Received 21 September 1999/Returned for modification 26 November 1999/Accepted 18 February 2000

Size: px
Start display at page:

Download "Received 21 September 1999/Returned for modification 26 November 1999/Accepted 18 February 2000"

Transcription

1 JOURNAL OF CLINICAL MICROBIOLOGY, May 2000, p Vol. 38, No /00/$ Copyright 2000, American Society for Microbiology. All Rights Reserved. Occurrence and Detection of AmpC Beta-Lactamases among Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis Isolates at a Veterans Medical Center PHILIP E. COUDRON, 1 * ELLEN S. MOLAND, 2 AND KENNETH S. THOMSON 2 Pathology and Laboratory Medicine Service/113, McGuire Veterans Affairs Medical Center, Richmond, Virginia , 1 and Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, Nebraska Received 21 September 1999/Returned for modification 26 November 1999/Accepted 18 February 2000 AmpC beta-lactamases are cephalosporinases that confer resistance to a wide variety of -lactam drugs and that may thereby create serious therapeutic problems. Although reported with increasing frequency, the true rate of occurrence of AmpC beta-lactamases in Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis remains unknown. We tested a total of 1,286 consecutive, nonrepeat isolates of these three species and found that, overall, 45 (3.5%) yielded a cefoxitin zone diameter less than 18 mm (screen positive) and that 16 (1.2%) demonstrated AmpC bands by isoelectric focusing. Based on the species, of 683 E. coli, 371 K. pneumoniae, and 232 P. mirabilis isolates tested, 13 (1.9%), 28 (7.6%), and 4 (1.7%), respectively, demonstrated decreased zone diameters and 11 (1.6%), 4 (1.1%), and 1 (0.4%), respectively, demonstrated AmpC bands. Cefoxitin resistance was transferred for all but 8 (E. coli) of the 16 AmpC producers. We also describe a three-dimensional extract test, which was used to detect phenotypically isolates that harbor AmpC beta-lactamase. Of the 45 cefoxitinresistant isolates, the three-dimensional extract test accurately identified all 16 AmpC producers and 28 of 29 (97%) isolates as non-ampc producers. Interestingly, most (86%) isolates in the latter group were K. pneumoniae isolates. These data confirm that, at our institution, E. coli, K. pneumoniae, and P. mirabilis harbor plasmid-mediated AmpC enzymes. Group 1 AmpC beta-lactamases are cephalosporinases that are poorly inhibited by clavulanic acid (9). They are clinically significant because they may confer resistance to a wide variety of -lactam drugs, including -methoxy- -lactams, such as cefoxitin, narrow-, expanded-, and broad-spectrum cephalosporins, -lactam beta-lactamase inhibitor combinations, and aztreonam. Genes for AmpC beta-lactamases are commonly found on the chromosomes of several members of the family Enterobacteriaceae, including Enterobacter, Shigella, Providencia, Citrobacter freundii, Morganella morganii, Serratia marcescens, and Escherichia coli (17). Chromosomal expression is typically inducible except in E. coli and Shigella spp., in which it is usually constitutive and minimal (17, 27). Occasional isolates of E. coli (1 to 2%) (17) may produce large amounts of AmpC enzyme (27) and have a phenotype resembling that of a derepressed AmpC mutant Enterobacter sp. DNA sequencing data for five hyperproducing E. coli isolates showed that the ampc gene was preceded by a strong promoter, which resulted in increased transcription (25). Although chromosomal genes for group 2b beta-lactamases are common in Klebsiella pneumoniae (17), genes for AmpC beta-lactamases are notably absent. The first example of a chromosomally encoded AmpCtype beta-lactamase in Proteus mirabilis was reported only recently (8). Genes for AmpC beta-lactamases have also recently been found on plasmids that transfer noninducible cephalosporin resistance to K. pneumoniae (5, 7, 13 15, 29, 31, 39; A. Bauernfeind, R. Jungwirth, I. Schneider, H. Sahly, and U. Ullmann, Abstr. 38th Intersci. Conf. Antimicrob. Agents Chemother., * Corresponding author. Mailing address: Pathology and Laboratory Medicine Service/113, McGuire Veterans Affairs Medical Center, 1201 Broad Rock Blvd., Richmond, VA Phone: (804) Fax: (804) Philip.Coudron@med.va.gov. abstr. C-2, p. 69, 1998; A. Bauernfeind, S. Schweighart, K. Dornbusch, and H. Giamarellou, Program and Abstr. 30th Intersci. Conf. Antimicrob. Agents Chemother., abstr. 190, p. 118, 1990; S. Boyer-Mariotte, L. Raskine, B. Hanau, A. Philippon, M. J. Sanson-LE Pors, and G. Arlet, Abstr. 38th Intersci. Conf. Antimicrob. Agents Chemother., abstr. C-7, p. 70, 1998), E. coli (3, 19, 30; C. Hoyen, L. B. Rice, and R. A. Bonomo, Abstr. 38th Intersci. Conf. Antimicrob. Agents Chemother., abstr. C-161, p. 115, 1998) and P. mirabilis (6). These enzymes are believed to have originated from the chromosomes of Enterobacter, Citrobacter, and Pseudomonas spp. (9, 35). In a recent survey, K. pneumoniae and E. coli isolates from patients from 8 of 20 intensive care units in the United States harbored transmissible AmpC-type beta-lactamases (G. A. Jacoby, P. Han, M. Alvarez, and F. Tenover, Abstr. 35th Intersci. Conf. Antimicrob. Agents Chemother., abstr. C40, p. 46, 1995). Documentation of these enzymes in seven or more countries in a relatively short time period (since 1989) may portend future problems (4, 21, 20). Although reported with increasing frequency in case isolates (5, 13 15, 19, 29, 30, 39), the true rate of occurrence of plasmid-mediated AmpC beta-lactamases in K. pneumoniae, E. coli, and P. mirabilis remains unknown. Many laboratories have difficulty detecting these enzymes in clinical isolates. In a recent study, 28 (74%) of 38 laboratories in Connecticut reported at least one nonsusceptible result with an extendedspectrum cephalosporin or aztreonam for an AmpC-producing strain of E. coli that was known to be resistant to these agents (34). These data suggest that the standard systems used in the study failed to detect resistance and that additional testing was not performed. Current National Committee for Clinical Laboratory Standards (NCCLS) guidelines for performing in vitro susceptibility testing (22 24) do not indicate either the phenotypic screening or confirmatory tests that should be used for 1791

2 1792 COUDRON ET AL. J. CLIN. MICROBIOL. FIG. 1. Three-dimensional extract test patterns for five isolates. (A) Enhanced growth of the surface organism, E. coli ATCC 25922, is seen near agar slits (arrows) that contain extracts of E. coli (M563) and K. pneumoniae (M484) test isolates, both of which are AmpC producers. The remaining slit contained an extract of a non-ampc-producing E. coli isolate (M1601). The extract of AmpC-producing E. coli isolate M477 inhibited the growth of one surface organism, E. coli ATCC (B) (arrow), but did not interfere with the growth of the second surface organism, E. coli ATCC (C) (arrow). (D) Swarming growth (dark arrow) of unlysed cells in an extract of AmpC-producing P. mirabilis isolate M910 interfered with detection of growth of surface organism (white arrow) when Mueller-Hinton agar was used. (E) On MacConkey agar, growth of P. mirabilis was inhibited, and enhanced growth of the surface organism was easily seen (arrow). isolates that harbor AmpC beta-lactamases. For this reason, a study was designed to determine the occurrence of plasmidmediated AmpC beta-lactamases in K. pneumoniae, E. coli, and P. mirabilis at a veterans medical center. The study also included E. coli isolates that produced high levels of AmpC enzyme due to chromosome-mediated factors. In addition, we report on a phenotypic method for the detection of isolates that harbor these enzymes. MATERIALS AND METHODS Tests for AmpC-producing isolates of K. pneumoniae, E. coli, and P. mirabilis. A total of 1,286 consecutive, nonrepeat E. coli (n 683), K. pneumoniae (n 371), and P. mirabilis (n 232) isolates were recovered at the McGuire Veterans Affairs Medical Center (VAMC) during a 14-month period (November 1995 to January 1997). Isolates were identified with the Vitek and API 20E systems (biomerieux Vitek, Hazelwood, Mo.) and were tested for susceptibility by the standard disk diffusion method (23). A 30- g cefoxitin disk (Becton Dickinson Microbiology Systems, Cockeysville, Md.) was placed on inoculated Mueller- Hinton agar (Remel, Lenexa, Kans.). By following the NCCLS criteria for nonsusceptible organisms (24), isolates with zone diameters less than 18 mm were selected for MIC and beta-lactamase testing. The MICs of ampicillin, cefoxitin, cefotaxime, ceftazidime, aztreonam, cefepime, and imipenem were determined by the standard broth microdilution method (22). The MICs of ceftriaxone and cefpodoxime with and without 2 and 4 g of clavulanic acid per ml (fixed concentrations) (37), respectively, as well as the MICs of cefoxitin and ceftriaxone in combination with the penicillanic acid sulfone Ro (Hoffmann-La Roche Ltd., Basel, Switzerland), were also determined. Ro is a novel beta-lactamase inhibitor that protects expanded-spectrum cephalosporins against strains that produce group 1 and group 2be enzymes (40). E. coli ATCC was used as a control strain. Beta-lactamases. Isolates were tested for AmpC activity by a three-dimensional extract method, which was an adaptation of procedures described previously for the detection of extended-spectrum beta-lactamases (ESBLs) (36, 41). Briefly, 50 l of a 0.5 McFarland bacterial suspension prepared from an overnight blood agar plate was inoculated into 12 ml of tryptic soy broth and the culture was grown for 4hat35 C. The cells were concentrated by centrifugation, and crude enzyme preparations were made by freezing-thawing the cell pellets five times. The surface of a Mueller-Hinton agar plate (Remel) was inoculated with one each of two E. coli strains (ATCC and ATCC 11775) as described for the standard disk diffusion method (23); a 30- g cefoxitin disk was placed on the inoculated agar. With a sterile scalpel blade, a slit beginning 5 mm from the edge of the disk was cut in the agar in an outward radial direction. By using a pipet, 25 to 30 l of enzyme preparation was dispensed into the slit, beginning near the disk and moving outward. Slit overfill was avoided. The inoculated media were incubated overnight at 35 C. Enhanced growth of the surface organism at the point where the slit intersected the zone of inhibition was considered a positive three-dimensional test result and was interpreted as evidence for the presence of AmpC beta-lactamase (see Fig. 1). To test the extracts of P. mirabilis, MacConkey agar was also used to suppress the (swarming) growth of unlysed cells, which occasionally interfered with interpretation of results. E. coli strains which contained plasmid derivatives of the FOX-1, LAT-2, and MIR-1 AmpC beta-lactamases (Bush group 1) were tested as positive controls. Isolates with decreased cefoxitin zone diameters were tested for the presence of beta-lactamases by isoelectric focusing (IEF) of cell extracts as described previously (10). The cells were grown in 50 ml of tryptic soy broth (Becton Dickinson Microbiology Systems) for 4 h and were washed in 0.1 M phosphate buffer (ph 7). The centrifuged cells were resuspended in 300 l of phosphate buffer and were frozen at 70 C. The cells were sonicated with a Branson Cell Disruptor 200 (Branson Ultrasonics Corp., Danbury, Conn.) for 10 s and were then cooled with ice for 10 s; this cycle was repeated four times. Cellular debris was removed by centrifugation. The quantities of proteins in the preparations were not determined. Enzyme activity on the focused gels was detected with molten agar containing nitrocefin (50 g/ml). Filter paper strips moistened with one of two different inhibitors at 1 mm were briefly applied to the focused gel surface prior to the addition of the molten agar (33). AmpC beta-lactamases are inhibited by cloxacillin, and preparations with IEF patterns that demonstrated the loss of a nitrocefin band after application of a cloxacillin-moistened strip were interpreted to contain AmpC enzyme and show AmpC activity by IEF. All isolates that demonstrated AmpC activity by IEF were tested for the ability to transfer resistance to recipient strains. Each donor strain was tested by filter mating with two or more of the following recipient E. coli strains: CGSC 1867, C600, and 26R793. The selective medium contained 400 g of sodium azide per ml and 4 g of aztreonam per ml, 512 g of nalidixic acid per ml and 25 g of

3 VOL. 38, 2000 AmpC BETA-LACTAMASES 1793 TABLE 1. Isoelectric points and susceptibilities of AmpC-producing isolates Isolate pi a MIC b ( g/ l) AMP FOX FOX-Ro(4) CPD CPD-Cl(4) CRO CRO-Cl(2) CTX CAZ AZT CEF IMI E. coli M M M M , 5.4 4, M545B M563 c M M M , 5.6 4, M M K. pneumoniae M , 5.6 4,096 1,024 1,024 2,048 2, M , 5.6, 7.8 4, M625B 7.2, 5.6, 7.8 4, M , 5.6 4, P. mirabilis M a The first isoelectric points correspond to those for the cloxacillin-inhibited band (AmpC); additional pis correspond to those for clavulanic acid-inhibited bands. b AMP, ampicillin; FOX, cefoxitin; FOX-Ro(4), cefoxitin plus 4 g of Ro per ml; CPD, cefpodoxime; CPD-Cl(4), cefpodoxime plus 4 g of clavulanic acid per ml; CRO, ceftriaxone; CRO-Cl(2), ceftriaxone plus 2 g clavulanic acid per ml; CTX, cefotaxime; CAZ, ceftazidime; AZT, aztreonam; CEF, cefepime; IMI, imipenem. c Resistance was transferred for the underlined isolates. cefoxitin per ml, or 512 g of rifampin per ml and either 4 g of aztreonam per ml or 50 or 75 g of cefoxitin per ml. RESULTS Occurrence of AmpC-producing organisms. Of the 1,286 isolates that were tested, 45 (3.5%) yielded cefoxitin zone diameters less than 18 mm (screen positive), and 16 of these (1.2%) demonstrated AmpC bands by IEF. Based on the species, of 683 E. coli, 371 K. pneumoniae, and 232 P. mirabilis isolates tested, 13 (1.9%), 28 (7.6%), and 4 (1.7%), respectively, demonstrated decreased zone diameters and 11 (1.6%), 4 (1.1%), and 1 (0.4%), respectively, demonstrated AmpC bands. All 16 AmpC-producing isolates yielded a positive threedimensional test result with at least one of the two surface organisms. For most isolates, the growth patterns of both surface organisms were similar and relatively easy to interpret (Fig. 1A). The extract of one E. coli isolate, however, inhibited the growth of one surface organism uniformly along the entire length of the slit (Fig. 1B) and thereby interfered with interpretation of the test result. In contrast, no inhibition was observed along the slit with the second surface organism (Fig. 1C). MacConkey agar markedly suppressed growth from unlysed Proteus cells (Fig. 1D), and its use allowed easier interpretation of test results (Fig. 1E). Positive test results were seen with extracts of the three control strains. An extract of only 1 of the 29 non-ampc-producing isolates that yielded decreased cefoxitin zone diameters was associated with a positive three-dimensional test result. The extract source was a K. pneumoniae isolate that harbored two ESBLs (of the SHV type). The positive three-dimensional test result was partially reversed when a disk containing clavulanic acid (Augmentin; Becton Dickinson Microbiology Systems) was added to the extract (140 l) prior to injection into the slit. Table 1 lists the beta-lactamase isoelectric points and the susceptibilities of the 16 AmpC-producing isolates. Although the MIC patterns for several E. coli and K. pneumoniae isolates were similar, all isolates were unique by typing by pulsed-field gel electrophoresis (data not shown). In addition to the cloxacillin-inhibited group 1 AmpC enzymes, some isolates harbored other beta-lactamases that were inhibited by clavulanic acid but not by cloxacillin. However, the addition of clavulanic acid to cefpodoxime or ceftriaxone resulted in no change in MIC greater than twofold relative to the MIC of the -lactam alone. In contrast, for 11 of the 16 AmpC producers, the addition of 4 g of Ro per ml to cefoxitin decreased the MIC at least fourfold relative to the MIC of the drug alone (Table 1). Fourfold or greater differences in MICs were achieved for the remaining five isolates, one E. coli isolate (M752) and four K. pneumoniae isolates, in the presence of higher concentrations of the inhibitor Ro (8 and 32 g of Ro per ml, respectively) (data not shown). Fourfold or greater differences in MICs were also obtained with ceftriaxone and 4 g of the inhibitor Ro per ml for the same 11 isolates compared with those of cefoxitin (data not shown). Cefoxitin resistance was transferred for three E. coli, four K. pneumoniae, and one P. mirabilis isolates (Table 1). The ampicillin and cefoxitin MICs for each transconjugant were at least 256- and 16-fold, respectively, greater than the corresponding MICs for the recipient strain (data not shown). The pi of the AmpC band for each transconjugant was the same as the pi of the AmpC band for the corresponding donor. Because a relatively large number (86%) of the K. pneumoniae isolates that showed decreased susceptibility to cefoxitin (zone diameter, 17 mm; MIC, 16 g/ml) demonstrated no cloxacillin-inhibited band by IEF, the MICs of several drugs were determined for these organisms. Table 2 shows the MICs at which 50% of isolates are inhibited (MIC 50 s), MIC 90 s, and MIC 100 s of these drugs.

4 1794 COUDRON ET AL. J. CLIN. MICROBIOL. TABLE 2. MICs for non-ampc-producing K. pneumoniae isolates with decreased susceptibility to cefoxitin (n 24) MIC MIC a ( g/ml) AMP FOX CPD CPD-Cl(4) CRO CRO-Cl(2) CTX CAZ AZT CEF IMI 50% % 4, % 4, ,048 2, a See footnote b of Table 1 for definitions of abbreviations. DISCUSSION E. coli, K. pneumoniae, and P. mirabilis are the species in the family Enterobacteriaceae that are most commonly isolated in the clinical laboratory (16, 26). However, few studies have assessed the occurrence of AmpC beta-lactamases among these species. Gazouli et al. (11) tested 2,133 E. coli isolates from 10 Greek hospitals and found that 63 (3%) had cefoxitin zone diameters of 14 mm. Eight isolates lacked an outer membrane protein, and 55 (2.6%) contained AmpC beta-lactamases on the basis of the results of hydrolysis and inhibition studies and hybridization tests with AmpC-specific probes. Cefoxitin resistance was transferred for only a few isolates. These results mimic our results for E. coli, wherein 1.9 and 1.6% of the isolates demonstrated decreased susceptibility to cefoxitin and AmpC bands, respectively. Similar data have not been reported for K. pneumoniae, but our results indicate that this species harbors AmpC enzymes less frequently (1.1%) than E. coli does. The higher incidence of AmpC beta-lactamases in E. coli may reflect two modes of production: hyperproduction of chromosome-mediated AmpC and plasmid-mediated AmpC beta-lactamases. On a comparative note, these enzymes were present in E. coli and K. pneumoniae isolates at our institution less frequently than ESBLs (4 and 19%, respectively), as reported previously (10). Reports of plasmid-mediated AmpC in P. mirabilis are rare (6, 42), while the first isolation of a chromosomally encoded AmpC in this species was reported only in 1998 (8). The current NCCLS documents do not indicate the screening and confirmatory tests that should be used for the detection of AmpC beta-lactamases in K. pneumoniae and E. coli (24). We used the standard disk diffusion breakpoint for cefoxitin (zone diameter, 18 mm) to screen isolates and the threedimensional extract test as a confirmatory test. Our results indicate that the disk diffusion test has poor specificity, especially with K. pneumoniae isolates. Of the 45 isolates with decreased cefoxitin susceptibility, 29 (64%) were non-ampc producers, and 24 (83%) of these were K. pneumoniae. Had we used a cefoxitin zone diameter of 14 mm as the criterion for the screening of isolates (11), the number of non-ampc producers would have decreased from 29 to 10 (all K. pneumoniae), but we also would have failed to detect 2 (E. coli) of the 16 (13%) AmpC producers. Cefoxitin resistance in non- AmpC producers may be due to a lack of permeation of porin (28) (see below). The results of this study underscore the need for reliable laboratory tests that confirm the presence of AmpC beta-lactamases in clinical isolates. All 16 of the AmpC-producing and 1 of the 29 non-ampcproducing isolates were positive by the three-dimensional extract test. An extract of one of the AmpC producers inhibited the growth of one surface organism (Fig. 1B). Because this test is a confirmatory test and the additional cost is minimal, the use of two indicator organisms is recommended. The reason for the false-positive result with the non-ampc producer was unclear and is the focus of ongoing studies. A limitation of methods used to detect the AmpC enzyme is that an increasing number of clinical isolates have multiple beta-lactamases, which in turn can make inhibition patterns complex and difficult to interpret (37, 38). The isolate with the discrepant extract test result harbored two SHV-type ESBLs. However, group 2be beta-lactamases usually are not active against cephamycins. Interestingly, two other non-ampc-producing K. pneumoniae isolates also harbored two SHV-type ESBLs each but were negative by the extract test. Several features of the in vitro susceptibility testing results (Table 1) were worthy of note. The results of screening of two AmpC-producing E. coli isolates (M656 and M683, Table 1) by the disk diffusion method were borderline, with initial cefoxitin zone diameter readings of 17 mm and readings of 18 mm on repeat testing (data not shown). By using the current breakpoint of 18 mm (24) as the cutoff criterion in the screening test, these isolates nearly missed detection. These results also suggest that the true frequency of AmpC producers may be somewhat higher than the 1.2% stated above. The cefoxitin MICs for these isolates were within the susceptible range, as were the MICs of ceftriaxone, cefotaxime, ceftazidime, aztreonam, cefepime, and imipenem (Table 1). Interestingly, Bauernfeind et al. (2) recently isolated a clinically significant strain of K. pneumoniae that harbored a novel type of AmpC beta-lactamase and that also demonstrated a low level of activity against cephamycins (cefoxitin MIC, 4 g/ml). These data suggest that although screening methods which use cefoxitin in standardized methods to detect AmpC-harboring isolates are useful, they are not perfect. The MICs of -lactams for the other AmpC-producing isolates tested in this study were variable but were generally lower than those reported elsewhere for K. pneumoniae and E. coli isolates that harbor plasmid-mediated AmpC enzymes (Table 1) (7, 11, 17). These results may be due to the screening method, which was designed to include isolates with borderline susceptibility to cephamycins. As seen in early reports, several AmpC producers were resistant to many expanded-spectrum -lactams including cephamycins but were susceptible to fourth-generation cephalosporins (e.g., cefepime) and carbapenems. Given that AmpC producers are typically resistant to cephamycins and susceptible to fourth-generation cephalosporins and that ESBL producers are frequently susceptible to cephamycins and variably resistant to fourth-generation cephalosporins (17), it is of therapeutic interest for a clinical laboratory to distinguish between these beta-lactamases. These issues become more significant with the ever increasing number of reports of AmpC- or ESBL-producing organisms for which the MICs of expanded-spectrum -lactams are low and which are associated with clinical disease (2, 32). Tzouvelekis et al. (40) reported that Ro , a potent AmpC enzyme inhibitor, at a concentration of 4 g/ml protected ceftriaxone and ceftazidime against organisms that produced group 1 or 2be beta-lactamases. In our study, this inhibitor at the same concentration protected cefoxitin against most

5 VOL. 38, 2000 AmpC BETA-LACTAMASES 1795 AmpC producers. However, up to eight times greater inhibitor concentration was required to ensure protection against five isolates that harbored at least one other beta-lactamase in addition to AmpC (Table 1). Ro inhibits both extended-spectrum and AmpC beta-lactamases, and this may account for the increased inhibitor concentrations needed to ensure protection against these isolates. In our study, 64% of all isolates with decreased susceptibility to cefoxitin failed to harbor an AmpC beta-lactamase. Because most of these isolates (83%) were K. pneumoniae, MICs were determined (Table 2) and were compared to the MICs for AmpC-producing K. pneumoniae. Some overlap in MIC endpoints was seen between isolates that produced AmpC enzymes and isolates that did not produce these enzymes (Table 1), thereby making it difficult to distinguish both groups on the basis of phenotypic results. The MIC 100 data demonstrate that for some non-ampc producers cefoxitin MICs are greater than those for the majority of the AmpC producers. These data corroborate the results of the cefoxitin disk test, which was used to initially screen isolates for AmpC production; this test was nonspecific (see above). Cephamycin resistance in non- AmpC-producing K. pneumoniae strains is often due to porindeficient mutants (1, 28). Hernandez-Alles et al. (12) demonstrated that interruption of a porin gene by insertion sequences is a common type of mutation that causes the loss of porin expression and increased cefoxitin resistance in K. pneumoniae. In our study, large differences ( 3 twofold dilutions) in MICs between cefpodoxime or ceftriaxone with and without clavulanic acid were seen for 7 of the 24 Klebsiella non-ampc producers, and all differences were attributed to the presence of ESBLs (data not shown). In summary, we have demonstrated that at our institution the overall rate of occurrence of relatively high levels of AmpC beta-lactamase production in nonrepeat E. coli, K. pneumoniae, and P. mirabilis isolates was 1.2%. Cefoxitin resistance was transferred for half of the 16 AmpC producers. This is significant in light of recent reports which suggest that these new plasmid-mediated enzymes may create serious therapeutic problems in the future (18, 31). For a relatively large number of cefoxitin-resistant K. pneumoniae isolates (86%), cephamycin resistance was not associated with the AmpC enzyme. The three-dimensional extract test was a reliable method of detection of isolates that harbor the AmpC enzyme. ACKNOWLEDGMENTS We thank Patricia A. Bradford for providing E. coli DH5 (pcll3414), which expressed the ACT-1 -lactamase and which was used as a standard in IEF testing (7). We also thank Michael W. Climo for the testing of isolates by pulsed-field gel electrophoresis. REFERENCES 1. Ardanuy, C., J. Linares, M. A. Dominguez, S. Hernandez-Alles, V. J. Benedi, and L. Martinez-Martinez Outer membrane profiles of clonally related Klebsiella pneumoniae isolates from clinical samples and activities of cephalosporins and carbapenems. Antimicrob. Agents Chemother. 42: Bauernfeind, A., I. Schneider, R. Jungwirth, H. Sahly, and U. Ullmann A novel type of AmpC -lactamase, ACC-1, produced by a Klebsiella pneumoniae strain causing nosocomial pneumonia. Antimicrob. Agents Chemother. 43: Bauernfeind, A., S. Wagner, R. Jungwirth, I. Schneider, and D. Meyer A novel class C -lactamase (FOX-2) in E. coli conferring resistance to cephamycins. Antimicrob. Agents Chemother. 41: Bauernfeind, A., Y. Chong, and K. Lee Plasmid-encoded AmpC -lactamases: how far have we gone 10 years after their discovery? Yonsei Med. J. 39: Bauernfeind, A., Y. Chong, and S. Schweighart Extended broad spectrum -lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17: Bobrowski, M. M., M. Mathew, P. T. Barth, N. Datta, N. J. Grinter, A. E. Jacob, P. Kontomichalou, J. W. Dale, and J. T. Smith Plasmiddetermined -lactamase indistinguishable from the chromosomal -lactamase of Escherichia coli. J. Bacteriol. 123: Bradford, P. A., C. Urban, N. Mariano, S. J. Projan, J. J. Rahal, and K. Bush Imipenem resistance in Klebsiella pneumoniae is associated with the combinations of ACT-1, a plasmid-mediated AmpC -lactamase, and the loss of an outer membrane protein. Antimicrob. Agents Chemother. 41: Bret, L., C. Chanal-Claris, D. Sirot, E. B. Chaibi, R. Labia, and J. Sirot Chromosomally encoded AmpC-type -lactamase in a clinical isolate of Proteus mirabilis. Antimicrob. Agents Chemother. 42: Bush, K., G. A. Jacoby, and A. A. Medeiros A functional classification scheme for -lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39: Coudron, P. E., E. S. Moland, and C. C. Sanders Occurrence and detection of extended-spectrum -lactamases in members of the family Enterobacteriaceae at a veterans medical center: seek and you may find. J. Clin. Microbiol. 35: Gazouli, M., L. S. Tzouvelekis, A. C. Vatopoulos, and E. Tzelepi Transferable class C -lactamases in Escherichia coli strains isolated in Greek hospitals and characterization of two enzyme variants (LAT-3 and LAT-4) closely related to Citrobacter freundii AmpC -lactamase. J. Antimicrob. Chemother. 42: Hernandex-Alles, S., V. J. Benedi, L. Martinez-Martinez, A. Pascual, A. Aguilar, J. M. Tomas, and S. Alberti Development of resistance during antimicrobial therapy caused by insertion sequence interruption of porin genes. Antimicrob. Agents Chemother. 43: Horii, T., Y. Arakawa, M. Ohta, L. Ichiyama, R. Wacharotayankun, and N. Kato Plasmid-mediated AmpC-type -lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum -lactams, including moxalactam. Antimicrob. Agents Chemother. 37: Jenks, P. J., Y. M. Hu, F. Danel, S. Mehtar, and D. M. Livermore Plasmid-mediated production of class 1 (AmpC) -lactamase by two Klebsiella pneumoniae isolates in the UK. J. Antimicrob. Chemother. 35: Leiza, M. G., J. C. Perez-Diaz, J. Ayala, J. M. Casellas, J. Martinez-Beltran, K. Bush, and F. Baquero Gene sequences and biochemical characterization of FOX-1 from Klebsiella pneumoniae, a new AmpC-type plasmidmediated -lactamase with two molecular variants. Antimicrob. Agents Chemother. 38: Liu, P. Y. F., D. Gur, L. M. C. Hall, and D. M. Livermore Survey of the prevalence of -lactamases amongst 1000 gram-negative bacilli isolated consecutively at the Royal London Hospital. J. Antimicrob. Chemother. 30: Livermore, D. M. -Lactamases in laboratory and clinical resistance Clin. Microbiol. Rev. 8: Martinez-Martinez, L., A. Pascual, S. Hernandez-Alles, D. Alvarez-Diaz, A. I. Suarez, J. Tran, V. J. Benedi, and G. A. Jacoby Roles of -lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob. Agents Chemother. 43: Matsumoto, Y., F. Ikeda, T. Kamimura, Y. Yokota, and Y. Mine Novel plasmid-mediated -lactamase from Escherichia coli that inactivated oxyiminocephalosporins. Antimicrob. Agents Chemother. 32: Morosini, M., M. Negri, B. Shoichet, M. Baquero, F. Baquero, and J. Blazquez An extended-spectrum AmpC-type -lactamase obtained by in vitro antibiotic selection. FEMS Microbiol. Lett. 165: M Zali, F. H., J. Heritage, D. M. Gascoyne-Binzi, M. Denton, N. J. Todd, and P. M. Hawkey Transcontinental importation into the UK of Escherichia coli expressing a plasmid-mediated AmpC-type beta-lactamase exposed during an outbreak of SHV-5 extended-spectrum beta-lactamase in a Leeds hospital. J. Antimicrob. Chemother. 40: National Committee for Clinical Laboratory Standards Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 4th ed. Approved standard M7-A4 (M100-S7). National Committee for Clinical Laboratory Standards, Wayne, Pa. 23. National Committee for Clinical Laboratory Standards Performance standards for antimicrobial disk susceptibility tests, 6th ed. Approved standard M2-A6 (M100-S7). National Committee for Clinical Laboratory Standards, Wayne, Pa. 24. National Committee for Clinical Laboratory Standards Performance standards for antimicrobial susceptibility testing; ninth informational supplement (M100-S9). National Committee for Clinical Laboratory Standards, Wayne, Pa. 25. Nelson, E. C., and B. G. Elisha Molecular basis of AmpC hyperproduction in clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 43: Nicolas-Chanoine, M. H., H. Chardon, J. L. Avril, Y. Cattoen, J. C. Croix, H. Dabernat, J. Etienne, T. Fosse, J. C. Ghnassia, E. Lecaillon, A. Marmonier, M. Roussel-Delvallez, J. C. Soussy, A. Trevoux, and J. Sirot Susceptibility of Enterobacteriaceae to beta-lactams and fluoroquinolones: a French multicentre study. Clin. Microbiol. Infect. 3(Suppl. 2): Normark, S., T. Grunstrom, and S. Bergstrom Susceptibility to pen-

6 1796 COUDRON ET AL. J. CLIN. MICROBIOL. icillins and cephalosporins in -lactamase producing strains of E. coli and relative amount of -lactamase produced from these strains. Scand. J. Infect. Dis. 25: Pangon, B., C. Bizet, A. Bure, F. Pichon, A. Philippon, B. Regnier, and L. Gutmann In vivo selection of a cephamycin-resistant, porin-deficient mutant of Klebsiella pneumoniae producing a TEM-3 -lactamase. J. Infect. Dis. 159: Papanicolaou, G. A., A. A. Medeiros, and G. A. Jacoby Novel plasmidmediated -lactamase (MIR-1) conferring resistance to oxyimino- and alpha-methoxy -lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 34: Payne, D. J., N. Woodford, and S. G. B. Amyes Characterization of the plasmid-mediated -lactamase BIL-1. J. Antimicrob. Chemother. 30: Pornull, K. J., G. Rodrigo, and K. Dornbusch Production of a plasmid-mediated AmpC-like -lactamase by a Klebsiella pneumoniae septicemia isolate. J. Antimicrob. Chemother. 34: Rasheed, J. K., C. Jay, B. Metchock, F. Berkowitz, L. Weigel, J. Crellin, C. Steward, B. Hill, A. A. Medeiros, and F. C. Tenover Evolution of extended-spectrum -lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrob. Agents Chemother. 41: Sanders, C. C., W. E. Sanders, Jr., and E. S. Moland Characterization of -lactamases in situ on polyacrylamide gels. Antimicrob. Agents Chemother. 30: Tenover, F. C., M. J. Mohammed, T. S. Gorton, and Z. F. Dembek Detection and reporting of organisms producing extended-spectrum -lactamases: survey of laboratories in Connecticut. J. Clin. Microbiol. 37: Thomson, K. S., A. M. Prevan, and C. C. Sanders Novel plasmidmediated -lactamases in Enterobacteriaceae: emerging problems for new B-lactam antibiotics, p In J. S. Remington and M. N. Swartz (ed.), Current clinical topics in infectious diseases, vol. 16. Blackwell Science, Inc., Cambridge, Mass. 36. Thomson, K. S., and C. C. Sanders Detection of extended-spectrum -lactamases in members of the family Enterobacteriaceae: comparison of the double-disk and three-dimensional tests. Antimicrob. Agents Chemother. 36: Thomson, K. S., C. C. Sanders, and E. S. Moland Use of microdilution panels with and without -lactamase inhibitors as a phenotypic test for -lactamase production among Escherichia coli, Klebsiella spp., Enterobacter spp., Citrobacter freundii, and Serratia marcescens. Antimicrob. Agents Chemother. 43: Tzouvelekis, L. S., A. C. Vatopoulos, G. Katsanis, and E. Tzelepi Rare case of failure by an automated system to detect extended-spectrum -lactamase in a cephalosporin-resistant Klebsiella pneumoniae isolate. J. Clin. Microbiol. 37: Tzouvelekis, L. S., E. Tzelepi, A. F. Mentis, and A. Tsakris Identification of novel plasmid-mediated -lactamase with chromosomal cephalosporinase characteristics from Klebsiella pneumoniae. J. Antimicrob. Chemother. 31: Tzouvelekis, L. S., M. Gazouli, E. E. Prinarakis, E. Tzelepi, and N. J. Legakis Comparative evaluation of the inhibitory activities of the novel penicillanic acid sulfone Ro against -lactamases that belong to groups 1, 2b, and 2be. Antimicrob. Agents Chemother. 41: Vercauteren, E., P. Descheemaeker, M. Ieven, C. C. Sanders, and H. Goossens Comparison of screening methods for detection of extendedspectrum -lactamases and their prevalence among blood isolates of Escherichia coli and Klebsiella spp. in a Belgian teaching hospital. J. Clin. Microbiol. 35: Verdet, C., G. Arlet, S. Ben Redjeb, A. Ben Hassen, P. H. Lagrange, and A. Philippon Characterisation of CMY-4, an AmpC-type plasmid-mediated beta-lactamase, in a Tunisian clinical isolate of Proteus mirabilis. FEMS Microbiol. Lett. 169: Downloaded from on June 30, 2018 by guest

JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1998, p Vol. 36, No. 9. Copyright 1998, American Society for Microbiology. All Rights Reserved.

JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1998, p Vol. 36, No. 9. Copyright 1998, American Society for Microbiology. All Rights Reserved. JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1998, p. 2575 2579 Vol. 36, No. 9 0095-1137/98/$04.00 0 Copyright 1998, American Society for Microbiology. All Rights Reserved. Can Results Obtained with Commercially

More information

EVALUATION OF METHODS FOR AMPC β-lactamase IN GRAM NEGATIVE CLINICAL ISOLATES FROM TERTIARY CARE HOSPITALS

EVALUATION OF METHODS FOR AMPC β-lactamase IN GRAM NEGATIVE CLINICAL ISOLATES FROM TERTIARY CARE HOSPITALS Indian Journal of Medical Microbiology, (2005) 23 (2):120-124 Brief Communication EVALUATION OF METHODS FOR AMPC β-lactamase IN GRAM NEGATIVE CLINICAL ISOLATES FROM TERTIARY CARE HOSPITALS S Singhal, T

More information

Prevalence of Extended Spectrum -Lactamases In E.coli and Klebsiella spp. in a Tertiary Care Hospital

Prevalence of Extended Spectrum -Lactamases In E.coli and Klebsiella spp. in a Tertiary Care Hospital ISSN: 2319-7706 Volume 3 Number 10 (2014) pp. 474-478 http://www.ijcmas.com Original Research Article Prevalence of Extended Spectrum -Lactamases In E.coli and Klebsiella spp. in a Tertiary Care Hospital

More information

AMPC BETA LACTAMASES AMONG GRAM NEGATIVE CLINICAL ISOLATES FROM A TERTIARY HOSPITAL, SOUTH INDIA. Mohamudha Parveen R., Harish B.N., Parija S.C.

AMPC BETA LACTAMASES AMONG GRAM NEGATIVE CLINICAL ISOLATES FROM A TERTIARY HOSPITAL, SOUTH INDIA. Mohamudha Parveen R., Harish B.N., Parija S.C. Brazilian Journal of Microbiology (2010) 41: 596-602 ISSN 1517-8382 AMPC BETA LACTAMASES AMONG GRAM NEGATIVE CLINICAL ISOLATES FROM A TERTIARY HOSPITAL, SOUTH INDIA Mohamudha Parveen R., Harish B.N., Parija

More information

Discussion points CLSI M100 S19 Update. #1 format of tables has changed. #2 non susceptible category

Discussion points CLSI M100 S19 Update. #1 format of tables has changed. #2 non susceptible category Discussion points 2009 CLSI M100 S19 Update Nebraska Public Health Laboratory Changes most important to routine antimicrobial susceptibility testing. Documents available Janet Hindler discussion slide

More information

Clinical Microbiology Newsletter

Clinical Microbiology Newsletter Clinical Microbiology Newsletter $88 Vol. 30, No. 10 www.cmnewsletter.com May 15, 2008 Newer β-lactamases: Clinical and Laboratory Implications, Part I * Ellen Smith Moland, B.S.M.T., Soo-Young Kim, M.D.,

More information

Received 31 January 2011/Returned for modification 2 March 2011/Accepted 15 March 2011

Received 31 January 2011/Returned for modification 2 March 2011/Accepted 15 March 2011 JOURNAL OF CLINICAL MICROBIOLOGY, May 2011, p. 1965 1969 Vol. 49, No. 5 0095-1137/11/$12.00 doi:10.1128/jcm.00203-11 Copyright 2011, American Society for Microbiology. All Rights Reserved. Comparative

More information

Carbapenem Disks on MacConkey agar as screening methods for the detection of. Carbapenem-Resistant Gram negative rods in stools.

Carbapenem Disks on MacConkey agar as screening methods for the detection of. Carbapenem-Resistant Gram negative rods in stools. JCM Accepts, published online ahead of print on 7 November 2012 J. Clin. Microbiol. doi:10.1128/jcm.02878-12 Copyright 2012, American Society for Microbiology. All Rights Reserved. 1 2 Carbapenem Disks

More information

Surveillance of antimicrobial susceptibility of Enterobacteriaceae pathogens isolated from intensive care units and surgical units in Russia

Surveillance of antimicrobial susceptibility of Enterobacteriaceae pathogens isolated from intensive care units and surgical units in Russia Feb. 2016 THE JAPANESE JOURNAL OF ANTIBIOTICS 69 1 41 41 Surveillance of antimicrobial susceptibility of Enterobacteriaceae pathogens isolated from intensive care units and surgical units in Russia IRINA

More information

Cephalosporin MIC Distribution of Extended-Spectrum- -Lactamaseand pampc-producing Escherichia coli and Klebsiella Species

Cephalosporin MIC Distribution of Extended-Spectrum- -Lactamaseand pampc-producing Escherichia coli and Klebsiella Species JOURNAL OF CLINICAL MICROBIOLOGY, Aug. 2009, p. 2419 2425 Vol. 47, No. 8 0095-1137/09/$08.00 0 doi:10.1128/jcm.00508-09 Copyright 2009, American Society for Microbiology. All Rights Reserved. Cephalosporin

More information

Klebsiella pneumoniae 21 PCR

Klebsiella pneumoniae 21 PCR 2011 11 TEM-132 ESBL Klebsiella pneumoniae 1) 2) 1) 1) 3) 2) 1) 2) 3) 19 6 27 22 10 20 2003 4 2004 11 95 ceftazidime (CAZ) Klebsiella pneumoniae 21 PCR b- (ESBL) PCR (PFGE) PCR bla TEM-132 PFGE 19 TEM-132

More information

Affinity of Doripenem and Comparators to Penicillin-Binding Proteins in Escherichia coli and ACCEPTED

Affinity of Doripenem and Comparators to Penicillin-Binding Proteins in Escherichia coli and ACCEPTED AAC Accepts, published online ahead of print on February 00 Antimicrob. Agents Chemother. doi:./aac.01-0 Copyright 00, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights

More information

Journal of Infectious Diseases and

Journal of Infectious Diseases and Journal of Infectious Diseases & Therapy ISSN: 2332-0877 Journal of Infectious Diseases and Therapy Santanirand et al., J Infect Dis Ther 2018, 6:5 DOI: 10.4172/2332-0877.1000378 Research Article Open

More information

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory, Institute of Environmental Science and Research Limited (ESR); July 2014.

Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory, Institute of Environmental Science and Research Limited (ESR); July 2014. Annual survey of extended-spectrum -lactamase (ESBL)-producing Enterobacteriaceae, 2013 Helen Heffernan and Rosemary Woodhouse Antibiotic Reference Laboratory, Institute of Environmental Science and Research

More information

Screening and detection of carbapenemases

Screening and detection of carbapenemases Screening and detection of carbapenemases For many isolates with carbapenemases the MICs of carbapenems are around the susceptible breakpoint making resistance difficult to detect - particularly with automated

More information

Cephalosporin, Against Cephalosporin-Resistant Bacteria, and

Cephalosporin, Against Cephalosporin-Resistant Bacteria, and ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Nov. 1979, P. 59-553 Vol. 16, No. 5 66-/79/11-59/$2./ Antibacterial Activity of Ceftizoxime (FK 79), a New Cephalosporin, Against Cephalosporin-Resistant Bacteria,

More information

Expert rules in antimicrobial susceptibility testing: State of the art

Expert rules in antimicrobial susceptibility testing: State of the art Expert rules in antimicrobial susceptibility testing: State of the art ESCMID Postgraduate Education Course Antimicrobial Susceptibility Testing and Surveillance: from Laboratory to Clinic Hospital Universitario

More information

ORIGINAL INVESTIGATION. Rapid Spread of Carbapenem-Resistant Klebsiella pneumoniae in New York City

ORIGINAL INVESTIGATION. Rapid Spread of Carbapenem-Resistant Klebsiella pneumoniae in New York City ORIGINAL INVESTIGATION Rapid Spread of Carbapenem-Resistant Klebsiella pneumoniae in New York City A New Threat to Our Antibiotic Armamentarium Simona Bratu, MD; David Landman, MD; Robin Haag, RN; Rose

More information

Determining the Optimal Carbapenem MIC that Distinguishes Carbapenemase-Producing

Determining the Optimal Carbapenem MIC that Distinguishes Carbapenemase-Producing AAC Accepted Manuscript Posted Online 8 August 2016 Antimicrob. Agents Chemother. doi:10.1128/aac.00838-16 Copyright 2016, American Society for Microbiology. All Rights Reserved. 1 1 2 Determining the

More information

In Vitro Activity of Ceftazidime-Avibactam Against Isolates. in a Phase 3 Open-label Clinical Trial for Complicated

In Vitro Activity of Ceftazidime-Avibactam Against Isolates. in a Phase 3 Open-label Clinical Trial for Complicated AAC Accepted Manuscript Posted Online 21 November 2016 Antimicrob. Agents Chemother. doi:10.1128/aac.01820-16 Copyright 2016, American Society for Microbiology. All Rights Reserved. 1 2 3 4 5 6 7 8 9 10

More information

breakpoints, cephalosporins, CLSI, Enterobacteriacae, EUCAST, review Clin Microbiol Infect 2008; 14 (Suppl. 1):

breakpoints, cephalosporins, CLSI, Enterobacteriacae, EUCAST, review Clin Microbiol Infect 2008; 14 (Suppl. 1): REVIEW Breakpoints for intravenously used cephalosporins in Enterobacteriaceae EUCAST and CLSI breakpoints G. Kahlmeter Department of Clinical Microbiology, Central Hospital, Växjö, Sweden ABSTRACT It

More information

ST11 KPC-2 Klebsiella pneumoniae detected in Taiwan

ST11 KPC-2 Klebsiella pneumoniae detected in Taiwan AAC Accepts, published online ahead of print on 30 January 2012 Antimicrob. Agents Chemother. doi:10.1128/aac.05576-11 Copyright 2012, American Society for Microbiology. All Rights Reserved. 1 2 3 4 5

More information

/01/$ DOI: /JCM Copyright 2001, American Society for Microbiology. All Rights Reserved.

/01/$ DOI: /JCM Copyright 2001, American Society for Microbiology. All Rights Reserved. JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 2001, p. 183 190 Vol. 39, No. 1 0095-1137/01/$04.00 0 DOI: 10.1128/JCM.39.1.183 190.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved. Contemporary

More information

K. Lee, Y. S. Lim, D. Yong, J. H. Yum, and Y. Chong*

K. Lee, Y. S. Lim, D. Yong, J. H. Yum, and Y. Chong* JOURNAL OF CLINICAL MICROBIOLOGY, Oct. 2003, p. 4623 4629 Vol. 41, No. 10 0095-1137/03/$08.00 0 DOI: 10.1128/JCM.41.10.4623 4629.2003 Copyright 2003, American Society for Microbiology. All Rights Reserved.

More information

Molecular characterisation of CTX-M-type extendedspectrum β-lactamases of Escherichia coli isolated from a Portuguese University Hospital

Molecular characterisation of CTX-M-type extendedspectrum β-lactamases of Escherichia coli isolated from a Portuguese University Hospital EJHP Science Volume 17 2011 Issue 3 P. 1-5 2011 Pharma Publishing and Media Europe. All rights reserved 1781-7595 25 www.ejhp.eu Molecular characterisation of CTX-M-type extendedspectrum β-lactamases of

More information

Against Aerobic Gram-Negative Bacilli

Against Aerobic Gram-Negative Bacilli ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Dec. 1979, p. 6-6 0066-0/79/1-06/05$0.00/0 Vol., No. 6 In Vitro Activity of LY17935, a New 1-Oxa Cephalosporin, Against Aerobic Gram-Negative Bacilli DENNIS G. DELGADO,

More information

EXTENDED-SPECTRUM BETA-LACTAMASE PRODUCTION AMONG AMPICILLIN-RESISTANT ESCHERICHIA COLI STRAINS FROM CHICKEN IN ENUGU STATE, NIGERIA

EXTENDED-SPECTRUM BETA-LACTAMASE PRODUCTION AMONG AMPICILLIN-RESISTANT ESCHERICHIA COLI STRAINS FROM CHICKEN IN ENUGU STATE, NIGERIA Brazilian Journal of Microbiology (2007) 38:681-686 ISSN 1517-8382 EXTENDED-SPECTRUM BETA-LACTAMASE PRODUCTION AMONG AMPICILLIN-RESISTANT ESCHERICHIA COLI STRAINS FROM CHICKEN IN ENUGU STATE, NIGERIA Chah,

More information

Clinical Management of Infections Caused by Enterobacteriaceae that Express Extended- Spectrum β-lactamase and AmpC Enzymes

Clinical Management of Infections Caused by Enterobacteriaceae that Express Extended- Spectrum β-lactamase and AmpC Enzymes 56 Clinical Management of Infections Caused by Enterobacteriaceae that Express Extended- Spectrum β-lactamase and AmpC Enzymes Patrick N. A. Harris, BSc, MBBS, MRCP, DTM&H, FRACP, FRCPA 1 1 Infection and

More information

In-House Standardization of Carba NP Test for Carbapenemase Detection in Gram Negative Bacteria

In-House Standardization of Carba NP Test for Carbapenemase Detection in Gram Negative Bacteria International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 01 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.701.342

More information

Phenotypic detection of ESBLs and carbapenemases

Phenotypic detection of ESBLs and carbapenemases Phenotypic detection of ESBLs and carbapenemases Standardized susceptibility testing residential workshop 2016 Katie Hopkins PhD Clinical Scientist Antimicrobial Resistance and Healthcare Associated Infections

More information

Sensitive and specific Modified Hodge Test for KPC and metallo-beta-lactamase

Sensitive and specific Modified Hodge Test for KPC and metallo-beta-lactamase JCM Accepts, published online ahead of print on 19 October 2011 J. Clin. Microbiol. doi:10.1128/jcm.05602-11 Copyright 2011, American Society for Microbiology and/or the Listed Authors/Institutions. All

More information

Extended-Spectrum -Lactamases: a Clinical Update

Extended-Spectrum -Lactamases: a Clinical Update CLINICAL MICROBIOLOGY REVIEWS, Oct. 2005, p. 657 686 Vol. 18, No. 4 0893-8512/05/$08.00 0 doi:10.1128/cmr.18.4.657 686.2005 Copyright 2005, American Society for Microbiology. All Rights Reserved. Extended-Spectrum

More information

(DHA-1): Microbiologic and Clinical Implications

(DHA-1): Microbiologic and Clinical Implications AAC Accepts, published online ahead of print on 20 September 2010 Antimicrob. Agents Chemother. doi:10.1128/aac.00083-10 Copyright 2010, American Society for Microbiology and/or the Listed Authors/Institutions.

More information

jmb Research Article Review Semi Kim 1, Ji Youn Sung 2, Hye Hyun Cho 3, Kye Chul Kwon 1, and Sun Hoe Koo 1 *

jmb Research Article Review Semi Kim 1, Ji Youn Sung 2, Hye Hyun Cho 3, Kye Chul Kwon 1, and Sun Hoe Koo 1 * J. Microbiol. Biotechnol. (2014), 24(6), 765 770 http://dx.doi.org/10.4014/jmb.1306.06036 Review Research Article jmb Characterization of CTX-M-14- and CTX-M-15-Producing Escherichia coli and Klebsiella

More information

EUCAST Frequently Asked Questions. by author. Rafael Cantón Hospital Universitario Ramón y Cajal, Madrid, Spain EUCAST Clinical Data Coordinator

EUCAST Frequently Asked Questions. by author. Rafael Cantón Hospital Universitario Ramón y Cajal, Madrid, Spain EUCAST Clinical Data Coordinator EUCAST Frequently Asked Questions Rafael Cantón Hospital Universitario Ramón y Cajal, Madrid, Spain EUCAST Clinical Data Coordinator Erika Matuschek EUCAST Development Laboratory, Växjö Sweden Monday 24

More information

AAC Accepts, published online ahead of print on 13 October 2008 Antimicrob. Agents Chemother. doi: /aac

AAC Accepts, published online ahead of print on 13 October 2008 Antimicrob. Agents Chemother. doi: /aac AAC Accepts, published online ahead of print on 13 October 2008 Antimicrob. Agents Chemother. doi:10.1128/aac.00931-08 Copyright 2008, American Society for Microbiology and/or the Listed Authors/Institutions.

More information

New Mechanisms of Antimicrobial Resistance and Methods for Carbapenemase Detection

New Mechanisms of Antimicrobial Resistance and Methods for Carbapenemase Detection New Mechanisms of Antimicrobial Resistance and Methods for Carbapenemase Detection Stephen G. Jenkins, PhD, F(AAM), D(ABMM) Professor of Pathology and Laboratory Medicine Professor of Pathology in Medicine

More information

Detecting CRE. what does one need to do?

Detecting CRE. what does one need to do? 5 th ICAN Conference, Harare 4 th November 2014 Room 2: 10:30-12:00 Detecting CRE (Carbapenem-resistant Enterobacteriaceae) what does one need to do? Dr Nizam Damani Associate Medical Director Infection

More information

Insert for Kit 98006/98010/ KPC/Metallo-B-Lactamase Confirm Kit KPC+MBL detection Kit KPC/MBL and OXA-48 Confirm Kit REVISION: DBV0034J

Insert for Kit 98006/98010/ KPC/Metallo-B-Lactamase Confirm Kit KPC+MBL detection Kit KPC/MBL and OXA-48 Confirm Kit REVISION: DBV0034J Insert for Kit 98006/98010/98015 KPC/Metallo-B-Lactamase Confirm Kit KPC+MBL detection Kit KPC/MBL and OXA-48 Confirm Kit REVISION: DBV0034J DATE OF ISSUE: 09.02.2017 LANGUAGE: English FOR IN VITRO DIAGNOSTIC

More information

NONFERMENTING GRAM NEGATIVE RODS. April Abbott Deaconess Health System Evansville, IN

NONFERMENTING GRAM NEGATIVE RODS. April Abbott Deaconess Health System Evansville, IN NONFERMENTING GRAM NEGATIVE RODS April Abbott Deaconess Health System Evansville, IN OBJECTIVES Discuss basic limitations to assessing carbapenem resistance in nonfermenting GNRs Discuss antimicrobial

More information

Detection of Carbapenem Resistant Enterobacteriacae from Clinical Isolates

Detection of Carbapenem Resistant Enterobacteriacae from Clinical Isolates International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 5 Number 5 (2016) pp. 864-869 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.505.089

More information

Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by MALDI- TOF mass spectrometry

Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by MALDI- TOF mass spectrometry JCM Accepts, published online ahead of print on 2 May 2012 J. Clin. Microbiol. doi:10.1128/jcm.01002-12 Copyright 2012, American Society for Microbiology. All Rights Reserved. 1 2 3 4 5 6 7 8 9 10 11 12

More information

Phenotypic Detection Methods of Carbapenemase Production in Enterobacteriaceae

Phenotypic Detection Methods of Carbapenemase Production in Enterobacteriaceae ISSN: 2319-7706 Volume 4 Number 6 (2015) pp. 547-552 http://www.ijcmas.com Original Research Article Phenotypic Detection Methods of Carbapenemase Production in Enterobacteriaceae Sathya Pandurangan 1,

More information

Rapid identification of emerging resistance in Gram negatives. Prof. Patrice Nordmann

Rapid identification of emerging resistance in Gram negatives. Prof. Patrice Nordmann Rapid identification of emerging resistance in Gram negatives Prof. Patrice Nordmann Emerging Resistance threats, CDC USA-2013 Enterobacteriaceae producing extendedspectrum β-lactamases (ESBL) Multi-resistant

More information

Received 21 April 1997/Returned for modification 30 June 1997/Accepted 28 August 1997

Received 21 April 1997/Returned for modification 30 June 1997/Accepted 28 August 1997 JOURNAL OF CLINICAL MICROBIOLOGY, Dec. 1997, p. 3258 3263 Vol. 35, No. 12 0095-1137/97/$04.00 0 Copyright 1997, American Society for Microbiology Comparison of Agar Dilution, Broth Microdilution, E-Test,

More information

CAT Critically Appraised Topic

CAT Critically Appraised Topic CAT Critically Appraised Topic Part I: Evaluation of Three Different Agar Media for Rapid Detection of Extended- Spectrum β-lactamase Producing Enterobacteriaceae from Clinical Screening Samples. Part

More information

Overcoming the PosESBLities of Enterobacteriaceae Resistance

Overcoming the PosESBLities of Enterobacteriaceae Resistance Overcoming the PosESBLities of Enterobacteriaceae Resistance Review of current treatment options Jamie Reed, PharmD Pharmacy Grand Rounds August 28, 2018 Rochester, MN 2018 MFMER slide-1 Disclosure No

More information

Comparative Activity of Cefotaxime and Selected f3-lactam Antibiotics Against Haemophilus Influenzae and Aerobic Gram-Negative Bacilli

Comparative Activity of Cefotaxime and Selected f3-lactam Antibiotics Against Haemophilus Influenzae and Aerobic Gram-Negative Bacilli REVIEWS OF INFECTIOUS DISEASES VOL. 4, SUPPLEMENT SEPTEMBER-OCTOBER 1982 1982 by The University of Chicago. All rights reserved. 0162-0886/82/0405-0015$02.00 Comparative Activity of Cefotaxime and Selected

More information

Chapter 2. Detection of ESBL producing Enterobacteriaceae

Chapter 2. Detection of ESBL producing Enterobacteriaceae Chapter 2 Detection of ESBL producing Enterobacteriaceae Chapter 1 22 Chapter 2.1 Laboratory detection of extended-spectrum β-lactamase-producing Enterobacteriaceae: evaluation of two screening agar plates

More information

Differentiation of Carbapenemase producing Enterobacteriaceae by Triple disc Test

Differentiation of Carbapenemase producing Enterobacteriaceae by Triple disc Test Original article: Differentiation of Carbapenemase producing Enterobacteriaceae by Triple disc Test Manish Bansal 1, Nitya Vyas 2, Babita Sharma 3, R.K.Maheshwari 4 1PG Resident, 2 Professor, 3 Assistant

More information

ORIGINAL ARTICLE. Julie Creighton and Clare Tibbs. Canterbury Health Laboratories, Christchurch

ORIGINAL ARTICLE. Julie Creighton and Clare Tibbs. Canterbury Health Laboratories, Christchurch ORIGINAL ARTICLE Evaluation of the MAST indirect carbapenemase test and comparison with a modified carbapenem inactivation method for the detection of carbapenemase enzymes in Gram-negative bacteria Julie

More information

COMMENTARY. Extended-Spectrum- -Lactamase, AmpC, and Carbapenemase Issues. Kenneth S. Thomson*

COMMENTARY. Extended-Spectrum- -Lactamase, AmpC, and Carbapenemase Issues. Kenneth S. Thomson* JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 2010, p. 1019 1025 Vol. 48, No. 4 0095-1137/10/$12.00 doi:10.1128/jcm.00219-10 Copyright 2010, American Society for Microbiology. All Rights Reserved. COMMENTARY

More information

Revised AAC Version 2» New-Data Letter to the Editor ACCEPTED. Plasmid-Mediated Carbapenem-Hydrolyzing β-lactamase KPC-2 in

Revised AAC Version 2» New-Data Letter to the Editor ACCEPTED. Plasmid-Mediated Carbapenem-Hydrolyzing β-lactamase KPC-2 in AAC Accepts, published online ahead of print on 3 December 2007 Antimicrob. Agents Chemother. doi:10.1128/aac.01180-07 Copyright 2007, American Society for Microbiology and/or the Listed Authors/Institutions.

More information

Cefotaxime Rationale for the EUCAST clinical breakpoints, version th September 2010

Cefotaxime Rationale for the EUCAST clinical breakpoints, version th September 2010 Cefotaxime Rationale for the EUCAST clinical breakpoints, version 1.0 26 th September 2010 Foreword EUCAST The European Committee on Antimicrobial Susceptibility Testing (EUCAST) is organised by the European

More information

A new diagnostic microarray (Check-KPC ESBL) for detection and. identification of extended-spectrum beta-lactamases in highly resistant

A new diagnostic microarray (Check-KPC ESBL) for detection and. identification of extended-spectrum beta-lactamases in highly resistant JCM Accepts, published online ahead of print on 8 June 2011 J. Clin. Microbiol. doi:10.1128/jcm.02087-10 Copyright 2011, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights

More information

ALERT. Clinical microbiology considerations related to the emergence of. New Delhi metallo beta lactamases (NDM 1) and Klebsiella

ALERT. Clinical microbiology considerations related to the emergence of. New Delhi metallo beta lactamases (NDM 1) and Klebsiella ALERT Clinical microbiology considerations related to the emergence of New Delhi metallo beta lactamases (NDM 1) and Klebsiella pneumoniae carbapenemases (KPC) amongst hospitalized patients in South Africa

More information

Expert rules. for Gram-negatives

Expert rules. for Gram-negatives Academic Perspective in Expert rules Emerging Issues of Resistance in Gram-ve Bacteria for Gram-negatives Trevor Winstanley Sheffield Teaching Hospitals Presented on behalf of David Livermore University

More information

Report on susceptibility of Salmonella serotypes in Belgium Vicky Jasson

Report on susceptibility of Salmonella serotypes in Belgium Vicky Jasson CODA-CERVA Report on susceptibility of Salmonella serotypes in Belgium 2014. Vicky Jasson Veterinary and Agrochemical Research Centre 1 Introduction Salmonella is one of the most important bacterial zoonotic

More information

Detection of the KPC-2 Carbapenem-Hydrolyzing Enzyme in Clinical Isolates of ACCEPTED

Detection of the KPC-2 Carbapenem-Hydrolyzing Enzyme in Clinical Isolates of ACCEPTED JCM Accepts, published online ahead of print on April 00 J. Clin. Microbiol. doi:./jcm.00-0 Copyright 00, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights Reserved.

More information

Characterization of ceftriaxone-resistant Enterobacteriaceae: a molticentre study in 26 French hospitals

Characterization of ceftriaxone-resistant Enterobacteriaceae: a molticentre study in 26 French hospitals Journal of Antimicrobial Chemotherapy (99), 9-0 Characterization of ceftriaxone-resistant Enterobacteriaceae: a molticentre study in French hospitals F. W. Goldstein*, Y. Pean*, A. Rosato', J. Gertner*,

More information

Original Article Clinical Microbiology

Original Article Clinical Microbiology Original Article Clinical Microbiology Ann Lab Med 2015;35:212-219 http://dx.doi.org/10.3343/alm.2015.35.2.212 ISSN 2234-3806 eissn 2234-3814 Combined Use of the Modified Hodge Test and Carbapenemase Inhibition

More information

CARBAPENEMASE PRODUCING ENTEROBACTERIACEAE

CARBAPENEMASE PRODUCING ENTEROBACTERIACEAE CARBAPENEMASE PRODUCING ENTEROBACTERIACEAE Veroniek Saegeman Veroniek Saegeman UZLeuven Carbapenemase producing Enterobacteriaceae (CPE) Introduction on antibiotic resistance Classification of ß-lactamases

More information

Predictors of Mortality in Patients with Bloodstream Infection Due to Ceftazidime-Resistant Klebsiella pneumoniae

Predictors of Mortality in Patients with Bloodstream Infection Due to Ceftazidime-Resistant Klebsiella pneumoniae ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, May 2006, p. 1715 1720 Vol. 50, No. 5 0066-4804/06/$08.00 0 doi:10.1128/aac.50.5.1715 1720.2006 Copyright 2006, American Society for Microbiology. All Rights Reserved.

More information

The b-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter

The b-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter Review TRENDS in Microbiology Vol.14 No.9 The b-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter David M. Livermore and Neil Woodford Antibiotic Resistance Monitoring and Reference

More information

#Corresponding author: Pathology Department, Singapore General Hospital, 20 College. Road, Academia, Level 7, Diagnostics Tower, , Singapore

#Corresponding author: Pathology Department, Singapore General Hospital, 20 College. Road, Academia, Level 7, Diagnostics Tower, , Singapore AAC Accepts, published online ahead of print on 21 October 2013 Antimicrob. Agents Chemother. doi:10.1128/aac.01754-13 Copyright 2013, American Society for Microbiology. All Rights Reserved. 1 Title: Escherichia

More information

Sensitivity of Surveillance Testing for Multidrug-Resistant Gram-Negative Bacteria in the

Sensitivity of Surveillance Testing for Multidrug-Resistant Gram-Negative Bacteria in the JCM Accepts, published online ahead of print on 20 August 2014 J. Clin. Microbiol. doi:10.1128/jcm.02369-14 Copyright 2014, American Society for Microbiology. All Rights Reserved. 1 2 Sensitivity of Surveillance

More information

Recommendations for Dilution Susceptibility Testing Concentrations of the Cefoperazone-Sulbactam Combination

Recommendations for Dilution Susceptibility Testing Concentrations of the Cefoperazone-Sulbactam Combination JOURNAL OF CLINICAL MICROBIOLOGY, Sept. 1987. p. 1725-1729 0095-1137/87/091725-05$02.00/O Copyright (O 1987, American Society for Microbiology Vol. 25, No. 9 In Vitro Antimicrobial Spectrum, Occurrence

More information

Distribution of TEM, SHV and CTX-M Genes among ESBL-producing Enterobacteriaceae isolates in Iran

Distribution of TEM, SHV and CTX-M Genes among ESBL-producing Enterobacteriaceae isolates in Iran African Journal of Microbiology Research Vol. 6(26), pp. 5433-5439, 12 July, 2012 Available online at http://www.academicjournals.org/ajmr DOI: 10.5897/AJMR11.017 ISSN 1996-0808 2012 Academic Journals

More information

β-lactamase inhibitors

β-lactamase inhibitors β-lactamase inhibitors Properties, microbiology & enzymology DAVID M LIVERMORE Professor of Medical Microbiology, UEA Lead on Antibiotic Resistance, Public Health England β-lactamase classes A B C D Serine

More information

Update on CLSI and EUCAST

Update on CLSI and EUCAST Update on CLSI and EUCAST 1 Completed work» Cephalosporin breakpoints for Enterobacteriaceae ESBL screens MIC versus resistance mechanism» Carbapenem breakpoints for Enterobacteriaceae Modified Hodge Test»

More information

Received 30 March 2005; returned 16 June 2005; revised 8 September 2005; accepted 12 September 2005

Received 30 March 2005; returned 16 June 2005; revised 8 September 2005; accepted 12 September 2005 Journal of Antimicrobial Chemotherapy (2005) 56, 1047 1052 doi:10.1093/jac/dki362 Advance Access publication 20 October 2005 Evaluation of PPI-0903M (T91825), a novel cephalosporin: bactericidal activity,

More information

Disclosure. Objectives. Evolution of β Lactamases. Extended Spectrum β Lactamases: The New Normal. Prevalence of ESBL Mystic Program

Disclosure. Objectives. Evolution of β Lactamases. Extended Spectrum β Lactamases: The New Normal. Prevalence of ESBL Mystic Program 47 th Annual Meeting August 2-4, 2013 Orlando, FL Extended Spectrum β Lactamases: The New Normal Disclosure I do have a vested interest in or affiliation with the following companies or organizations Triax

More information

Performance of chromid ESBL, a chromogenic medium for detection of Enterobacteriaceae producing extended-spectrum b-lactamases

Performance of chromid ESBL, a chromogenic medium for detection of Enterobacteriaceae producing extended-spectrum b-lactamases Journal of Medical Microbiology (2008), 57, 310 315 DOI 10.1099/jmm.0.47625-0 Performance of chromid ESBL, a chromogenic medium for detection of Enterobacteriaceae producing extended-spectrum b-lactamases

More information

Frequency of Occurrence and Antimicrobial Susceptibility of Bacteria from ICU Patients with Pneumonia

Frequency of Occurrence and Antimicrobial Susceptibility of Bacteria from ICU Patients with Pneumonia Frequency of Occurrence and Antimicrobial Susceptibility of Bacteria from ICU Patients with Pneumonia Helio S. Sader, M.D.* Mariana Castanheira, Ph.D. Rodrigo E. Mendes, Ph.D. Robert K. Flamm, Ph.D. JMI

More information

ESCMID Online Lecture Library. by author

ESCMID Online Lecture Library. by author www.eucast.org EXPERT RULES IN ANTIMICROBIAL SUSCEPTIBILITY TESTING Dr. Rafael Cantón Hospital Universitario Ramón y Cajal SERVICIO DE MICROBIOLOGÍA Y PARASITOLOGÍA Departamento de Microbiología II Universidad

More information

Carbapenems and Enterobacteriaceae

Carbapenems and Enterobacteriaceae Title Carbapenems and Enterobacteriaceae Presenter s details NHLS Dr Khine Swe Swe/Han FC Path ( Micro), SA MMed( micro), SA DTMH(Wits univ),sa PDIC(Stellen univ)sa MB,BS(Yangon),Myanmar Pathologist,Consultant/Lecturer,

More information

Development of a phenotypic method for fecal carriage detection of OXA-48-producing

Development of a phenotypic method for fecal carriage detection of OXA-48-producing JCM Accepts, published online ahead of print on 11 May 2011 J. Clin. Microbiol. doi:10.1128/jcm.00055-11 Copyright 2011, American Society for Microbiology and/or the Listed Authors/Institutions. All Rights

More information

SUPPLEMENTAL TESTING. Tan Thean Yen

SUPPLEMENTAL TESTING. Tan Thean Yen SUPPLEMETAL TESTG Tan Thean Yen To Supplement Definition: add as a supplement to what seems insufficient "supplement your diet" Why supplement? urrent methods don t work well Additional information provided

More information

Emergence of non-kpc carbapenemases: NDM and more

Emergence of non-kpc carbapenemases: NDM and more Emergence of non-kpc carbapenemases: NDM and more --- David Livermore Health Protection Agency, UK The first acquired carbapenemase to be recognised in gram-negative bacteria was IMP-1, a metallo-type,

More information

Use of Faropenem as an Indicator of Carbapenemase Activity

Use of Faropenem as an Indicator of Carbapenemase Activity JCM Accepts, published online ahead of print on 10 April 2013 J. Clin. Microbiol. doi:10.1128/jcm.00720-13 Copyright 2013, American Society for Microbiology. All Rights Reserved. 1 2 Use of Faropenem as

More information

Prevalence of ESBL producing enterobacteriaceae in diabetic foot ulcers

Prevalence of ESBL producing enterobacteriaceae in diabetic foot ulcers Original Research Article Prevalence of ESBL producing enterobacteriaceae in diabetic foot ulcers Anitha S 1*, Natarajan V 2 1 Post Graduate, 2 Professor and HOD Department of Microbiology, Rajah Muthiah

More information

Int.J.Curr.Microbiol.App.Sci (2016) 5(1):

Int.J.Curr.Microbiol.App.Sci (2016) 5(1): ISSN: 2319-7706 Volume 5 Number 1(2016) pp. 200-208 Journal homepage: http://www.ijcmas.com Original Research Article http://dx.doi.org/10.20546/ijcmas.2016.501.018 Incidence of Beta Lactamases Mediated

More information

Ceftazidime-Avibactam and Aztreonam an interesting strategy to Overcome β- Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae

Ceftazidime-Avibactam and Aztreonam an interesting strategy to Overcome β- Lactam Resistance Conferred by Metallo-β-Lactamases in Enterobacteriaceae AAC Accepted Manuscript Posted Online 19 June 2017 Antimicrob. Agents Chemother. doi:10.1128/aac.01008-17 Copyright 2017 American Society for Microbiology. All Rights Reserved. 1 2 3 Ceftazidime-Avibactam

More information

Detection of ESBL and AmpC -lactamases producing in uropathogen Escherichia coli isolates at Benghazi Center of Infectious Diseases and Immunity

Detection of ESBL and AmpC -lactamases producing in uropathogen Escherichia coli isolates at Benghazi Center of Infectious Diseases and Immunity ISSN: 2319-7706 Volume 3 Number 2 (2014) pp. 145-153 http://www.ijcmas.com Original Research Article Detection of ESBL and AmpC -lactamases producing in uropathogen Escherichia coli isolates at Benghazi

More information

Public Health Surveillance for Multi Drug Resistant Organisms in Orange County

Public Health Surveillance for Multi Drug Resistant Organisms in Orange County Public Health Surveillance for Multi Drug Resistant Organisms in Orange County Matt Zahn, MD Medical Director Epidemiology and Assessment Orange County Public Health Antimicrobial Mechanisms of Action

More information

Nature and Science 2017;15(10)

Nature and Science 2017;15(10) Evaluation of Substrate Profile Test for Detection of Metallobetalactamses among Imipenem Resistant Clinical Isolates of Gram Negative Bacteria Tarek El-said El-Banna, Fatma Ibrahim Sonboland Eslam Shaaban

More information

! 1! PDC Reference ND PDC (1) ( 0.25) PAO1ΔdacB Reference 290 PDC (2) 8 1 (0.5) 1 0.

! 1! PDC Reference ND PDC (1) ( 0.25) PAO1ΔdacB Reference 290 PDC (2) 8 1 (0.5) 1 0. ! 1! TABLE S1 Susceptibility of the selected P. aeruginosa strains to therapeutic antipseudomonal ß-lactams. Strains Origin Sample ampc expression a PDC MIC (µg/ml) b TIC TZP ATM CAZ FEP CZ/T IMP MER Strains

More information

Cefazolin and Enterobacteriaceae: Rationale for Revised Susceptibility Testing Breakpoints

Cefazolin and Enterobacteriaceae: Rationale for Revised Susceptibility Testing Breakpoints INVITED ARTICLE MEDICAL MICROBIOLOGY L. Barth Reller and Melvin P. Weinstein, Section Editors Cefazolin and Enterobacteriaceae: Rationale for Revised Susceptibility Testing Breakpoints John D. Turnidge

More information

Z. Daoud 1 and N. Hakime 2

Z. Daoud 1 and N. Hakime 2 Rev Esp Quimioterap, Junio 2003; Vol.16 (Nº 2): 233-238 2003 Prous Science, S.A.- Sociedad Española de Quimioterapia Original Prevalence and susceptibility patterns of extended-spectrum betalactamase-producing

More information

Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Hong Kong. Title. Ho, PL; Tse, CWS; Lai, EL; Lo, WU; Chow, KH

Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Hong Kong. Title. Ho, PL; Tse, CWS; Lai, EL; Lo, WU; Chow, KH Title Emergence of Klebsiella pneumoniae ST258 with KPC-2 in Hong Kong Author(s) Ho, PL; Tse, CWS; Lai, EL; Lo, WU; Chow, KH Citation International Journal Of Antimicrobial Agents, 2011, v. 37 n. 4, p.

More information

Guidance on screening and confirmation of carbapenem resistant Enterobacteriacae (CRE) December 12, 2011

Guidance on screening and confirmation of carbapenem resistant Enterobacteriacae (CRE) December 12, 2011 Guidance on screening and confirmation of carbapenem resistant Enterobacteriacae (CRE) December 12, 2011 Objectives: To discuss the guidelines for detection of CRE in the laboratory setting. To review

More information

Comparision of Antibiotic Susceptibility Testing As Per CLSI and Eucast Guidelines for Gram Negative Bacilli

Comparision of Antibiotic Susceptibility Testing As Per CLSI and Eucast Guidelines for Gram Negative Bacilli IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-issn: 2279-0853, p-issn: 2279-0861.Volume 15, Issue 7 Ver. X (July. 2016), PP 01-05 www.iosrjournals.org Comparision of Antibiotic Susceptibility

More information

In Vitro Susceptibility Pattern of Cephalosporin- Resistant Gram-Negative Bacteria

In Vitro Susceptibility Pattern of Cephalosporin- Resistant Gram-Negative Bacteria In Vitro Susceptibility Pattern of Cephalosporin- Resistant Gram-Negative Bacteria Warunee Punpanich MD*, Worraporn Tantichattanon MD**, Siriporn Wongwatcharapaiboon MD**, Vipa Treeratweeraphong BSc, MSc***

More information

Results and experience of BARN ESBL project. Marina Ivanova and project team Tallinn

Results and experience of BARN ESBL project. Marina Ivanova and project team Tallinn Results and experience of BARN ESBL project Marina Ivanova and project team Tallinn 13.05.2013 Aim of the project Improvement of detection and surveillance of resistance caused by extended spectrum betalactamase

More information

Cefuroxime iv Rationale for the EUCAST clinical breakpoints, version th September 2010

Cefuroxime iv Rationale for the EUCAST clinical breakpoints, version th September 2010 Cefuroxime iv Rationale for the EUCAST clinical breakpoints, version 1.0 26 th September 2010 Foreword EUCAST The European Committee on Antimicrobial Susceptibility Testing (EUCAST) is organised by the

More information

Laboratory CLSI M100-S18 update. Paul D. Fey, Ph.D. Associate Professor/Associate Director Josh Rowland, M.T. (ASCP) State Training Coordinator

Laboratory CLSI M100-S18 update. Paul D. Fey, Ph.D. Associate Professor/Associate Director Josh Rowland, M.T. (ASCP) State Training Coordinator Nebraska Public Health Laboratory 2008 CLSI M100-S18 update Paul D. Fey, Ph.D. Associate Professor/Associate Director Josh Rowland, M.T. (ASCP) State Training Coordinator Agenda Discuss 2008 M100- S18

More information

University of Alberta Hospital Antibiogram for 2007 and 2008 Division of Medical Microbiology Department of Laboratory Medicine and Pathology

University of Alberta Hospital Antibiogram for 2007 and 2008 Division of Medical Microbiology Department of Laboratory Medicine and Pathology University of Alberta Hospital Antibiogram for 2007 and 2008 Division of Medical Microbiology Department of Laboratory Medicine and Pathology This material is supported in part by unrestricted educational

More information

Detecting carbapenemases in Enterobacteriaceae

Detecting carbapenemases in Enterobacteriaceae Detecting carbapenemases in Enterobacteriaceae David Livermore Health Protection Agency, Colindale, London 12 August 2003 Mechanisms of carbapenem R in Enterobacteria Impermeability + AmpC or ESBL Metallo

More information

Spread of Extended-Spectrum b-lactamase Producing Klebsiella pneumoniae: Are b-lactamase Inhibitors of Therapeutic Value?

Spread of Extended-Spectrum b-lactamase Producing Klebsiella pneumoniae: Are b-lactamase Inhibitors of Therapeutic Value? 76 Spread of Extended-Spectrum b-lactamase Producing Klebsiella pneumoniae: Are b-lactamase Inhibitors of Therapeutic Value? Lionel Piroth, Hervé Aubé, Jean-Marc Doise, and Michel Vincent-Martin From Service

More information