How I treat cytomegalovirus in hematopoietic cell transplant recipients

Size: px
Start display at page:

Download "How I treat cytomegalovirus in hematopoietic cell transplant recipients"

Transcription

1 How I treat How I treat cytomegalovirus in hematopoietic cell transplant recipients Michael Boeckh 1 and Per Ljungman 2 1 Vaccine and Infectious Disease Institute and Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, WA; and 2 Department of Hematology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden Cytomegalovirus (CMV) continues to cause major complications after hematopoietic cell transplantation (HCT). Over the past decade, most centers have adopted preemptive antiviral treatment or prophylaxis strategies to prevent CMV Introduction disease. Both strategies are effective but also have shortcomings with presently available drugs. Here, we review aspects of CMV treatment and prevention in HCT recipients, including currently used drugs and diagnostics, ways to optimize preemptive therapy strategies with quantitative polymerase chain reaction assays, the use of prophylaxis, management of CMV disease caused by wild-type or drugresistant strains, and future strategies. (Blood. 2009;113: ) Cytomegalovirus (CMV) remains one of the most important complications after allogeneic hematopoietic stem cell transplantation (HCT). It can cause multiorgan disease in recipients of stem cell transplants, including pneumonia, hepatitis, gastroenteritis, retinitis, and encephalitis, and the disease can develop both early and late after the transplantation procedure. 1-3 Seropositivity for CMV remains a risk factor for transplantation-related mortality in patients who receive a transplant from an unrelated donor despite major advances in early diagnosis and management. 4-6 The pathogenesis of CMV infection and disease is complex with several interactions between CMV and the immune system. The interaction is mediated through several mechanisms, including the virus having effects on HLA expression, cytokine production, and expression of adherence molecules. These interactions can explain the increased risk of secondary bacterial and fungal infections in patients with CMV infection. 7 Another possible effect of the interaction with the immune system is the described association between CMV and acute and chronic graft-versus-host disease (GVHD). It has been documented that patients with acute GVHD are at an increased risk of CMV disease However, CMV infection has been reported as a risk factor for acute GVHD in patients receiving T cell depleted grafts, and for chronic GVHD. 4,11-13 CMV reactivation is controlled by CMV-specific T cells. 14,15 However, recent studies also suggest that natural killer (NK) cells play a role in protecting against CMV, because donor-activating killer immunoglobulin like receptor (KIR) genes have been associated with protection from CMV reactivation in the recipient. 16,17 Prevention of primary CMV infection Pretransplantation strategies Determining the CMV serologic status. CMV serologic status should be assessed as early as possible when a patient is being considered for allogeneic HCT. There is an advantage for patients who are CMV seronegative when coming to transplantation, and, in some situations, it might be logical to test the patient s status at the time of diagnosis of a disease that may require HCT in the future. If a patient is found CMV seronegative, a strategy to provide CMV-safe blood products should be used. Donor selection. Patients who are CMV seronegative before transplantation should, if possible, be retransplanted from a CMVnegative donor. In an HLA-identical sibling situation, a CMVseronegative donor to a CMV-seronegative patient is clearly preferable. In an unrelated donor situation, an important question is how to weigh the factor of CMV serological status compared with other relevant donor factors, especially if more than one possible donor is available. The most important of these factors is the HLA match. Although no study has assessed the relative importance of HLA match versus CMV serology, an antigen-matched donor for HLA-A, -B, or -DR would most likely be preferred to a CMVnegative donor. However, for a lesser degree of mismatch, such as allele -mismatches or mismatches on HLA-C, -DQ, or -DP, the situation is different, and a CMV-negative donor could be considered even if the match was poorer. Compared with other donor factors such as age or blood group, a CMV match has preference. A special situation exists with cord blood donors because they can be seen as CMV negative. 18,19 Posttransplantation strategies Blood products. CMV-seronegative patients receiving grafts from CMV-seronegative donors have a low risk of contracting CMV infection with proper management. The risk for CMV transmission in D /R patients is mainly through blood products. 20 Today, 2 effective options exist for reducing the risk of CMV transmission: the use of blood products from CMV-seronegative donors or the use of leukocyte-reduced, filtered blood products It is not settled which strategy is preferable. 24,25 Leukocyte filtration should be performed at the blood bank, and the established quality standards followed. 24,25 No controlled study has investigated whether there is an extra benefit from the use of both seronegative and filtered blood products. This is important because in many centers, and indeed in entire countries, leukocyte depletion of blood products is mandatory, and there is a significant cost and Submitted October 11, 2008; accepted January 27, Prepublished online as Blood First Edition paper, March 18, 2009; DOI /blood by The American Society of Hematology BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER

2 5712 BOECKH and LJUNGMAN BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER 23 utilization of resources for the blood bank to provide CMVnegative blood products. One important practical question is whether it is necessary to monitor CMV-seronegative patients receiving grafts from CMVseronegative donors as well as CMV safe blood products. Monitoring is costly, and it could be argued that the cost-benefit ratio would not be favorable. However, treatment of CMV disease is also expensive, and neither testing for CMV antibodies nor the use of safe blood products is 100% effective. Furthermore, there is always the risk that mix-ups may occur, resulting in certain patients who should have been monitored, but were not. In our practices, we therefore use the same monitoring strategy for all patients. Although CMV infection is rare in D /R patients, such a monitoring strategy is highly effective in identifying CMV infection and preventing disease. 21 Prevention of infection in a CMV-seronegative patient receiving a CMV-seropositive graft If only a CMV-seropositive donor is available for a CMVseronegative patient, the risk of transmission of CMV by the stem cell product to the recipient is approximately 20% to 30%. 7,26 Two studies have been performed with intravenous immune globulin (IVIG) as prophylaxis against primary infection. Bowden et al 27 showed a reduction in the rate of CMV infection but no reduction in CMV disease. In a similarly designed study performed by the Nordic BMT group, there was no reduction in CMV infection by the use of CMV hyperimmunoglobulin. 28 A CMVspecific monoclonal antibody also failed to prevent CMV infection. 29 We therefore do not use immunoglobulin to prevent CMV infection. It is possible that antiviral chemoprophylaxis can reduce the risk for primary CMV infection. In a randomized study, the risk of primary infection was 16% in patients receiving high-dose valacyclovir and 26% in patients receiving high-dose acyclovir. 30 However, at the current time we do not use anti-cmv chemoprophylaxis in this situation. None of the existing strategies eliminate the risk of primary CMV infection. If a CMV-seropositive donor is used, we consider these patients at risk for CMV disease and use preventive strategies similar to those in CMV-seropositive patients. Prevention of CMV infection in CMV-seropositive patients Choice of donor In a seropositive patient, the choice of a proper donor is controversial. It was reported that seropositive patients undergoing unrelated, non T cell depleted HCT had an improved survival rate if they received a graft from a seropositive donor. 31,32 Others studies have failed to confirm this finding. 33,34 However, recent studies have shown that CMV-seropositive patients with CMV-seronegative donors have an increased risk of both repeated CMV reactivations and for CMV disease. 10,35,36 Presently, at Huddinge, CMV donor serostatus is part of the selection algorithm for seropositive unrelated donor recipients, whereas in Seattle, CMV serostatus is presently not considered as a donor selection criterion for seropositive recipients. A large Center for International Blood and Marrow Transplant Research (CIBMTR) study is presently underway to reconcile the controversial findings with regard to donor CMV serostatus. Immunoglobulin and anti-cmv monoclonal antibody to prevent recurrent infection. The indications for IVIG in allogeneic HCT recipients have varied over the last decades. The effects on reducing CMV infection and disease both for standard and hyperimmunoglobulin are modest, at best Some studies showed a reduction of bacteremia, non-cmv interstitial pneumonia, or acute GVHD, whereas other studies did not report such a difference. An improvement of survival has not been reported in any of the studies or in meta-analyses Recent data suggest that the beneficial effects, with regard to the prevention of non-cmv interstitial pneumonia or GVHD, is counteracted by an increase in veno-occlusive disease, and that the net result does not favor the use of IVIG prophylaxis. 39,43 In addition, a study using a CMVspecific monoclonal antibody failed to reduce the risk of CMV infection and disease. 29 Therefore, the use of immune globulin to prevent CMV cannot be recommended. Antiviral chemoprophylaxis Several antiviral drugs with anti-cmv activity exist. All have their drawbacks, and, although studies have shown positive results, many centers do not use this strategy to prevent recurrent CMV infection and disease. However, it would be logical to use antiviral chemoprophylaxis in subgroups of patients (ie, patients at high risk for CMV disease). New developments might also change the situation in the future. Acyclovir/valacyclovir prophylaxis. High-dose acyclovir (500 mg/m 2 intravenously 3 times daily, followed by 800 mg 4 times daily [adult dosing]) can reduce the risk of CMV infection and possibly CMV disease. 44,45 The study by Prentice et al 45 reported improved survival rates, although the mechanism for this improvement is not clear. Valacyclovir is the valin ester prodrug of acyclovir and is better absorbed and thereby gives better serum concentrations than acyclovir. A large, randomized study comparing high-dose valacyclovir (2 g 4 times daily) with high-dose acyclovir showed a reduction of CMV infection in valacyclovir recipients from 40% to 28% (HR, 0.59; 95% CI, 0.46, 0.76; P.001). 30 Furthermore, the use of preemptive therapy was reduced by almost half. There was no difference in CMV disease or survival. Another study by Winston et al 46 compared high-dose valacyclovir with intravenous ganciclovir and found similar rates of CMV disease. Ganciclovir prophylaxis. Prophylaxis with intravenous ganciclovir has been tested in several randomized trials, all of which have shown a reduction of the risk of CMV disease compared with placebo but did not show improved survival. Ganciclovir given at engraftment causes prolonged neutropenia, leading to more invasive bacterial and fungal infections. 47,49,51 In addition, a substantial number of patients not at risk for disease (ie, 60%-65%) will unnecessarily receive a potentially marrow-toxic drug. The neutropenia might at least, in part, be prevented or treated with G-CSF, but this adds to the cost. Nonrandomized studies have been reported and used a pretransplantation induction course of ganciclovir from day 8 to 1 followed by lower maintenance doses of ganciclovir (ie, 5 mg/kg, 3 times a week) starting at engraftment The results have been varying, with some of the studies showing high rates of CMV disease. 52,54 Thus, this strategy may be unsafe in high-risk patients. Valganciclovir. Valganciclovir is the valin ester prodrug of ganciclovir. No data exist for valganciclovir used as prophylaxis, and it cannot be recommended.

3 BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER 23 TREAT CMV IN HCT 5713 Foscarnet. The role of foscarnet for prophylaxis of CMV disease remains undefined because no controlled studies have been published. Three uncontrolled studies have been reported, with some breakthroughs of CMV infection and disease. Foscarnet is associated with dose-dependent renal toxicity and electrolyte abnormalities. Maribavir. Maribavir is a new and, as yet, unlicensed antiviral agent that is presently being investigated as a prophylactic drug. A randomized, placebo-controlled dose-ranging phase 2 study has been published with promising results, showing significantly lower risk of CMV infection and borderline reduction of CMV disease, compared with placebo. 59 Toxicity was also limited, mainly consisting of gastrointestinal side effects, but no marrow toxicity was found. Enrollment in a large phase 3 trial has been completed, and results are expected to be available in The bottom line about antiviral chemoprophylaxis. All prophylaxis strategies will result in the unnecessary treatment of patients who will not develop CMV infection or disease. None of the currently available antiviral drugs are ideal; ganciclovir and foscarnet due to toxicity, and acyclovir or valacyclovir due to low efficacy. Presently, intravenous ganciclovir prophylaxis appears to be the most effective way of preventing CMV disease. Because of the drawbacks of current available antiviral drugs, neither of our institutions use prophylaxis routinely. There might, however, be special situations when prophylaxis is indicated, especially in patients who are at high risk of CMV infection and disease (eg, after cord blood transplantation). However, myelotoxicity of ganciclovir products may also be increased early after cord blood transplantation. CMV viral load and preemptive antiviral therapy The preemptive treatment strategy is highly effective at managing CMV infection; however, its success depends largely on the presence of CMV in the blood before the onset of disease and the early detection of CMV. The latter depends on the adherence to the testing schedule. Occasionally, there will be missed cases of disease that are not preceded by CMV DNAemia or pp65 antigenemia. Disease may also occur because of missed surveillance tests or surveillance tests that are spaced too far apart. Preemptive therapy is typically initiated at first detection of CMV reactivation by a rapid diagnostic technique such as the pp65 antigenemia assay, the pp67 mrna assay, or DNA detection methods. Quantitative real-time polymerase chain reaction (PCR) assays for CMV DNA are increasingly used because they offer 2 advantages. First, they are highly sensitive, thereby providing the opportunity to become positive in cases of CMV disease that have been missed with less-sensitive assays, such as the pp65 antigenemia assay. With the antigenemia assay, CMV disease rates during CMV surveillance may be as high as 7.7% during the first 100 days after HCT. 49 Most of these breakthrough cases are due to gastrointestinal disease; PCR can be positive, even if antigenemia is negative. 49 Second, the quantitative nature of the assay may increase its specificity by using a certain viral load threshold or increases over time, thereby avoiding unnecessary treatment of patients who are at low risk of progression to disease. There are no validated viral load thresholds. Furthermore, universally acceptable thresholds would be difficult to establish because of differences in assay performance and testing material (whole blood versus plasma). However, there are several biologic and assayspecific principles that can be used to design such thresholds. Studies by Emery and Griffiths 60 have shown that the doubling time of CMV is only 1 to 2 days on average and that the degree of immunosuppression determines the in vivo replication dynamics. Thus, patients with a high degree of immunosuppression have a shorter doubling time, leading to a more rapid increase in viral load. It has also been shown that the initial viral load (and to some degree the peak viral load) is predictive for the risk of CMV disease and non relapse mortality. 60,61 The initial viral load is probably the best indicator of viral dynamics because it indicates the slope of CMV replication without intervention, provided that the surveillance testing is spaced evenly. Finally, if one uses viral load increases as a parameter to start preemptive therapy, one has to consider the assay variability to determine true increases. The coefficient of variation of most PCR assays for viral loads close to the limit of detection may be as high as 30%. 62,63 Thus, increases of less than 0.5 log 10 (or 3 times the baseline level) may not represent true increases. On the basis of these principles, we have instituted viral load thresholds and relative increases at the Fred Hutchinson Cancer Research Center (FHCRC) and are presently undergoing evaluation. At Huddinge, a preset viral threshold has been in use for some years without breakthroughs with disease (Figure 1). Another way to further increase specificity of preemptive therapy is to combine it with monitoring for CMV-specific T-cell immunity. This is an interesting strategy because it may allow one to withhold preemptive therapy in patients with low-to-moderate levels of CMV DNA, if CMV-specific T-cell responses are detectable. The technology is available 64 ; however, few studies have reported thresholds of T-cell immunity that can be considered protective. 64 A small pilot study using T-cell responses as the guide for withholding therapy in patients more than 100 days after transplantation has been performed at Huddinge. 65 Clearly, such strategy requires validation in a randomized trial before it can be recommended. Special situations Pretransplantation CMV infection and disease Patients with CMV disease developing close in time to a planned allogeneic HCT have a high risk of death after transplantation. 66 Because of the increasing use of alemtuzumab and other highly immunosuppressive therapies, 67,68 the number of patients who will develop pretransplantation CMV disease will probably increase. The prevention of CMV disease is therefore important for HCT candidates. 68 Secondary prophylaxis to prevent late CMV disease Late CMV viremia and disease occur in a subset of high-risk patients and are associated with poor outcome. 1,3 Late CMV disease occurs in approximately 4% to 15% of seropositive allograft recipients, and most cases occur between months 4 and 12 after HCT. 1,49 Risk factors include CMV infection or disease during the first 3 months after HCT, low CD4 T-cell count, undetectable CMV-specific T-cell immunity, and GVHD or T-cell depletion in the graft or use of anti T-cell agents. 1 Recipients of umbilical cord blood transplant are also at risk for CMV complications throughout the first year after HCT. Table 1 shows criteria used to identify patients at risk for late CMV disease and to discontinue preventative strategies. We continue CMV surveillance in patients at risk for late CMV disease and use preemptive therapy with valganciclovir if CMV is detected. The thresholds for intervention used at FHCRC is 1000 copies/ml or a more than 5-fold increase over baseline when

4 5714 BOECKH and LJUNGMAN BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER 23 Immunosuppression High CMV doubling time Short Risk Groups CMV Plasma DNA Level to Start PET at FHCRC* CMV Whole Blood DNA Level to Start PET at Karolinska Institute** Cord blood Any level 1000 copies Allograft - High-dose steroids + - T cell depletion - Anti-T cell antibodies - CD34 selection > 100 copies/ml 1000 copies Allograft - Low dose steroids - No T cell depletion or anti T cell antibodies > 500 copies/ml > or 5-fold 1000 copies Low Long Allograft - after day 100 > 1000 copies/ml > or 5-fold 1000 copies if GVHD Other individual assessment based on * Assays performed weekly or twice weekly (highest risk); limit of detection 25 copies/ml + 1 mg per kg of prednisone or higher If initial level is less than threshold ** Assays performed weekly, limit of detection 50 copies/ml Figure 1. CMV viral load to start preemptive therapy (PET) used at the FHCRC in Seattle, WA, and the Karolinska Institute, Stockholm, Sweden. Table 1. Strategy to prevent late CMV disease (FHCRC approach) Patients at risk for disease, start and discontinuation of virologic surveillance, and preemptive therapy Risk factors for late CMV disease (CMV-seropositive allograft recipients or -seronegative recipients with a positive donor) Virologic criteria (one required) CMV infection or disease before day 100 or Prophylaxis with ganciclovir/valganciclovir/foscarnet plus Immunologic criteria (one required) Undetectable CMV-specific T-cell responses or GVHD requiring systemic treatment or High-dose steroids for reasons other than GVHD or T-cell depletion or Cord blood transplantation or Donor lymphocyte infusion or CD4 T-cell count less than 50/mm 3 CMV surveillance* Continue PCR weekly surveillance after day 100 if risk factors for late CMV disease are present Discontinue CMV surveillance if No or minimal immunosuppression ( 0.5 mg prednisone/kg/day) and No anti T-cell agents and At least 3 negative weekly tests Preemptive therapy Start preemptive therapy with valganciclovir (900 mg twice daily) if CMV DNA is more than 1000 copies/ml Continue induction dosing until viral load declines, at least 1 week Treat with maintenance dose (900 mg/day) until viral load is undetectable *Consider valganciclovir prophylaxis if virologic surveillance is not feasible (see Secondary prophylaxis to prevent late CMV disease ). lower DNA levels are detected. Initial data from a randomized trial of daily valganciclovir prophylaxis for 6 months showed that such a strategy was not superior to preemptive valganciclovir, but it is also not more toxic. 69 Thus, valganciclovir prophylaxis (900 mg/ day adjusted for renal dysfunction) could serve as an alternative if virologic testing is not feasible. However, monitoring for renal function and hematologic toxicity is still required. If valganciclovir cannot be used for long-term prevention because of toxicity, we sometimes recommend high-dose valacyclovir at 2 g 3 times per day. This strategy has not been evaluated specifically for prevention of late CMV disease but is generally well tolerated and has some effect on CMV infection. 30 Virologic surveillance is still required with this approach. Adoptive immunoprophylaxis It is well recognized that patients lacking a specific immune response to CMV are at an increased risk of developing CMV disease. 1,2,14,15,70 Monitoring of CD8 and/or CD4 CMV-specific T cells can be applied with the use of different techniques, including detection by tetramers or measurement of peptidespecific lymphocyte responses. However, none are standardized for routine use. Several groups have studied the usefulness of adoptive transfer of T cells or vaccination with CMV-primed dendritic cells. 74 These technologies seem not to be associated with significant toxicity, but their effectiveness needs to be further assessed in controlled trials.

5 BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER 23 TREAT CMV IN HCT 5715 Low antiviral drug levels Low immune status Drug induced T cell depletion (e.g haploidential donor transplants) Cord blood transplantation Diagnosis of CMV infection Several techniques exist, allowing rapid diagnosis of CMV with a high sensitivity. Currently, the most used tests for diagnosis of CMV infection are detection of antigen (pp65; antigenemia assay), DNA, or mrna. In regard to the detection of CMV DNA by PCR, the specimens vary, but today either whole blood or plasma is most commonly used. Moreover, the quantification of viral load by quantitative PCR can give important prognostic information, and this technique is now widely available. 10,60,62,75,76 Detection of mrna by nucleic acid sequence based amplification (NASBA) is also a sensitive and rapid technique and has, in randomized trials, been shown to be as effective as pp65 antigenemia or detection of DNA by PCR. 77,78 However, it is rarely used at transplantation centers. Antiviral drug resistance + + Prolonged Drug Administration (before and/or after transplant) Subclinical CMV load Resistance Figure 2. CMV drug resistance. Development of drug resistance requires prolonged pre-exposure (usually weeks to months) to the antiviral drug and persistent reactivation in the presence of drug, which will ultimately lead to the selection of resistant strains. Drug resistance is relatively uncommon after HCT, but there are certain situations in which it should be suspected (Figure 2). Drug resistance can occur with all drugs used for the treatment and + + prophylaxis of CMV (ie, ganciclovir, valganciclovir, foscarnet, cidofovir); however, most reports are for ganciclovir resistance, because this drug (and its prodrug valganciclovir) is used in approximately 90% of patients as first-line agent. Many mutations have been mapped (Figure 3), and genotypic assays are available for diagnostic analysis in reference laboratories. 79 In general, drug resistance should be suspected in patients who are on antiviral drugs and who have had load increases for more than 2 weeks. After start of preemptive therapy, viral load increases occur in approximately one-third of patients and are due to the underlying immunosuppression. 80 Thus, in a drug-naive person (which is the case in most patients during the first 3 months after transplantation), it is unlikely that these increases are due to true drug resistance in adult patients; however, cases of early-onset resistance in pediatric patients have been reported. The situation is different if patients have received ganciclovir before transplantation or if viral load increases occur in the late setting when most patients are not antiviral drug naive anymore. Today, ganciclovir or foscarnet is used rarely before transplantation except in situations of pretransplantation CMV disease and in children with congenital immunodeficiency. Overall, one should be vigilant and test patients for genotypic resistance if viral load increases for more than 2 weeks, especially, if there is significant exposure to antiviral drugs. Clinically, drug resistance can manifest as rising viral load or CMV disease. If drug resistance is suspected, we recommend sending samples for genotypic testing and switching to an alternative drug. In most cases, this means switching from a ganciclovir drug to foscarnet. Viral load can be used to monitor the response to treatment. In patients who do not respond or those who are critically ill, few options exist, and none are supported by good data. One option is to continue ganciclovir, in addition to foscarnet, in patients with ganciclovir resistance. The theoretical basis for this is an additive effect of ganciclovir and foscarnet in vitro 81 and a mathematically predicted efficacy in viral load reduction of intravenous ganciclovir against strains with single UL97 mutations of approximately 60%. 82 We also sometimes use ganciclovir monotherapy at increased doses (eg, 15 mg/kg per day divided in 2 doses; renally adjusted) with G-CSF support. Cidofovir may also Figure 3. CMV drug resistance mutation maps. CMV drug resistance mutation maps for the UL97 (A) and DNA polymerase (B) genes. Figure was obtained with permission from S. Chou. 79

6 5716 BOECKH and LJUNGMAN BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER 23 be used, provided that a CMV DNA polymerase mutation that causes cross-resistance is not present 79 (Figure 3B). However, there is limited experience with cidofovir for treatment of ganciclovirresistant CMV. Drugs presently under evaluation, such as maribavir, may also provide therapeutic options in the future. Maribavir inhibits the CMV UL97 kinase and is active against wild-type and ganciclovir-resistant CMV strains 83 (Figure 3A). Because maribavir inhibits UL97, and presumably impairs phosphorylation of ganciclovir, it has been shown to be antagonistic to ganciclovir in vitro, and both agents therefore should not be used in combination. 84 However, maribavir (once it is available) could be used alone or in combination with foscarnet in patients with ganciclovirresistant CMV infection or disease. 79 It should be pointed out that it is presently unknown how maribavir performs in the treatment setting because no studies have been conducted for the treatment of CMV disease. There are also licensed drugs with possible anti-cmv activity, including the arthritis drug leflunomide and the antimalaria compound artesunate. 85,86 Leflunomide is available in most parts of the world but is not approved by European or American regulatory authorities for the treatment of CMV. Artesunate has not been approved by the US Food and Drug Administration but is available in other parts of the world with an indication for malaria treatment. In vitro studies have been performed, and the use of these drugs has been described in a small number of case reports Another potentially useful approach is to use the immunosuppressive drug sirolimus as adjunct therapy because it may impair CMV replication inside host cells. 88 Sirolimus has shown to reduce the risk of CMV reactivation after HCT and also in renal transplant recipients. 89 We would like to emphasize that none of these options have been systematically studied with regard to efficacy and toxicity, but they may be options that can be considered in desperate clinical situations. Diagnosis and treatment of CMV disease CMV gastrointestinal disease and pneumonia are by far the most common manifestations of CMV disease in the current era. CMV retinitis is uncommon, but it should be suspected in patients with visual changes. 90,91 Overall, the incidence of CMV disease during the first year after HCT has decreased from approximately 30% to 35% in the era before ganciclovir to 8% to 10% in seropositive recipients. 92 The diagnosis of CMV pneumonia is established by detection of CMV in bronchoalveolar lavage (BAL) or lung biopsy in the presence of clinical signs and symptoms. International definitions of CMV disease have been published. 93 Briefly, diagnostic methods to test for CMV in these samples include rapid cultures, direct fluorescent antibody tests, and cytology; there is presently no data on what level of CMV DNA correlates with CMV pneumonia; thus, presently, we do not recommend PCR to make the diagnosis. This is an important point because pulmonary shedding of CMV is common, even in asymptomatic patients with normal clinical and radiologic examinations. 94 Because of its high sensitivity, however, PCR has a high negative predictive value and can be used to rule out the diagnosis of CMV pneumonia. 95 The diagnosis of gastrointestinal disease relies on detection of CMV in biopsy specimens by culture (rapid or conventional), immunohistochemistry, or detection of inclusion bodies. The latter is highly specific but insensitive. Although each of these methods is sufficient to diagnose CMV gastrointestinal disease, the diagnostic yield is significantly increased if more than one method is used. 96 We therefore believe that at least 2 different methods should be used on biopsy specimens to diagnose CMV disease, especially if PCR is used. Similar concerns as outlined for CMV pneumonia apply to the use of PCR as a single method in gastrointestinal biopsy specimens. Notably, CMV disease, especially gastrointestinal disease, can occur in the absence of CMV detection in the blood. 96 We treat gastrointestinal disease with ganciclovir or foscarnet alone. Depending on the extent of the disease, prolonged courses of antiviral treatment at high doses may be required because ulcers may be deep, and the time to reepithelialization may be weeks or months. We therefore, treat for 2 to 3 weeks with induction dosing, followed by several weeks of maintenance. If severe immunosuppression continues, recurrence of gastrointestinal disease may occur in approximately 30% of patients. This may justify secondary prophylaxis, such as prolonged maintenance dosing, until immunosuppression has been reduced. Intravenous ganciclovir is used at the time of the initial treatment because clinical symptoms may be severe; oral medication has not been studied in this phase of treatment. Foscarnet is used as an alternative if neutropenia is present. 97 Whether valganciclovir can be used during the maintenance treatment phase has not been studied. Two studies have shown similar bioavailability of valganciclovir and intravenous ganciclovir in the setting of mild-to-moderate gastrointestinal GVHD. 98,99 We therefore believe that valganciclovir use can be justified if symptoms are improved, there is good oral intake, no concurrent severe GI GVHD is present, and systemic CMV viral load has been suppressed. Treatment of concurrent conditions, especially GVHD, and optimized supportive care with proton pump inhibitors are critical. CMV pneumonia remains the most feared complication of CMV in HCT recipients because its attributable mortality continues to be high. Over the past 2 decades little progress has been made in the treatment of CMV pneumonia. In the late 1980s, 3 non randomized studies established the current standard of care, ie, treatment with ganciclovir (or foscarnet as an alternative agent) in combination with intravenous immunoglobulin These studies showed improved survival rates compared with historical outcome results. There does not appear to be a specific advantage of CMV-specific immune globulin (CMV-Ig) compared with pooled immunoglobulin. 103 However, in specific clinical situations, CMV-Ig may be preferred. If volume overload is an issue, CMV-Ig can be used because the infused volume of CMV-Ig is lower (150 mg/kg vs 500 mg/kg of pooled IVIG). Another situation may be when IVIG is not available, because there is a chronic shortage in some parts of the world. Since this standard of ganciclovir and immunoglobulin was established, several studies have raised doubt in the magnitude of the effect of concomitant immunoglobulin. A study from the European Bone Marrow Transplant (EBMT) group found that survival at 1 month after diagnosis was only 31%. 104 Another study from Brazil concluded that there was no major effect of immunoglobulin. 105 These studies were too small in size to account for other factors that may affect outcome of pneumonia, such as overall morbidity at the time of diagnosis, status of the immune reconstitution, and the presence of copathogens. Recently presented results from a large analysis of cases of CMV pneumonia add to the controversy because there was no statistically significant benefit of immunoglobulin. 106 This and other large studies will have to determine whether there are specific subgroups that might benefit from immunoglobulin therapy. Until then, we continue to use immunoglobulin for the treatment of CMV pneumonia after HCT.

7 BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER 23 TREAT CMV IN HCT 5717 Conclusions and future needs CMV treatment has been optimized in HCT recipients over the past decade, especially when used preemptively, but several questions remain. Issues that should be studied are the concepts of how viral load thresholds and dynamic changes can be used to take full advantage of quantitative PCR assays and how to combine virologic and immune surveillance. Another is the treatment of CMV pneumonia. Several studies now suggest that the overall benefit of concomitant treatment with immunoglobulin may be less impressive than originally thought, based on the original 3 nonrandomized studies. Other treatment strategies such as antiviral combination therapy with novel drugs may be more promising approaches, but studies are needed to examine this hypothesis. New treatment options for CMV are urgently needed because the currently available drugs have major limitations. Novel drugs such as maribavir, 59 lipid cidofovir, 107 and novel a non nucleoside inhibitor, 108 as well as leflunomide 86 and artesunate, 87 deserve a systematic evaluation. These compounds are needed for current management indications because the downsides of presently available drugs. They are also critical for the management of drugresistant CMV disease, which will probably increase with the References increased use of antiviral drugs in some HCT candidates, such patients with chronic lymphocytic leukemia, 68 and perhaps in immunocompetent patients in the future. 109 Acknowledgment This work was supported by the National Institutes of Health (NIH; Bethesda, MD; CA 18029; M.B.). Authorship Contribution: M.B. and P.L. retrieved data and wrote the paper. Conflict-of-interest disclosure: M.B. has served as consultant to Roche Laboratories, Viropharma, Alphavax, AiCuris, and Chimerix; has received research funding from Roche Laboratories, Viropharma, and Vical; and has received lecture fees from Viropharma and Roche Laboratories. P.L. has served as a consultant to Viropharma, Roche Laboratories, and AiCuris and has received research funding and lecture fees from Viropharma. Correspondence: Michael Boeckh, Vaccine and Infectious Disease Institute and Program in Infectious Diseases, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109; mboeckh@fhcrc.org. 1. Boeckh M, Leisenring W, Riddell SR, et al. Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell immunity. Blood. 2003;101: Krause H, Hebart H, Jahn G, Muller CA, Einsele H. Screening for CMV-specific T cell proliferation to identify patients at risk of developing late onset CMV disease. Bone Marrow Transplant. 1997;19: Zaia JA, Gallez-Hawkins GM, Tegtmeier BR, et al. Late cytomegalovirus disease in marrow transplantation is predicted by virus load in plasma. J Infect Dis. 1997;176: Broers AE, van Der Holt R, van Esser JW, et al. Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogeneic T-cell-depleted stem cell transplantation. Blood. 2000;95: Craddock C, Szydlo RM, Dazzi F, et al. Cytomegalovirus seropositivity adversely influences outcome after T-depleted unrelated donor transplant in patients with chronic myeloid leukaemia: the case for tailored graft-versus-host disease prophylaxis. Br J Haematol. 2001;112: Meijer E, Dekker AW, Rozenberg-Arska M, Weersink AJ, Verdonck LF. Influence of cytomegalovirus seropositivity on outcome after T celldepleted bone marrow transplantation: contrasting results between recipients of grafts from related and unrelated donors. Clin Infect Dis. 2002;35: Nichols WG, Corey L, Gooley T, Davis C, Boeckh M. High risk of death due to bacterial and fungal infection among cytomegalovirus (CMV)- seronegative recipients of stem cell transplants from seropositive donors: evidence for indirect effects of primary CMV infection. J Infect Dis. 2002;185: Miller W, Flynn P, McCullough J, et al. Cytomegalovirus infection after bone marrow transplantation: an association with acute graft-v-host disease. Blood. 1986;67: Martino R, Rovira M, Carreras E, et al. Severe infections after allogeneic peripheral blood stem cell transplantation: a matched-pair comparison of unmanipulated and CD34 cell-selected transplantation. Haematologica. 2001;86: Ljungman P, Perez-Bercoff L, Jonsson J, et al. Risk factors for the development of cytomegalovirus disease after allogeneic stem cell transplantation. Haematologica. 2006;91: Söderberg C, Larsson S, Bergstedt-Lindqvist S, Möller E. Definition of a subset of human peripheral blood mononuclear cells that are permissive to human cytomegalovirus infection. J Virol. 1993;67: Söderberg C, Larsson S, Rozell BL, Sumitran KS, Ljungman P, Möller E. Cytomegalovirus-induced CD13-specific autoimmunity a possible cause of chronic graft-vs-host disease. Transplantation. 1996;61: Larsson K, Aschan J, Remberger M, Ringden O, Winiarski J, Ljungman P. Reduced risk for extensive chronic graft-versus-host disease in patients receiving transplants with human leukocyte antigen-identical sibling donors given polymerase chain reaction-based preemptive therapy against cytomegalovirus. Transplantation. 2004;77: Reusser P, Riddell SR, Meyers JD, Greenberg PD. Cytotoxic T-lymphocyte response to cytomegalovirus after human allogeneic bone marrow transplantation: pattern of recovery and correlation with cytomegalovirus infection and disease. Blood. 1991;78: Hakki M, Riddell SR, Storek J, et al. Immune reconstitution to cytomegalovirus after allogeneic hematopoietic stem cell transplantation: impact of host factors, drug therapy, and subclinical reactivation. Blood. 2003;102: Chen C, Busson M, Rocha V, et al. Activating KIR genes are associated with CMV reactivation and survival after non-t-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders. Bone Marrow Transplant. 2006;38: Cook M, Briggs D, Craddock C, et al. Donor KIR genotype has a major influence on the rate of cytomegalovirus reactivation following T-cell replete stem cell transplantation. Blood. 2006;107: Albano MS, Taylor P, Pass RF, et al. Umbilical cord blood transplantation and cytomegalovirus: posttransplantation infection and donor screening. Blood. 2006;108: Tomonari A, Takahashi S, Ooi J, et al. Impact of cytomegalovirus serostatus on outcome of unrelated cord blood transplantation for adults: a single-institute experience in Japan. Eur J Haematol. 2008;80: Bowden RA, Sayers M, Flournoy N, et al. Cytomegalovirus immune globulin and seronegative blood products to prevent primary cytomegalovirus infection after marrow transplantation. N Engl J Med. 1986;314: Nichols WG, Price TH, Gooley T, Corey L, Boeckh M. Transfusion-transmitted cytomegalovirus infection after receipt of leukoreduced blood products. Blood. 2003;101: Ljungman P, Larsson K, Kumlien G, et al. Leukocyte depleted, unscreened blood products give a low risk for CMV infection and disease in CMV seronegative allogeneic stem cell transplant recipients with seronegative stem cell donors. Scand J Infect Dis. 2002;34: Bowden R, Cays M, Schoch G, et al. Comparison of filtered blood (FB) to seronegative blood products (SB) for prevention of cytomegalovirus (CMV) infection after marrow transplant. Blood. 1995;86: Blajchman MA, Goldman M, Freedman JJ, Sher GD. Proceedings of a consensus conference: prevention of post-transfusion CMV in the era of universal leukoreduction. Transfus Med Rev. 2001;15: Ratko TA, Cummings JP, Oberman HA, et al. Evidence-based recommendations for the use of WBC-reduced cellular blood components. Transfusion. 2001;41: Trenschel R, Ross S, Husing J, et al. Reduced risk of persisting cytomegalovirus pp65 antigenemia and cytomegalovirus interstitial pneumonia following allogeneic PBSCT. Bone Marrow Transplant. 2000;25:

8 5718 BOECKH and LJUNGMAN BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER Bowden RA, Fisher LD, Rogers K, Cays M, Meyers JD. Cytomegalovirus (CMV)-specific intravenous immunoglobulin for the prevention of primary CMV infection and disease after marrow transplant [see comments]. J Infect Dis. 1991; 164: Ruutu T, Ljungman P, Brinch L, et al. No prevention of cytomegalovirus infection by anticytomegalovirus hyperimmune globulin in seronegative bone marrow transplant recipients. The Nordic BMT Group. Bone Marrow Transplant. 1997;19: Boeckh M, Bowden R, Storer B, et al. Randomized, placebo-controlled, double-blind study of a cytomegalovirus-specific monoclonal antibody (MSL-109) for prevention of cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2001;7: Ljungman P, De La Camara R, Milpied N, et al. Randomized study of valacyclovir as prophylaxis against cytomegalovirus reactivation in recipients of allogeneic bone marrow transplants. Blood. 2002;99: Ljungman P, Einsele H, Frassoni F, Niederwieser D, Cordonnier C. Donor CMV serologic status influences the outcome of CMV-seropositive recipients after unrelated donor stem cell transplantation; an EBMT megafile analysis. Blood. 2003; 102: Ringden O, Schaffer M, Le Blanc K, et al. Which donor should be chosen for hematopoietic stem cell transplantation among unrelated HLA-A, -B, and -DRB1 genomically identical volunteers? Biol Blood Marrow Transplant. 2004;10: Kollman C, Howe CW, Anasetti C, et al. Donor characteristics as risk factors in recipients after transplantation of bone marrow from unrelated donors: the effect of donor age. Blood. 2001;98: Boeckh M, Nichols WG. The impact of cytomegalovirus serostatus of donor and recipient before hematopoietic stem cell transplantation in the era of antiviral prophylaxis and preemptive therapy. Blood. 2004;103: Ozdemir E, Saliba R, Champlin R, et al. Risk factors associated with late cytomegalovirus reactivation after allogeneic stem cell transplantation for hematological malignancies. Bone Marrow Transplant. 2007;40: Patel S, Ridwan R, Ortin M. Cytomegalovirus reactivation in pediatric hematopoietic progenitors transplant: a retrospective study on the risk factors and the efficacy of treatment. J Pediatr Hematol Oncol. 2005;27: Winston DJ, Ho WG, Lin CH, et al. Intravenous immune globulin for prevention of cytomegalovirus infection and interstitial pneumonia after bone marrow transplantation. Ann Intern Med. 1987; 106: Zikos P, Van Lint MT, Lamparelli T, et al. A randomized trial of high dose polyvalent intravenous immunoglobulin (HDIgG) vs. Cytomegalovirus (CMV) hyperimmune IgG in allogeneic hemopoietic stem cell transplants (HSCT). Haematologica. 1998;83: Raanani P, Gafter-Gvili A, Paul M, Ben-Bassat I, Leibovici L, Shpilberg O. Immunoglobulin prophylaxis in patients undergoing haematopoietic stem cell transplantation: systematic review and metaanalysis [abstract]. Bone Marrow Transplant. 2008;41:S46. Abstract O Bass E, Powe N, Goodman S, et al. Efficacy of immune globulin in preventing complications of bone marrow transplantation: a meta-analysis. Bone Marrow Transplant. 1993;12: Messori A, Rampazzo R, Scroccaro G, Martini N. Efficacy of hyperimmune anti-cytomegalovirus immunoglobulins for the prevention of cytomegalovirus infection in recipients of allogeneic bone marrow transplantation: a meta analysis. Bone Marrow Transplant. 1994;13: Sullivan KM, Kopecky KJ, Jocom J, et al. Immunomodulatory and antimicrobial efficacy of intravenous immunoglobulin in bone marrow transplantation. N Engl J Med. 1990;323: Cordonnier C, Chevret S, Legrand M, et al. Should immunoglobulin therapy be used in allogeneic stem cell transplantation? A randomized, double-blind, dose effect, placebo-controlled multicenter trial. Ann Intern Med. 2003;139: Meyers JD, Reed EC, Shepp DH, et al. Acyclovir for prevention of cytomegalovirus infection and disease after allogeneic marrow transplantation. N Engl J Med. 1988;318: Prentice HG, Gluckman E, Powles RL, et al. Impact of long-term acyclovir on cytomegalovirus infection and survival after allogeneic bone marrow transplantation. European Acyclovir for CMV Prophylaxis Study Group. Lancet. 1994;343: Winston DJ, Yeager AM, Chandrasekar PH, Snydman DR, Petersen FB, Territo MC. Randomized comparison of oral valacyclovir and intravenous ganciclovir for prevention of cytomegalovirus disease after allogeneic bone marrow transplantation. Clin Infect Dis. 2003;36: Goodrich JM, Bowden RA, Fisher L, Keller C, Schoch G, Meyers JD. Ganciclovir prophylaxis to prevent cytomegalovirus disease after allogeneic marrow transplant. Ann Intern Med. 1993;118: Winston DJ, Ho WG, Bartoni K, et al. Ganciclovir prophylaxis of cytomegalovirus infection and disease in allogeneic bone marrow transplant recipients. Results of a placebo-controlled, doubleblind trial. Ann Intern Med. 1993;118: Boeckh M, Gooley TA, Myerson D, Cunningham T, Schoch G, Bowden RA. Cytomegalovirus pp65 antigenemia-guided early treatment with ganciclovir versus ganciclovir at engraftment after allogeneic marrow transplantation: a randomized double-blind study. Blood. 1996;88: Griffiths P, Whitley R, Snydman DR, Singh N, Boeckh M. Contemporary management of cytomegalovirus infection in transplant recipients: guidelines from an IHMF workshop, Herpes. 2008;15: Salzberger B, Bowden RA, Hackman RC, Davis C, Boeckh M. Neutropenia in allogeneic marrow transplant recipients receiving ganciclovir for prevention of cytomegalovirus disease: risk factors and outcome. Blood. 1997;90: Atkinson K, Arthur C, Bradstock K, et al. Prophylactic ganciclovir is more effective in HLAidentical family member marrow transplant recipients than in more heavily immune- suppressed HLA-identical unrelated donor marrow transplant recipients. Australasian Bone Marrow Transplant Study Group. Bone Marrow Transplant. 1995;16: Atkinson K, Downs K, Golenia M, Biggs J, et al. Prophylactic use of ganciclovir in allogeneic bone marrow transplantation: absence of clinical cytomegalovirus infection. Br J Haematol. 1991;79: Przepiorka D, Ippoliti C, Panina A, et al. Ganciclovir three times per week is not adequate to prevent cytomegalovirus reactivation after T cell-depleted marrow transplantation. Bone Marrow Transplant. 1994;13: von Bueltzingsloewen A, Bordigoni P, Witz F, et al. Prophylactic use of ganciclovir for allogeneic bone marrow transplant recipients. Bone Marrow Transplant. 1993;12: Reusser P, Gambertoglio JG, Lilleby K, Meyers JD. Phase I-II trial of foscarnet for prevention of cytomegalovirus infection in autologous and allogeneic marrow transplant recipients [see comments]. J Infect Dis. 1992;166: Bacigalupo A, Tedone E, Van Lint MT, et al. CMV prophylaxis with foscarnet in allogeneic bone marrow transplant recipients at high risk of developing CMV infections. Bone Marrow Transplant. 1994;13: Bregante S, Bertilson S, Tedone E, et al. Foscarnet prophylaxis of cytomegalovirus infections in patients undergoing allogeneic bone marrow transplantation (BMT): a dose-finding study. Bone Marrow Transplant. 2000;26: Winston D, Young J, Pullarkat V, et al. Maribavir prophylaxis for prevention of cytomegalovirus infection in allogeneic stem cell transplant recipients: a multicenter randomized, double-blind, placebo-controlled, dose-ranging study. Blood. 2008;111: Emery VC, Sabin CA, Cope AV, Gor D, Hassan- Walker AF, Griffiths PD. Application of viral-load kinetics to identify patients who develop cytomegalovirus disease after transplantation. Lancet. 2000;355: Stachel D, Kirby K, Corey L, Boeckh M. CMV viral load as predictor for transplant-related mortality in the era of pre-emptive therapy. Bone Marrow Transplant. 2008;41:S Boeckh M, Boivin G. Quantitation of cytomegalovirus: methodologic aspects and clinical applications. Clin Microbiol Rev. 1998;11: Boeckh M, Huang M, Ferrenberg J, et al. Optimization of quantitative detection of cytomegalovirus DNA in plasma by real-time PCR. J Clin Microbiol. 2004;42: Lacey SF, Diamond DJ, Zaia JA. Assessment of cellular immunity to human cytomegalovirus in recipients of allogeneic stem cell transplants. Biol Blood Marrow Transplant. 2004;10: Avetisyan G, Aschan J, Hagglund H, Ringden O, Ljungman P. Evaluation of intervention strategy based on CMV-specific immune responses after allogeneic SCT. Bone Marrow Transplant. 2007; 40: Fries BC, Riddell SR, Kim HW, et al. Cytomegalovirus disease before hematopoietic cell transplantation as a risk for complications after transplantation. Biol Blood Marrow Transplant. 2005;11: Hillmen P, Skotnicki AB, Robak T, et al. Alemtuzumab compared with chlorambucil as first-line therapy for chronic lymphocytic leukemia. J Clin Oncol. 2007;25: O Brien S, Ravandi F, Riehl T, et al. Valganciclovir prevents cytomegalovirus reactivation in patients receiving alemtuzumab-based therapy. Blood. 2008;111: Boeckh M, Nichols W, Chemaly R, et al. Prevention of late CMV disease after HCT: a randomized double-blind multicenter trial of valganciclovir prophylaxis versus PCR-guided GCV/VGCV preemptive therapy [abstract]. Biol Blood Marrow Transplant. 2008;14:30. Abstract Ljungman P, Aschan J, Azinge JN, et al. Cytomegalovirus viraemia and specific T-helper cell responses as predictors of disease after allogeneic marrow transplantation. Br J Haematol. 1993;83: Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99: Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333: Szmania S, Galloway A, Bruorton M, et al. Isolation and expansion of cytomegalovirus-specific cytotoxic T lymphocytes to clinical scale from a single blood draw using dendritic cells and HLAtetramers. Blood. 2001;98: Grigoleit GU, Kapp M, Hebart H, et al. Dendritic cell vaccination in allogeneic stem cell recipients: induction of human cytomegalovirus (HCMV)- specific cytotoxic T lymphocyte responses even

9 BLOOD, 4 JUNE 2009 VOLUME 113, NUMBER 23 TREAT CMV IN HCT 5719 in patients receiving a transplant from an HCMVseronegative donor. J Infect Dis. 2007;196: Einsele H, Hebart H, Kauffmann-Schneider C, et al. Risk factors for treatment failures in patients receiving PCR-based preemptive therapy for CMV infection. Bone Marrow Transplant. 2000; 25: Limaye AP, Huang ML, Leisenring W, Stensland L, Corey L, Boeckh M. Cytomegalovirus (CMV) DNA load in plasma for the diagnosis of CMV disease before engraftment in hematopoietic stemcell transplant recipients. J Infect Dis. 2001;183: Hebart H, Ljungman P, Klingebiel T, et al. Prospective comparison of PCR-based versus late mrna-based preemptive antiviral therapy for HCMV infection in patients after allogeneic stem cell transplantation [abstract]. Blood. 2003;102: 195a. 78. Gerna G, Lilleri D, Baldanti F, et al. Human cytomegalovirus immediate-early mrnaemia versus pp65 antigenemia for guiding pre-emptive therapy in children and young adults undergoing hematopoietic stem cell transplantation: a prospective, randomized, open-label trial. Blood. 2003;101: Chou S. Cytomegalovirus UL97 mutations in the era of ganciclovir and maribavir. Rev Med Virol. 2008;18: Nichols WG, Corey L, Gooley T, et al. Rising pp65 antigenemia during preemptive anticytomegalovirus therapy after allogeneic hematopoietic stem cell transplantation: risk factors, correlation with DNA load, and outcomes. Blood. 2001;97: Manion DJ, Vibhagool A, Chou TC, Kaplan J, Caliendo A, Hirsch MS. Susceptibility of human cytomegalovirus to two-drug combinations in vitro. Antivir Ther. 1996;1: Emery VC, Griffiths PD. Prediction of cytomegalovirus load and resistance patterns after antiviral chemotherapy. Proc Natl Acad Sci U S A. 2000; 97: Drew WL, Miner RC, Marousek GI, Chou S. Maribavir sensitivity of cytomegalovirus isolates resistant to ganciclovir, cidofovir or foscarnet. J Clin Virol. 2006;37: Chou S, Marousek GI. Maribavir antagonizes the antiviral action of ganciclovir on human cytomegalovirus. Antimicrob Agents Chemother. 2006;50: Efferth T, Romero M, Wolf D, Stamminger T, Marin J, Marschall M. The antiviral activities of artemisinin and artesunate. Clin Infect Dis. 2008; 47: Avery RK, Bolwell BJ, Yen-Lieberman B, et al. Use of leflunomide in an allogeneic bone marrow transplant recipient with refractory cytomegalovirus infection. Bone Marrow Transplant. 2004;34: Battiwalla M, Paplham P, Almyroudis NG, et al. Leflunomide failure to control recurrent cytomegalovirus infection in the setting of renal failure after allogeneic stem cell transplantation. Transpl Infect Dis. 2007;9: Kudchodkar SB, Yu Y, Maguire TG, Alwine JC. Human cytomegalovirus infection alters the substrate specificities and rapamycin sensitivities of raptor- and rictor-containing complexes. Proc Natl Acad Sci U S A. 2006;103: Marty FM, Bryar J, Browne SK, et al. Sirolimusbased graft-versus-host disease prophylaxis protects against cytomegalovirus reactivation after allogeneic hematopoietic stem cell transplantation: a cohort analysis. Blood. 2007;110: Eid AJ, Bakri SJ, Kijpittayarit S, Razonable RR. Clinical features and outcomes of cytomegalovirus retinitis after transplantation. Transpl Infect Dis. 2008;10: Crippa F, Corey L, Chuang EL, Sale G, Boeckh M. Virological, clinical, and ophthalmologic features of cytomegalovirus retinitis after hematopoietic stem cell transplantation. Clin Infect Dis. 2001;32: Boeckh M, Nichols WG, Papanicolaou G, Rubin R, Wingard JR, Zaia J. Cytomegalovirus in hematopoietic stem cell transplant recipients: current status, known challenges, and future strategies. Biol Blood Marrow Transplant. 2003;9: Ljungman P, Griffiths P, Paya C. Definitions of cytomegalovirus infection and disease in transplant recipients. Clin Infect Dis. 2002;34: Schmidt GM, Horak DA, Niland JC, Duncan SR, Forman SJ, Zaia JA. A randomized, controlled trial of prophylactic ganciclovir for cytomegalovirus pulmonary infection in recipients of allogeneic bone marrow transplants; the City of Hope- Stanford-Syntex CMV Study Group. N Engl J Med. 1991;324: Cathomas G, Morris P, Pekle K, Cunningham I, Emanuel D. Rapid diagnosis of cytomegalovirus pneumonia in marrow transplant recipients by bronchoalveolar lavage using the polymerase chain reaction, virus culture, and the direct immunostaining of alveolar cells. Blood. 1993;81: Hackman RC, Wolford JL, Gleaves CA, et al. Recognition and rapid diagnosis of upper gastrointestinal cytomegalovirus infection in marrow transplant recipients. A comparison of seven virologic methods. Transplantation. 1994;57: Reusser P, Einsele H, Lee J, et al. Randomized multicenter trial of foscarnet versus ganciclovir for preemptive therapy of cytomegalovirus infection after allogeneic stem cell transplantation. Blood. 2002;99: Einsele H, Reusser P, Bornhauser M, et al. Oral valganciclovir leads to higher exposure to ganciclovir than intravenous ganciclovir in patients following allogeneic stem cell transplantation. Blood. 2006;107: Winston DJ, Baden LR, Gabriel DA, et al. Pharmacokinetics of ganciclovir after oral valganciclovir versus intravenous ganciclovir in allogeneic stem cell transplant patients with graft-versushost disease of the gastrointestinal tract. Biol Blood Marrow Transplant. 2006;12: Emanuel D, Cunningham I, Jules-Elysee K, et al. Cytomegalovirus pneumonia after bone marrow transplantation successfully treated with the combination of ganciclovir and high-dose intravenous immune globulin. Ann Intern Med. 1988;109: Reed EC, Bowden RA, Dandliker PS, Lilleby KE, Meyers JD. Treatment of cytomegalovirus pneumonia with ganciclovir and intravenous cytomegalovirus immunoglobulin in patients with bone marrow transplants. Ann Intern Med. 1988;109: Schmidt GM, Kovacs A, Zaia JA, et al. Ganciclovir/immunoglobulin combination therapy for the treatment of human cytomegalovirusassociated interstitial pneumonia in bone marrow allograft recipients. Transplantation. 1988;46: Ljungman P, Cordonnier C, Einsele H, et al. Use of intravenous immune globulin in addition to antiviral therapy in the treatment of CMV gastrointestinal disease in allogeneic bone marrow transplant patients: a report from the European Group for Blood and Marrow Transplantation (EBMT). Infectious Diseases Working Party of the EBMT. Bone Marrow Transplant. 1998;21: Ljungman P, Engelhard D, Link H, et al. Treatment of interstitial pneumonitis due to cytomegalovirus with ganciclovir and intravenous immune globulin: experience of European Bone Marrow Transplant Group. Clin Infect Dis. 1992;14: Machado CM, Dulley FL, Boas LS, et al. CMV pneumonia in allogeneic BMT recipients undergoing early treatment of pre-emptive ganciclovir therapy. Bone Marrow Transplant. 2000;26: Erard V, Guthrie K, Smith J, Chien J, Corey L, Boeckh M. Cytomegalovirus pneumonia after hematopoietic cell transplantation: outcomes and factors associated with mortality. Paper presented at the Interscience Conference on Antimicrobial Agents and Chemotherapy. Chicago, IL; September Abstract V Williams-Aziz SL, Hartline CB, Harden EA, et al. Comparative activities of lipid esters of cidofovir and cyclic cidofovir against replication of herpesviruses in vitro. Antimicrob Agents Chemother. 2005;49: Schleiss MR, Bernstein DI, McVoy MA, et al. The non-nucleoside antiviral, BAY , protects against cytomegalovirus (CMV) disease and mortality in immunocompromised guinea pigs. Antiviral Res. 2005;65: Limaye AP, Kirby KA, Rubenfeld GD, et al. Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA. 2008;300:

10 : doi: /blood originally published online March 18, 2009 How we treat cytomegalovirus in hematopoietic cell transplant recipients Michael Boeckh and Per Ljungman Updated information and services can be found at: Articles on similar topics can be found in the following Blood collections Clinical Trials and Observations (4814 articles) Free Research Articles (5115 articles) How I Treat (222 articles) Pediatric Hematology (578 articles) Transplantation (2313 articles) Information about reproducing this article in parts or in its entirety may be found online at: Information about ordering reprints may be found online at: Information about subscriptions and ASH membership may be found online at: Blood (print ISSN , online ISSN ), is published weekly by the American Society of Hematology, 2021 L St, NW, Suite 900, Washington DC Copyright 2011 by The American Society of Hematology; all rights reserved.

Diagnosis of CMV infection UPDATE ECIL

Diagnosis of CMV infection UPDATE ECIL UPDATE ECIL-4 2011 Recommendations for CMV and HHV-6 management in patients with hematological diseases Per Ljungman, Rafael de la Camara, Hermann Einsele, Dan Engelhard, Pierre Reusser, Jan Styczynski,

More information

A survey of allogeneic bone marrow transplant programs in the United States regarding cytomegalovirus prophylaxis and pre-emptive therapy

A survey of allogeneic bone marrow transplant programs in the United States regarding cytomegalovirus prophylaxis and pre-emptive therapy (2000) 26, 763 767 2000 Macmillan Publishers Ltd All rights reserved 0268 3369/00 $15.00 www.nature.com/bmt A survey of allogeneic bone marrow transplant programs in the United States regarding cytomegalovirus

More information

Cytomegalovirus in Hematopoietic Stem Cell Transplant Recipients: Current Status, Known Challenges, and Future Strategies

Cytomegalovirus in Hematopoietic Stem Cell Transplant Recipients: Current Status, Known Challenges, and Future Strategies Biology of Blood and Marrow Transplantation 9:543-558 (2003) 2003 American Society for Blood and Marrow Transplantation 1083-8791/03/0909-0001$30.00/0 doi:10.1016/s1083-8791(03)00287-8 Cytomegalovirus

More information

T-cell responses, and graft-versus-host disease (GVHD) were associated with late CMV disease or death. After 3 months, Patients

T-cell responses, and graft-versus-host disease (GVHD) were associated with late CMV disease or death. After 3 months, Patients CLINICAL OBSERVATIONS, INTERVENTIONS, AND THERAPEUTIC TRIALS Late cytomegalovirus disease and mortality in recipients of allogeneic hematopoietic stem cell transplants: importance of viral load and T-cell

More information

CMV pneumonia in allogeneic BMT recipients undergoing early treatment or pre-emptive ganciclovir therapy

CMV pneumonia in allogeneic BMT recipients undergoing early treatment or pre-emptive ganciclovir therapy (2000) 26, 413 417 2000 Macmillan Publishers Ltd All rights reserved 0268 3369/00 $15.00 www.nature.com/bmt CMV pneumonia in allogeneic BMT recipients undergoing early treatment or pre-emptive ganciclovir

More information

CMV Infection after Transplant from Cord Blood Compared to Other Alternative Donors: The Importance of Donor-Negative CMV Serostatus

CMV Infection after Transplant from Cord Blood Compared to Other Alternative Donors: The Importance of Donor-Negative CMV Serostatus CMV Infection after Transplant from Cord Blood Compared to Other Alternative Donors: The Importance of Donor-Negative CMV Serostatus Małgorzata Mikulska, 1 Anna Maria Raiola, 2 Paolo Bruzzi, 3 Riccardo

More information

The clinical utility of CMV surveillance cultures and antigenemia following bone marrow transplantation

The clinical utility of CMV surveillance cultures and antigenemia following bone marrow transplantation Bone Marrow Transplantation, (1999) 23, 45 51 1999 Stockton Press All rights reserved 0268 3369/99 $12.00 http://www.stockton-press.co.uk/bmt The clinical utility of CMV surveillance cultures and antigenemia

More information

Recommendations for VZV management in. Dan Engelhard, Pierre Reusser, Rafael de la Camara, Hermann Einsele, Jan Styczynski, Kate Ward, Per Ljungman

Recommendations for VZV management in. Dan Engelhard, Pierre Reusser, Rafael de la Camara, Hermann Einsele, Jan Styczynski, Kate Ward, Per Ljungman Recommendations for VZV management in patients Cas cliniques with leukemia Dan Engelhard, Pierre Reusser, Rafael de la Camara, Hermann Einsele, Jan Styczynski, Kate Ward, Per Ljungman Introduction Acute

More information

MAJOR ARTICLE. CMV; donor; recipient; serological status; stem cell transplant.

MAJOR ARTICLE. CMV; donor; recipient; serological status; stem cell transplant. MAJOR ARTICLE Donor Cytomegalovirus Status Influences the Outcome of Allogeneic Stem Cell Transplant: A Study by the European Group for Blood and Marrow Transplantation er Ljungman, 1 Ronald Brand, 2 Jennifer

More information

Effect of Conditioning Regimen Intensity on CMV Infection in Allogeneic Hematopoietic Cell Transplantation

Effect of Conditioning Regimen Intensity on CMV Infection in Allogeneic Hematopoietic Cell Transplantation Version 3-30-2009 Effect of Conditioning Regimen Intensity on CMV Infection in Allogeneic Hematopoietic Cell Transplantation Authors: Hirohisa Nakamae, 1 Katharine A. Kirby, 1 Brenda M. Sandmaier, 1,2

More information

Management of Cytomegalovirus (CMV)

Management of Cytomegalovirus (CMV) Management of Cytomegalovirus (CMV) SCT CPG Manual C Clinical Practice Guidelines Volume 1 CG Number Version: 1 Volume: Authorized by: SCT Program Director Current Version Effective: Review Frequency:

More information

EBV in HSCT 2015 update of ECIL guidelines

EBV in HSCT 2015 update of ECIL guidelines ECIL-6 EBV in HSCT 2015 update of ECIL guidelines Jan Styczynski (Poland, chair), Walter van der Velden (Netherlands), Christopher Fox (United Kingdom), Dan Engelhard (Israel), Rafael de la Camara (Spain),

More information

PUO in the Immunocompromised Host: CMV and beyond

PUO in the Immunocompromised Host: CMV and beyond PUO in the Immunocompromised Host: CMV and beyond PUO in the immunocompromised host: role of viral infections Nature of host defect T cell defects Underlying disease Treatment Nature of clinical presentation

More information

See Important Reminder at the end of this policy for important regulatory and legal information.

See Important Reminder at the end of this policy for important regulatory and legal information. Clinical Policy: (Prevymis) Reference Number: CP.PHAR.367 Effective Date: 11.28.17 Last Review Date: 02.19 Line of Business: Commercial, Medicaid, HIM-Medical Benefit Revision Log See Important Reminder

More information

Virological Surveillance in Paediatric HSCT Recipients

Virological Surveillance in Paediatric HSCT Recipients Virological Surveillance in Paediatric HSCT Recipients Dr Pamela Lee Clinical Assistant Professor Department of Paediatrics & Adolescent Medicine Queen Mary Hospital LKS Faculty of Medicine, The University

More information

Disclosures. Investigator-initiated study funded by Astellas

Disclosures. Investigator-initiated study funded by Astellas Disclosures Investigator-initiated study funded by Astellas 1 Background Widespread use of preemptive therapy strategies has decreased CMV end-organ disease to 5-8% after HCT. Implications for development

More information

Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection. Masoud Mardani M.D,FIDSA

Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection. Masoud Mardani M.D,FIDSA Clinical Aspect and Application of Laboratory Test in Herpes Virus Infection Masoud Mardani M.D,FIDSA Shahidhid Bh BeheshtiMdi Medical lui Universityit Cytomegalovirus (CMV), Epstein Barr Virus(EBV), Herpes

More information

Michael Grimley 1, Vinod Prasad 2, Joanne Kurtzberg 2, Roy Chemaly 3, Thomas Brundage 4, Chad Wilson 4, Herve Mommeja-Marin 4

Michael Grimley 1, Vinod Prasad 2, Joanne Kurtzberg 2, Roy Chemaly 3, Thomas Brundage 4, Chad Wilson 4, Herve Mommeja-Marin 4 Twice-weekly Brincidofovir (BCV, CMX1) Shows Promising Antiviral Activity in Immunocompromised Transplant Patients with Asymptomatic Adenovirus Viremia Michael Grimley 1, Vinod Prasad, Joanne Kurtzberg,

More information

See Important Reminder at the end of this policy for important regulatory and legal information.

See Important Reminder at the end of this policy for important regulatory and legal information. Clinical Policy: (Prevymis) Reference Number: CP.PHAR.367 Effective Date: 11.28.17 Last Review Date: 02.18 Line of Business: Commercial, Medicaid, HIM-Medical Benefit Revision Log See Important Reminder

More information

2016 BMT Tandem Meetings

2016 BMT Tandem Meetings ASBMT CIBMTR 2016 BMT Tandem Meetings for Prevention of Cytomegalovirus after Allogeneic Hematopoietic Cell Transplantation in CMV-Seropositive Patients A Randomized, Double-Blind, -Controlled, Parallel-Group

More information

Transferred Herpes Simplex Virus Immunity after Stem-Cell Transplantation: Clinical Implications

Transferred Herpes Simplex Virus Immunity after Stem-Cell Transplantation: Clinical Implications MAJOR ARTICLE Transferred Herpes Simplex Virus Immunity after Stem-Cell Transplantation: Clinical Implications W. Garrett Nichols, 1,3 Michael Boeckh, 1,3 Rachel A. Carter, 1,2 Anna Wald, 3,4,5 and Lawrence

More information

& 2010 Macmillan Publishers Limited All rights reserved /10 $

& 2010 Macmillan Publishers Limited All rights reserved /10 $ (2010) 45, 979 984 & 2010 Macmillan Publishers Limited All rights reserved 0268-3369/10 $32.00 www.nature.com/bmt REVIEW CMV central nervous system disease in stem-cell transplant recipients: an increasing

More information

Clinical Study CMV Serostatus of Donor-Recipient Pairs Influences the Risk of CMV Infection/Reactivation in HSCT Patients

Clinical Study CMV Serostatus of Donor-Recipient Pairs Influences the Risk of CMV Infection/Reactivation in HSCT Patients Bone Marrow Research Volume 22, Article ID 37575, 8 pages doi:.55/22/37575 Clinical Study CMV Serostatus of Donor-Recipient Pairs Influences the Risk of CMV Infection/Reactivation in HSCT Patients Emilia

More information

KEY WORDS: Cytomegalovirus, PCR, Preemptive therapy, Hematopoietic cell transplantation

KEY WORDS: Cytomegalovirus, PCR, Preemptive therapy, Hematopoietic cell transplantation Efficacy of a Viral Load-Based, Risk-Adapted, Preemptive Treatment Strategy for Prevention of Cytomegalovirus Disease after Hematopoietic Cell Transplantation Margaret L. Green, 1,2 Wendy Leisenring, 1,3

More information

Cytomegalovirus Disease Occurring Before Engraftment in Marrow Transplant Recipients

Cytomegalovirus Disease Occurring Before Engraftment in Marrow Transplant Recipients 830 Cytomegalovirus Disease Occurring Before Engraftment in Marrow Transplant Recipients Ajit P. Limaye, Raleigh A. Bowden, David Myerson, and Michael Boeckh From the Department ofmedicine, Division ofinfectious

More information

CENTENE PHARMACY AND THERAPEUTICS DRUG REVIEW 1Q18 January February

CENTENE PHARMACY AND THERAPEUTICS DRUG REVIEW 1Q18 January February BRAND NAME Prevymis TM GENERIC NAME Letermovir MANUFACTURER Merck & Co., Inc. DATE OF APPROVAL November 9, 2017 PRODUCT LAUNCH DATE TBD REVIEW TYPE Review type 1 (RT1): New Drug Review Full review of new

More information

Blood and Marrow TRANSPLANTATION

Blood and Marrow TRANSPLANTATION Blood and Marrow TRANSPLANTATION REVIEWS A Publication of the American Society for Blood and Marrow Transplantation Issues in Hematology, Oncology, and Immunology VOLUME 14 NO 1 2004 IN THIS ISSUE INTRODUCTION

More information

Ganciclovir Inhibits Lymphocyte Proliferation by Impairing DNA Synthesis

Ganciclovir Inhibits Lymphocyte Proliferation by Impairing DNA Synthesis Biology of Blood and Marrow Transplantation 13:765-770 (2007) 2007 American Society for Blood and Marrow Transplantation 1083-8791/07/1307-0001$32.00/0 doi:10.1016/j.bbmt.2007.03.009 Ganciclovir Inhibits

More information

Original article Failure of pre-emptive treatment of cytomegalovirus infections and antiviral resistance in stem cell transplant recipients

Original article Failure of pre-emptive treatment of cytomegalovirus infections and antiviral resistance in stem cell transplant recipients Antiviral Therapy ; 7: (doi:.8/imp899) Original article Failure of pre-emptive treatment of cytomegalovirus infections and antiviral resistance in stem cell transplant recipients Martha T van der Beek

More information

2017 CST-Astellas Canadian Transplant Fellows Symposium. Optimizing use of organs from Increased Risk Donors

2017 CST-Astellas Canadian Transplant Fellows Symposium. Optimizing use of organs from Increased Risk Donors 2017 CST-Astellas Canadian Transplant Fellows Symposium Optimizing use of organs from Increased Risk Donors Atual Humar, MD Atul Humar is a Professor in the Department of Medicine, University of Toronto.

More information

Transpla. antation. Associate Professor of Medical Virology Virology Research Center Shahid Beheshti University of Medical Sciences

Transpla. antation. Associate Professor of Medical Virology Virology Research Center Shahid Beheshti University of Medical Sciences Viral Mo olecular Diagno osis in Transpla antation Seyed Alireza Nadji, Ph.D. Associate Professor of Medical Virology Virology Research Center Shahid Beheshti University of Medical Sciences Which techniques

More information

& 2004 Nature Publishing Group All rights reserved /04 $

& 2004 Nature Publishing Group All rights reserved /04 $ (2004) 33, 197 204 & 2004 Nature Publishing Group All rights reserved 0268-3369/04 $25.00 www.nature.com/bmt Viral infections Influence of cytomegalovirus (CMV) sero-positivity on CMV infection, lymphocyte

More information

CHAPTER 3 LABORATORY PROCEDURES

CHAPTER 3 LABORATORY PROCEDURES CHAPTER 3 LABORATORY PROCEDURES CHAPTER 3 LABORATORY PROCEDURES 3.1 HLA TYPING Molecular HLA typing will be performed for all donor cord blood units and patients in the three reference laboratories identified

More information

CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia

CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia 2013 122: 1316-1324 Prepublished online June 6, 2013; doi:10.1182/blood-2013-02-487074 CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia Margaret

More information

Emerging CMV Resistance Profile for CMX001

Emerging CMV Resistance Profile for CMX001 Emerging CMV Resistance Profile for CMX001 International Conference on Antiviral Research May 15, 2013 Randall Lanier, PhD Forward Looking Statements These slides and the accompanying oral presentation

More information

Allogeneic Hematopoietic Stem Cell Transplantation: State of the Art in 2018 RICHARD W. CHILDS M.D. BETHESDA MD

Allogeneic Hematopoietic Stem Cell Transplantation: State of the Art in 2018 RICHARD W. CHILDS M.D. BETHESDA MD Allogeneic Hematopoietic Stem Cell Transplantation: State of the Art in 2018 RICHARD W. CHILDS M.D. BETHESDA MD Overview: Update on allogeneic transplantation for malignant and nonmalignant diseases: state

More information

Prevention of Cytomegalovirus Disease in Allogeneic Stem Cell Transplant: Are We Being Tricked to Treat?

Prevention of Cytomegalovirus Disease in Allogeneic Stem Cell Transplant: Are We Being Tricked to Treat? Prevention of Cytomegalovirus Disease in Allogeneic Stem Cell Transplant: Are We Being Tricked to Treat? Brittney Ramirez, PharmD PGY-1 Pharmacy Resident Methodist Hospital and Methodist Children s Hospital,

More information

One Day BMT Course by Thai Society of Hematology. Management of Graft Failure and Relapsed Diseases

One Day BMT Course by Thai Society of Hematology. Management of Graft Failure and Relapsed Diseases One Day BMT Course by Thai Society of Hematology Management of Graft Failure and Relapsed Diseases Piya Rujkijyanont, MD Division of Hematology-Oncology Department of Pediatrics Phramongkutklao Hospital

More information

Brief Communication Diagnostic Immunology

Brief Communication Diagnostic Immunology Brief Communication Diagnostic Immunology Ann Lab Med 2017;37:277-281 https://doi.org/10.3343/alm.2017.37.3.277 ISSN 2234-3806 eissn 2234-3814 Clinical Usefulness of Monitoring Cytomegalovirus- Specific

More information

The National Marrow Donor Program. Graft Sources for Hematopoietic Cell Transplantation. Simon Bostic, URD Transplant Recipient

The National Marrow Donor Program. Graft Sources for Hematopoietic Cell Transplantation. Simon Bostic, URD Transplant Recipient 1988 199 1992 1994 1996 1998 2 22 24 26 28 21 212 214 216 218 Adult Donors Cord Blood Units The National Donor Program Graft Sources for Hematopoietic Cell Transplantation Dennis L. Confer, MD Chief Medical

More information

Cases: CMV, HCV, BKV and Kidney Transplantation. Simin Goral, MD University of Pennsylvania Medical Center

Cases: CMV, HCV, BKV and Kidney Transplantation. Simin Goral, MD University of Pennsylvania Medical Center Cases: CMV, HCV, BKV and Kidney Transplantation Simin Goral, MD University of Pennsylvania Medical Center Disclosures Grant support: Otsuka Pharmaceuticals, Astellas Pharma, Angion, AstraZeneca, and Kadmon

More information

Severe Viral Related Complications Following Allo-HCT for Severe Aplastic Anemia

Severe Viral Related Complications Following Allo-HCT for Severe Aplastic Anemia Severe Viral Related Complications Following Allo-HCT for Severe Aplastic Anemia Liat Shragian Alon, MD Rabin Medical Center, ISRAEL #EBMT15 www.ebmt.org Patient: 25-year-old male No prior medical history

More information

Current and Future Treatment of Cytomegalovirus Infection

Current and Future Treatment of Cytomegalovirus Infection Current and Future Treatment of Cytomegalovirus Infection Robin K. Avery MD, FIDSA, FAST Professor of Medicine, Division of Infectious Disease Johns Hopkins Disclosures Robin Avery MD has been a co-investigator

More information

Cytomegalovirus (CMV) Infections - Pipeline Assessment and Market Forecasts to 2019

Cytomegalovirus (CMV) Infections - Pipeline Assessment and Market Forecasts to 2019 Reference Code: GDHC504PRT Publication Date: January 2013 Cytomegalovirus Infections: Key Metrics in Seven Major Pharmaceutical Markets 2012 Epidemiology* Prevalent population (CMV prevalent cases in general

More information

IN ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANT PATIENTS WITH BRINCIDOFOVIR: FINAL 36 WEEK RESULTS FROM THE ADVISE TRIAL

IN ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANT PATIENTS WITH BRINCIDOFOVIR: FINAL 36 WEEK RESULTS FROM THE ADVISE TRIAL TREATMENT OF ADENOVIRUS (AdV) INFECTION IN ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANT PATIENTS WITH BRINCIDOFOVIR: FINAL 36 WEEK RESULTS FROM THE ADVISE TRIAL Vinod K. Prasad, MD, FRCP 1, Genovefa A. Papanicolaou,

More information

Trends in Hematopoietic Cell Transplantation. AAMAC Patient Education Day Oct 2014

Trends in Hematopoietic Cell Transplantation. AAMAC Patient Education Day Oct 2014 Trends in Hematopoietic Cell Transplantation AAMAC Patient Education Day Oct 2014 Objectives Review the principles behind allogeneic stem cell transplantation Outline the process of transplant, some of

More information

Riposta immune versus stato immune

Riposta immune versus stato immune Riposta immune versus stato immune Russell E. Lewis U.O. Malattie Infettive, Policlinico S. Orsola-Malpighi Dipartimento di Scienze Mediche e Chirurgiche Alma Mater Studiorum Università di Bologna Immunodeficiency

More information

Haplo vs Cord vs URD Debate

Haplo vs Cord vs URD Debate 3rd Annual ASBMT Regional Conference for NPs, PAs and Fellows Haplo vs Cord vs URD Debate Claudio G. Brunstein Associate Professor University of Minnesota Medical School Take home message Finding a donor

More information

Itraconazole vs. fluconazole for antifungal prophylaxis in allogeneic stem-cell transplant patients D. J. Winston

Itraconazole vs. fluconazole for antifungal prophylaxis in allogeneic stem-cell transplant patients D. J. Winston REVIEW Itraconazole vs. fluconazole for antifungal prophylaxis in allogeneic stem-cell transplant patients D. J. Winston Division of Hematology-Oncology, Department of Medicine, UCLA Medical Center, Los

More information

Viral infections Cytomegalovirus pneumonia in adult autologous blood and marrow transplant recipients

Viral infections Cytomegalovirus pneumonia in adult autologous blood and marrow transplant recipients (2001) 27, 877 881 2001 Nature Publishing Group All rights reserved 0268 3369/01 $15.00 www.nature.com/bmt Viral infections Cytomegalovirus pneumonia in adult autologous blood and marrow transplant recipients

More information

Original Articles ABSTRACT. Acknowledgments: we thank Daniel Stachel, MD, for reviewing

Original Articles ABSTRACT. Acknowledgments: we thank Daniel Stachel, MD, for reviewing Original Articles Cytopenias after day 28 in allogeneic hematopoietic cell transplantation: impact of recipient/donor factors, transplant conditions and myelotoxic drugs Hirohisa Nakamae,,2 Barry Storer,,3

More information

Role of NMDP Repository in the Evolution of HLA Matching and Typing for Unrelated Donor HCT

Role of NMDP Repository in the Evolution of HLA Matching and Typing for Unrelated Donor HCT Role of NMDP Repository in the Evolution of HLA Matching and Typing for Unrelated Donor HCT Stephen Spellman, MBS Director, Immunobiology and Observational Research Assistant Scientific Director CIBMTR,

More information

Revista Cubana de Hematología, Inmunología y Hemoterapia. 2017; 36 (Suplemento).

Revista Cubana de Hematología, Inmunología y Hemoterapia. 2017; 36 (Suplemento). Depletion of TCR alpha/beta+ T-lymphocytes from grafts for haplo haematopoietic CELL transplantation (HCT) in children Heilmann C, Ifversen M, Haastrup E, Fischer-Nielsen A. Haematopoietic Cell Transplantation

More information

CMV Drug Resistance: Clinical Impact and Potential Strategies Sunwen Chou, MD

CMV Drug Resistance: Clinical Impact and Potential Strategies Sunwen Chou, MD CMV Drug Resistance: Clinical Impact and Potential Strategies Sunwen Chou, MD Slide 1 CMV Drug Resistance: Clinical Impact and Potential Strategies Thank you. Slide 2 CMV Resistance Typical Setting As

More information

MUD SCT. Pimjai Niparuck Division of Hematology, Department of Medicine Ramathibodi Hospital, Mahidol University

MUD SCT. Pimjai Niparuck Division of Hematology, Department of Medicine Ramathibodi Hospital, Mahidol University MUD SCT Pimjai Niparuck Division of Hematology, Department of Medicine Ramathibodi Hospital, Mahidol University Outlines Optimal match criteria for unrelated adult donors Role of ATG in MUD-SCT Post-transplant

More information

Dedicated to Preventing and Treating Life-Threatening Viral Infections. Randall Lanier Vice President, Biology

Dedicated to Preventing and Treating Life-Threatening Viral Infections. Randall Lanier Vice President, Biology Dedicated to Preventing and Treating Life-Threatening Viral Infections Randall Lanier Vice President, Biology Adenovirus: Epidemiology and Treatment Options Allogeneic hematopoietic cell transplant (allo

More information

Stem Cell Transplantation for Severe Aplastic Anemia

Stem Cell Transplantation for Severe Aplastic Anemia Number of Transplants 10/24/2011 Stem Cell Transplantation for Severe Aplastic Anemia Claudio Anasetti, MD Professor of Oncology and Medicine Chair, Blood and Marrow Transplant Dpt Moffitt Cancer Center

More information

CMV UPDATE FINAL SLIDE SET Sept. 23rd, 2017

CMV UPDATE FINAL SLIDE SET Sept. 23rd, 2017 CMV UPDATE FINAL SLIDE SET Sept. 23rd, 2017 ECIL 7 CMV and HHV-6 update group Members Per Ljungman (Sweden) Rafael de la Camara (Spain) Roberto Crocchiolo (Italy) Hermann Einsele (Germany) Petr Hubacek

More information

Regulatory Status FDA-approved indications: Valcyte is a deoxynucleoside analogue cytomegalovirus (CMV) DNA polymerase inhibitor indicated for: (1)

Regulatory Status FDA-approved indications: Valcyte is a deoxynucleoside analogue cytomegalovirus (CMV) DNA polymerase inhibitor indicated for: (1) Federal Employee Program 1310 G Street, N.W. Washington, D.C. 20005 202.942.1000 Fax 202.942.1125 5.01.22 Subject: Valcyte Page: 1 of 5 Last Review Date: December 8, 2017 Valcyte Description Valcyte (valganciclovir)

More information

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION

Dr. Yi-chi M. Kong August 8, 2001 Benjamini. Ch. 19, Pgs Page 1 of 10 TRANSPLANTATION Benjamini. Ch. 19, Pgs 379-399 Page 1 of 10 TRANSPLANTATION I. KINDS OF GRAFTS II. RELATIONSHIPS BETWEEN DONOR AND RECIPIENT Benjamini. Ch. 19, Pgs 379-399 Page 2 of 10 II.GRAFT REJECTION IS IMMUNOLOGIC

More information

IDWeek 2014, Session: 186, Late Breaker Oral Abstracts Saturday, October 11, 2014, Presentation No. LB 3

IDWeek 2014, Session: 186, Late Breaker Oral Abstracts Saturday, October 11, 2014, Presentation No. LB 3 IDWeek 2014, Session: 186, Late Breaker Oral Abstracts Saturday, October 11, 2014, Presentation No. LB 3 Preliminary Safety Results and Antiviral Activity from the Open label Pilot Portion of a Phase 3

More information

The future of HSCT. John Barrett, MD, NHBLI, NIH Bethesda MD

The future of HSCT. John Barrett, MD, NHBLI, NIH Bethesda MD The future of HSCT John Barrett, MD, NHBLI, NIH Bethesda MD Transplants today Current approaches to improve SCT outcome Optimize stem cell dose and source BMT? PBSCT? Adjusting post transplant I/S to minimize

More information

DEDICATED TO PREVENTING AND TREATING LIFE-THREATENING VIRAL INFECTIONS

DEDICATED TO PREVENTING AND TREATING LIFE-THREATENING VIRAL INFECTIONS DEDICATED TO PREVENTING AND TREATING LIFE-THREATENING VIRAL INFECTIONS February 22, 2016 Forward-Looking Statements These slides and the accompanying oral presentation contain forward-looking statements

More information

Viral Infections in Patients with Hematological Malignancies

Viral Infections in Patients with Hematological Malignancies Viral Infections in Patients with Hematological Malignancies James C. Wade Viral infections are important causes of morbidity and mortality for patients with a hematological malignancy. However, the true

More information

Disclosures. CMV and EBV Infection in Pediatric Transplantation. Goals. Common Aspects CMV (Cytomegalovirus) and EBV (Epstein-Barr virus)

Disclosures. CMV and EBV Infection in Pediatric Transplantation. Goals. Common Aspects CMV (Cytomegalovirus) and EBV (Epstein-Barr virus) Disclosures I have financial relationships with the following companies: CMV and EBV Infection in Pediatric Transplantation Elekta Inc Lucence Diagnostics Spouse employed Spouse employed I will not discuss

More information

Preventing CMV Transmission through Leukodepletion

Preventing CMV Transmission through Leukodepletion Preventing CMV Transmission through Leukodepletion Possibility & Facts Prof.S.B.Rajadhyaksha, MD,DTM,PGDMLS Head, Dept. of Transfusion Medicine Tata Memorial Hospital, Mumbai 1 Donor Leukocytes Linked

More information

Barry Slobedman. University of Sydney. Viruses in May 11 th May, 2013

Barry Slobedman. University of Sydney. Viruses in May 11 th May, 2013 Barry Slobedman University of Sydney Viruses in May 11 th May, 2013 Outline Human cytomegalovirus (CMV) impact on the community Three phases of infection Focus on the dormant (latent) phase of infection

More information

KEY WORDS: Cytomegalovirus, Bone marrow transplantation, Nonmyeloablative, Immune reconstitution, Antithymocyte globulin

KEY WORDS: Cytomegalovirus, Bone marrow transplantation, Nonmyeloablative, Immune reconstitution, Antithymocyte globulin Early CMV Viremia Is Associated with Impaired Viral Control following Nonmyeloablative Hematopoietic Cell Transplantation with a Total Lymphoid Irradiation and Antithymocyte Globulin Preparative Regimen

More information

CMV Diagnostic Strategies: Current and Future

CMV Diagnostic Strategies: Current and Future CMV Diagnostic Strategies: Current and Future Tony Mazzulli, MD, FRCPC, FACP Microbiologist-in-Chief Mount Sinai Hospital & University Health Network, Toronto Faculty/Presenter Disclosure Relationships

More information

5/9/2018. Bone marrow failure diseases (aplastic anemia) can be cured by providing a source of new marrow

5/9/2018. Bone marrow failure diseases (aplastic anemia) can be cured by providing a source of new marrow 5/9/2018 or Stem Cell Harvest Where we are now, and What s Coming AA MDS International Foundation Indianapolis IN Luke Akard MD May 19, 2018 Infusion Transplant Conditioning Treatment 2-7 days STEM CELL

More information

Clinical Study Resolution of Mild Ganciclovir-Resistant Cytomegalovirus Disease with Reduced-Dose Cidofovir and CMV-Hyperimmune Globulin

Clinical Study Resolution of Mild Ganciclovir-Resistant Cytomegalovirus Disease with Reduced-Dose Cidofovir and CMV-Hyperimmune Globulin Transplantation, Article ID 342319, 5 pages http://dx.doi.org/10.1155/2014/342319 Clinical Study Resolution of Mild Ganciclovir-Resistant Cytomegalovirus Disease with Reduced-Dose Cidofovir and CMV-Hyperimmune

More information

Cytomegalovirus reactivation following hematopoietic stem cell transplantation

Cytomegalovirus reactivation following hematopoietic stem cell transplantation Brief Original Article Cytomegalovirus reactivation following hematopoietic stem cell transplantation Sanjeev Kumar Sharma 1, Suman Kumar 1, Narendra Agrawal 1, Lavleen Singh 2, Anjan Mukherjee 3, Tulika

More information

KEY WORDS: Allogeneic, Hematopoietic cell transplantation, Graft-versus-host disease, Immunosuppressants, Cyclosporine, Tacrolimus

KEY WORDS: Allogeneic, Hematopoietic cell transplantation, Graft-versus-host disease, Immunosuppressants, Cyclosporine, Tacrolimus A Retrospective Comparison of Tacrolimus versus Cyclosporine with Methotrexate for Immunosuppression after Allogeneic Hematopoietic Cell Transplantation with Mobilized Blood Cells Yoshihiro Inamoto, 1

More information

Reduced-intensity Conditioning Transplantation

Reduced-intensity Conditioning Transplantation Reduced-intensity Conditioning Transplantation Current Role and Future Prospect He Huang M.D., Ph.D. Bone Marrow Transplantation Center The First Affiliated Hospital Zhejiang University School of Medicine,

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/20898 holds various files of this Leiden University dissertation. Author: Jöris, Monique Maria Title: Challenges in unrelated hematopoietic stem cell transplantation.

More information

Federica Galaverna, 1 Daria Pagliara, 1 Deepa Manwani, 2 Rajni Agarwal-Hashmi, 3 Melissa Aldinger, 4 Franco Locatelli 1

Federica Galaverna, 1 Daria Pagliara, 1 Deepa Manwani, 2 Rajni Agarwal-Hashmi, 3 Melissa Aldinger, 4 Franco Locatelli 1 Administration of Rivogenlecleucel (Rivo-cel, BPX-501) Following αβ T- and B-Cell Depleted Haplo-HSCT in Children With Transfusion-Dependent Thalassemia Federica Galaverna, 1 Daria Pagliara, 1 Deepa Manwani,

More information

Viral disease prevention after hematopoietic cell transplantation

Viral disease prevention after hematopoietic cell transplantation (2009) 44, 471 482 & 2009 Macmillan Publishers Limited All rights reserved 0268-3369/09 $32.00 www.nature.com/bmt GUIDELINES Viral disease prevention after hematopoietic cell transplantation J Zaia 1,

More information

Haploidentical Transplantation today: and the alternatives

Haploidentical Transplantation today: and the alternatives Haploidentical Transplantation today: and the alternatives Daniel Weisdorf MD University of Minnesota February, 2013 No matched sib: where to look? URD donor requires close HLA matching and 3-12 weeks

More information

Transplantation with unrelated bone marrow in leukaemic patients above 40 years of age

Transplantation with unrelated bone marrow in leukaemic patients above 40 years of age Bone Marrow Transplantation, (1998) 21, 43 49 1998 Stockton Press All rights reserved 0268 3369/98 $12.00 Transplantation with unrelated bone marrow in leukaemic patients above 40 years of age O Ringdén

More information

HLA-DR-matched Parental Donors for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with High-risk Acute Leukemia

HLA-DR-matched Parental Donors for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with High-risk Acute Leukemia BRIEF COMMUNICATION HLA-DR-matched Parental Donors for Allogeneic Hematopoietic Stem Cell Transplantation in Patients with High-risk Acute Leukemia Shang-Ju Wu, Ming Yao,* Jih-Luh Tang, Bo-Sheng Ko, Hwei-Fang

More information

Bone Marrow Transplantation and the Potential Role of Iomab-B

Bone Marrow Transplantation and the Potential Role of Iomab-B Bone Marrow Transplantation and the Potential Role of Iomab-B Hillard M. Lazarus, MD, FACP Professor of Medicine, Director of Novel Cell Therapy Case Western Reserve University 1 Hematopoietic Cell Transplantation

More information

Immune Reconstitution Following Hematopoietic Cell Transplant

Immune Reconstitution Following Hematopoietic Cell Transplant Immune Reconstitution Following Hematopoietic Cell Transplant Patrick J. Kiel, PharmD, BCPS, BCOP Clinical Pharmacy Specialist Indiana University Simon Cancer Center Conflicts of Interest Speaker Bureau

More information

Donatore HLA identico di anni o MUD giovane?

Donatore HLA identico di anni o MUD giovane? Donatore HLA identico di 60-70 anni o MUD giovane? Stella Santarone Dipartimento di Ematologia, Medicina Trasfusionale e Biotecnologie Pescara AGENDA 1. Stem Cell Donation: fatalities and severe events

More information

INTRODUCTION. Biology of Blood and Marrow Transplantation 13: (2007) 2007 American Society for Blood and Marrow Transplantation

INTRODUCTION. Biology of Blood and Marrow Transplantation 13: (2007) 2007 American Society for Blood and Marrow Transplantation Biology of Blood and Marrow Transplantation 13:100-106 (2007) 2007 American Society for Blood and Marrow Transplantation 1083-8791/07/1301-0001$32.00/0 doi:10.1016/j.bbmt.2006.09.003 Risk Factors for Developing

More information

Form 2033 R3.0: Wiskott-Aldrich Syndrome Pre-HSCT Data

Form 2033 R3.0: Wiskott-Aldrich Syndrome Pre-HSCT Data Key Fields Sequence Number: Date Received: - - CIBMTR Center Number: CIBMTR Recipient ID: Has this patient's data been previously reported to USIDNET? USIDNET ID: Today's Date: - - Date of HSCT for which

More information

BRINCIDOFOVIR WAS USED TO SUCCESSFULLY TREAT ADENOVIRUS INFECTIONS IN SOLID ORGAN TRANSPLANT RECIPIENTS AND OTHER IMMUNOCOMPROMISED PATIENTS

BRINCIDOFOVIR WAS USED TO SUCCESSFULLY TREAT ADENOVIRUS INFECTIONS IN SOLID ORGAN TRANSPLANT RECIPIENTS AND OTHER IMMUNOCOMPROMISED PATIENTS BRINCIDOFOVIR WAS USED TO SUCCESSFULLY TREAT ADENOVIRUS INFECTIONS IN SOLID ORGAN TRANSPLANT RECIPIENTS AND OTHER IMMUNOCOMPROMISED PATIENTS Diana F. Florescu, MD 1, Michael S. Grimley, MD 2, Genovefa

More information

National Marrow Donor Program HLA-Matching Guidelines for Unrelated Marrow Transplants

National Marrow Donor Program HLA-Matching Guidelines for Unrelated Marrow Transplants Biology of Blood and Marrow Transplantation 9:610-615 (2003) 2003 American Society for Blood and Marrow Transplantation 1083-8791/03/0910-0003$30.00/0 doi:10.1016/s1083-8791(03)00329-x National Marrow

More information

valganciclovir, 450mg tablets, 50mg/ml powder for oral solution (Valcyte ) SMC No. (662/10) Roche Products Ltd

valganciclovir, 450mg tablets, 50mg/ml powder for oral solution (Valcyte ) SMC No. (662/10) Roche Products Ltd valganciclovir, 450mg tablets, 50mg/ml powder for oral solution (Valcyte ) SMC No. (662/10) Roche Products Ltd 17 December 2010 The Scottish Medicines Consortium (SMC) has completed its assessment of the

More information

Viral Hepatitis Diagnosis and Management

Viral Hepatitis Diagnosis and Management Viral Hepatitis Diagnosis and Management CLINICAL BACKGROUND Viral hepatitis is a relatively common disease (25 per 100,000 individuals in the United States) caused by a diverse group of hepatotropic agents

More information

Risk factors of CMV infection in patients after umbilical cord blood transplantation: a multicenter study in China

Risk factors of CMV infection in patients after umbilical cord blood transplantation: a multicenter study in China Original Article Risk factors of CMV infection in patients after umbilical cord blood transplantation: a multicenter study in China Juan Tong 1,2, Zimin Sun 1,2, Huilan Liu 2, Liangquan Geng 2, Changcheng

More information

What s a Transplant? What s not?

What s a Transplant? What s not? What s a Transplant? What s not? How to report the difference? Daniel Weisdorf MD University of Minnesota Anti-cancer effects of BMT or PBSCT [HSCT] Kill the cancer Save the patient Restore immunocompetence

More information

BK virus infection in renal transplant recipients: single centre experience. Dr Wong Lok Yan Ivy

BK virus infection in renal transplant recipients: single centre experience. Dr Wong Lok Yan Ivy BK virus infection in renal transplant recipients: single centre experience Dr Wong Lok Yan Ivy Background BK virus nephropathy (BKVN) has emerged as an important cause of renal graft dysfunction in recent

More information

Cytomegalovirus in critically ill patients

Cytomegalovirus in critically ill patients ! Cytomegalovirus in critically ill patients Frédéric Pène Medical ICU, Hôpital Cochin, AP-HP, Paris, France Université Paris Descartes, Sorbonne Paris Cité Institut Cochin, Inserm U1016, CNRS UMR-8104

More information

Umbilical Cord Blood Transplantation

Umbilical Cord Blood Transplantation Umbilical Cord Blood Transplantation Current Results John E. Wagner, M.D. Blood and Marrow Transplant Program and Stem Cell Institute University of Minnesota Donor Choices Unrelated Marrow/PBSC Results

More information

Systematic Reviews in Hematological Malignancies

Systematic Reviews in Hematological Malignancies Systematic Reviews in Hematological Malignancies Pia Raanani, MD Davidoff Cancer Center Rabin Medical Center, Israel 1 2 Disorder CHMG Systematic review* Title Protocol Full Review Myelodysplastic syndrome

More information

Blood Product Modifications: Leukofiltration, Irradiation and Washing

Blood Product Modifications: Leukofiltration, Irradiation and Washing 1. Leukocyte Reduction Definitions and Standards: o Process also known as leukoreduction, or leukofiltration o Applicable AABB Standards, 25th ed. Leukocyte-reduced RBCs At least 85% of original RBCs

More information

Le infezioni fungine nel trapianto di cellule staminali emopoietiche. Claudio Viscoli Professor of Infectious Disease University of Genova, Italy

Le infezioni fungine nel trapianto di cellule staminali emopoietiche. Claudio Viscoli Professor of Infectious Disease University of Genova, Italy Le infezioni fungine nel trapianto di cellule staminali emopoietiche Claudio Viscoli Professor of Infectious Disease University of Genova, Italy Potential conflicts of interest Received grants as speaker/moderator

More information

LETERMOVIR (MK-8228): OVERVIEW OF PIVOTAL PHASE 3 STUDY (P001) ASSESSING PROPHYLAXIS OF LETERMOVIR VS. PLACEBO IN ALLOGENEIC HSCT RECIPIENTS

LETERMOVIR (MK-8228): OVERVIEW OF PIVOTAL PHASE 3 STUDY (P001) ASSESSING PROPHYLAXIS OF LETERMOVIR VS. PLACEBO IN ALLOGENEIC HSCT RECIPIENTS LETERMOVIR (MK-8228): OVERVIEW OF PIVOTAL PHASE 3 STUDY (P001) ASSESSING PROPHYLAXIS OF LETERMOVIR VS. PLACEBO IN ALLOGENEIC HSCT RECIPIENTS October 6, 2017 Cyrus Badshah, MD, PhD Director, Clinical Research

More information

Complications after HSCT. ICU Fellowship Training Radboudumc

Complications after HSCT. ICU Fellowship Training Radboudumc Complications after HSCT ICU Fellowship Training Radboudumc Type of HSCT HSCT Improved outcome due to better HLA matching, conditioning regimens, post transplant supportive care Over one-third have pulmonary

More information

Rob Wynn RMCH & University of Manchester, UK. HCT in Children

Rob Wynn RMCH & University of Manchester, UK. HCT in Children Rob Wynn RMCH & University of Manchester, UK HCT in Children Summary Indications for HCT in children Donor selection for Paediatric HCT Using cords Achieving engraftment in HCT Conditioning Immune action

More information