COMPARISON OF THE RESPIRABLE FRACTION FROM THREE DIFERENT DPI DEVICES

Size: px
Start display at page:

Download "COMPARISON OF THE RESPIRABLE FRACTION FROM THREE DIFERENT DPI DEVICES"

Transcription

1 COMPARISON OF THE RESPIRABLE FRACTION FROM THREE DIFERENT DPI DEVICES Miriam Sanz Cermeño and Helena Maria Cabral Marques UCTF, Faculdade de Farmácia, Universidade de Lisboa, PORTUGAL 1. Introduction Inhalation is a method of delivery which has been known and used for decades, mainly in respiratory diseases. There are two ways of treating asthma: a) to dilate the bronchi, i.e. to treat an asthma attack as it occurs and the drugs used are bronchodilators such as salbutamol; b) to inhibit bronchoconstriction, by attacking the inflammation with steroidal anti-inflammatories. Dry powder inhalers (DPIs) offer a unique opportunity for the delivery of drugs to the lung as aerosols. These devices combine powder technology with device design in order to disperse dry particles as an aerosol in the patient s inspiratory airflow [1]. The deposition of particles is largely controlled by their impaction on pulmonary surfaces. The larger particles (> 20 µm) impact in the oropharynx; the particle velocity increases as the airways become narrower at deeper levels, and successively smaller particles impact in narrower vessels. Thus the terminal bronchioles are only reached by particles smaller than 2-3 µm. Unfortunately these smallest particles may not impact at these deep levels, since they do not diffuse rapidly enough to encounter an epithelial surface before exhalation removes them from the respiratory tract [2]. To introduce drug particles into the lung they must be < 5 µm in aerodynamic diameter [1]. This is generally achieved by milling the powder prior to formulation. Small particles are notoriously difficult to disperse. The forces governing dispersion are well documented and consist mainly of electrostatic, Van der Waals, and capillary forces [1]. One approach that has been taken to improve the dispersion of dry powders is the inclusion of an excipient, notably lactose. The lactose particles are intended to act as carrier particles for the drug and as such are in a much large size range, µm [1]. The drug particles are dispersed and can traverse the upper respiratory tract while the excipient particles do not pass beyond the mouth piece of the device or the mouth and throat of the patient [1]. In order to study better these excepient / drug interations, as dry powders, three devices were compared these work three devices were compared: the Microhaler, the Rotahaler and the FlowCaps.

2 2. Materials and Methods 2.1. Devices The three devices used are capsule-based inhalers: Microhaler TM - the capsule is pierced manually at both ends, using the pin mechanism existing inside the device. The powder is then released through the capsule holes and inhaled through a screened tube by means of the circulating air which generates a rotating motion in capsule (i.e. spinning of the capsule). Rotahaler TM - the capsule is inserted into the device, wherein, by rotating the device it is opened (or broken) in two halves: the capsule body containing the powder falls into the device, while the capsule cap is retained in the entry port (hole) and the powder is inhaled through a screened tube [3]. The capsule body containing the powder experiences an erratic motion in the air stream, causing dislodge particles to be entrained and inhaled [1]. Flowcaps - is based on a new concept in capsule-based inhalers: the dancing cloud which causes the emission of the powder contents of a motionless capsule [4]. The capsule is cut at both ends by blades. As the admission of air into the capsule is severely restricted through very small cuts, i.e. narrow slits, a low pressure is created in that area of the capsule, causing the powder to rush towards it (against the direction of the airflow), and it gradually becomes entrained towards the mouthpiece [4]. The figures represent the 3 devices used: 1) Microhaler TM 2) Rotahaler 3) FlowCaps 2.2. Deposition of salbutamol sulphate The in vitro deposition of pulmonary aerosol formulation was tested using the Twin-stage liquid impinger (Twin Impinger, Copley, U.K.) [5], a two-stage separation device for assessing the drug delivery from inhalation delivery devices. The discharged aerosol is fractionated by firing through a simulated oropharynx and then through an impinger stage of defined aerodynamic particle size cut-off characteristics [6]. The fine (pulmonary) fraction which penetrates is collected by the lower impinger.

3 This glass impinger, in which the aerosol particles impinge on to the liquid and surfaces due to their inertia in a deflected airstream, has proved valuable for routine quality assessment of aerosols during product development, stability testing and for quality assurance and comparison of commercial products [6]. To enable correct functioning of most powder inhalers, a airflow of 60 L min -1 is recommended [5, 6]. The blend tested, salbutamol sulphate and lactose, batch nº F6-9617, was prepared by using a special mixer. The blend particle size distribution obtained by dry dispersion (Malvern Mastersizer) was as follows: 90 % < µm; 50 % < µm and 10 % < µm. Hard gelatine capsules n.º 4 (for the FlowCaps ) and n.º 3 (for the Microhaler and Rotahaler ) were filled with 22 mg (Balance: Mettler AG 204. Delta Range ) of the mixture (corresponding to 200 µg salbutamol per capsule). These capsules were then placed in the Microhaler, Rotahaler or FlowCaps Dry Powder Inhaler devices and tested using the Twinstage liquid impinger [5]: 7 and 30 ml of Hydrochloric acid 0,1 M were introduced into the upper and lower impingement chambers, respectively. The vacuum pump operated for 5 seconds at 60 L/min [6, 5], air flow rate and the capsule content was discharged by the turbulent air stream. Five capsules were fired in succession for each determination. At the end of this operation, the apparatus was disassembled and the inner surfaces were washed separately with Hydrochloric acid 0,1 M. The amount of active substance collected in each of the stages or portions (capsule + DPI device, throat, upper and lower impingement chambers) was assayed by UV spectrophotometry (UV / VIS Spectrophotometer, Hitachi U 2000) at 276 nm, and the salbutamol was quantified. 3. Results and Discussion Besides the results for the respirable fraction (Lower impingement chamber), results obtained for all other compartments of the Twin Impinger: Throat, Upper impingement chamber and also the remaining dose in the capsule and device with the three different devices are shown in the following table: Microhaler Capsule+device Throat Upper Lower Total Determ. 1 11,4 6,5 77,9 12,0 107,8 Determ. 2 10,2 7,1 73,6 9,5 100,4 Determ. 3 11,4 8,3 79,7 8,3 107,7 Average 11,0 7,3 77,1 9,9 105,3 SD 0,7 0,9 3,1 1,9 4,2 rsd 6,3 12,6 4,1 19,0 4,0

4 Rotahaler Capsule+device Throat Upper Lower Total Determ. 1 28,6 13,2 56,3 7,1 105,2 Determ. 2 29,2 12,0 48,3 7,1 96,6 Determ. 3 25,5 13,8 57,6 7,7 104,6 Average 27,8 13,0 54,1 7,3 102,1 SD 2,0 0,9 5,0 0,3 4,8 rsd 7,2 7,1 9,3 4,8 4,7 FlowCaps Capsule+device Throat Upper Lower Total Determ. 1 8,9 17,5 58,8 15,7 100,9 Determ. 2 9,5 18,8 52,6 14,5 95,4 Determ. 3 9,5 18,8 55,7 14,5 98,5 Average 9,3 18,4 55,7 14,9 98,3 SD 0,3 0,8 3,1 0,7 2,8 rsd 3,7 4,1 5,6 4,7 2,8 These results are expressed as the percentage of drug dose filled into one capsule (200 µg). As the DPI devices combine powder technology with device design, different devices may give different results even with the same formulation and in the same conditions. This is one of the reasons for the observed differences between the three devices tested. All these systems have a mechanism for aerosolising the powder. Reproducible dose metering and dispersion characteristics are affected by particle size, rugosity, shape, moisture content, surface chemical composition and charge [1]. As the powder blend tested was from the same batch for all experiments performed in this work (uniformity of content in 20 samples tested had a rsd of less than 4 %), and consequently those characteristics were the same for all determinations, there were small differences intra-device (relative standard deviations are reasonable for most of the compartments: between 3.7 and 5.6% for the FlowCaps, between for 4.8 and 9.3% for the Rotahaler, and between 4.1 and 19.0% for the Microhaler ). The data show that FlowCaps had the best shot-to-shot reproducibility. The induction of turbulent flow in narrow tubes can be associated with an enhanced deaggregation of the powder agglomerates. For this reason internal geometry of the device is of great importance, for example the dimensions of channels through which the inspired airflow passes and the release mechanism of the powder from the capsule. This may cause the differences between the three devices as the Microhaler delivers the dose through a capsule hole made by a pin, the Rotahaler delivers the dose through the open capsule and the FlowCaps delivers the dose through a cut made by a blade.

5 For a more illustrative information the same results are listed out also as the emitted fine particle fraction in the following tables: Microhaler Cap. & Dev.(µg) Stage I (µg) Stage II (µg) Emitted dose (µg) FPF (% < 6.4 µg) % emitted dose % nominal dose Total recovery % nominal dose Determ. 1 22,8 168,8 24,0 192,8 12,4 12,0 107,8 Determ. 2 20,4 161,4 19,0 180,4 10,5 9,5 100,4 Determ. 3 22,8 176,0 16,6 192,6 8,6 8,3 107,7 Average 22,0 168,7 19,9 188,6 10,5 9,9 105,3 SD 1,4 7,3 3,8 7,1 1,9 1,9 4,2 rsd 6,3 4,3 19,0 3,8 18,2 19,0 4,0 FPF (% < 6.4 µg) Total recovery Rotahaler Cap. & Dev.(µg) Stage I (µg) Stage II (µg) Emitted dose (µg) % emitted dose % nominal dose % nominal dose Determ. 1 57,2 139,0 14,2 153,2 9,3 7,1 105,2 Determ. 2 58,4 120,6 14,2 134,8 10,5 7,1 96,6 Determ. 3 51,0 142,8 15,4 158,2 9,7 7,7 104,6 Average 55,5 134,1 14,6 148,7 9,8 7,3 102,1 SD 4,0 11,9 0,7 12,3 0,6 0,3 4,8 rsd 7,2 8,9 4,7 8,3 6,5 4,7 4,7 FPF (% < 6.4 µg) Total recovery FlowCaps Cap. & Dev.(µg) Stage I (µg) Stage II (µg) Emitted dose (µg) % emitted dose % nominal dose % nominal dose Determ. 1 17,8 152,6 31,4 184,0 17,1 15,7 100,9 Determ. 2 19,0 142,8 29,0 171,8 16,9 14,5 95,4 Determ. 3 19,0 149,0 29,0 178,0 16,3 14,5 98,5 Average 18,6 148,1 29,8 177,9 16,7 14,9 98,3 SD 0,7 5,0 1,4 6,1 0,4 0,7 2,8 rsd 3,7 3,3 4,6 3,4 2,4 4,6 2,8 where: Emitted dose = Stage I + Stage II Fine Particle Fraction (FPF) % emitted = ((Stage II)/(Stage I + Stage II))*100 Fine Particle Fraction (FPF) % nominal = (Stage II/nominal dose)*100 Total Recovery = Capsule and device retention + Stage I + Stage II Nominal dose = capsule content i.e. 200 µg

6 The Rotahaler TM not only has poor emptying performance (showed by the high amount retained in device and capsule), but also a poor aerosolisation efficiency (as a low % FPF was obtained). Both Microhaler TM and FlowCaps have good emptying efficiencies (as showed by the low amount retained) and Flow Caps has the higher % FPF (is it significantly different, p < 0.05). The data seems to support Hovione's claim that by designing a device where the capsule is stationary so all possible energy from patient's inhalation is directed to aerosolising the powder (rather than rotate and/or shake the capsule too), an improved performance can be obtained. It should be noted that the FlowCaps device used in this work (code-named Dolphin) was not yet in the market and at the moment Hovione has evolved the FlowCaps device (code-named Midget) which resulted from an improvement / upgrading of the former device. 4. Conclusions FlowCaps seems to be the best device for the salbutamol sulphate - lactose mixture used, under our working conditions if compared to the Microhaler TM and Rotahaler TM. The results obtained with the devices can be ranked in the following order: FlowCaps > Microhaler TM > Rotahaler TM. 5. References Hickey, A. J., "Inhalation Aerosols: Physical and Biological Basis of Therapy ". Marcel Dekker, New York P: Swarbrick, J., Boylan, J.C., "Encyclopaedia of Pharmaceutical Technology" Vol. 12. P: 160, Swarbrick, J., Boylan, J.C., "Encyclopaedia of Pharmaceutical Technology" Vol. 9. P: and Villax, P., Brito, V., McDerment, I. "A Capsule-based dry powder inhaler". In: FlowCaps Information Pack. DY002-rev. 5. June P:1-4. Eur. Pharm rd edition. P: 144. Hallworth, G.W., Westmoreland, D.G. "The Twin-Impinger: a simple device for assessing the delivery of drugs from metered dose pressurized aerosol inhalers". J. Pharm. Pharmacol. 1987, 39:

7 6. Acknowledgements We gratefully acknowledge Hovione - Produtos Farmacêuticos S.A. for providing the FlowCaps device. This work was partially supported by the SOCRATES / ERASMUS European Programme.

University of Groningen. Technology in practice Lexmond, Anne

University of Groningen. Technology in practice Lexmond, Anne University of Groningen Technology in practice Lexmond, Anne IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document

More information

The influence of lactose particle size on dry powder inhalation performance

The influence of lactose particle size on dry powder inhalation performance The influence of lactose particle size on dry powder inhalation performance MCC Starch Lactose Inhalation Superdisintegrants 1 Introduction In most dry powder inhalation (DPI) formulations carriers are

More information

Research Article. *Corresponding author Mahesh M.Giri

Research Article. *Corresponding author Mahesh M.Giri Scholars Academic Journal of Pharmacy (SAJP) ISSN 2320-4206 Sch. Acad. J. Pharm., 2013; 2(3):260-267 Scholars Academic and Scientific Publisher (An International Publisher for Academic and Scientific Resources)

More information

Use of Math Modelling to Understand Delivery of Biopharmaceutical Molecules to the Lung

Use of Math Modelling to Understand Delivery of Biopharmaceutical Molecules to the Lung Use of Math Modelling to Understand Delivery of Biopharmaceutical Molecules to the Lung Nia Stevens 9 th November 2016 Thanks to Richard Kaye, James Mitchell, Dave Prime at GSK Bahman Asgharian and Owen

More information

CAPSULE-BASED DRY POWDER INHALERS, AN OPTIMAL SOLUTION FOR DIFFERENT INSPIRATIONAL RATES

CAPSULE-BASED DRY POWDER INHALERS, AN OPTIMAL SOLUTION FOR DIFFERENT INSPIRATIONAL RATES xxx Qualicaps CAPSULE-BASED DRY POWDER INHALERS, AN OPTIMAL SOLUTION FOR DIFFERENT INSPIRATIONAL RATES There is a wide range of devices available to deliver inhalation therapies, but there is increasing

More information

Effect of Rise in Simulated Inspiratory Flow Rate and Carrier Particle Size on Powder Emptying From Dry Powder Inhalers

Effect of Rise in Simulated Inspiratory Flow Rate and Carrier Particle Size on Powder Emptying From Dry Powder Inhalers Effect of Rise in Simulated Inspiratory Flow Rate and Carrier Particle Size on Powder Emptying From Dry Powder Inhalers Received March 3, 2000; Accepted April 5, 2000, Published April 20, 2000 Varsha Chavan

More information

I. Subject: Medication Delivery by Metered Dose Inhaler (MDI)

I. Subject: Medication Delivery by Metered Dose Inhaler (MDI) I. Subject: Medication Delivery by Metered Dose Inhaler (MDI) II. Policy: Aerosol medication administration by metered dose inhaler will be performed upon a physician's order by Respiratory Therapy personnel.

More information

Understanding cascade impaction and its importance for inhaler testing

Understanding cascade impaction and its importance for inhaler testing Understanding cascade impaction and its importance for inhaler testing Mark Copley, Technical Sales Manager Inhalation product development is an important area of activity for the pharmaceutical sector.

More information

Go With the Flow REGULATORY LANDSCAPE. Mark Copley at Copley Scientific

Go With the Flow REGULATORY LANDSCAPE. Mark Copley at Copley Scientific Go With the Flow Image: Guzel Studio shutterstock.com Increasing global requirements for efficacious, inexpensive products to treat respiratory illnesses are driving the development of inhaled generics.

More information

Influence of blender type on the performance of ternary dry powder inhaler formulations

Influence of blender type on the performance of ternary dry powder inhaler formulations Institute of Pharmacy Kiel University Influence of blender type on the performance of ternary dry powder inhaler formulations Mats Hertel Theoretical background Binary formulation: 1 st blending Ternary

More information

Using an Inhaler and Nebulizer

Using an Inhaler and Nebulizer Using an Inhaler and Nebulizer Introduction An inhaler is a handheld device that is used to deliver medication directly to your airways. A nebulizer is an electric or battery powered machine that turns

More information

University of Groningen. Optimisation of dry powder inhalation Boer, Anne Haaije de

University of Groningen. Optimisation of dry powder inhalation Boer, Anne Haaije de University of Groningen Optimisation of dry powder inhalation Boer, Anne Haaije de IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

21/03/2011 AEROSOL DEPOSITION AND THE ASSESSMENT OF PULMONARY DRUG DELIVERY. Fundamentals of aerosols

21/03/2011 AEROSOL DEPOSITION AND THE ASSESSMENT OF PULMONARY DRUG DELIVERY. Fundamentals of aerosols AEROSOL DEPOSITION AND THE ASSESSMENT OF PULMONARY DRUG DELIVERY AEROSOL DEPOSITION AND THE ASSESSMENT OF PULMONARY DRUG DELIVERY Steve Newman Scientific Consultant Norfolk, UK steve.newman@physics.org

More information

Pulmonary deposition of inhaled drugs

Pulmonary deposition of inhaled drugs Pulmonary deposition of inhaled drugs Federico Lavorini Dept. Experimental and Clinical Medicine Careggi University Hospital Florence - Italy Presenter Disclosures F.L. has received in the last 5 years

More information

Inhalation Product Research at FDA

Inhalation Product Research at FDA Inhalation Product Research at FDA Changning Guo Ph. D., Chemist Division of Pharmaceutical Analysis FDA/CDER/OPS/OTR 2016 GPhA CMC workshop, May 17, 2016 Disclaimer: This presentation reflects the views

More information

An update on inhalation devices

An update on inhalation devices OPTIMIZING INHALED DRUG DELIVERY An update on inhalation devices Contents 1. Introduction...1 2. History of spacers... 1 3. Working of a spacer... 2 4. Advantages of spacer devices... 3 5. Who should

More information

Case Study 1: Pharmaceutical Development of EXUBERA

Case Study 1: Pharmaceutical Development of EXUBERA Case Study 1: Pharmaceutical Development of EXUBERA Nancy Harper, PhD Research Fellow, Parenteral Development Center of Emphasis Pfizer Global R&D IPAC-RS Conference November 2006 1 EXUBERA Insulin human

More information

Patient. Device Clinician. Safety & efficacy

Patient. Device Clinician. Safety & efficacy Patient Device Clinician Formulation Safety & efficacy 1. Modified from Daley-Yates et al., Expert Opin. Drug Deliv. 2011: 8(10):1297-1308 2. Modified from Laube et al., Eur Respir J 2011; 37: 1308 1331

More information

Preparation of Ultra-fine Salbutamol Sulfate Particles by Reactive Precipitation and Characterization of Dry Powder Inhalant *

Preparation of Ultra-fine Salbutamol Sulfate Particles by Reactive Precipitation and Characterization of Dry Powder Inhalant * Chinese Journal of Chemical Engineering, 16(5) 791 795 (2008) Preparation of Ultra-fine Salbutamol Sulfate Particles by Reactive Precipitation and Characterization of Dry Powder Inhalant * XU Jing ( 续京

More information

DRY POWDER INHALER; SPECIAL EMPHASIS TO FORMULATION, DEVICES, CHARACTERIZATION & PROCESS VALIDATION PROTOCOL: A REVIEW

DRY POWDER INHALER; SPECIAL EMPHASIS TO FORMULATION, DEVICES, CHARACTERIZATION & PROCESS VALIDATION PROTOCOL: A REVIEW Available online on 15.05.2017 at http://jddtonline.info Journal of Drug Delivery and Therapeutics Open access to Pharmaceutical and Medical research 2011-17, publisher and licensee JDDT, This is an Open

More information

Beclometasone dipropionate (BDP) Prophylactic management of mild, moderate or severe asthma in adults

Beclometasone dipropionate (BDP) Prophylactic management of mild, moderate or severe asthma in adults CLENIL MODULITE Beclometasone dipropionate (BDP) Prophylactic management of mild, moderate or severe asthma in adults Corticosteroids for the treatment of chronic asthma in adults and children aged 12

More information

Assessing Quality of Inhaled Products And Links to Efficacy and Safety

Assessing Quality of Inhaled Products And Links to Efficacy and Safety Assessing Quality of Inhaled Products And Links to Efficacy and Safety Prasad Peri, PhD ONDQA 2011 IPAC-RS Conference Bringing Value To The Patient In A Changing World March 30, 2011 1 Outline of the Presentation

More information

Appendix E: Device Technique

Appendix E: Device Technique Adult Asthma Care Guidelines for Nurses: Promoting Control of Asthma Appendix E: Device Technique Medications: Inhalation Devices Adapted with permission from The Lung Association: www.lung.ca/asthma/manage/devices.html

More information

Device Design Similarity

Device Design Similarity Device Design Similarity Dave Parkins Director DPI Product Development PQRI Workshop on Demonstrating Bioequivalence of Locally Acting Orally Inhaled Drug Products. Bethesda March 9-10, 2009 Device Similarity

More information

Process Drift and it s Resolution in the Manufacture of Drug Products. MDI s and DPI s Metered Dose Inhalations and Dry Powder Inhalations

Process Drift and it s Resolution in the Manufacture of Drug Products. MDI s and DPI s Metered Dose Inhalations and Dry Powder Inhalations Process Drift and it s Resolution in the Manufacture of Drug Products MDI s and DPI s Metered Dose Inhalations and Dry Powder Inhalations Ed Warner, Merck MMD December 2, 2010 PQRI-FDA Workshop on Process

More information

Achieving Optimal Particle Size Distribution in Inhalation Therapy

Achieving Optimal Particle Size Distribution in Inhalation Therapy Achieving Optimal Particle Size Distribution in Inhalation Therapy By Bob Bruno Inhalation therapy has proven to be an effective method of administering a number of pharmaceuticals for more than a century.

More information

TEPZZ _7584 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: A61K 9/00 ( ) A61K 31/439 (2006.

TEPZZ _7584 A_T EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (51) Int Cl.: A61K 9/00 ( ) A61K 31/439 (2006. (19) TEPZZ _784 A_T (11) EP 3 17 842 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: 07.06.17 Bulletin 17/23 (1) Int Cl.: A61K 9/00 (06.01) A61K 31/439 (06.01) (21) Application number: 1197874.9

More information

OPTIMISING ANALYTICAL STRATEGIES FOR THE DEMONSTRATION OF BIOEQUIVALENCE IN A GENERIC NEBULISER

OPTIMISING ANALYTICAL STRATEGIES FOR THE DEMONSTRATION OF BIOEQUIVALENCE IN A GENERIC NEBULISER OPTIMISING ANALYTICAL STRATEGIES FOR THE DEMONSTRATION OF BIOEQUIVALENCE IN A GENERIC NEBULISER US FDA guidance for the in vitro demonstration of bioequivalence in a generic nebuliser directly references

More information

Patricia KP Burnell Inhalation Product Development

Patricia KP Burnell Inhalation Product Development Patricia KP Burnell Inhalation Product Development Inhaled products: types, development The critical parameters In-vitro testing Ex-vivo testing What dose? Product Development: drug medicine Safety and

More information

Respiratory Therapy. Medical/Scientific/General Background

Respiratory Therapy. Medical/Scientific/General Background Respiratory Therapy Medical/Scientific/General Background Marketing Europe Dr. Rainer Jakobs PMM Europe 1 Dr. Rainer Jakobs, PMM Europe RT Medical/Scientific/General Background 2 Dr. Rainer Jakobs, PMM

More information

Q. What are metered-dose inhalers? A. These are devices that dispense medicines directly into the lungs, in the form of a mist or aerosol in a

Q. What are metered-dose inhalers? A. These are devices that dispense medicines directly into the lungs, in the form of a mist or aerosol in a 1 2 Q. What are metered-dose inhalers? A. These are devices that dispense medicines directly into the lungs, in the form of a mist or aerosol in a specific dosage. In an MDI, the medicine is suspended

More information

Citation for published version (APA): Westerman, E. M. (2009). Studies on antibiotic aerosols for inhalation in cystic fibrosis s.n.

Citation for published version (APA): Westerman, E. M. (2009). Studies on antibiotic aerosols for inhalation in cystic fibrosis s.n. University of Groningen Studies on antibiotic aerosols for inhalation in cystic fibrosis Westerman, Elisabeth Mechteld IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF)

More information

The use of a novel optical technology, the VariDose, was also investigated in order to obtain a system which can lead to an effective and efficient

The use of a novel optical technology, the VariDose, was also investigated in order to obtain a system which can lead to an effective and efficient Acknowledgments I would like to express my deepest gratitude to my supervisor Dr Robert Price for his guidance, enthusiasm, support and encouragement throughout the course of my research. My sincere thanks

More information

Caption: The equipment required for testing Fluticasone Propionate (FP) Inhalation Powder in line with a new product-specific monograph (USP36-NF31).

Caption: The equipment required for testing Fluticasone Propionate (FP) Inhalation Powder in line with a new product-specific monograph (USP36-NF31). Product-specific FDA guidance, and product-specific pharmacopeial monographs, point to the use of test equipment, some of which isn t included in the general USP/Ph. Eur. chapters for orally inhaled products

More information

RDD Europe 2009 Workshop

RDD Europe 2009 Workshop RDD Europe 2009 Workshop 20 May 2009, Lisbon, Portugal This file is a redacted version of the presentation used during the Workshop and is suitable for electronic distribution. An Introduction to Differentiating

More information

Equivalence Evaluation of Valved Holding Chambers (VHCs) with Albuterol Pressurized Metered Dose Inhaler (pmdi)

Equivalence Evaluation of Valved Holding Chambers (VHCs) with Albuterol Pressurized Metered Dose Inhaler (pmdi) Respiratory Drug Delivery Europe 2017 Nagel and Suggett Equivalence Evaluation of Valved Holding Chambers (VHCs) with Albuterol Pressurized Metered Dose Inhaler (pmdi) Mark W. Nagel and Jason A. Suggett

More information

Appendix M: Device Technique

Appendix M: Device Technique Nursing Care of Dyspnea: The 6th Vital Sign in Individuals with Chronic Obstructive Pulmonary Disease (COPD) Appendix M: Device Technique Medications: Inhalation Devices Medications come in many forms.

More information

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2008/29

EP A1 (19) (11) EP A1 (12) EUROPEAN PATENT APPLICATION. (43) Date of publication: Bulletin 2008/29 (19) (12) EUROPEAN PATENT APPLICATION (11) EP 1 944 018 A1 (43) Date of publication: 16.07.2008 Bulletin 2008/29 (21) Application number: 07000425.4 (51) Int Cl.: A61K 9/14 (2006.01) A61K 31/4704 (2006.01)

More information

Dry Powder Inhaler. Developing an Efficient. 3M Conix DPI. White Paper / Spring Proven Solutions that Enable Your Success

Dry Powder Inhaler. Developing an Efficient. 3M Conix DPI. White Paper / Spring Proven Solutions that Enable Your Success 3M Drug Delivery Systems Developing an Efficient Dry Powder Inhaler 3M Conix DPI White Paper / Spring 2011 Proven Solutions that Enable Your Success Introduction introduction Inhalation drug delivery has

More information

The Use of Physics-Based Modeling to Better Design Drug- Device Interface. Yoen-Ju Son, PhD Merck Research Laboratory, Summit, NJ

The Use of Physics-Based Modeling to Better Design Drug- Device Interface. Yoen-Ju Son, PhD Merck Research Laboratory, Summit, NJ The Use of Physics-Based Modeling to Better Design Drug- Device Interface Yoen-Ju Son, PhD Merck Research Laboratory, Summit, NJ Presentation Outline Physics-based modeling in pharmaceutical industry Pulmonary

More information

Everything for Inhalation

Everything for Inhalation Everything for Inhalation Everything for Inhalation Inhalation drug product development at Hovione has a strong focus on formulation for Dry Powder Inhalers (DPI), particularly for capsule-based and reservoir-based

More information

INTEGRATED DESIGN SPACE TO DEVELOP BETTER DPI FORMULATIONS

INTEGRATED DESIGN SPACE TO DEVELOP BETTER DPI FORMULATIONS INTEGRATED DESIGN SPACE TO DEVELOP BETTER DPI FORMULATIONS Here, Filipa Maia, PhD, and Maria Palha, MSc, both Scientists at Hovione, report a study whose objective was to establish relationships between

More information

University of Groningen. Optimisation of dry powder inhalation de Boer, Anne

University of Groningen. Optimisation of dry powder inhalation de Boer, Anne University of Groningen Optimisation of dry powder inhalation de Boer, Anne IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check

More information

COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP) GUIDELINE ON THE PHARMACEUTICAL QUALITY OF INHALATION AND NASAL PRODUCTS

COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP) GUIDELINE ON THE PHARMACEUTICAL QUALITY OF INHALATION AND NASAL PRODUCTS European Medicines Agency Inspections London, 16 February 2005 Doc Ref.: EMEA/CHMP/QWP/49313/2005 corr. COMMITTEE FOR MEDICINAL PRODUCTS FOR HUMAN USE (CHMP) GUIDELINE ON THE PHARMACEUTICAL QUALITY OF

More information

Delivery of Iloprost Inhalation Solution With the HaloLite, Prodose, and I-neb Adaptive Aerosol Delivery Systems: An In Vitro Study

Delivery of Iloprost Inhalation Solution With the HaloLite, Prodose, and I-neb Adaptive Aerosol Delivery Systems: An In Vitro Study Delivery of Iloprost Inhalation Solution With the HaloLite, Prodose, and I-neb Adaptive Aerosol Delivery Systems: An In Vitro Study Robert E Van Dyke MSc and Kurt Nikander BACKGROUND: Iloprost (Ventavis)

More information

Misty Max 10 nebulizer

Misty Max 10 nebulizer AirLife brand Misty Max 10 nebulizer Purpose Introduction Delivery of nebulized medication to the lungs is a complex process dependant upon a variety of clinical and device-related variables. Patient breathing

More information

Testing inhalers. One of the longstanding challenges facing the

Testing inhalers. One of the longstanding challenges facing the Testing inhalers This article investigates how the industry can test inhalers in a way that is most representative of typical use. One of the longstanding challenges facing the United States Pharmacopeia

More information

The pulmonary route is gaining increasing

The pulmonary route is gaining increasing ELECTRONICALLY REPRINTED FROM FEBRUARY 2014 Pulmonary Drug Delivery Particle Engineering for Inhaled Therapeutics Moderated by Adeline Siew, PhD Industry experts discuss the various factors affecting drug

More information

Formulation Considerations for Inhaled Products

Formulation Considerations for Inhaled Products Formulation Considerations for Inhaled Products Formulation Considerations of Inhaled Products Inhalation Therapy Nebulizers and Formulations Dry Powder Inhalers and Formulations Metered Dose Inhalers

More information

2008 IPAC-RS Conference Doing the Right Thing Science, Quality and Patient Focus

2008 IPAC-RS Conference Doing the Right Thing Science, Quality and Patient Focus 2008 IPAC-RS Conference Doing the Right Thing Science, Quality and Patient Focus Patient Perspective Alpha-1 1 Foundation John W. Walsh Patient Focus Personal perspective Challenges and lessons Importance

More information

905 UNIFORMITY OF DOSAGE UNITS

905 UNIFORMITY OF DOSAGE UNITS Change to read: 905 UNIFORMITY OF DOSAGE UNITS [ NOTE In this chapter, unit and dosage unit are synonymous. ] To ensure the consistency of dosage units, each unit in a batch should have a drug substance

More information

PREMIXES FOR MEDICATED FEEDING STUFFS FOR VETERINARY USE. Praeadmixta ad alimenta medicata ad usum veterinarium. Effervescent powders

PREMIXES FOR MEDICATED FEEDING STUFFS FOR VETERINARY USE. Praeadmixta ad alimenta medicata ad usum veterinarium. Effervescent powders Preparations for inhalation administered in or with water or another suitable liquid. They may also be swallowed directly. They are presented as single-dose or multidose preparations. Where applicable,

More information

AEROSOL THERAPY: THE PRACTICALITIES

AEROSOL THERAPY: THE PRACTICALITIES AEROSOL THERAPY: THE PRACTICALITIES Lester I. Harrison, PhD Section Head, Clinical Pharmacokinetics, 3M Pharmaceuticals, 3M Center 270-3S-05, St. Paul, MN, USA 55144 liharrison@mmm.com Introduction: Horses,

More information

Novel drug delivery system. Nanos-in-Micros

Novel drug delivery system. Nanos-in-Micros Novel drug delivery system Nanos-in-Micros Janne Raula The annual symposium of the Finnish Society of Physical Pharmacy February 9 th, 2012 Medicinal treatment Indications -Neurosurgery -General surgery

More information

NEBULIZERS, METERED DOSE INHALERS, AND DRY POWDER INHALERS

NEBULIZERS, METERED DOSE INHALERS, AND DRY POWDER INHALERS NEBULIZERS, METERED DOSE INHALERS, AND DRY POWDER INHALERS Douglas S. Gardenhire, Ed.D, RRT-NPS MODULE 1 Manipulate Small Volume Nebulizers by Order or Protocol 1 Objectives for Module 1 At the end of

More information

An Investigation into the Powder Release Behavior from Capsule-Based Dry Powder Inhalers

An Investigation into the Powder Release Behavior from Capsule-Based Dry Powder Inhalers Aerosol Science and Technology ISSN: 0278-6826 (Print) 1521-7388 (Online) Journal homepage: https://www.tandfonline.com/loi/uast20 An Investigation into the Powder Release Behavior from Capsule-Based Dry

More information

Novolizer Technical Aspects

Novolizer Technical Aspects Novolizer Technical Aspects Dr José Mª Negro Alvarez H.U. Virgen de la Arrixaca.. Murcia (España) a) Profesor Asociado de Alergología. Universidad de Murcia (España) a) Contents Design and function of

More information

IMPROVING THE REALISM AND RELEVANCE OF MOUTH-THROAT MODELS FOR INHALED PRODUCT TESTING

IMPROVING THE REALISM AND RELEVANCE OF MOUTH-THROAT MODELS FOR INHALED PRODUCT TESTING IMPROVING THE REALISM AND RELEVANCE OF MOUTH-THROAT MODELS FOR INHALED PRODUCT TESTING In this piece, Mark Copley, Sales Director of Copley Scientific, provides some background on mouth-throat models for

More information

OPTIMISATION OF SALBUTAMOL SUSPENSION AS METERED DOSE INHALATION (MDI) AND COMPARISON WITH A MARKETED MDI SUSPENSION

OPTIMISATION OF SALBUTAMOL SUSPENSION AS METERED DOSE INHALATION (MDI) AND COMPARISON WITH A MARKETED MDI SUSPENSION Khale & Bajaj, IJPSR, 2011; Vol. 2(2): 391-403 ISSN: 0975-8232 IJPSR (2011), Vol. 2, Issue 2 (Research Article) Received on 11 October, 2010; received in revised form 12 November, 2010; accepted 18 January,

More information

Smart asthma therapy. Patient information Spacer inhaling aid for metered-dose aerosol inhalers

Smart asthma therapy. Patient information Spacer inhaling aid for metered-dose aerosol inhalers FF Smart asthma therapy Patient information Spacer inhaling aid for metered-dose aerosol inhalers :: Metered-dose inhalers coordination technique In the treatment of asthma and COPD the medications are

More information

Your Inhaler Devices & You

Your Inhaler Devices & You 1 Your Inhaler Devices & You COUNSEL ON THE APPROPRIATE USE OF A: METERED DOSE INHALER (MDI) DRY POWDER INHALER (DPI) DISCUSS THE APPROPRIATE USAGE OF A PEAK FLOW METER AND SPACER/HOLDING CHAMBER DEVICE

More information

L. Borgström*, E. Bondesson*, F. Morén**, E. Trofast*, S.P. Newman +

L. Borgström*, E. Bondesson*, F. Morén**, E. Trofast*, S.P. Newman + Eur Respir J, 1994, 7, 69 73 DOI: 10.1183/09031936.94.07010069 Printed in UK - all rights reserved Copyright ERS Journals Ltd 1994 European Respiratory Journal ISSN 0903-1936 Lung deposition of budesonide

More information

Pocket Guide to Inhaler Technique A Step-By-Step Guide for Healthcare Professionals

Pocket Guide to Inhaler Technique A Step-By-Step Guide for Healthcare Professionals Pocket Guide to Inhaler Technique A Step-By-Step Guide for Healthcare Professionals Endorsed by NHSGGC Respiratory Managed Clinical Network; June 2016 Designed by Medical Illustration Services Contents

More information

Development of a Dry Powder Multi-dose Inhaler using Computational Modeling

Development of a Dry Powder Multi-dose Inhaler using Computational Modeling ENGINEER - Vol. XXXXII, No. 03, pp. [57-65], 2009 The Institution of Engineers, Sri Lanka Development of a Dry Powder Multi-dose Inhaler using Computational Modeling M.A.D.A.Sudeera, V.P.C.Dassanayake,

More information

EPAG Perspective - Regulatory Advances Related to Nasal Spray Pumps. Dr G.Williams Nasal Drug Delivery Management Forum London, 15 Apr 2010

EPAG Perspective - Regulatory Advances Related to Nasal Spray Pumps. Dr G.Williams Nasal Drug Delivery Management Forum London, 15 Apr 2010 1 EPAG Perspective - Regulatory Advances Related to Nasal Spray Pumps Dr G.Williams Nasal Drug Delivery Management Forum London, 15 Apr 2010 Overview 2 EPAG, what is it?, background, this project Regulatory

More information

COPD Device Workshop. Summary. Role of inhaler device in COPD. Why use inhaler device in COPD?

COPD Device Workshop. Summary. Role of inhaler device in COPD. Why use inhaler device in COPD? Part 1 Role of inhaler device in COPD COPD Device Workshop Dr Philip Lee Respiratory and Sleep Physician St George Hospital, Sydney Part 2 Part 3 Part 4 Incorrect inhaler technique-adverse clinical outcomes

More information

Assessing the role of breathing simulators in OIP testing

Assessing the role of breathing simulators in OIP testing As first AppeAred in Inhalation April 2014 www.inhalationmag.com Assessing the role of breathing simulators in OIP testing Exploring how the application of patient-representative inhalation profiles can

More information

A PRACTICAL GUIDE TO nebulization

A PRACTICAL GUIDE TO nebulization A PRACTICAL GUIDE TO nebulization therapy a initiative This book is based on sources believed to be reliable in providing information that is complete and generally in accordance with the standards accepted

More information

Research Article. De-agglomeration Effect of the US Pharmacopeia and Alberta Throats on Carrier-Based Powders in Commercial Inhalation Products

Research Article. De-agglomeration Effect of the US Pharmacopeia and Alberta Throats on Carrier-Based Powders in Commercial Inhalation Products The AAPS Journal, Vol. 17, No. 6, November 2015 ( # 2015) DOI: 10.1208/s12248-015-9802-0 Research Article De-agglomeration Effect of the US Pharmacopeia and Alberta Throats on Carrier-Based Powders in

More information

Characterizing the Performance of Metered Dose Inhalers with Add-On Devices: New Methods For Clinically Relevant Testing

Characterizing the Performance of Metered Dose Inhalers with Add-On Devices: New Methods For Clinically Relevant Testing INSTRUMENTATION» Characterizing the Performance of Metered Dose Inhalers with Add-On Devices: New Methods For Clinically Relevant Testing Mark Copley Director Copley Scientific The recent introduction

More information

Understanding the links between drug delivery route and in vitro test methods Mark Copley, Sales Director, Copley Scientific

Understanding the links between drug delivery route and in vitro test methods Mark Copley, Sales Director, Copley Scientific Understanding the links between drug delivery route and in vitro test methods Mark Copley, Sales Director, Copley Scientific In vitro tests are widely used, from R&D through to QC, to improve the efficacy

More information

PARTICLE-PARTICLE INTERACTIONS BETWEEN TAILORED MANNITOL CARRIER PARTICLES AND DRUG PARTICLES FOR INHALATION

PARTICLE-PARTICLE INTERACTIONS BETWEEN TAILORED MANNITOL CARRIER PARTICLES AND DRUG PARTICLES FOR INHALATION PARTICLE-PARTICLE INTERACTIONS BETWEEN TAILORED MANNITOL CARRIER PARTICLES AND DRUG PARTICLES FOR INHALATION DOCTORAL THESIS SUBMITTED IN THE FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR IN

More information

IVIVC in Pediatric OIPs

IVIVC in Pediatric OIPs IPAC-RS/UF Orlando Conference 2014 March 20, 2014 IVIVC in Pediatric OIPs Herbert Wachtel Declaration of Conflicts of Interest H. Wachtel is employee of Boehringer Ingelheim Pharma GmbH & Co. KG, Germany.

More information

Identification of crystalline forms suitable for inhalation in drug discovery

Identification of crystalline forms suitable for inhalation in drug discovery Identification of crystalline forms suitable for inhalation in drug discovery Valentina Diana Di Lallo Chiesi Farmaceutici - Corporate R&D Preclinical Analytics & Early Formulations Department Crystallization:

More information

Respiratory. Martin Jetzer DDL27 Edinburgh December 2016

Respiratory. Martin Jetzer DDL27 Edinburgh December 2016 Respiratory Investigating the Effect of the Force Control Agent Magnesium Stearate in Fluticasone Propionate Dry Powder Inhaled Formulations with Single Particle Aerosol Mass Spectrometry Martin Jetzer

More information

Effective Date: August 31, 2006 SUBJECT: CARE AND USE OF NEBULIZER AND INTERMITTENT POSITIVE PRESSURE BREATHING DEVICE

Effective Date: August 31, 2006 SUBJECT: CARE AND USE OF NEBULIZER AND INTERMITTENT POSITIVE PRESSURE BREATHING DEVICE COALINGA STATE HOSPITAL NURSING POLICY AND PROCEDURE MANUAL SECTION - Treatments POLICY NUMBER: 421 Effective Date: August 31, 2006 SUBJECT: CARE AND USE OF NEBULIZER AND INTERMITTENT POSITIVE PRESSURE

More information

Current Challenges and Opportunities in Demonstrating Bioequivalence

Current Challenges and Opportunities in Demonstrating Bioequivalence Current Challenges and Opportunities in Demonstrating Bioequivalence Gur Jai Pal Singh, Ph.D. Watson Laboratories, Inc. Corona, California, USA Demonstrating Bioequivalence of Locally Acting Orally Inhaled

More information

Use of SPM to Measure Adhesion Forces: Some Pharmaceutical Applications. Frank M. Etzler

Use of SPM to Measure Adhesion Forces: Some Pharmaceutical Applications. Frank M. Etzler Use of SPM to Measure Adhesion Forces: Some Pharmaceutical Applications Frank M. Etzler Particle Adhesion in Pharmaceutical Science Particle adhesion important to a number of areas of interest. Adhesion

More information

Latex Free. An affordable, easy to use, high density, small volume nebulizer with a breath enhanced design! Breath Enhanced High Density Jet Nebulizer

Latex Free. An affordable, easy to use, high density, small volume nebulizer with a breath enhanced design! Breath Enhanced High Density Jet Nebulizer Latex Free Breath Enhanced High Density Jet Nebulizer The NebuTech HDN nebulizer, a breath enhanced design, by Salter Labs is quickly becoming the product of choice for caregivers and patients alike. This

More information

ASTHMA POLICY KYABRAM P-12 COLLEGE

ASTHMA POLICY KYABRAM P-12 COLLEGE Asthma Policy ASTHMA POLICY KYABRAM P-12 COLLEGE THE VICTORIAN SCHOOLS ASTHMA POLICY 1. ASTHMA AWARENESS As asthma can affect up to one in five children and one in ten adults, it is important for teachers

More information

Transactions on Biomedicine and Health vol 2, 1995 WIT Press, ISSN

Transactions on Biomedicine and Health vol 2, 1995 WIT Press,   ISSN Biomedical application of the supercomputer: targeted delivery of inhaled Pharmaceuticals in diseased lungs T.B. Martonen,* I. Katz,* D. Hwang,' Y.Yang* "Health Effects Research Laboratory, U.S.Environmental

More information

What you need to know about inhalers and how to use them Henry Chrystyn PhD, FRPharmS and David Price MA, MRCGP, DRCOG

What you need to know about inhalers and how to use them Henry Chrystyn PhD, FRPharmS and David Price MA, MRCGP, DRCOG What you need to know about inhalers and how to use them Henry Chrystyn PhD, FRPharmS and David Price MA, MRCGP, DRCOG VM The authors describe the problems that arise with metered-dose and dry-powder inhalers,

More information

How to Use Inhaled Medications for Asthma and COPD

How to Use Inhaled Medications for Asthma and COPD How to Use Inhaled Medications for Asthma and COPD This information is not intended to diagnose health problems or to take the place of medical advice or care you receive from your physician or other health

More information

OF COATING MATERIAL ON THE AERODYNAMIC PARTICLE SIZE DISTRIBUTION (PSD) OF OXIS TURBOHALER USING MIXING INLET WITH AN ANDERSEN CASCADE IMPACTOR (ACI)

OF COATING MATERIAL ON THE AERODYNAMIC PARTICLE SIZE DISTRIBUTION (PSD) OF OXIS TURBOHALER USING MIXING INLET WITH AN ANDERSEN CASCADE IMPACTOR (ACI) 165 J App Pharm 2(3): 165-178 (2011) Khan et al., 2011 EFFECT OF COATING MATERIAL ON THE AERODYNAMIC PARTICLE SIZE DISTRIBUTION (PSD) OF OXIS TURBOHALER USING MIXING INLET WITH AN ANDERSEN CASCADE IMPACTOR

More information

HARD TWO-PIECE HPMC CAPSULES FOR PHARMACEUTICAL APPLICATIONS IN INHALATION

HARD TWO-PIECE HPMC CAPSULES FOR PHARMACEUTICAL APPLICATIONS IN INHALATION HARD TWO-PIECE HPMC CAPSULES FOR PHARMACEUTICAL APPLICATIONS IN INHALATION 2 3 QUALICAPS HISTORY Over one hundred years of experience in the manufacturing and filling of hard two-piece capsules Qualicaps

More information

Applicant (Invented) Name Strength Pharmaceutical form. Eformax 12 µg. Σĸóvη για εισπνοή. Eformax 12 mcg. Prášek k inhalaci.

Applicant (Invented) Name Strength Pharmaceutical form. Eformax 12 µg. Σĸóvη για εισπνοή. Eformax 12 mcg. Prášek k inhalaci. ANNEX I LIST OF THE NAMES, PHARMACEUTICAL FORM, STRENGTHS OF THE MEDICINAL PRODUCTS, ROUTE OF ADMINISTRATION, APPLICANTS AND MARKETING AUTHORISATION HOLDER IN THE MEMBER STATES Member State Marketing Authorisation

More information

How can I benefit most from my COPD medications?

How can I benefit most from my COPD medications? Fact Sheet: COPD Medications and Delivery Devices How can I benefit most from my COPD medications? COPD medications can improve your symptoms. By taking the right medication at the right time, you can

More information

Rush University, College of Health Sciences

Rush University, College of Health Sciences Rush University, College of Health Sciences An Evaluation of the Prototype OxyMulti Mask Prototype Compared to the Oxymask Aerosol, OxyMulti Mask and Airlife Aerosol Mask for Aerosol Delivery in Adults

More information

Challenges in Nonclinical Development of Inhalation Drug Products

Challenges in Nonclinical Development of Inhalation Drug Products Challenges in Nonclinical Development of Inhalation Drug Products Luqi Pei, Ph.D. Senior Pharmacologist DPARP, CDER August 6, 2015 Rockville, MD Disclaimer This speech reflects the views of the speaker

More information

INTRODUCTION. Asthma Drug Delivery - 1

INTRODUCTION. Asthma Drug Delivery - 1 Asthma Drug Delivery Laboratory Experiment Developed by: Alex Jannini, David Krause, Heather Malino and Kevin Sweeney, Rowan University, Department of Chemical Engineering Edited by: C. Stewart Slater

More information

ADDITIONAL TECHNOLOGIES FOR PRESSURIZED METERED DOSE INHALERS. Steve Newman Scientific Consultant Nottingham, UK

ADDITIONAL TECHNOLOGIES FOR PRESSURIZED METERED DOSE INHALERS. Steve Newman Scientific Consultant Nottingham, UK THE PRESS-AND-BREATHE pmdi ADDITIONAL TECHNOLOGIES FOR PRESSURIZED METERED DOSE INHALERS Steve Newman Scientific Consultant Nottingham, UK steve.newman@physics.org Compact, portable, convenient Asthma

More information

RDD Europe 2011 Workshop 4 May 2011

RDD Europe 2011 Workshop 4 May 2011 RDD Europe 2011 Workshop 4 May 2011 This file represents the slides presented on May 4, 2011 by 3M Drug Delivery Systems at the RDD Europe 2011 Conference in Berlin, Germany. Slides have been modified

More information

Deposition of Inhaled Particle in the Human Lung for Different Age Groups

Deposition of Inhaled Particle in the Human Lung for Different Age Groups Deposition of Inhaled Particle in the Human Lung for Different Age Groups Xilong Guo 1, Qihong Deng 1* 1 Central South University (CSU), Changsha, China * Corresponding email: qhdeng@csu.edu.cn, qhdeng@gmail.com.

More information

Performance of a Fluticasone Propionate/Salmeterol Xinafoate 3M Taper DPI

Performance of a Fluticasone Propionate/Salmeterol Xinafoate 3M Taper DPI 3M Drug Delivery Systems Performance of a Fluticasone Propionate/Salmeterol Xinafoate 3M Taper DPI Poster Reprint / Spring 2011 John Simons 1, Herbert Chiou 1, Louis Sigtermans 1, Tom Robison 1, Debra

More information

Applications of capsule dosing techniques for use in dry powder inhalers

Applications of capsule dosing techniques for use in dry powder inhalers Review Applications of capsule dosing techniques for use in dry powder inhalers Dry powder inhaler (DPI) devices that utilize two-piece capsules as the dose-holding system can require specialized dosing

More information

Glossary of Asthma Terms

Glossary of Asthma Terms HealthyKidsExpress@bjc.org Asthma Words to Know Developed in partnership with Health Literacy Missouri Airways (Bronchi, Bronchial Tubes): The tubes in the lungs that let air in and out of the body. Airway

More information

Pediatrics in mechanical ventilation

Pediatrics in mechanical ventilation Pediatrics Optimization Intitulé du cours of aerosol therapy in mechanical ventilation Thèmes donnés Ermindo Di Paolo, PhD Departments of Pharmacy and Pediatrics Lausanne University Hospital Switzerland

More information

Chapter 10 The Respiratory System

Chapter 10 The Respiratory System Chapter 10 The Respiratory System Biology 2201 Why do we breathe? Cells carry out the reactions of cellular respiration in order to produce ATP. ATP is used by the cells for energy. All organisms need

More information

Product Guide. MSP Corporation Rice Creek Parkway, Suite 300. Shoreview, Minnesota 55126, U.S.A. Phone: Fax:

Product Guide. MSP Corporation Rice Creek Parkway, Suite 300. Shoreview, Minnesota 55126, U.S.A. Phone: Fax: Product Guide inhalertesting MSP Corporation 5910 Rice Creek Parkway, Suite 300 Shoreview, Minnesota 55126, U.S.A. Phone: 651.287.8100 Fax: 651.287.8140 sales@mspcorp.com www.mspcorp.com About This Guide

More information