adaptation Chap 4: intro to object vision gestalt

More information

Model-free detection of synchrony in neuronal spike trains, with an application to primate somatosensory cortex

Model-free detection of synchrony in neuronal spike trains, with an application to primate somatosensory cortex Neurocomputing 32}33 (2000) 1103}1108 Model-free detection of synchrony in neuronal spike trains, with an application to primate somatosensory cortex A. Roy, P.N. Steinmetz, K.O. Johnson, E. Niebur* Krieger

More information

Chapter 14: The Cutaneous Senses

Chapter 14: The Cutaneous Senses Chapter 14: The Cutaneous Senses Somatosensory System There are three parts Cutaneous senses - perception of touch and pain from stimulation of the skin Proprioception - ability to sense position of the

More information

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo

Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Motor systems III: Cerebellum April 16, 2007 Mu-ming Poo Population coding in the motor cortex Overview and structure of cerebellum Microcircuitry of cerebellum Function of cerebellum -- vestibulo-ocular

More information

Dendritic compartmentalization could underlie competition and attentional biasing of simultaneous visual stimuli

Dendritic compartmentalization could underlie competition and attentional biasing of simultaneous visual stimuli Dendritic compartmentalization could underlie competition and attentional biasing of simultaneous visual stimuli Kevin A. Archie Neuroscience Program University of Southern California Los Angeles, CA 90089-2520

More information

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction Sarah L. Chollar University of California, Riverside sarah.chollar@gmail.com Sensory Systems How the brain allows us to see, hear,

More information

Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of The Primary Visual Cortex

Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of The Primary Visual Cortex Topographic Receptive Fields and Patterned Lateral Interaction in a Self-Organizing Model of The Primary Visual Cortex Joseph Sirosh and Risto Miikkulainen Department of Computer Sciences The University

More information

Welcome to CSE/NEUBEH 528: Computational Neuroscience

Welcome to CSE/NEUBEH 528: Computational Neuroscience Welcome to CSE/NEUBEH 528: Computational Neuroscience Instructors: Rajesh Rao (rao@cs) Adrienne Fairhall (fairhall@u) TA: Yanping Huang (huangyp@u) 1 Today s Agenda Introduction: Who are we? Course Info

More information

Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity

Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity Mechanisms of plasticity in the developing visual cortex and how behavioral state changes cortical gain and adult plasticity Michael P. Stryker Center for Integrative Neuroscience University of California,

More information

Visual Motion Detection

Visual Motion Detection MS number 1975 Visual Motion Detection B K Dellen, University of Goettingen, Goettingen, Germany R Wessel, Washington University, St Louis, MO, USA Contact information: Babette Dellen, Bernstein Center

More information

Perceptual learning as improved probabilistic inference in early sensory areas

Perceptual learning as improved probabilistic inference in early sensory areas Perceptual learning as improved probabilistic inference in early sensory areas Vikranth R Bejjanki,, Jeffrey M Beck,,, Zhong-Lin Lu 3 & Alexandre Pouget Nature America, Inc. All rights reserved. Extensive

More information

Basics of Computational Neuroscience

Basics of Computational Neuroscience Basics of Computational Neuroscience 1 1) Introduction Lecture: Computational Neuroscience, The Basics A reminder: Contents 1) Brain, Maps,, Networks,, and The tough stuff: 2,3) Membrane Models 3,4) Spiking

More information

A Model of Visually Guided Plasticity of the Auditory Spatial Map in the Barn Owl

A Model of Visually Guided Plasticity of the Auditory Spatial Map in the Barn Owl A Model of Visually Guided Plasticity of the Auditory Spatial Map in the Barn Owl Andrea Haessly andrea@cs.utexas.edu Joseph Sirosh sirosh@cs.utexas.edu Risto Miikkulainen risto@cs.utexas.edu Abstract

More information

Psychology 320: Topics in Physiological Psychology Lecture Exam 2: March 19th, 2003

Psychology 320: Topics in Physiological Psychology Lecture Exam 2: March 19th, 2003 Psychology 320: Topics in Physiological Psychology Lecture Exam 2: March 19th, 2003 Name: Student #: BEFORE YOU BEGIN!!! 1) Count the number of pages in your exam. The exam is 8 pages long; if you do not

More information

LEAH KRUBITZER RESEARCH GROUP LAB PUBLICATIONS WHAT WE DO LINKS CONTACTS

LEAH KRUBITZER RESEARCH GROUP LAB PUBLICATIONS WHAT WE DO LINKS CONTACTS LEAH KRUBITZER RESEARCH GROUP LAB PUBLICATIONS WHAT WE DO LINKS CONTACTS WHAT WE DO Present studies and future directions Our laboratory is currently involved in two major areas of research. The first

More information

UNIVERSITY OF CINCINNATI

UNIVERSITY OF CINCINNATI UNIVERSITY OF CINCINNATI Date: October 17, 2006 I, Gregory S. Johnson, hereby submit this work as part of the requirements for the degree of: Doctor of Philosophy (PhD) in: Philosophy It is entitled: On

More information

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25 Memory Systems II How Stored: Engram and LTP Reading: BCP Chapter 25 Memory Systems Learning is the acquisition of new knowledge or skills. Memory is the retention of learned information. Many different

More information

9.14 Classes #21-23: Visual systems

9.14 Classes #21-23: Visual systems 9.14 Classes #21-23: Visual systems Questions based on Schneider chapter 20 and classes: 1) What was in all likelihood the first functional role of the visual sense? Describe the nature of the most primitive

More information

Retinal Waves and Ocular Dominance Columns

Retinal Waves and Ocular Dominance Columns Retinal Waves and Ocular Dominance Columns In the cat, at birth, inputs from both eyes are intermingled in the visual cortex. Ocular dominance columns start to appear a few weeks after birth. They can

More information

Context-Sensitive Binding by the Laminar Circuits of V1 and V2: A Unified Model of Perceptual Grouping, Attention, and Orientation Contrast

Context-Sensitive Binding by the Laminar Circuits of V1 and V2: A Unified Model of Perceptual Grouping, Attention, and Orientation Contrast Context-Sensitive Binding by the Laminar Circuits of V1 and V2: A Unified Model of Perceptual Grouping, Attention, and Orientation Contrast Rajeev D.S. Raizada Λ and Stephen Grossberg y Department of Cognitive

More information

Sensory Adaptation within a Bayesian Framework for Perception

Sensory Adaptation within a Bayesian Framework for Perception presented at: NIPS-05, Vancouver BC Canada, Dec 2005. published in: Advances in Neural Information Processing Systems eds. Y. Weiss, B. Schölkopf, and J. Platt volume 18, pages 1291-1298, May 2006 MIT

More information

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye:

Visual Physiology. Perception and Attention. Graham Hole. Problems confronting the visual system: Solutions: The primary visual pathways: The eye: Problems confronting the visual system: Visual Physiology image contains a huge amount of information which must be processed quickly. image is dim, blurry and distorted. Light levels vary enormously.

More information

Cognitive Neuroscience Structure and Function

Cognitive Neuroscience Structure and Function Phylogeny of the cortex Cognitive Neuroscience Structure and Function The neocortex of mammals developed out of the primordial neopallium, which, like that of certain present-day amphibians, consisted

More information

THE ENCODING OF PARTS AND WHOLES

THE ENCODING OF PARTS AND WHOLES THE ENCODING OF PARTS AND WHOLES IN THE VISUAL CORTICAL HIERARCHY JOHAN WAGEMANS LABORATORY OF EXPERIMENTAL PSYCHOLOGY UNIVERSITY OF LEUVEN, BELGIUM DIPARTIMENTO DI PSICOLOGIA, UNIVERSITÀ DI MILANO-BICOCCA,

More information

Consciousness The final frontier!

Consciousness The final frontier! Consciousness The final frontier! How to Define it??? awareness perception - automatic and controlled memory - implicit and explicit ability to tell us about experiencing it attention. And the bottleneck

More information