Running Head: AN UNDERSTANDING OF HIV- 1, SYMPTOMS, AND TREATMENTS. An Understanding of HIV- 1, Symptoms, and Treatments.

Size: px
Start display at page:

Download "Running Head: AN UNDERSTANDING OF HIV- 1, SYMPTOMS, AND TREATMENTS. An Understanding of HIV- 1, Symptoms, and Treatments."

Transcription

1 Running Head: AN UNDERSTANDING OF HIV- 1, SYMPTOMS, AND TREATMENTS An Understanding of HIV- 1, Symptoms, and Treatments Benjamin Mills

2 Abstract HIV- 1 is a virus that has had major impacts worldwide. Numerous people have died due to infection caused by HIV. Around the world, HIV is contracted in areas that are full of infection and disease. Without a cure, it is impossible to get rid of HIV once a person has been infected. Many treatments exist to counteract symptoms of HIV, but a cure has yet to be found. One reason that scientists have not discovered a cure yet is that we do not entirely understand how HIV works. In order to effectively create a vaccine, it is crucial that we understand how the virus works. This paper creates a very simply, light- hearted approach into the molecular biology of HIV.

3 Introduction By 2008, twenty- five million people had died of a similar, unnatural cause: the human immunodeficiency virus type- 1. At that point, forty million people were living under the effects of HIV- 1. With no easy, quick treatment in the near future, the prospects were drab. However, scientists were quickly discovering the method with which HIV attacked one s immune system. This report gives a basic understanding of what HIV RNA codes for, how it attacks the body, and some treatments. Cell Entry HIV- 1 is a virus. It is shaped like a mushroom, complete with a capsid and an envelope glycoprotein. The capsid contains the viral RNA. The envelope glycoprotein recognizes a surface glycoprotein. These surface glycoproteins can be found in abundance in the phospholipid bilayer of T- lymphocytes and lymphocytes of helper- T cells (Haseltine). In this way, developing cells of the immune system are targeted. Because these cells traverse all the pathways of the body, HIV- 1 is carried throughout the entire body. The two glycoproteins fuse together. Once the glycoproteins fuse, the viral RNA is inserted past the phospholipid bilayer and into the cell. Once in the cytosol, the viral RNA is transported to the nucleus. Genetic Code HIV- 1 is a retrovirus. A retrovirus is a virus that contains RNA rather than viral DNA. This viral RNA is reverse- transcribed into the DNA in the infected cell.

4 This process is carried out using the reverse transcriptase enzyme carried in the capsid. The reverse transcriptase will use the viral RNA as a template, and synthesize an entirely new DNA strand. Once the new viral DNA has successfully been synthesized, it is integrated into a host chromosome using the integrase enzyme. The viral DNA in the chromosomes is now known as pro- viral DNA or a provirus (Ward). At this point, the viral DNA goes through normal cell processes in order to create proteins. The proteins created by the viral DNA go on to perform specific functions. Proteins made by the viral DNA are used to make the budding viruses. In order to understand the way that a virus infects a cell, one must understand the genes in a virus and for what they code. HIV- 1 has 9 genes in all. However, it codes for 17 proteins. This is possible through a unique process in which the viral mrna codes for several proteins that are bonded together to form a polyprotein. Three of HIV s genes code for polyproteins: Gag, Pol, and Env(Ward). The Gag gene codes for four different proteins. After reverse- transcription, transcription, and translation, a polyprotein is produced. The polyprotein is then cleaved by HIV s protease enzyme. The resultant proteins are a matrix protein, a major capsid protein, a nucleic acid- binding protein, and a small proline- rich protein that helps with virion assembly. The next gene is called the Pol gene. It is reverse transcribed into a cell s DNA and then transcribed into viral mrna. The mrna exits the nucleus without any post- transcriptional modifications. When being translated in a ribosome, the

5 viral mrna experiences a process called frame shifting. While the enzyme is reading the viral mrna,it will stop at a certain base and jump back one base. Then the enzyme will continue reading the viral RNA from that point on. Frame shifting creates a whole new sequence of proteins for which the viral mrna codes. Not only does frame shifting create a whole new sequence of proteins, but it also creates a point at which the Gag polyprotein can fuse to the Pol polyprotein(ward). Pol codes for 3 major enzymes. The three enzymes it codes for are a viral protease, reverse transcriptase, and integrase. These enzymes are then released into the cytoplasm for virion assembly. When the budding virus, or the second generation, infects a different cell, protease, reverse transcriptase, and integrase will be used to create the third generation of HIV viruses. However, when these enzymes are made, they are bound together to form a polyprotein. The Pol polyprotein is fused to the Gag polyprotein, and will remained fused until it is cleaved by an enzyme(ward). The last gene that codes for a polyprotein is called Env. Env is responsible for two major proteins. Like all the other genes in the HIV genome, Env goes through reverse- transcription, transcription, and translation without any post- transcriptional modifications. When translation is finished, the final product is a polyprotein called gp160. gp160 is cleaved by a natural protease enzyme created by the cell. gp160 then becomes two glycoproteins, gp120 and gp41(ward). The gp120 glycoprotein becomes the viral envelope of the budding HIV virus. This envelope is what fuses to the CD4 receptor in the first stage of infection. The gp41 glycoprotein is stem- shaped. It joins with gp120 to form the

6 mushroom shape of the HIV virion. These two structures are what make up the exterior of the HIV virion. The term virion refers to the completed, mature virus as it is outside of the host cell (Ward). The HIV genome also contains a section called Tat. This gene codes for the Tat protein, the ref protein, and the nef protein. The Tat protein is also known as the transactivator, and is used for increasing the rate of viral RNA translation. Tat does this by moving to the nucleus and nucleolus of the cell. It then binds to the new viral RNA being formed. The transactivator allows an entire sequence of RNA to be translated at once. This is how polyproteins are made. The transactivator also increases the frequency of RNA initiation. The other two proteins created by Tat, ref and nef, are both regulatory and regulate infection of a cell(haseltine). Also important to the replication process, the Rev gene codes for one Rev protein. The Rev protein can be found primarily in the cytosol. In the cytosol, Rev gathers spliced transcripts and moves them to ribosomes, where the transcripts can be translated into capsid and envelope glycoproteins. Without the RNA transcripts being gathered together by the Rev protein, only regulatory proteins could be made through translation (Kula). The Rev protein is able to transport spliced transcripts by interacting with an export receptor called Crm- 1. The Rev protein and spliced viral mrna transcripts will bind together via the Crm- 1. This occurs in the nucleus. Once the binding occurs, Crm- 1 can interact with the nuclear pores in the nuclear membrane, allowing the Crm- 1, Rev protein, and mrna transcripts to enter the cytosol. Once in

7 the cytosol, the Rev proteins drop the transcripts to be translated and then return to the nucleus (Kula). Effects of HIV on the Body and the Cell HIV- 1 does not directly kill a cell. It has adverse effects on the cell, which may lead to cell death, but the actual virus does not attack a cell with malicious intentions. Instead, the intention of a virus is to replicate itself. All of the coding genetic material is meant to create proteins that are used for creating new viruses. However, there are still ways in which viruses can cause cell death. When HIV- 1 virion enters the body, it seeks a certain type of cell that has the cell membrane protein receptor CD4. These CD4 receptors can be found in abundance in the phospholipid bilayers of T lymphocytes and lymphocytes of helper T cells. In this way, the immune system of an HIV- positive person is targeted upon infection. Because T- lymphocytes are responsible for triggering the production of antibodies, disabling these cells effectively halts the body s attempt to fight the virus. Without antibodies to recognize the envelope glycoprotein responsible for cell fusion on an HIV virion, macrophages will not destroy infected cells and HIV can continue replication in the body undisturbed (Haseltine). HIV- 1 virions fuse with the CD4 receptors in order to inject the genetic material into a cell. After the cell has created budding viruses inside itself, the new viruses can leave the cell. However, the first generation of budding viruses will often fuse directly with the cell that it just left. The fusion between HIV virions and a

8 cell will quickly deteriorate a cell membrane, resulting in death of the cell. In this way the first generation of budding HIV viruses can kill a cell (Haseltine). A second way that HIV- 1 virions can kill a cell is very dramatic and rapid. When a virus fuses with the CD4 receptor on a cell membrane, this can trigger other CD4 receptors along the cell membrane to fuse with other cells that have the CD4 receptor along their cell membrane. One HIV- infected cell can fuse with up to 500 uninfected T- cells. The result of this reaction is one giant multinucleated cell. The half- life of this multinucleated cell is very short. This means that individual cells inside the multinucleated cell can die very quickly because of cell membrane deterioration (Haseltine). Many diseases are associated with HIV- 1. When HIV- infected cells get into the bloodstream, they can travel around the entire body. HIV- infected cells can have the most damage on the brain. HIV- infected cells will travel via the bloodstream, where they can be dropped off into vascular tissue. Once in these capillaries, these cells diffuse across the selectively permeable blood- brain barrier (BBB). Scientists are unclear of how the HIV virus crosses the BBB, but several theories exist. One such theory is the Trojan Horse theory- that HIV can hide its receptors in order to be disguised as something else and cross the BBB (Ghafouri). Once the virus is inside the brain, the infected human can acquire many diseases. One of the most general and prominent diseases is HIV- associated dementia. Dementia is described as damages and disorders to the brain and has a wide variety of symptoms. Dementia can be expressed in many different ways, including cognition, behavior, affection, motor skills, and psychiatric disorders. In

9 humans under 60 years, HIV is the most common cause of dementia worldwide (Ghafouri). Many STD s can result from HIV infection as well. Herpes is a virus that can be very easily acquired once HIV has infected a person. HIVE stands for HIV- related Encephalitis, and is a common disease in HIV- positive patients. Encephalitis is described as an inflammation of the brain, and has many serious symptoms. HIVE occurs when the aforementioned large, multinucleated cells enter the brain. These giant structures act, virtually, as tumors in the brain. This is how the swelling results (Ghafouri). Treatment Unfortunately, HIV has no direct cure. Because HIV targets T- cells and prevents the production of antibodies, the body has no way to stimulate the production of antibodies. The job of antibodies is to find and recognize a virus. Once it has found and recognized a virus, it can kill it and recognize it in the future. However, because HIV stops the production of these antibodies, the body cannot recognize HIV upon entry of the body. This is why there is no vaccination to encourage immunity to HIV in the body. One way to treat HIV symptoms is through inhibitors. Inhibitors are drugs that inhibit the reacting of certain processes. For example, the most common inhibitors are protease inhibitors. Each HIV virion has a protease enzyme. This enzyme is coded for in the Gag polyprotein and is necessary for the virion to become mature and have the ability to harm cells. A protease inhibitor will prevent protease

10 enzymes from being active. This treatment can help slow down or stop HIV, but it cannot cure a person of the virus (Ghafouri, Jr., J.E.). Other such inhibitors work as well. There are 5 FDA- approved inhibitors on the market today. All of these can help, but none can cure a person of HIV. There are also drugs to help treat the symptoms of HIV. These drugs may relieve HIVE symptoms, or help boost the immune system. However, none of these deal directly with the HIV virus (Jr, J.E.). Conclusion Although there is no immediate cure for HIV, scientists are researching and growing closer to a cure. Some scientists believe that a cure will be found within the decade, while others believe that it may be farther away. What we do know is that the more research that is conducted, the closer we are to finding a cure. And as 2.6 million people are being diagnosed as HIV- positive each year, the need to find a cure is very real. Understanding HIV is a great way to begin people along the path of contributing to finding a cure for the human immunodeficiency virus- type 1.

11 References Barnabas, R., & Celum, C. (2013). Infectious Co-factors in HIV-1 transmission Herpes Simplex Virus type-2 and HIV-1: New Insights and Interventions. NIHPA Author Manuscripts, 10(3), Retrieved April 9, 2013, from Chugh, P., Bradel-Tretheway, B., Monteiro-Filho, C., Planelles, V., Maggirwar, S., Dewhurst, S., et al. (2008). Akt inhibitors as an HIV-1 infected macrophaphagespecific anti-viral therapy. Retrovirology, 5(11). Retrieved April 9, 2013, from Ghafouri, M., Amini, S., Khalili, K., & Sawaya, B. (2006). HIV-1 associated dementia: symptoms and causes. Retrovirology, 3(28). Retrieved April 9, 2013, from Haseltine, W. (1991). Molecular biology of the human immunodeficiency virus type. The FASEB Journal, 5(10), Retrieved April 9, 2013, from Jr., J. E. (2000). HIV-1 Protease Inhibitors. Journals of the Royal Society of Tropical Medicine and Hygiene, 30(2), Retrieved April 9, 2013, from Kula, A., & Marcello, A. (2012). Dynamic Post-Transcriptional Regulation of HIV-1 Gene Expression. Structural and Molecular Biology of HIV, 1(2), Retrieved April 9, 2013, from

12 Sampey, G., Guendel, I., Das, R., Jaworski, E., Klase, Z., Narayanan, A., et al. (2012). Transcriptional Gene Silencing (TGS) via the RNAi Machinery in HIV-1 Infections. Structural and Molecular Biology of HIV, 1(2), Retrieved April 9, 2013, from Simon, V., Ho, D., & Karim, Q. (2006). HIV/AIDS Epidemiology, pathogenesis, prevention, and treatment. The Lancet, 368(9534), Retrieved April 9, 2013, from Ward, D. (1999). The AmFAR AIDS Handbook. New York: W.W. Norton & Company. Zeinalipour-Loizidou, E., Nicolaou, C., Nicolaides, A., & Kostrikis, L. (2007). HIV-1 Integrase: From Biology to Chemotherapeutics. Current HIV Research, 5, Retrieved April 9, 2013, from Current_HIV_Research_2007. pdf

MedChem 401~ Retroviridae. Retroviridae

MedChem 401~ Retroviridae. Retroviridae MedChem 401~ Retroviridae Retroviruses plus-sense RNA genome (!8-10 kb) protein capsid lipid envelop envelope glycoproteins reverse transcriptase enzyme integrase enzyme protease enzyme Retroviridae The

More information

Julianne Edwards. Retroviruses. Spring 2010

Julianne Edwards. Retroviruses. Spring 2010 Retroviruses Spring 2010 A retrovirus can simply be referred to as an infectious particle which replicates backwards even though there are many different types of retroviruses. More specifically, a retrovirus

More information

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV

LESSON 4.6 WORKBOOK. Designing an antiviral drug The challenge of HIV LESSON 4.6 WORKBOOK Designing an antiviral drug The challenge of HIV In the last two lessons we discussed the how the viral life cycle causes host cell damage. But is there anything we can do to prevent

More information

HIV INFECTION: An Overview

HIV INFECTION: An Overview HIV INFECTION: An Overview UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL MBBS II SEMINAR VJ

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES 1 of 7 I. Viral Origin. A. Retrovirus - animal lentiviruses. HIV - BASIC PROPERTIES 1. HIV is a member of the Retrovirus family and more specifically it is a member of the Lentivirus genus of this family.

More information

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics

11/15/2011. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Viral Genomes. Structural Features and Characteristics Chapter 19 - Viruses Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV II. Prions The Good the Bad and the Ugly Viruses fit into the bad category

More information

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms

5/6/17. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Viruses (including HIV) Pathogens are disease-causing organisms 5/6/17 Disease Diseases I. II. Bacteria Viruses (including HIV) Biol 105 Chapter 13a Pathogens Pathogens are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic.

More information

VIRUSES. 1. Describe the structure of a virus by completing the following chart.

VIRUSES. 1. Describe the structure of a virus by completing the following chart. AP BIOLOGY MOLECULAR GENETICS ACTIVITY #3 NAME DATE HOUR VIRUSES 1. Describe the structure of a virus by completing the following chart. Viral Part Description of Part 2. Some viruses have an envelope

More information

Lecture 2: Virology. I. Background

Lecture 2: Virology. I. Background Lecture 2: Virology I. Background A. Properties 1. Simple biological systems a. Aggregates of nucleic acids and protein 2. Non-living a. Cannot reproduce or carry out metabolic activities outside of a

More information

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics

19 Viruses BIOLOGY. Outline. Structural Features and Characteristics. The Good the Bad and the Ugly. Structural Features and Characteristics 9 Viruses CAMPBELL BIOLOGY TENTH EDITION Reece Urry Cain Wasserman Minorsky Jackson Outline I. Viruses A. Structure of viruses B. Common Characteristics of Viruses C. Viral replication D. HIV Lecture Presentation

More information

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission

I. Bacteria II. Viruses including HIV. Domain Bacteria Characteristics. 5. Cell wall present in many species. 6. Reproduction by binary fission Disease Diseases I. Bacteria II. Viruses including are disease-causing organisms Biol 105 Lecture 17 Chapter 13a Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

October 26, Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics

8/13/2009. Diseases. Disease. Pathogens. Domain Bacteria Characteristics. Bacteria Shapes. Domain Bacteria Characteristics Disease Diseases I. Bacteria II. Viruses including Biol 105 Lecture 17 Chapter 13a are disease-causing organisms Domain Bacteria Characteristics 1. Domain Bacteria are prokaryotic 2. Lack a membrane-bound

More information

HIV & AIDS: Overview

HIV & AIDS: Overview HIV & AIDS: Overview UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL SEMINAR VJ TEMPLE 1 What

More information

Under the Radar Screen: How Bugs Trick Our Immune Defenses

Under the Radar Screen: How Bugs Trick Our Immune Defenses Under the Radar Screen: How Bugs Trick Our Immune Defenses Session 7: Cytokines Marie-Eve Paquet and Gijsbert Grotenbreg Whitehead Institute for Biomedical Research HHV-8 Discovered in the 1980 s at the

More information

Retroviruses. ---The name retrovirus comes from the enzyme, reverse transcriptase.

Retroviruses. ---The name retrovirus comes from the enzyme, reverse transcriptase. Retroviruses ---The name retrovirus comes from the enzyme, reverse transcriptase. ---Reverse transcriptase (RT) converts the RNA genome present in the virus particle into DNA. ---RT discovered in 1970.

More information

Human Immunodeficiency Virus

Human Immunodeficiency Virus Human Immunodeficiency Virus Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Viruses and hosts Lentivirus from Latin lentis (slow), for slow progression of disease

More information

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6)

Some living things are made of ONE cell, and are called. Other organisms are composed of many cells, and are called. (SEE PAGE 6) Section: 1.1 Question of the Day: Name: Review of Old Information: N/A New Information: We tend to only think of animals as living. However, there is a great diversity of organisms that we consider living

More information

number Done by Corrected by Doctor Ashraf

number Done by Corrected by Doctor Ashraf number 4 Done by Nedaa Bani Ata Corrected by Rama Nada Doctor Ashraf Genome replication and gene expression Remember the steps of viral replication from the last lecture: Attachment, Adsorption, Penetration,

More information

Revisiting the Definition of Living Thing

Revisiting the Definition of Living Thing Biology of Viruses (Ch 0 p77 and 88-9) What do you already know about viruses? Revisiting the Definition of Living Thing How did we define a living thing? H0 DOMAIN ARCHAEA virus So, if the Cell Theory

More information

Chapter 08 Lecture Outline

Chapter 08 Lecture Outline Chapter 08 Lecture Outline See separate PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright 2016 McGraw-Hill Education. Permission required for reproduction

More information

Section 6. Junaid Malek, M.D.

Section 6. Junaid Malek, M.D. Section 6 Junaid Malek, M.D. The Golgi and gp160 gp160 transported from ER to the Golgi in coated vesicles These coated vesicles fuse to the cis portion of the Golgi and deposit their cargo in the cisternae

More information

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment.

Virology Introduction. Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment. DEVH Virology Introduction Definitions. Introduction. Structure of virus. Virus transmission. Classification of virus. DNA Virus. RNA Virus. Treatment. Definitions Virology: The science which study the

More information

Last time we talked about the few steps in viral replication cycle and the un-coating stage:

Last time we talked about the few steps in viral replication cycle and the un-coating stage: Zeina Al-Momani Last time we talked about the few steps in viral replication cycle and the un-coating stage: Un-coating: is a general term for the events which occur after penetration, we talked about

More information

Fig. 1: Schematic diagram of basic structure of HIV

Fig. 1: Schematic diagram of basic structure of HIV UNIVERSITY OF PAPUA NEW GUINEA SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY & MOLECULAR BIOLOGY PBL SEMINAR HIV & AIDS: An Overview What is HIV?

More information

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication

LESSON 4.4 WORKBOOK. How viruses make us sick: Viral Replication DEFINITIONS OF TERMS Eukaryotic: Non-bacterial cell type (bacteria are prokaryotes).. LESSON 4.4 WORKBOOK How viruses make us sick: Viral Replication This lesson extends the principles we learned in Unit

More information

Chapter 13B: Animal Viruses

Chapter 13B: Animal Viruses Chapter 13B: Animal Viruses 1. Overview of Animal Viruses 2. DNA Viruses 3. RNA Viruses 4. Prions 1. Overview of Animal Viruses Life Cycle of Animal Viruses The basic life cycle stages of animal viruses

More information

CDC site UNAIDS Aids Knowledge Base http://www.cdc.gov/hiv/dhap.htm http://hivinsite.ucsf.edu/insite.jsp?page=kb National Institute of Allergy and Infectious Diseases http://www.niaid.nih.gov/default.htm

More information

3. on T helper {cells / lymphocytes} ; 3. ACCEPT macrophages / dendritic cells / CD4 cells

3. on T helper {cells / lymphocytes} ; 3. ACCEPT macrophages / dendritic cells / CD4 cells 1(a) 1. (structure G is {glycoprotein / gp120} ; 2. used for {attachment / eq} to CD4 (molecules / receptors /antigens) ; 1. IGNORE gp 41 and gp 160 and other wrong numbers 3. on T helper {cells / lymphocytes}

More information

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia 1 of 7 I. Diseases Caused by Retroviruses RETROVIRUSES A. Human retroviruses that cause cancers 1. HTLV-I causes adult T-cell leukemia and tropical spastic paraparesis 2. HTLV-II causes hairy T-cell leukemia

More information

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size

AP Biology. Viral diseases Polio. Chapter 18. Smallpox. Influenza: 1918 epidemic. Emerging viruses. A sense of size Hepatitis Viral diseases Polio Chapter 18. Measles Viral Genetics Influenza: 1918 epidemic 30-40 million deaths world-wide Chicken pox Smallpox Eradicated in 1976 vaccinations ceased in 1980 at risk population?

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions

Chapter 19: Viruses. 1. Viral Structure & Reproduction. 2. Bacteriophages. 3. Animal Viruses. 4. Viroids & Prions Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell

Lecture Readings. Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell October 26, 2006 1 Vesicular Trafficking, Secretory Pathway, HIV Assembly and Exit from Cell 1. Secretory pathway a. Formation of coated vesicles b. SNAREs and vesicle targeting 2. Membrane fusion a. SNAREs

More information

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat

AP Biology Reading Guide. Concept 19.1 A virus consists of a nucleic acid surrounded by a protein coat AP Biology Reading Guide Name Chapter 19: Viruses Overview Experimental work with viruses has provided important evidence that genes are made of nucleic acids. Viruses were also important in working out

More information

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2.

Chapter 19: Viruses. 1. Viral Structure & Reproduction. What exactly is a Virus? 11/7/ Viral Structure & Reproduction. 2. Chapter 19: Viruses 1. Viral Structure & Reproduction 2. Bacteriophages 3. Animal Viruses 4. Viroids & Prions 1. Viral Structure & Reproduction Chapter Reading pp. 393-396 What exactly is a Virus? Viruses

More information

numbe r Done by Corrected by Doctor

numbe r Done by Corrected by Doctor numbe r 5 Done by Mustafa Khader Corrected by Mahdi Sharawi Doctor Ashraf Khasawneh Viral Replication Mechanisms: (Protein Synthesis) 1. Monocistronic Method: All human cells practice the monocistronic

More information

Bacteriophage Reproduction

Bacteriophage Reproduction Bacteriophage Reproduction Lytic and Lysogenic Cycles The following information is taken from: http://student.ccbcmd.edu/courses/bio141/lecguide/unit3/index.html#charvir Bacteriophage Structure More complex

More information

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations.

HS-LS4-4 Construct an explanation based on evidence for how natural selection leads to adaptation of populations. Unit 2, Lesson 2: Teacher s Edition 1 Unit 2: Lesson 2 Influenza and HIV Lesson Questions: o What steps are involved in viral infection and replication? o Why are some kinds of influenza virus more deadly

More information

HIV Immunopathogenesis. Modeling the Immune System May 2, 2007

HIV Immunopathogenesis. Modeling the Immune System May 2, 2007 HIV Immunopathogenesis Modeling the Immune System May 2, 2007 Question 1 : Explain how HIV infects the host Zafer Iscan Yuanjian Wang Zufferey Abhishek Garg How does HIV infect the host? HIV infection

More information

Centers for Disease Control August 9, 2004

Centers for Disease Control August 9, 2004 HIV CDC site UNAIDS Aids Knowledge Base http://www.cdc.gov/hiv/dhap.htm http://hivinsite.ucsf.edu/insite.jsp?page=kb National Institute of Allergy and Infectious Diseases http://www.niaid.nih.gov/default.htm

More information

Chapter 18. Viral Genetics. AP Biology

Chapter 18. Viral Genetics. AP Biology Chapter 18. Viral Genetics 2003-2004 1 A sense of size Comparing eukaryote bacterium virus 2 What is a virus? Is it alive? DNA or RNA enclosed in a protein coat Viruses are not cells Extremely tiny electron

More information

Viruses. Picture from:

Viruses. Picture from: Viruses Understand the structure of bacteriophages & human immunodeficiency virus (HIV) Appreciate that viruses replicate in host cells (thereby destroying them) Picture from: http://eands.caltech.edu/articles/lxvii1/viruses.html

More information

Overview: Chapter 19 Viruses: A Borrowed Life

Overview: Chapter 19 Viruses: A Borrowed Life Overview: Chapter 19 Viruses: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead a kind of borrowed life between

More information

Human Immunodeficiency Virus. Acquired Immune Deficiency Syndrome AIDS

Human Immunodeficiency Virus. Acquired Immune Deficiency Syndrome AIDS Human Immunodeficiency Virus Acquired Immune Deficiency Syndrome AIDS Sudden outbreak in USA of opportunistic infections and cancers in young men in 1981 Pneumocystis carinii pneumonia (PCP), Kaposi s

More information

7.013 Spring 2005 Problem Set 7

7.013 Spring 2005 Problem Set 7 MI Department of Biology 7.013: Introductory Biology - Spring 2005 Instructors: Professor Hazel Sive, Professor yler Jacks, Dr. Claudette Gardel 7.013 Spring 2005 Problem Set 7 FRIDAY May 6th, 2005 Question

More information

HIV/AIDS. Biology of HIV. Research Feature. Related Links. See Also

HIV/AIDS. Biology of HIV. Research Feature. Related Links. See Also 6/1/2011 Biology of HIV Biology of HIV HIV belongs to a class of viruses known as retroviruses. Retroviruses are viruses that contain RNA (ribonucleic acid) as their genetic material. After infecting a

More information

Viral reproductive cycle

Viral reproductive cycle Lecture 29: Viruses Lecture outline 11/11/05 Types of viruses Bacteriophage Lytic and lysogenic life cycles viruses viruses Influenza Prions Mad cow disease 0.5 µm Figure 18.4 Viral structure of capsid

More information

2.1 VIRUSES. 2.1 Learning Goals

2.1 VIRUSES. 2.1 Learning Goals 2.1 VIRUSES 2.1 Learning Goals To understand the structure, function, and how Viruses replicate To understand the difference between Viruses to Prokaryotes and Eukaryotes; namely that viruses are not classified

More information

Virus and Prokaryotic Gene Regulation - 1

Virus and Prokaryotic Gene Regulation - 1 Virus and Prokaryotic Gene Regulation - 1 We have discussed the molecular structure of DNA and its function in DNA duplication and in transcription and protein synthesis. We now turn to how cells regulate

More information

HIV Infection and Epidemiology: Can There Be a Cure? Dr. Nedwidek

HIV Infection and Epidemiology: Can There Be a Cure? Dr. Nedwidek HIV Infection and Epidemiology: Can There Be a Cure? Dr. Nedwidek The Viral Life Cycle A typical virus (DNA or RNA + protein) enters the host cell, makes more of itself, and exits. There are two major

More information

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003

Chapter 13 Viruses, Viroids, and Prions. Biology 1009 Microbiology Johnson-Summer 2003 Chapter 13 Viruses, Viroids, and Prions Biology 1009 Microbiology Johnson-Summer 2003 Viruses Virology-study of viruses Characteristics: acellular obligate intracellular parasites no ribosomes or means

More information

Introduction retroposon

Introduction retroposon 17.1 - Introduction A retrovirus is an RNA virus able to convert its sequence into DNA by reverse transcription A retroposon (retrotransposon) is a transposon that mobilizes via an RNA form; the DNA element

More information

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion

Unit 13.2: Viruses. Vocabulary capsid latency vaccine virion Unit 13.2: Viruses Lesson Objectives Describe the structure of viruses. Outline the discovery and origins of viruses. Explain how viruses replicate. Explain how viruses cause human disease. Describe how

More information

Immunodeficiencies HIV/AIDS

Immunodeficiencies HIV/AIDS Immunodeficiencies HIV/AIDS Immunodeficiencies Due to impaired function of one or more components of the immune or inflammatory responses. Problem may be with: B cells T cells phagocytes or complement

More information

Viral Genetics. BIT 220 Chapter 16

Viral Genetics. BIT 220 Chapter 16 Viral Genetics BIT 220 Chapter 16 Details of the Virus Classified According to a. DNA or RNA b. Enveloped or Non-Enveloped c. Single-stranded or double-stranded Viruses contain only a few genes Reverse

More information

Size nm m m

Size nm m m 1 Viral size and organization Size 20-250nm 0.000000002m-0.000000025m Virion structure Capsid Core Acellular obligate intracellular parasites Lack organelles, metabolic activities, and reproduction Replicated

More information

1. Virus 2. Capsid 3. Envelope

1. Virus 2. Capsid 3. Envelope VIRUSES BIOLOGY II VOCABULARY- VIRUSES (22 Words) 1. Virus 2. Capsid 3. Envelope 4. Provirus 5. Retrovirus 6. Reverse transcriptase 7. Bacteriophage 8. Lytic Cycle 9. Virulent 10. Lysis 11. Lysogenic Cycle

More information

Antiviral Drugs Lecture 5

Antiviral Drugs Lecture 5 Antiviral Drugs Lecture 5 Antimicrobial Chemotherapy (MLAB 366) 1 Dr. Mohamed A. El-Sakhawy 2 Introduction Viruses are microscopic organisms that can infect all living cells. They are parasitic and multiply

More information

Week 5 Section. Junaid Malek, M.D.

Week 5 Section. Junaid Malek, M.D. Week 5 Section Junaid Malek, M.D. HIV: Anatomy Membrane (partiallystolen from host cell) 2 Glycoproteins (proteins modified by added sugar) 2 copies of RNA Capsid HIV Genome Encodes: Structural Proteins

More information

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes.

19/06/2013. Viruses are not organisms (do not belong to any kingdom). Viruses are not made of cells, have no cytoplasm, and no membranes. VIRUSES Many diseases of plants and animals are caused by bacteria or viruses that invade the body. Bacteria and viruses are NOT similar kinds of micro-organisms. Bacteria are classified as living organisms,

More information

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS

ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS ACQUIRED IMMUNODEFICIENCY SYNDROME AND ITS OCULAR COMPLICATIONS Acquired immunodeficiency syndrome (AIDS ) is an infectious disease caused by a retrovirus, the human immunodeficiency virus(hiv). AIDS is

More information

Immunity and Infection. Chapter 17

Immunity and Infection. Chapter 17 Immunity and Infection Chapter 17 The Chain of Infection Transmitted through a chain of infection (six links) Pathogen: Disease causing microorganism Reservoir: Natural environment of the pathogen Portal

More information

2) What is the difference between a non-enveloped virion and an enveloped virion? (4 pts)

2) What is the difference between a non-enveloped virion and an enveloped virion? (4 pts) Micro 260 SFCC Spring 2010 Name: All diagrams and drawings shall be hand drawn (do not photo-copied from a publication then cut and pasted into work sheet). Do not copy other student s answers. Para phase

More information

Building complexity Unit 04 Population Dynamics

Building complexity Unit 04 Population Dynamics Building complexity Unit 04 Population Dynamics HIV and humans From a single cell to a population Single Cells Population of viruses Population of humans Single Cells How matter flows from cells through

More information

Prokaryotic Biology. VIRAL STDs, HIV-1 AND AIDS

Prokaryotic Biology. VIRAL STDs, HIV-1 AND AIDS Prokaryotic Biology VIRAL STDs, HIV-1 AND AIDS Prokaryotic Biology FROM THE CDC VIRAL STDs, HIV-1 AND AIDS VIRAL STDs & CONTACT VIRAL DISEASES A. GENITAL HERPES & COLD SORES 1. HERPES SIMPLEX VIRUS-2 (HHV-2)

More information

L I F E S C I E N C E S

L I F E S C I E N C E S 1a L I F E S C I E N C E S 5 -UUA AUA UUC GAA AGC UGC AUC GAA AAC UGU GAA UCA-3 5 -TTA ATA TTC GAA AGC TGC ATC GAA AAC TGT GAA TCA-3 3 -AAT TAT AAG CTT TCG ACG TAG CTT TTG ACA CTT AGT-5 OCTOBER 31, 2006

More information

Dr. Ahmed K. Ali Attachment and entry of viruses into cells

Dr. Ahmed K. Ali Attachment and entry of viruses into cells Lec. 6 Dr. Ahmed K. Ali Attachment and entry of viruses into cells The aim of a virus is to replicate itself, and in order to achieve this aim it needs to enter a host cell, make copies of itself and

More information

Antibacterials and Antivirals

Antibacterials and Antivirals Structure of a Bacterium: Antibacterials and Antivirals Capsule: protective layer made up of proteins, sugars and lipids Cell wall: provides the bacteria with its shape and structure Cell membrane: permeable

More information

Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS

Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS 1 Unit 2: Lesson 2 Case Studies: Influenza and HIV LESSON QUESTIONS What steps are involved in viral infection and replication? Why are some kinds of influenza virus more deadly than others? How do flu

More information

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents.

Part I. Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. Viruses Part I Content: History of Viruses. General properties of viruses. Viral structure. Viral classifications. Virus-like agents. History Through the 1800s, many scientists discovered that something

More information

AP Biology

AP Biology Tour of the Cell (1) 2007-2008 Types of cells Prokaryote bacteria cells - no organelles - organelles Eukaryote animal cells Eukaryote plant cells Cell Size Why organelles? Specialized structures - specialized

More information

, virus identified as the causative agent and ELISA test produced which showed the extent of the epidemic

, virus identified as the causative agent and ELISA test produced which showed the extent of the epidemic 1 Two attributes make AIDS unique among infectious diseases: it is uniformly fatal, and most of its devastating symptoms are not due to the causative agent Male to Male sex is the highest risk group in

More information

Hands-on Activity Viral DNA Integration. Educator Materials

Hands-on Activity Viral DNA Integration. Educator Materials OVERVIEW This activity is part of a series of activities and demonstrations focusing on various aspects of the human immunodeficiency virus (HIV) life cycle. HIV is a retrovirus. Retroviruses are distinguished

More information

Viral structure م.م رنا مشعل

Viral structure م.م رنا مشعل Viral structure م.م رنا مشعل Viruses must reproduce (replicate) within cells, because they cannot generate energy or synthesize proteins. Because they can reproduce only within cells, viruses are obligate

More information

A virus consists of a nucleic acid surrounded by a protein coat. [2]

A virus consists of a nucleic acid surrounded by a protein coat. [2] GUIDED READING - Ch. 19 - VIRUSES NAME: Please print out these pages and HANDWRITE the answers directly on the printouts. Typed work or answers on separate sheets of paper will not be accepted. Importantly,

More information

HIV/AIDS: Biology and Treatment

HIV/AIDS: Biology and Treatment HIV/AIDS: Biology and Treatment Julie Seiter, Marion Fass, Ethel Stanley, and Margaret Waterman Learning objectives: Contrast viruses and eukaryotic cells. Describe the replication cycle of HIV. Analyze

More information

CDC site UNAIDS Aids Knowledge Base http://www.cdc.gov/hiv/dhap.htm http://hivinsite.ucsf.edu/insite.jsp?page=kb National Institute of Allergy and Infectious Diseases http://www.niaid.nih.gov/default.htm

More information

How HIV Works in Your Body

How HIV Works in Your Body How HIV Works in Your Body It helps to know what s going on with your virus What is HIV and how do people get it? The initials HIV stand for Human Immunodeficiency Virus meaning a virus that causes the

More information

Human Genome Complexity, Viruses & Genetic Variability

Human Genome Complexity, Viruses & Genetic Variability Human Genome Complexity, Viruses & Genetic Variability (Learning Objectives) Learn the types of DNA sequences present in the Human Genome other than genes coding for functional proteins. Review what you

More information

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions

Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions Chapter13 Characterizing and Classifying Viruses, Viroids, and Prions 11/20/2017 MDufilho 1 Characteristics of Viruses Viruses Minuscule, acellular, infectious agent having either DNA or RNA Cause infections

More information

Ch. 19 Viruses & Bacteria: What Is a Virus?

Ch. 19 Viruses & Bacteria: What Is a Virus? Ch. 19 Viruses & Bacteria: What Is a Virus? A virus is an invective agent consisting of a nucleic acid in a protein coat, able to multiply only within the living cells of a host. A bacteriophage ( bacteria

More information

cure research HIV & AIDS

cure research HIV & AIDS Glossary of terms HIV & AIDS cure research Antiretroviral Therapy (ART) ART involves the use of several (usually a cocktail of three or more) antiretroviral drugs to halt HIV replication. ART drugs may

More information

Biol115 The Thread of Life"

Biol115 The Thread of Life Biol115 The Thread of Life" Lecture 9" Gene expression and the Central Dogma"... once (sequential) information has passed into protein it cannot get out again. " ~Francis Crick, 1958! Principles of Biology

More information

SECTION 25-1 REVIEW STRUCTURE. 1. The diameter of viruses ranges from about a. 1 to 2 nm. b. 20 to 250 nm. c. 1 to 2 µm. d. 20 to 250 µm.

SECTION 25-1 REVIEW STRUCTURE. 1. The diameter of viruses ranges from about a. 1 to 2 nm. b. 20 to 250 nm. c. 1 to 2 µm. d. 20 to 250 µm. SECTION 25-1 REVIEW STRUCTURE VOCABULARY REVIEW Define the following terms. 1. virus 2. capsid 3. retrovirus 4. viroid 5. prion MULTIPLE CHOICE Write the correct letter in the blank. 1. The diameter of

More information

Viruses Tomasz Kordula, Ph.D.

Viruses Tomasz Kordula, Ph.D. Viruses Tomasz Kordula, Ph.D. Resources: Alberts et al., Molecular Biology of the Cell, pp. 295, 1330, 1431 1433; Lehninger CD Movie A0002201. Learning Objectives: 1. Understand parasitic life cycle of

More information

Modeling and Simulation of HIV-1 Intracellular Replication

Modeling and Simulation of HIV-1 Intracellular Replication Modeling and Simulation of HIV-1 Intracellular Replication MSc Thesis Author Narges Zarrabi Supervisor: Prof. Dr. Peter M.A. Sloot Submitted to Faculty of Science in partial fullfilment of the requirments

More information

KEY CONCEPT Germs cause many diseases in humans.

KEY CONCEPT Germs cause many diseases in humans. 31.1 40.1 Pathogens Infectious Diseases and Human Illness KEY CONCEPT Germs cause many diseases in humans. 31.1 40.1 Pathogens Infectious Diseases and Human Illness Germ theory states that microorganisms

More information

Biology 350: Microbial Diversity

Biology 350: Microbial Diversity Biology 350: Microbial Diversity Strange Invaders: Viruses, viroids, and prions. Lecture #27 7 November 2007-1- Notice handouts and announcements for today: Outline and study questions A 1999 paper discussing

More information

WHY? Viruses are considered non-living because they do:

WHY? Viruses are considered non-living because they do: Viruses What is a Virus? Non-living particle WHY? Viruses are considered non-living because they do: NOT Carry out metabolism NOT Grow or develop NOT Replicate without the help of a living cell (host).

More information

Human Immunodeficiency Virus

Human Immunodeficiency Virus Human Immunodeficiency Virus 1. Identification of the AIDS Virus a) opportunistic infections observed in homosexual men (all had T4 helper cell depletion) -> termed Acquired Immune Deficiency Syndrome;

More information

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter.

Virology. *Viruses can be only observed by electron microscope never by light microscope. The size of the virus: nm in diameter. Virology We are going to start with general introduction about viruses, they are everywhere around us; in food; within the environment; in direct contact to etc.. They may cause viral infection by itself

More information

Herpesviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics

Herpesviruses. Virion. Genome. Genes and proteins. Viruses and hosts. Diseases. Distinctive characteristics Herpesviruses Virion Genome Genes and proteins Viruses and hosts Diseases Distinctive characteristics Virion Enveloped icosahedral capsid (T=16), diameter 125 nm Diameter of enveloped virion 200 nm Capsid

More information

Microbiology Chapter 7 Viruses

Microbiology Chapter 7 Viruses Microbiology Chapter 7 Viruses 7:1 Viral Structure and Classification VIRUS: a biological particle composed of genetic material (DNA or RNA) encased in a protein coat CAPSID: protein coat surrounding a

More information

Acquired immune deficiency syndrome.

Acquired immune deficiency syndrome. Acquired immune deficiency syndrome 491 Acquired immune deficiency syndrome. The first cases of acquired immune deficiency syndrome (AIDS) were reported in 1981 but it is now clear that cases of the disease

More information

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1

LESSON 1.4 WORKBOOK. Viral structures. Just how small are viruses? Workbook Lesson 1.4 1 Eukaryotes- organisms that contain a membrane bound nucleus and organelles Prokaryotes- organisms that lack a nucleus or other membrane-bound organelles Viruses-small acellular (lacking a cell) infectious

More information

There are approximately 30,000 proteasomes in a typical human cell Each proteasome is approximately 700 kda in size The proteasome is made up of 3

There are approximately 30,000 proteasomes in a typical human cell Each proteasome is approximately 700 kda in size The proteasome is made up of 3 Proteasomes Proteasomes Proteasomes are responsible for degrading proteins that have been damaged, assembled improperly, or that are of no profitable use to the cell. The unwanted protein is literally

More information

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses

Medical Virology. Herpesviruses, Orthomyxoviruses, and Retro virus. - Herpesviruses Structure & Composition: Herpesviruses Medical Virology Lecture 2 Asst. Prof. Dr. Dalya Basil Herpesviruses, Orthomyxoviruses, and Retro virus - Herpesviruses Structure & Composition: Herpesviruses Enveloped DNA viruses. All herpesviruses have

More information

Viruses. Rotavirus (causes stomach flu) HIV virus

Viruses. Rotavirus (causes stomach flu) HIV virus Viruses Rotavirus (causes stomach flu) HIV virus What is a virus? A virus is a microscopic, infectious agent that may infect any type of living cell. Viruses must infect living cells in order to make more

More information

BIT 120. Copy of Cancer/HIV Lecture

BIT 120. Copy of Cancer/HIV Lecture BIT 120 Copy of Cancer/HIV Lecture Cancer DEFINITION Any abnormal growth of cells that has malignant potential i.e.. Leukemia Uncontrolled mitosis in WBC Genetic disease caused by an accumulation of mutations

More information

What is HIV? Shoba s story. What is HIV?

What is HIV? Shoba s story. What is HIV? 1 What is HIV? Shoba s story What is HIV? The immune system HIV inside a cell Medicines against HIV The future Answering Shoba s questions Shoba s story Shoba is a fifteen-year-old student in Pakistan.

More information